WEBINAR

BIOBASED POLYMERS AND COMPOSITES FOR TECHNICAL APPLICATIONS

June 5th | 4 – 5 pm (CET)

June 26th | 10 - 11 am (CET)

Biobased Polymers and Composites for Technical Applications

M. Sc. Madina Shamsuyeva Research Associate Fraunhofer WKI **Application Center HOFZET**

Source: China Hopson

Prof. Dr.-Ing. Hans-Josef Endres Head of the Application Center HOFZET Head of the IfBB

Christian Schulz B. Eng **Public Relations** Hannover University of **Applied Sciences and Arts IfBB**

Chronology of the relevant events

Aim and motivation Why should you join this webinar?

The following questions are going to be answered today:

- What are biopolymers and biocomposites?
- How are these materials manufactured and tested?
- What are current applications of these materials?
- What is sustainable production?
- What are the challenges?
- What is LCA and which factors are important?
- Where can you find information about performance characteristics and availability of biopolymers?
- Introduction into a consecutive workshop in London (CAN) in October 2018

Biobased polymers and composites for technical applications

Webinar

- Introduction
- IfBB and the HOFZET
- Introduction to bioplastics and biocomposites
- Selected research projects
- Sustainability assessment
- Databases
- Information about the consecutive workshop in London (CAN) in October 2018

Hans-Josef Endres

Born on 17th of April 1966, married, 2 daughters (23 and 18)

Educational background:

- Dipl.-Ing. graduate of the Ruhr University Bochum, 1985, mechanical engineering, strong focus on material research
- PhD (Dr.-Ing.) received from University of Bochum, 1995

Professional experience and activities:

- 9 years of employment with industrial companies including a position as departmental director at Thyssen-Krupp, overseeing a staff of 230
- Professor at Hannover University of Applied Sciences & Arts, since 1999
- Director of the IfBB Institute for Bioplastics and Biocomposites, 2011
- Head of Application Center for Wood Fiber Research, Fraunhofer Wilhelm-Klauditz-Institut WKI, 2012
- Co-opted Professor at Technical University of Braunschweig, 2016

Achievements:

- engaged in bioplastics and biocomposites research for more than 25 years;
- established the IfBB Institute for Bioplastics and Biocomposites as a new institute;
- established a new Fraunhofer Application Center for Wood Fiber Research;
- authored various publications and received numerous honors and prizes for his research in bioplastics and biocomposites

Source: China Hopson

IfBB and **HOFZET**

Application Center for Wood Fiber Research HOFZET

- Operating since 07/2013
- Today 15 employees
- Close collaboration with industry

- Material Analysis and Indoor Chemistry
- Surface Technology
- Center for Light and Environmentally-Friendly Structures
- QA
- HOFZET

- Fiber analysis and modification
- Biobased (hybrid) composites
- Technical textiles
- Plastics and composites processing
- Recycling
- Material analysis

Organizers of the events

Research focus of the HOFZET

HOFZET

Research fields – process development

- Natural fibers
 - Surface modification
- Technical (hybrid) textiles
- Function integration

- Bio-hybrid composites
- Short fiber-reinforced composites
- Organic sheets
- Recycling

Surface modification of fibers

Fiber-spraying

Injection molding center

Extrusion center

HOFZET

Research fields – material and product development

Plastic compounding

Electrically conductive biocomposites

Construction parts

Introduction to bioplastics

What are bioplastics?

Generation comparison

Trends Geographical shift of production capacities

Bioplastics production capacity New Economy

Trends Market segments 2016

Packaging -Bioplastics production capacity New Economy 2016 rigid (incl. food serviceware) non-biodegradable 1 033 Bio-PET 30² biodegradable PLA PLA blends 1 000 bio-based/ Starch blends Bio-PE 800 Others¹ Others³ 000 t 600 **Packaging** flexible 397 Textiles 400 (incl. non-woven Agriculture Automotive and fibers) Consumer Electrical and and 202 goods Building and horticulture transports 200 139 electronic and 114 116 (incl. casing) construction Others 21 18

- 1 Contains regenerated cellulose and biodegradable cellulose ester
- 2 Bio-based content amounts to 30%
- 3 Contains durable starch blends, Bio-PC, Bio-TPE, Bio-PUR (except thermosets), Bio-PA, PTT

Figures: IfBB
Data sources: FAO, IfBB 2013 – 2017
© IfBB – Biopolymers, facts and statistics 2017, ISSN 2510-3431

Trends Market segments 2021

Bioplastics production capacity New Economy 2021

Packaging rigid (incl. food serviceware)

- 1 Contains regenerated cellulose and biodegradable cellulose ester
- 2 Bio-based content amounts to 30%
- 3 Contains durable starch blends, Bio-PC, Bio-TPE, Bio-PUR (except thermosets), Bio-PA, PTT

Figures: IfBB Data sources: FAO, IfBB 2013 - 2017

© IfBB - Biopolymers, facts and statistics 2017, ISSN 2510-3431

Market overview in summary

Average growth of more than 350 %, mostly in Asia (> 80 % until 2021)*:

2.0 m tonnes

 \rightarrow

9.2 m tonnes

- Driver: Bio-based, non-biodegradable (Bio-PE, Bio-PET 30 etc.)*:
 63 % (2016) → 82 % (2021)
- Biodegradables (PLA, PHA, starch blends, etc.) growing steadily:
 0.7 m tonnes (2016) → 1.6 m tonnes (2021)
- Packaging still most important application sector:
 70 % (2016) → ~83 % (2021)*
- Land use doubles, but is overall low:
 670,000 ha (2016) → 1,320,000 ha (2021)*

Data sources: FAO, IfBB 2013 – 2017 © IfBB – Biopolymers, facts and statistics 2017, ISSN 2510-3431

Focus on long-term
applications

^{*} Deviations possible by changes in Coca-Cola's Bio-PET strategy.

Global land use

Introduction to (hybrid) biocomposites

Composites

- Composite material is made from at least two constituents
- Main constituents:
 - Reinforcing fibers providing strength
 - Matrix holding the reinforcing fibers together and protecting from environmental damages

Short fiber-reinforced polymer composites

Wood fiber-reinforced PP (compound)

Carrier box made from wood fiber-reinforced PP

Long / endless fiber-reinforced polymer composites

Various natural fiber textiles

Tailgate made from various natural and carbon fiber-reinforced epoxy

Biocomposites

Bio(-hybrid) composites

Bio-hybrid fiber-reinforced polymers Motivation

- Flexibility regarding mechanical properties
 - Weaving technique, localized reinforcement, etc.
- Integration of new properties
 - Acoustic damping, etc.
- Large choice of reinforcing materials and matrices
- High material availability
- Sustainable production
- Good disposal / recycling possibilities

Aramid, carbon, glass and flax fiber-reinforced epoxide

Bio-hybrid fiber-reinforced polymers Industrial applications

- Sport and leisure industry
- Automobile industry
- Building industry
- Furniture
- Design und Interior

The snowboard feature a combination of biax glass, triax glass, flax and basalt

Advantages and disadvantages of plant fibers

Advantages	Disadvantages
Renewable resources	Insufficient supply chains
Low density	Lack of data
Acoustical damping	New materials (e.g. simulation?)
New optical appearance	Low thermal resistance
Low price	Hydrophilicity / polarity
Disposal behavior	Variable fiber morphology
Extensive knowledge in textile technology	Inferior mechanical properties
etc.	etc.

Source: WKI

Selected projects

Selected projects: Next generation Bio-Hybrid-Car

- Demonstration of technical performance of bio-hybrid composites
- Ecological, technical and economic assessment
- Creation of database (material combinations, mechanical performance, ...)
- Processability and industrial usability for automotive application
- Realization of > 500 Cars
- Project start: 09/2017
- Project partner: Porsche AG, Four Motors
- Project funding: BMEL (FNR)

Selected projects: Next generation Bio-Hybrid-Car

HOFZET / IfBB – selected projects InteReSt

Aim: Function-**inte**grative and **re**source-saving lightweight construction **st**ructure for aviation

- Feasibility study on use of biobased hybrid parts instead of conventional parts made of petrol-based materials or metal
- Demonstration of the technology concept via manufacture of helicopter structure
- Duration: 2016 2019

Helicopter cabin CAD model

Exemplary helicopter model

HOFZET / IfBB – selected projects SLC (Small load carrier)

Aim: Development of a universal sustainable, biobased, small load lightweight carrier

- In order to optimize the logistics chain between automotive manufacturers, suppliers and service providers, a small load carrier system (SLC system, German: KLT) is utilized in industry
- Current SLC generation is produced from polypropylene (PP)
- In the project, a large proportion of the PP is going to be replaced with wood fibers or cellulose fibers
 - Economic and ecological advantages
 - Significant strengthening and stiffening effect
 - Reduction of the wall thicknesses leads to the lower weight

© Fraunhofer WKI | Hasan Mezdegi

New generation SLC

IfBB – selected projects SeaArt

Aim: Development of marine biodegradable artificial seagrass to provide suitable conditions for the restoration of natural seagrass meadows

- Studies on marine biodegradability of bioplastics and natural materials
- Material characterization in terms of degradability, technical and mechanical properties and feasible production methods
- Material development regarding degradability and mechanical properties
- Duration: 2016 2020

ProBio

Functionally-integrated, three-dimensional and variable production of bio-hybrid components with maximum organic content (ProBio)

Open Hybrid LabFactory e.V.

ProBio

- Development of bio-hybrid-fiber-reinforced composites (bio-HFC) with the highest possible proportion of bio-based components
 - Reinforcing fibers and / or plastic matrices
- Technologies
 - Hot pressing
 - Fiber-spraying facility
 - Weaving machine
- Surface modification
 - Improvement of compatibility between fibers
 - Function integration

Fiber-spraying facility

Weaving machine with Jacquard

technology

Hybrid textile for composite applications

Hybrid fabrics (CAD)

Multi-layer fabrics (CAD)

- Combination of various fiber types in one textile
 - Different reinforcing fibers (e.g. cellulose-based fibers and carbon)
 - Reinforcing fibers and matrix fibers (e.g. cellulose-based and polyamide)

DeFiCoat

Development of specially coated natural fibers for efficient application in engineering thermoplastics (DeFiCoat)

Funding code: 031B0502

BIOPRODUCTS DISCOVERY & DEVELOPMENT CENTRE

DeFiCoat

Aim

- Improvement of the thermal stability of cellulose-based fibers
- Processability at temperatures > 200°C
- Expansion of the application spectrum of natural fiber-reinforced composites (NFC)
- Improved mechanical properties, thermal stability and chemical resistance

Pursued approach

- Coating of the natural fibers with an optimized thermosetting coating
- Coating should act as an isolating layer between fibers and melted thermoplastics
- Duration: 1.11.2017 31.10.2019

DeFiCoat Flax fabrics – mechanical properties

Flax fabric, uncoated

Flax fabric, coated with diluted epoxy resin

Flax fabric, coated with diluted epoxy resin, in curved state

- Preliminary results
 - It is possible to coat the fabrics homogeneously with diluted epoxy resin
 - The fabrics remain deformable

Challenges in sustainability

- Environmental benefits of bioplastics/biocomposites in comparison to their (mainly fossile-based) conventional counterparts are one of the key drivers for their use and promotion
- Companies who intend to use bioplastics for their products are required to provide quantification and proof of the environmental benefits in order to avoid false claims and greenwashing
- Especially small and medium-sized enterprises are confronted with the challenge of generating this information in an effective, high-quality and low-cost way

Source: IfBB

Sustainability Assessment

Environment Economic Social **LCSA** LCA LCC SLCA + + Social Life Life Cycle Life Cycle Life Cycle **S**ustainability Cycle Costing **A**ssessment **A**ssessment **A**ssessment

Source: IfBB

Sustainability

Sustainability in the context of the ongoing projects

InteReSt

- Project aim: Lightweight structures from biobased polymers and biocomposites for aerospace industry
- Sustainability task: Development of recycling concept ecological assessment of the developed materials

DeFiCoat

- Project aim: Development of specially coated natural fibers with improved thermal stability
- Sustainability task: Life cycle assessment of the developed materials

© Fraunhofer WKI | Madina Shamsuyeva

SLC

- Development of a universal sustainable, biobased, small load lightweight carrier
- Sustainability task: Life cycle analysis of the developed product

© Fraunhofer WKI | Hasan Mezdegi

BioMat_LCA

LCA of biobased plastics

LCA of biobased plastics VI

Characterization factor	Tendency of biopolymers	Biopolymers	Conventional polymers
Energy demand	\leftrightarrow	Different energy demand for different biopolymers	Different energy demand for different conventional polymers
Global-warming potential		High CO ₂ storage during the plant growth	High CO ₂ emission during burning
Abiotic resource depletion		Bio-based (renewable)	Crude oil-based (finite)
Eutrophication potential	•	Consumption of fertilizers and pesticides	Not necessary
Acidification potential	-	Consumption of fertilizers and pesticides	Not necessary
Land use	-	Agricultural field necessary	Agricultural field not necessary
Water consumption	—	Process water and water for irrigation	Only process water

Source: Source: PE INTERNATIONAL/ IfBB 2014

Thinkstep & IfBB Bioplastics LCA tool

For more information:

https://www.thinkstep.com

- Bioplastic-specific GaBi database (incl. feedstock, granulates, additives, conversions, auxiliaries, transport, end-of-life)
 - ✓ IfBB as scientific development partner for LCA data
- Base your decisions on consistent, high-quality, up-to-date and reliable background data
 - ✓ Comparison of scenarios (products, conversion/compounding processes, transport options, end-of-life (recycling, composting, incineration), bioplastics vs. conventional plastics)
- Know about the environmental consequences before investing in product and process changes
 - ✓ Easy-to-use interface, instant result calculation and reporting with customized content, tables, diagrams, format and company design
- Communicate verifiable LCA results created on your own without being an LCA expert
 - ✓ The tool covers all stages of the bioplastics supply chain
- Be prepared to answer guestions from your clients and even guestions asked to your clients

Source: Thinkstep

Further information on bioplastics

- Information on the widely-varying processing procedures for almost 100 bio-based plastics http://www.biokunststoffe-verarbeiten.de
- Procurement-relevant information on products made from bioplastics and biocomposites

https://datenbank.fnr.de/

 Technical material characteristics and applications

http://biopolymer.materialdatacenter.com

http://www.hanser.de/buch.asp?isbn =978-3-446-42403-6&area=Technik

Outlook on future research

- End-of-Life / New-Life Options
- Additives / Blending
- Hybridization
- Communication (awareness, social responsibility, etc.)
- Sustainability methods & LCA for bioplastics & biocomposites
 - Quality and availability of LCA data (manufacturers of fibers, biopolymers, etc.)
 - Cascade utilization and ecological assessment
 - Time horizon in LCA
 - Regional and global assessment of sustainable production
 - Competence exchange (material development, global wording, etc.)
 - Assessment of social sustainability

Organizers of the events

WKI Workshop in Canada Why should I join the workshop in London?

25.-26.10.2018 in London (CAN)

- Competence exchange between scientists and industry
- Identification of new ideas and topics for collaborative projects
- Efficient use of renewable resources for industrial applications
 - Optimization of reinforcement fibers and fabrics
 - Manufacture of biocomposites
 - State-of-the-art manufacturing technologies
 - Properties of the biobased products
 - Analytics
 - Recycling / End of Life scenarios
 - Life Cycle Analysis
- Registration will be opened in the middle of June

BIOCOMPOSITES FOR TECHNICAL APPLICATIONS

Contact

Prof. Dr.-Ing. Hans-Josef Endres

Head of the Application Center for Wood Fiber Research

Fraunhofer Institute for Wood Research Wilhelm-Klauditz-Institut WKI

Heisterbergallee 10A D-30453 Hanover

Tel 0049 (0) 5 11 / 9296 – 22 68 Fax 0049 (0) 5 11 / 9296 – 99 22 12

E-mail hans-josef.endres@wki.fraunhofer.de

M. Sc. Madina Shamsuyeva

Research Associate Project Manager

Fraunhofer Institute for Wood Research Wilhelm-Klauditz-Institut WKI

Heisterbergallee 10A D-30453 Hanover

Tel 0049 (0) 5 11 / 9296 – 22 91 Fax 0049 (0) 5 11 / 9296 – 99 22 91

E-mail <u>madina.shamsuyeva@wki.fraunhofer.de</u>

www.wki.fraunhofer.de

