

Introduction to Power Management

- The voltage of the power supply and/or battery feeding our PCB is seldom at the correct level that we need for our circuitry:
- Example: A standard desktop PC in Europe is fed with 230 V but the motherboard needs: $+12 \mathrm{~V},-12 \mathrm{~V},+5 \mathrm{~V}$ and +3.3 V
- We need to step up and step down (convert) our voltage levels ALL THE TIME depending on the voltage available to us at our input connector and what the circuitry actually needs
- There are two major methods to do this:
- Linear Regulators (also known as series pass regulator, series regulator or LDOs) and
- Switching Regulators (known as switch mode power supplies, or switching power supplies and power "converters")
- Note that (beyond very low currents) zener diodes or potential dividers are not good choices for this purpose!

Introduction to Power Management

- LDO

- Switching Regulator

Why Do We Need a Converter/Regulator

- Of course the first job of the converter/regulator is to convert our input voltage to the output voltage level that our circuit requires
- e.g. Input voltage Vin $=12 \mathrm{~V}$ but we actually need 5 V for our ICs
- The second job is to regulate!
- If there is a increase/decrease in the amount of current that we draw, the output voltage should not fall/rise
- This is called Load Regulation
- If there is a change in the input voltage of our power supply the output voltage should not change
- This is called Line Regulation
- There are other desirable characteristics such as: transient response, efficiency, EMI, cost, size, etc but we will talk about these later

Linear Regulators

- Two major types (even though many people call all of them LDOs):
- Standard
- e.g. LM78LXX
- Requires higher input voltage of around 2 V ; e.g. LM78L05 will give you a regulated output of $5 \mathrm{~V} @ 100 \mathrm{~mA}$ but Vin must be $>7 \mathrm{~V}$
- Low Drop Out (LDO):
- e.g. TPS793xx
- Requires less dropout voltage than "standard type". The input voltage typically needs to be only 0.6 V higher than the output voltage
- They work by operating a transistor in the linear region (i.e. like a variable resistor), sensing the output voltage (Vout) and automatically changing this variable resistor value such that Vout remains constant
- Advantages:
- Cheap \& easy, quiet, small
- Disadvantages:
- Very inefficient, low current only, limited Vin and Vout ranges

BIRICHA
 DIGITAL

So What is Wrong with Linear Regulators?

- Let's say our input voltage is 12 V and we need a $5 \mathrm{~V}, 100 \mathrm{~mA}$ supply - Ignoring the ground current, we will have 7V drop across our regulator

Head for Linear Regulator ~ 2 V Head needed for LDO ~ 0.6V

- Output Power $=5 \mathrm{~V} \times 100 \mathrm{~mA}=500 \mathrm{~mW}$
- Power Loss in regulator $=7 \mathrm{~V} \times 100 \mathrm{~mA}=700 \mathrm{~mW}$
- Efficiency $=500 \mathrm{~mW} /(1200 \mathrm{~mW})=41.6 \%$!

BIRICHA
 DIGITAL
 Switching Regulators (Power Converters)

- Imagine that we want to dim an old fashioned incandescent light bulb whereby the switch is on 100% of the time,
- if we place a resistor in series with it and keep the switch on all the time then we dim the light but we waste energy in the resistor (this is like the linear regulator)
- If instead of the resistor if we turn the switch off for 50% of the time and then turn it on for 50% of the time then we will dim the light by 50%
- Obviously if we switch at a slow rate (once per second) then we would see the light flicker, but if we switch at a very fast rate then we would not see the flicker
- This is the basic principle by which step down switching power supplies work

DIGITAL

Switching Regulator Design Challenges

- Designing switch mode power supplies without software tools is HARD!
- Need an understating of power electronics
- Good understanding of control theory is essential for stability
- There are many things that can go wrong... usually with a bang!
- Need to understand the effect of parasitics and thermal management
- Component selection is difficult and must be chosen so that they can tolerate the worse case scenario
- Switching regulators are very noisy (from an EMI stand point) and good PCB layout is essential
- Custom magnetic design is necessary for isolated power supplies
- Engineers specialising in power can have most of these skills but, for the vast majority of us, all we need is power for our boards

BIRICHA
 DIGITAL
 Introduction to WEBENCH

- WEBENCH is a free, automatic tool that allows engineers to create reliable power supply circuits over the internet in minutes
- The user inputs circuit performance requirements and specifications and the WEBENCH toolset designs all the necessary circuitry
- Currently the following tools are available:
- WEBENCH Power Designer
- WEBENCH LED Designer
- WEBENCH Sensor Designer
- WEBENCH Active Filter Designer
- WEBENCH Amplifier Designer
- WEBENCH EasyPLL

In this session we will concentrate on WEBENCH Power Designer

Simple Buck Converter and Basic Terminology

- When the switch is ON
- Replace the switch with a short
- Diode is reverse biased (replace with open circuit)
- Inductor current will rise linearly

- When the switch is OFF
- Replace switch with open circuit
- Diode is forward biased (replace with short circuit)
- Inductor current will fall linearly

WEBENCH Power Designer*

- You can use WEBENCH to create customized power supplies or DC-DC converters for your circuits
- This environment gives you end-to-end power supply designs and prototyping tools
- WEBENCH tools enable you to solve switching-power-supply design problems before you build your prototype
- This alleviates the time and trouble associated with traditional power supply design methods
- Included in the WEBENCH toolset is a device selection tool
- This tool helps you find the best switching regulator or MOSFET controller for your power supply circuit. It even selects the most appropriate passive components

Topologies Used in WEBENCH

- WEBENCH supports the following topologies
- Buck
- Boost
- Inverting Buck-Boost
- SEPIC
- Flyback
- These topologies cover almost all your point of load (POL) needs
- There are other topologies not supported by WEBENCH but these are for very high power off-line power supplies and rarely used for POL power distribution within a PCB
- WEBENCH automatically recommends the most suitable topology for you
- But we will compare these topologies so that you have a better insight as to which topology is most suitable for your application

$\substack{\text { BIRICHA } \\ \text { DIGITAL }}$ Topology Selection Guide

- Boost
- Step up only
- Switch is referenced to ground (low-side switch)
- Can use a cheaper gate driver
- Used when the voltage you need on your PCB needs to be higher than the input voltage
- Better used with current mode control as opposed to voltage mode if operated in continuous conduction mode
- We will talk about conduction modes and control methods soon
- Major draw back is that there is no ability to limit the current (i.e. can't turn off the switch to stop the current!)

$$
\text { Vout }=\operatorname{Vin} \times \frac{1}{(1-D)}
$$

[^0]號

BIRICHA
 DIGITAL
 Topology Selection Guide

- Inverting Buck-Boost

- Can step both up and down
- Common in battery operated devices where, depending on the battery charge, you may want to either buck or boost
- But Vout always has a reverse polarity with respect to the Vin
- Most popular when you have a positive voltage on your input but on your PCB you need a negative voltage
- Best used with current mode control when in CCM
- Very noisy from an EMI point of view
- The switch can be either on the high side or on the low side
- High side switch needs a more expensive gate driver
- Low side switch is cheaper but the load is then referenced to ground

$$
\text { Vout }=\operatorname{Vin} \times \frac{D}{(1-D)}
$$

BIRICHA
 DIGITAL
 Topology Selection Guide

- Flyback
- Transformer isolated version of Inverting Buck-Boost
- Depending on how the transformer is wound it can have both positive and negative output voltage
- Because of the transformer can buck down from much higher input voltage rails
- Can have multiple output voltage of different polarities (e.g. +- 12V) by having more than one secondary winding - but only one voltage rail can be controlled
- For DC/DC conversion it is most commonly used with current mode control in CCM
- Very noisy but cheap
- The switch is usually placed on the low side so that a cheaper gate driver can be used but it can also be placed on the high-side

$$
\text { Vout }=\operatorname{Vin} \times \frac{N_{S}}{N_{P}} \frac{D}{(1-D)}
$$

BIRICHA
 DIGITAL
 Topology Selection Guide

TEXAS

 INSTRUMENTS- SEPIC (Single Ended Primary Inductor Converter)
- Can step up and down (like buck boost) but does not invert the polarity
- Common in battery operated devices, where depending on the battery charge you may want to either buck or boost
- Unlike Boost it can be shut-down
- Transfer function is complex (use WEBENCH for stable design)
- Therefore typically used when fast transient response is not required
- Needs just a single low-side switch

$$
\text { Vout }=\operatorname{Vin} \times \frac{D}{(1-D)}
$$

Control Method Selection Guide

- WEBENCH uses the following control methods
- Voltage mode
- Cheap and simple; works well for Buck but not suitable for CCM Boost, Buck-Boost, Flyback or SEPIC
- Poor/slow transient performance under DCM conditions
- Current mode
- Faster transient response than voltage mode during line voltage transients
- Good performance in both DCM and CCM
- Ideal for Boost, Buck-Boost, Flyback and SEPIC in CCM
- Poor performance when duty is small (e.g. if you step-down too much)
- Needs slope compensation and leading edge blanking (i.e. bit of a pain!)
- Emulated current mode
- Similar to current mode but can operate under low duties
- But based on a mathematic model which will not be perfect
- Constant On Time
- Cheap and easy and always stable with fast response
- Better efficiency under low loads (unless pulse skipping used in other control methods)
- But will have more ripple than other control methods
- Variable frequency so unpredictable EMI spectrum + harder to design EMI filter

BIRICHA
 DIGITAL
 Choosing the Right Switching Frequency

- Our switching frequency (Fs) directly impacts the size of our power supply
- We saw earlier that the higher the switching frequency the smaller the current ripple on our inductor
- i.e. the higher the switching frequency, the smaller the inductor
- This also applies to our output capacitor, so the entire power supply will get smaller
- This is why the switching frequency of the PSU for small hand held devices needs to be so high
- There is a limit as to the ripple we can have on our inductor as you must not saturate the inductor \rightarrow WEBENCH automatically selects a correctly sized inductor
- Our switching frequency directly impacts our efficiency
- The higher the switching frequency the poorer the efficiency
- Every time we turn a switch on or off we will waste some energy; these are called Switching Losses \rightarrow if we switch faster we will have higher switching losses
- Every time we magnetize and de-magnetize our inductor we will lose some energy in the magnetic material of our inductor; these are called Core Losses \rightarrow if we switch faster we will have higher core losses
- Of course both of the above will have an impact on cost

Choosing the Right Part/Device for Your Application

- There are 4 major categories of ICs that WEBENCH designs with: - LDOs
- Not recommended for good efficiency, output current above 500mA or large voltage drops
- Switching Power Modules
- Switching Regulators
- Switching Controllers
- Within seconds WEBENCH calculates over 100 designs with this parts
- Which one is the most suitable for your application?
- We will now quickly go through these categories
- Once you know what the differences are you can very quickly use WEBENCH's filtering tools to narrow down these 100 designs to just a handful most suitable for your application

BIRICHA
 DIGITAL

Quick Summary to Selection Guide

- Which topologies to use for various applications:
- LDOs \rightarrow Small currents and limited/fixed voltages, poor efficiency
- Buck \rightarrow most common step down
- Boost \rightarrow most common step up
- Buck-Boost/SEPIC \rightarrow most common for battery operation / step up and down
- Flyback \rightarrow when you need multiple voltage or need to step down from large input voltage
- Which control mode to use for various applications?
- COT \rightarrow cheap and easy, always stable but variable frequency \& ripple
- Voltage mode \rightarrow most common in Buck, cheap and easy low component count
- Current mode \rightarrow most common for CCM in Boost, Buck-Boost, SEPIC, Flyback, very good performance but needs slope compensation and leading edge blanking (a bit of a pain), not great if duty is very small
- Emulated Current Mode \rightarrow like current mode but solved the low duty issue, but model based so it all depends on how accurate the model is

BIRICHA
 DIGITAL
 Quick Summary to Selection Guide

- Selecting the switching frequency
- The higher our Fs, the smaller the PSU but the poorer the efficiency
$-\quad$ The higher the Fs the smaller the ripple on the inductor \rightarrow large ripple on inductor could cause saturation and a blown up power supply
- WEBENCH allows you to automatically optimize this
- Which Device to Select?
- Switching Modules \rightarrow (almost) everything internal, smallest foot print, quickest and easiest to set up but more expensive
- Switching Regulators \rightarrow Internal switch but external inductor, larger foot print than a module, more flexible due to external components, cheaper (if you don't count the price of the inductor)
- Switching Controllers \rightarrow just a PWM controller, so almost everything else is external, largest foot print, largest BoM, development time and routing but most flexible

We are now ready to move on to Step 3 of designing with WEBENCH

Hands-On Demo 1 - Fundamentals

- Step 1: Input your specification:
- Vin $=22 \mathrm{~V}$, Vout $=3.3 \mathrm{~V}$, lout $=2 \mathrm{~A}$, Ambient Temp $=30^{\circ}$

Hands-On Demo 2 - Fundamentals

- Step 3: "Open Design" (you may have to log in)
- In Steps 1 \& 2 we typed in our specification and then filtered down our solutions to just one or two
- Now we select the most appropriate by pressing "Open design"
- We can now optimize our selected design even further to make find a best fit solution for our application

BIRICHA
 DIGITAL
 TEXAS INSTRUMENTS
 Hands-On Demo 2 - Fundamentals

- Step 4: Modifying/Optimising our Design using WEBENCH Dashboard
- Depending on the device used some of the options on this page will be different
- We are using a fully integrated "Module" so we don't have that many options, but this is a good start; we will explore more complicated designs later


```
BIRICHA Wis TEXAS
DIGITAL

\section*{Hands-On Demo 4 - Operating Values}
- What is the efficiency, duty and conduction mode if we run at 14 V ?
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Modity Operating Point} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Vin: 14 & lout: & \[
2.0
\] & Recalculate & & \\
\hline Name & & \(\checkmark\) & Value & Category & Description \\
\hline Vout p-p & & & 1.00 mV & Op_Point & Peak-to-peak output ripple voltage \\
\hline Vout OP & & & 3.3 V & Op. Point & Operational Output Voltage \\
\hline VIN_OP & & & 14 V & Op_Point & Vin operating point \\
\hline Total Pd & & & 1.20 W & Power & Total Power Dissipation \\
\hline Total Bom & & & 7.88s & & Total BOM Cost \\
\hline Pout & & & 6.6w & General & Total output power \\
\hline Mode & & & CCM & General & Conduction Mode \\
\hline M1 Ims & & & 1.20A & Current & Q lavg \\
\hline M Vds Act & & & 0.12V & General & Voltage drop across the MosFET \\
\hline lin Avg & & & 0.55 A & Current & Average input current \\
\hline IOUT OP & & & 2A & Op_Point & lout operating point \\
\hline ICThetaja & & & 19.3deg CW & Op_Point & IC Junction-to-ambient thermal resistance \\
\hline IC Tolerance & & & 0.02 V & General & IC Feedback Tolerance \\
\hline IC T] & & & 53.2 deg C & Op. Point & IC junction temperature \\
\hline IC lpk & & & 2.25 A & Current & Peak switch current in IC \\
\hline Frequency & & & 535 KHz & General & Switching frequency \\
\hline FootPrint & & & 373 mm 2 & General & Total Foot Print Area of BOM components \\
\hline Efficiency & & & 84.6\% & Op_Point & Steady state efficiency \\
\hline Duty Cycle & & & 25.4\% & Op.Point & Duty cycle \\
\hline
\end{tabular}

\footnotetext{
- Biricha Digital Power Ltd (unless stated otherwise) - material subject to NDA
}


\section*{BIRICHA \\ DIGITAL \\ WEBENCH Optimization Tips and Tricks}
- In the previous slides we designed a Buck converter starting from a specification to a prototype within minutes
- In the process we became familiar with some of the most important WEBENCH tools
- Designer, Visualizer, filtering tools and Dashboard
- Within Dashboard we used
- Schematic tool
- Operating Values
- Built it tool
- We will now design a more complicated power supply and become familiar with the Optimization tools available within WEBENCH


© Biricha Digital Power Ltd (unless stated otherwise) - material subject to NDA




\section*{Understanding Bode Plots}
- Analog PSUs are (almost) always designed in the frequency domain
- We modulate our PWM duty with a small sinusoid of a certain frequency (say 10 Hz ) and we measure how the gain and phase of this sinusoid is modified by the time it goes through our plant (i.e. PSU)
- We increase the frequency of our injected sinusoid and measure again, we repeat this for all frequencies of interest (say 1 Hz to \(1 / 2\) Fs) and plot the Bode plot

In short we plot the "open loop" gain and phase of the PSU (i.e. its Bode plot) and design the compensator such that we get appropriate gain and phase margins

\section*{BIRICHA \\ DIGITAL \\ Typical Voltage Mode Analog PSU}
- Typically we tune the compensator by selecting the position of poles and zeros so as to achieve the desirable gain and phase margins
- To do this we need
 the Transfer Functions \(\mathrm{Hc}(\mathrm{s})\) \& \(\mathrm{Hp}(\mathrm{s})\) INSTRUMENTS

\section*{Quick Review of Analog Transfer Functions H(s)}
- Transfer function \(\mathrm{H}(\mathrm{s})\) :
- Is a mathematical representation of the relationship between the input and the output of our continuous time system
- In our case \(\mathrm{Hp}(\mathrm{s})\) is our plant's transfer function (i.e. the power stage) and \(\mathrm{Hc}(\mathrm{s})\) is our compensator's transfer function
- For both of the above, we are interested in the relationship between the output voltage and the input voltage:
\[
H(s)=\frac{Y(s)}{X(s)}=\frac{V_{\text {out }}}{V_{\text {in }}}
\]
- It follows, therefore, that if we have the transfer function for our system, then for any given input we can calculate the output
\[
Y(s)=X(s) H(s)
\]
- In our case, our inputs will be sinusoidal voltages of various frequencies so that we can plot the Bode plot
Example: A Simple 1st Order Transfer Function


- Observations:
Laplace is only a "mathematical trick" used to help us analyze circuits
- \(\quad s\) is a function of frequency \(\omega\) in rad/s or \(2 \pi f\) in Hz
- As we vary s from \(-\infty \rightarrow \infty\) the "numerical value" of \(H(s)\) varies
When \(s=-1 / R C\) "Numerical Value" of \(H(s)\) will become \(\infty\). This value of \(s\) is called the "POLE" of our system
- IMPORTANT: this does not necessarily mean that the output of our system becomes infinite. This only means that the "numerical value" of our transfer function will become infinite
- To find the amplitude of the output of our system we need to calculate our "gain". We will do this next
- For a stable system all poles must always have a negative value i.e. be on the left hand side of the s-plane

\section*{Calculating Gain and Phase from H(s)}
- Transfer function \(\rightarrow \quad H(s)=\frac{1}{(1+j 2 \pi f R C)}\)
- Gain:
\[
\sqrt{\operatorname{Re}^{2}+\operatorname{Im}^{2}} \rightarrow|H(s)|=\frac{1}{\sqrt{\left(1^{2}+(2 \pi f R C)^{2}\right)}}
\]
- Phase:
\[
\begin{aligned}
& \phi=\tan ^{-1}\left(\frac{\mathrm{Im}}{\mathrm{Re}}\right) \& \\
& \tan ^{-1}\left(\frac{Z_{1}}{Z_{2}}\right)=\tan ^{-1}\left(Z_{1}\right)-\tan ^{-1}\left(Z_{2}\right) \rightarrow \tan ^{-1}\left(\frac{0}{1}\right)-\tan ^{-1}\left(\frac{2 \pi f R C}{1}\right)=-\tan ^{-1}(2 \pi f R C)
\end{aligned}
\]
- We can now plot Gain and Phase with respect to the frequency



\section*{Poles and Zeros}
- The circuit in the previous slide had a single pole
- Where "pole" was defined as the value of \(s\) where the denominator of \(\mathrm{H}(\mathrm{s}) \rightarrow 0\)
- This would lead to the numerical value of \(\mathrm{H}(\mathrm{s}) \rightarrow \infty\)
- Every pole in our system (located at a negative value of \(s\) ) causes the gain to fall (roll-off) at a rate of -20 dB per decade and
- Introduces a phase lag of 90 degree
- If we have a transfer function such that its "numerator" can become 0 for a certain value of \(s\) then we have a "zero" on our transfer function:
\[
H(s)=\frac{(s+\alpha)}{(s+\beta)} \longleftarrow \text { Zero @ - } \alpha \text { \& }
\]
- Every zero in our system (located at a negative value of \(s\) ) causes the gain to rise at a rate of 20 dB per decade and
- Introduces a phase lead of \(90^{\circ}\)

\section*{BIRICHA \\ DIGITAL \\ H(s) of a \(\mathbf{2}^{\text {nd }}\) Order System}
- For BDP-106 @ full load:
\(-\mathrm{L}=22 \mu \mathrm{HC}=440 \mu \mathrm{~F}\) \& \(\mathrm{R}=1.8 \Omega\)
- ESR is assumed to be 0 for now!
- Transfer Function Hp(s):

\[
H_{p}(s)=\frac{1}{\left(s^{2} L C+s\left(\frac{L}{R}\right)+1\right)}
\]
- The denominator of \(\mathrm{Hp}(\mathrm{s})\) is a \(2^{\text {nd }}\) Order Polynomial
- It has 2 poles @
\[
\frac{1}{2 \pi \sqrt{L C}}
\]
- This is the resonance frequency \(F_{r}\) of our system
- At resonance we "may" see a bump on our gain plot. The size of the bump is dependant on the load resistor (as well as other things)
- We have two poles so we call this a \(2^{\text {nd }}\) order system
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{\begin{tabular}{l}
BIRICHA \\
DIGITAL
\end{tabular}} \\
\hline \multicolumn{10}{|l|}{Gain Plot of the 2nd Order (2 pole) Lc circuit} \\
\hline \multicolumn{10}{|c|}{\begin{tabular}{l}
- Exercise: Calculate \(F_{r}+\) estimate "roll-off" in dB/decade after \(F_{r}\) \\
- What is the maximum phase? Is it leading or lagging?
\end{tabular}} \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multirow{9}{*}{} & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline -80 & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline -120 & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}



\section*{Power Supply Stability Criterion}
- When considering the Open loop frequency response:
- 1 - At crossover frequency (Fx), the Phase Margin \(\left(\phi_{M}\right)\) must be more than \(40^{\circ}\) to \(45^{\circ}\)
- \(\phi_{M} \rightarrow\) the amount by which the phase shift is less than \(180^{\circ}\) at \(F x\)
- The lower the phase margin, the faster the transient response (in time domain) but the higher the risk of instability
- 2 - At Fx, the slope of the open loop gain plot should be no more than - \(20 \mathrm{~dB} /\) decade
- PSU jargon
\(--20 \mathrm{~dB} /\) decade \(\rightarrow-1\) slope
\(--40 \mathrm{~dB} /\) decade \(\rightarrow-2\) slope
- 3-Gain Margin \(G_{M}\) should be at least 10 dB
- \(\mathrm{G}_{\mathrm{M}} \rightarrow\) The amount by which the gain is lower than 0 dB when the phase \(=180^{\circ}\)


\section*{BIRICHA \\ DIGITAL \\ Thermal Simulation with WebTHERM \({ }^{\text {TM }}\)}
- WebTHERM \({ }^{\text {TM }}\) online tool simulates the thermal behavior of an electronic printed circuit board
- Using validated thermal models for the components and the reference PCB
- The user defines the environment, air flow, copper thickness, presence of fan/heat sink, etc
- Takes into account the thermal interaction of different components adjacent to each other
- The WebTHERM tools helps the user identify heat problems on the printed circuit board
- i.e. the board goes into production
- A simulation typically takes two to three minutes to complete,
- After the simulation is complete, the user can view the result, a full colour plot of the temperature across the board
- The temperature of each component is also listed in an accompanying table
- If desired, the user can adjust the parameters and resubmit the job for simulation







\section*{Hands-On Demo 11 - Alternative Component Selection}
- Using the advanced charting tools we can select a more suitable inductor for our power supply


\footnotetext{
Biricha Digital Power Ltd (unless stated othervise) - material subject to NDA
}



\section*{Hands-On Demo 11 - Alternative Component Selection}
- Note that a new more efficient but larger component has now been selected
- We can now run our simulation and analysis based on this new component
- When we are happy we can finalize our design and print the final report

© Biricha Digital Power Ltd (unless stated otherwise) - material subject to NDA


\section*{BIRICHA \\ DIGITAL \\ Concluding Remarks and Summary}

TEXAS INSTRUMENTS
- WEBENCH is a very powerful tool to assist you in your PoL PSU Designs
- Based on your specifications, it automatically designs 100+ of PSUs
- We've learned how to:
- Filter down our designs and select the most appropriate part based on your efficiency/footprint/cost requirements
- Optimize our design and carry out electrical and thermal simulations
- Change components within your BoM
- Create schematics and import to CAD packages
- Print the final report and order BoM including the PCB within a few clicks
- In this seminar we only covered Power Designer; there is also:
- WEBENCH Power Architect
- WEBENCH LED Designer
- WEBENCH Sensor Designer
- WEBENCH Active Filter Designer

www.ti.com/webench
- WEBENCH Amplifier Designer
- WEBENCH EasyPLL

Please complete our feedback form on: www.surveymonkey.com/s/webench-ch```


[^0]:    Birich Dinit Po red (

