

Webinar: Model Reduction and Superelements in NX Nastran

George Antoun, ATA Engineering

9 August 2016

13290 Evening Creek Drive, Suite 250, San Diego CA 92128

www.ata-e.com

in ata-engineering У

@ATAEngineering

What We Do

ATA Engineering's **high-value engineering services** help solve the most challenging product design challenges

Robotics & Controls

Theme Park Rides

Defense

Industrial & Mining Equipment

Consumer Products

Our Services

We provide our customers with complete, integrated solutions

Design

From initial concept development to detailed structural design

Analysis

Comprehensive structural, fluid, acoustic, and thermal analysis services

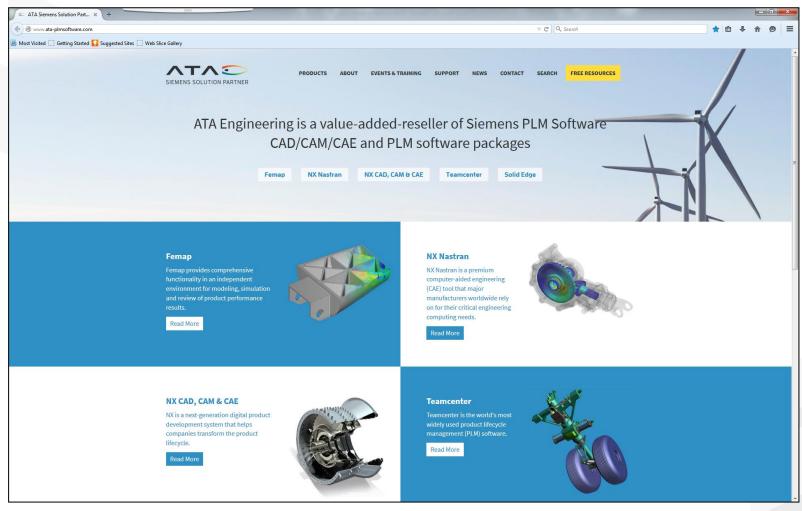
Test

Industry-leading structural test services for extreme loading environments

Our Software Services

ATA is a value-added reseller for Siemens PLM Software

- ➢ Simcenter
- ≻ Femap
- ► NX Nastran
- ► NX CAD, CAM, & CAE
- ➤ Teamcenter
- ≻ Solid Edge
- Developer of the official NX
 - Nastran training materials
- Preferred North American
 - provider of NX Nastran training



This document contains ATA Engineering trade secret, confidential, and/or proprietary information. Any unauthorized release of this information is prohibited. Partner

SIEMENS

Our Online Resources

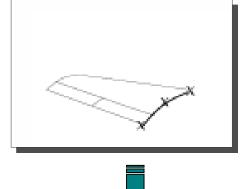
www.ata-plmsoftware.com

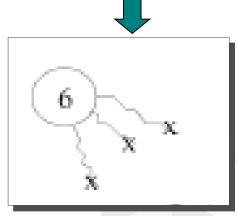
This document contains ATA Engineering trade secret, confidential, and/or proprietary information. Any unauthorized release of this information is prohibited.

5

Outline

- 1. What are Superelements?
- 2. Static vs. Component Mode Superelements
 ➢ Guyan vs. Craig-Bampton reduction
- 3. Three types of Superelements
 - 1. External
 - 2. Part
 - 3. Bulk data
- 4. Guidelines for using Superelements


Note this condenses a 2 day class into ±45 minutes

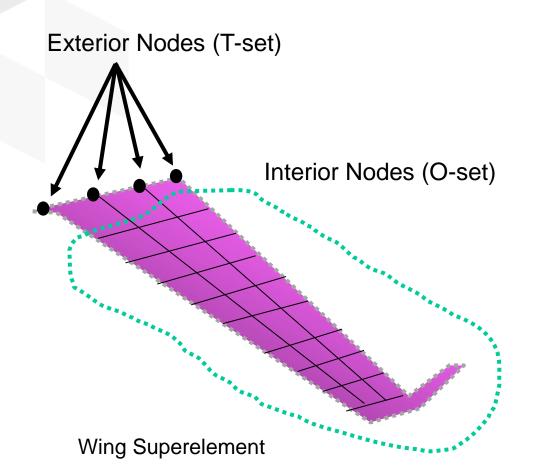


What is a Superelement?

- A superelement is a reduced representation of a portion of a finite element model
 - Each portion of the finite element model is reduced independently
 - The superelement matrices can represent the static and dynamic behavior of the component and allows coupling to the rest of the structure
- Yields a model with combination of physical DOF on the boundary (to connect to rest of structure) and optionally modal DOF representing component modes (if a dynamic reduction)
 - If boundary is small superelement model is MUCH smaller the corresponding partition of FEM
- Solution sequences 101-200 support superelements

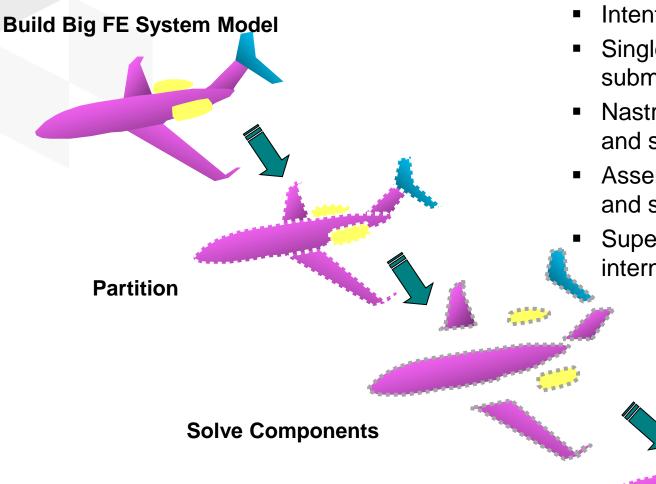
 \succ Allows or facilitates the following:

- Solution of large problems that exceed your hardware capabilities
- ➤ Less CPU or wall clock time per run (sometimes)
- > Partial redesign that requires only partial solution using restarts
- More control of resource usage
- Partitioned input (organization, repeated components)
- Partitioned output (organization, comprehension)
- Components that may be modeled by subcontractors
- ➢ Efficient non-linear analysis when non-linearity is localized
- Multi-step reduction for dynamic analysis
- Use of proprietary models without divulging geometry
- > Use of different model parameters on different regions of the model
- Damping can be handled at a component level (Component mode damping)



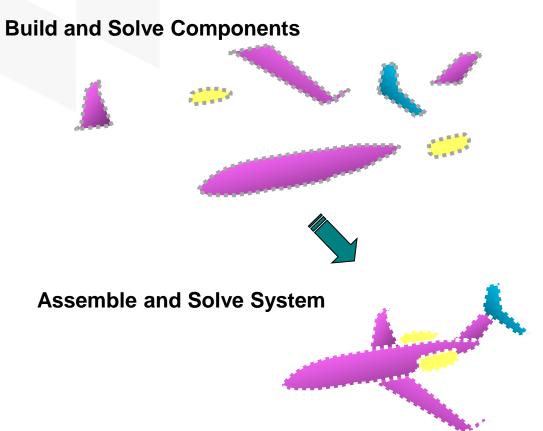
Disadvantages of Superelement Analysis

- Static condensation may cancel numerical advantages of reduced models
- Superelement model can be considerably more complex than non-superelement equivalent
- Residual structure mass and stiffness matrices are usually dense (therefore it should be a small part of the model)
 - Unless you're careful superelement models can be computationally more intensive
- ≻All superelements must be linear
 - ➢ Residual structure does not need to be linear
 - Superelements work very well with localized nonlinearities
- Approximations must be made in dynamics for mass and damping through static, component mode, or generalized dynamic reduction


Superelement Terminology

- Exterior Nodes Nodes on boundary of superelement, connect to other superelement or residual
- Interior Nodes Nodes inside the superelement, reduced out of model
- Generalized DOF Used to represent modal DOF of superelement component (for dynamic reduction)
- Residual Assembled system model that is solved (set of all exterior nodes, nodes not in a superelement, and generalized DOF)

Top-Down Approach to Superelement Analysis


- Intent is efficient solution
- Single model partitioned into submodels (or superelements)
- Nastran reduces components and solves separately
- Assemble solved components and solve system
- Superelements typically created internally

Reassemble and Solve System This document contains ATA Engineering trade secret, confidential, and/or proprietary information.

Any unauthorized release of this information is prohibited.

Bottom-Up Approach to Superelement Analysis

- Building block assembly of components and subsystems
- Intent is efficient enterprise system modeling
- Either combine several standalone models (part superelement), or reduce individual models and export as external superelement
- External superelements assembled and solved in separate system model run

Two types of reductions are typically used for superelement analysis:

- Static (Guyan) reduction exactly matches stiffness and mass of original FEM but does not represent internal dynamic behavior
- Component Mode Synthesis (CMS) reduction adds component modes of model partition to static reduction to approximate internal dynamic behavior of component (mass and stiffness)
- Superelements are a generalization of Craig-Bampton (CB) reduced models
 - CB models can easily be generated in Nastran without need for any special purpose DMAPs or procedures
 - CB models have all interface DOF fixed when calculating component modes (all DOF in the B-set)
 - NXN allows some DOF to be free (C-set). This is not a CB reduction.

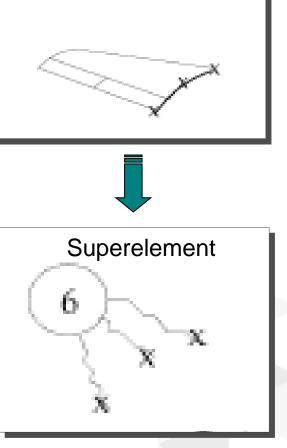
Static or CMS Reduction?

- >A dynamically reduced superelement will yield accurate results when used for a static solution
 - Modes are ignored in a static solution
 - Can be computationally expensive to calculate component modes
- A statically reduced superelement will NOT necessarily yield accurate results when used for a dynamic solution

>How many modes to include in dynamic reduction?

- Rough rule of thumb: Use 1.5-2x frequency content in each component as in system
- Many other considerations such as multi-level vs. flat superelement tree, size of component, etc., so rule of thumb not always appropriate

Three Superelement Partitioning Strategies


- NX Nastran allows three different strategies to partition model into superelements
 - External superelements
 - Reduces a component FEM into a superelement and stop (do not combine with system)
 - > Convenient if desire is one-and-done reduction, transferring proprietary models
 - Part superelements (bottom-up approach)
 - > Superelements created from independent FEMs that are included in same deck
 - BEGIN SUPER cards used to partition deck
 - > Each piece is completely standalone, duplicate IDs across superelements OK
 - > Compromise between bulk data and external superelements
 - Main bulk or internal superelements (top-down approach)
 - Traditional superelement approach
 - > User partitions large FEM into pieces by defining region internal to each superelement
 - > Nastran determines which nodes are external to each superelement
- Note that these are simply different partitioning strategies with different levels of automation
 - > Mathematically, superelement reduction process is the same for all

What is an External Superelement?

- A model of a component represented by matrices
 - Can either be a static or dynamic reduction
 - No internal geometry available, only boundary grids and modal DOF (if dynamic reduction)
 - Can be coupled to another model using part superelements (described later)
 - May include internal data recovery (disp, stress, elfor, etc.) and internal load vectors
 - Available in several output formats
 - ➢ OUTPUT2, OUTPUT4, DMIG, etc.
 - Superelement license not required to create external SE (only to combine them)

Detailed FEM

NXN Offers Multiple External SE Formats

≻MATOP4

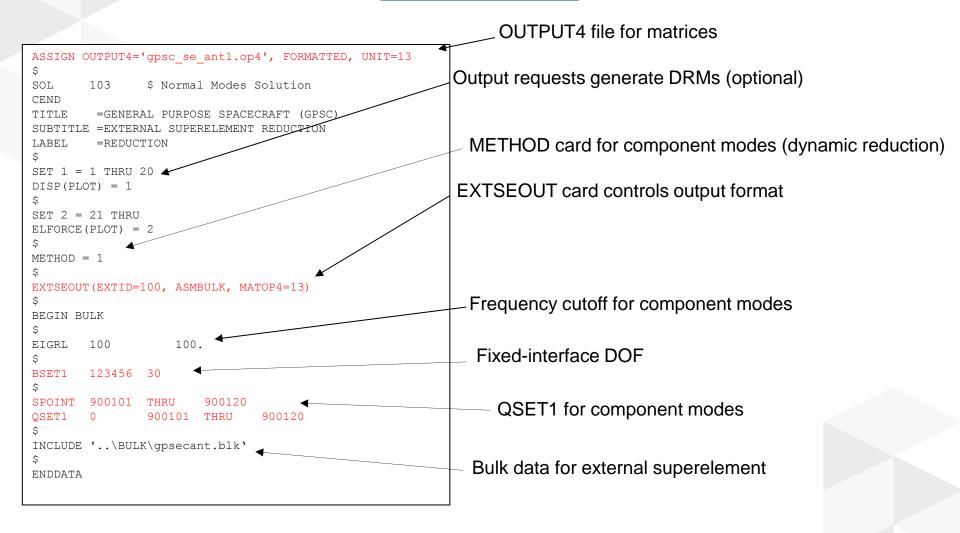
- Matrices written in OUTPUT4 (formatted or binary)
- ➤ Interface data written to .pch file
- Most common format for sharing data in CLA community

► DMIGOP2

- > All data written to OUTPUT2 (binary)
- > Compact, full precision typically for internal usage

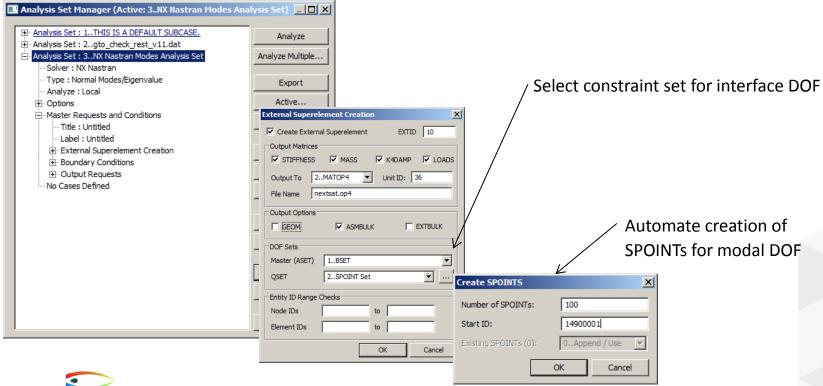
> DMIGPCH

- > Matrices written to .pch file in DMIG format (ASCII)
- ➤ Interface data written to .pch file
- ➤ Very flexible option
- > DMIG matrices can be used without superelement license
- DMAP can be used to write out higher precision stiffness


➤ MATDB and DMIGDB

Less commonly used database options

NXN Deck to Generate External SE (MATOP4 option)



Creating External Superelements in FEMAP

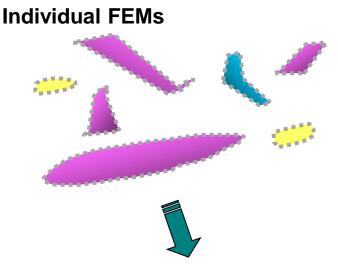
Create a constraint set for the interface DOF (BSET/CSET)

Open "Master Requests and Conditions" on Analysis Set Manager to expose "External Superelement Creation"

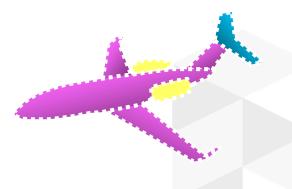
> Supports DMIG, DMIGOP2 and MATOP4 options

Creating External Superelements in NX

- Create a "SOL 101 Superelement" or "SOL 103 Superelement" simulation
- Create a constraint set for the interface DOF (Fixed boundary/Free boundary)
- Set number of generalized DOF in case control solution options form
- Set the case control superelement options and eigenvalue parameters (for dynamic reduction)


Solution		U X									
Solution		^		Superelement Option	IS1	ა x	<u>(</u>				
Name	Solution 1			Modeling Object		^					
Solver	NX NASTRAN	-		Name	Superelement Option	ns1					
Analysis Type	Structural	•		Label	4						
2D Solid Option	None						_				
Solution Type	SOL 103 Superelement	•		Properties		^					
· · · ·	SOL 101 Linear Statics - Global Constraints SOL 101 Linear Statics - Subcase Constraints SOL 101 Superelement SOL 103 Real Eigenvalues	Generate Assembly Proce	element Bulk Data Er								
: General	SOL 103 Flexible Body SOL 103 Response Simulation			File Format	DMIGOP2	•					
File Manageme	SOL 103 Superelement			External Superelement ID	10		Real Eigenvalue - L	anczos1		১১	ĸ
Executive Con	SOL 105 Linear Buckling SOL 106 Nonlinear Statics - Global Constraints	🕂 🗹 - 💤 Loat									
	SOL 106 Nonlinear Statics - Subcase Constraints	Solv Solv Delete All	Active		ОК	Cancel	odeling Object			^	-
	SOL 107 Direct Complex Eigenvalues SOL 108 Direct Frequency Response	New Constraint	🕨 🌮 User Defined Constraint				Name	Real Eigenvalue - Lar	nczos1		
Parameters	SOL 109 Direct Transient Response	New Folder	Hixed Constraint				Label	5			
	SOL 110 Modal Complex Eigenvalues SOL 111 Modal Frequency Response	E 😵 Sub	🙀 Fixed Translation Constraint				Laber	5			
	SOL 112 Modal Transient Response	Information	Rixed Rotation Constraint				Properties			~	
	SOL 129 Nonlinear Transient Response SOL 200 Design Optimization	🕂 🔁 Res 🍸 Filter	 Simply Supported Constraint 								
	SOL 200 Model Update	Ži Sort	Oned Constraint				Description				
]≣ Page ⊮‴ Find Object	Gylindrical Constraint Slider Constraint				Card Name		EIGRL		
	OK A	₽ Find Object	Roller Constraint				Frequency Options			^	
			Symmetric Constraint				Frequency Range - Lowe	ar Limit	Hz 🔻		
			Anti-Symmetric Constraint				2				
			M Automatic Coupling				Frequency Range - Uppe	er Limit	100 Hz 🔻	-	
			🛒 Manual Coupling				Number of Desired Mode	s			
			🎋 Fixed Boundary Degrees of Freedom								
			# Free Boundary Degrees of Freedom				Extraction Data			× .	•
			Any unauthorized re	, de secret, conf elease of this inform					ОК С	Cancel	

What are Part Superelements?


- Part superelements are a model partitioning strategy where several separate, stand-alone FEMs included in same Nastran deck
- BEGIN SUPER cards used to partition deck into distinct regions (PARTs)
 - Each PART may be a FEM or a previouslyreduced external superelement
- Nastran can automatically detect connecting points between superelements or manual connections can be defined
- Part superelements used to combine external superelements

This document contains ATA Engineering trade secret, confidential, and/or proprietary information. Any unauthorized release of this information is prohibited.

Assemble and Solve System

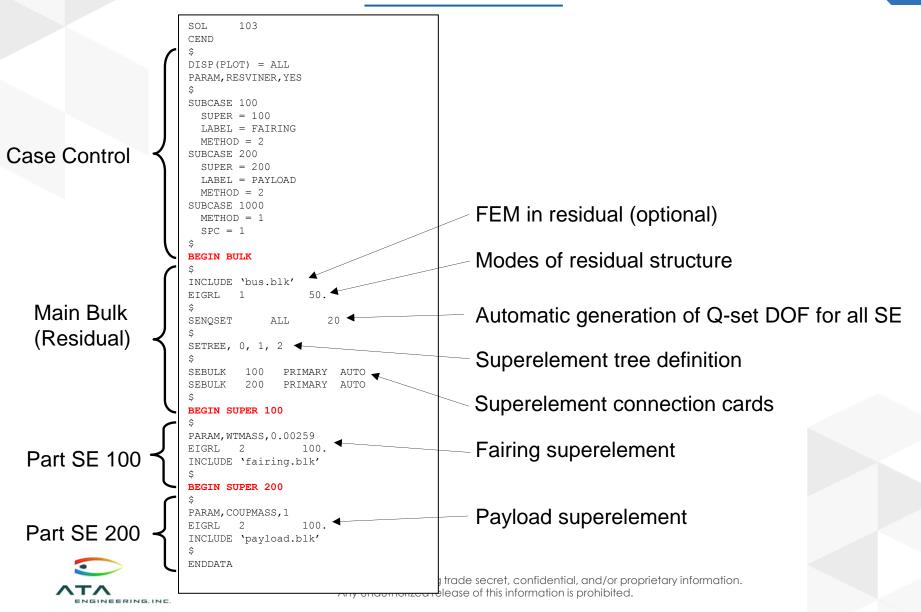
Each PART is defined in a separate section of the input file
 These sections follow the main bulk data section (BEGIN BULK)
 The section containing the data for a PART will begin with:

BEGIN SUPER i

where i is the superelement ID to be defined by the following input
 The section containing the data for a PART will end with either:

BEGIN SUPER j

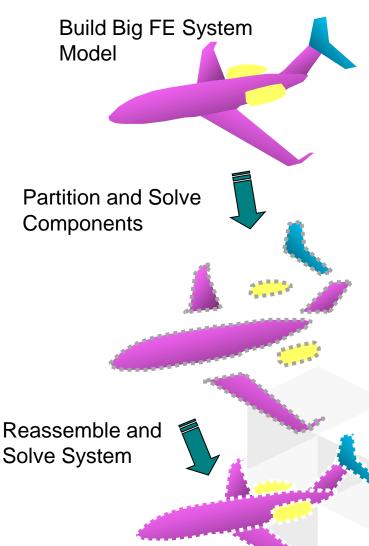
where j is the superelement defined in the next section of the input file

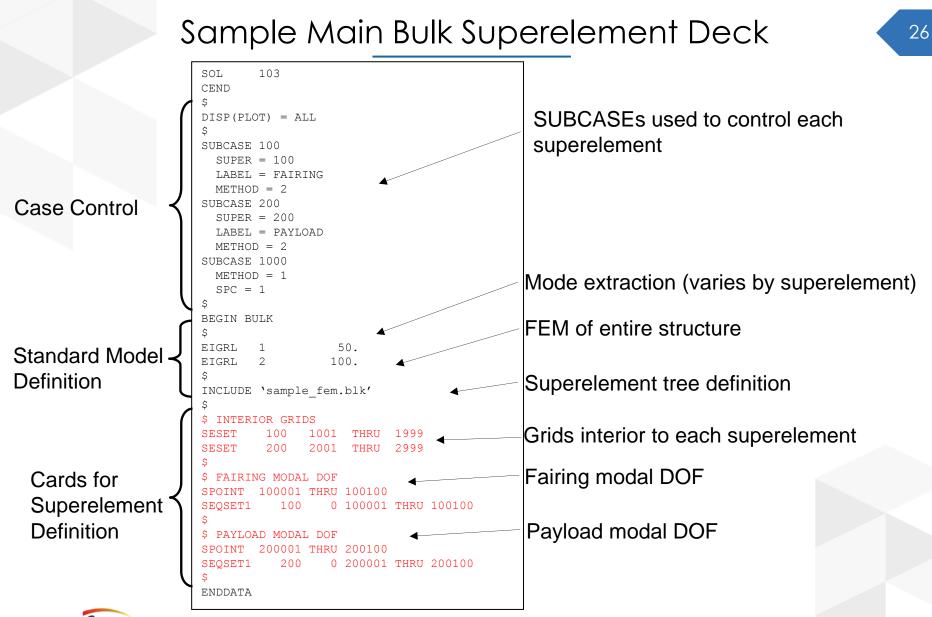

or

ENDDATA

> which indicates the end of the input file

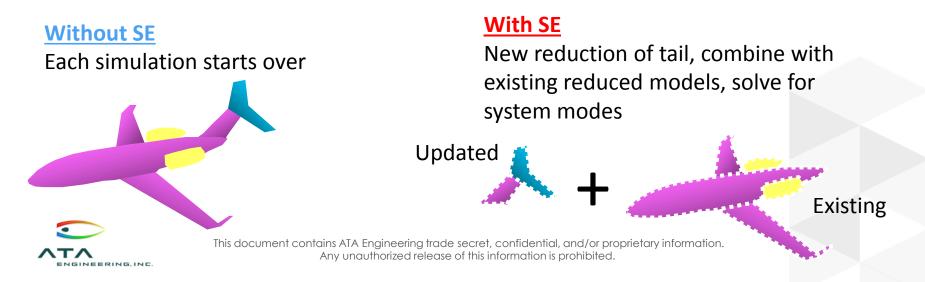
Sample Part Superelement Deck


- ≻Full solution can be completed in a single run
 - As opposed to external superelements where each is reduced manually
- May simplify incorporating FEMs from different vendors
 - Only need to specify location of interface grids (grid IDs not important)
 - Allows repeated IDs across different PARTs
- No ambiguity regarding grid/element superelement assignment
- Superelements can be reoriented using SELOC without re-reducing to boundary
- Since full bulk data is available no limitations in data recovery
 - ➤ Thermal loads handled correctly
 - No need to specify all outputs at time that superelement is reduced

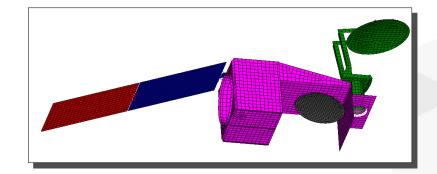


What are Main Bulk Superelements?

- A model partitioning strategy where a single (system) FEM is partitioned into superelements using bulk data cards
 - Starts with single FEM that is valid without superelements
- User defines grids interior to each superelement, Nastran finds boundary grids automatically
- Nastran's traditional superelement approach
- Division of model into superelements is largely transparent to the user



Efficient Design Studies with Restarts


- Superelements can make design studies significantly more efficient when using restarts
 - Only superelement that is changed are re-calculated
 - Can reap significant cost benefits if superelements and tree are organized with design studies/restarts in mind
- Using restarts lets Nastran compare new/old FEM data and decide what superelements need to be recreated
- Without superelements, any design change would require complete re-analysis
- > Example: Performing trade studies on airplane tail:

Considerations when Partitioning a FEM into Superelements

- Keep computing resource limitations in mind
- > Use logical partitions of the overall structure
 - Try to limit number of interface grids between superelements
- If portion of model has been correlated to test data, may be appropriate to partition as superelement
- If modal damping properties available for a component, separate as a superelement
- > May allow efficient restart analyses for trade studies
- Keep type of reduction of each component in mind (static vs. dynamic reduction)

Summary and Guidelines

Superelements provide a very powerful method for reducing complexity of detailed FEMs and sharing component models among organizations

Both static reduction and component mode reduction/synthesis supported by NXN

➤ Guyan and Craig-Bampton reduction

►NXN supports three different SE methods

- ≻ External Bottom up approach
- Part Compromise between bottom-up/top-down

➢ Bulk data – Top down approach

Biggest trick to effective superelements is minimizing the number of nodes at the boundary

Thank You for Participating!

13290 Evening Creek Drive Suite 250, San Diego, CA 92128 (858) 480-2000 info@ata-e.com www.ata-e.com forum.ata-e.com www.ata-plmsoftware.com @ATAEngineering ata-engineering

