

Scripting Guide

Version 10.2

The software supplied with this document is the property of RadView Software and is furnished under a

licensing agreement. Neither the software nor this document may be copied or transferred by any means,

electronic or mechanical, except as provided in the licensing agreement. The information in this document is

subject to change without prior notice and does not represent a commitment by RadView Software or its

representatives.

WebLOAD Scripting Guide

© Copyright 2014 by RadView Software. All rights reserved.

September, 2014, RadView Publication Number WL-PRO-0909-SCG84

WebLOAD, TestTalk, Authoring Tools, ADL, AppletLoad, and WebExam, are trademarks or registered

trademarks of RadView Software IBM, and OS/2 are trademarks of International Business Machines

Corporation. Microsoft Windows, Microsoft Windows 95, Microsoft Windows NT, Microsoft Word for Windows,

Microsoft Internet Explorer, Microsoft Excel for Windows, Microsoft Access for Windows and Microsoft Access

Runtime are trademarks or registered trademarks of Microsoft Corporation. SPIDERSESSION is a trademark of

NetDynamics. UNIX is a registered trademark of AT&T Bell Laboratories. Solaris, Java and Java-based marks

are registered trademarks of Sun Microsystems, Inc. HP-UX is a registered trademark of Hewlett-Packard.

SPARC is a registered trademark of SPARC International, Inc. Netscape Navigator and LiveConnect are

registered trademarks of Netscape Communications Corporation. Any other trademark name appearing in

this book is used for editorial purposes only and to the benefit of the trademark owner with no intention of

infringing upon that trademark.

For product assistance or information, contact:

Toll free in the US:

Fax:

World Wide Web:

1-888-RadView

+1-908-864-8099

www.RadView.com

North American Headquarters: International Headquarters:

RadView Software Inc.

991 Highway 22 West, Suite 200

Bridgewater, NJ 08807

Email: info@RadView.com

Phone: 908-526-7756

Fax: 908-864-8099

Toll Free: 1-888-RadView

RadView Software Ltd.

14 Hamelacha Street, Park Afek

Rosh Haayin, Israel 48091

Email: info@RadView.com

Phone: +972-3-915-7060

Fax: +972-3-915-7683

http://www.radview.com/
mailto:info@RadView.com
mailto:info@RadView.com

WebLOAD Scripting Guide i

Table of Contents

Chapter 1. Introduction ... 1

WebLOAD Documentation ... 1

Typographical Conventions .. 2

Where to Get More Information ... 3

Online Help .. 3

Technical Support Website ... 3

Technical Support .. 4

Chapter 2. Programming your JavaScript Agenda... 5

Understanding JavaScript Agendas ... 5

What are JavaScript Agendas? ... 6

Agenda Tree Structure .. 7

Agenda Program Structure .. 8

Agenda Execution Sequence .. 11

Editing the JavaScript Code in an Agenda ... 15

Adding JavaScript Object Nodes .. 19

File Management .. 21

Including Files .. 21

Copying Files .. 25

Output Files .. 27

Input Files ... 30

Security ... 35

Authentication .. 36

Secure Data Transmission through SSL.. 38

Error Management ... 41

Error Management Tools .. 41

Non-Standard Agenda Execution Sequence .. 45

Rules of Scope for Local and Global Variables ... 49

Limited Context ... 50

Local Context .. 52

Global Context ... 53

Search Order Precedence .. 62

Global Sharing Considerations .. 62

ii Table of Contents

Identification Variables and Functions .. 63

ClientNum .. 65

RoundNum ... 66

Example: identifying a client and round .. 67

GeneratorName() ... 67

GetOperatingSystem() .. 68

VCUniqueID() .. 68

Chapter 3. Advanced JavaScript Agenda Features .. 69

Working with the XML DOM ... 69

WebLOAD XML DOM Objects.. 71

Data Islands .. 71

Example: Using Data Islands in an Agenda .. 75

Creating and Filling New XML DOM Objects .. 85

Example: Building an XML Database from Scratch .. 89

Handling Web Service Transactions ... 91

Document Type Definition (DTD)... 92

Working with Java .. 93

Requirements ... 94

Identifying Java Objects in JavaScript Agendas .. 97

Forestalling Errors ... 98

Example: passing simple variables between Java and JavaScript 100

Passing Objects Between Java and JavaScript.. 101

Automatic Timers And Counters For Java Objects ... 102

Calling a WebLOAD API from a Java Application ... 104

Example: reading data from a JDBC database ... 106

Working with the Component Object Model (COM) .. 108

What is COM .. 108

ActiveX Object Interfaces .. 109

Activating ActiveX Objects from a JavaScript Agenda .. 110

ActiveXObject() (constructor) .. 110

Assigning Values to ActiveX Objects .. 111

Timers and Counters for ActiveX Objects .. 112

Automatic Conversion between JavaScript and COM Data Types 113

Using Casting Functions for JavaScript and COM Data Types... 115

DCOM over HTTP ... 117

Remote ActiveXObject() Constructor.. 118

Example: Remote ActiveX Object Access ... 119

COM Error Management .. 120

ActiveX Object Limitations... 120

Chapter 4. Working with HTTP Protocol .. 123

Understanding the WebLOAD DOM Structure ... 124

Using Multiple IP Addresses .. 126

WebLOAD Scripting Guide iii

Generating IP Addresses in the Agenda .. 126

Parsing Web Pages ... 128

A Typical Web Page and the Corresponding Parse Tree ... 128

Parsing and Navigating Nested Frames on a Dynamic HTML Page 130

Using wlHtml to Follow a Dynamic Link .. 132

Data Submission Properties .. 133

FormData .. 134

Data .. 138

DataFile ... 139

Header ... 139

Erase .. 140

Posting form Data Using Elements ... 142

Managing Cookies through the wlCookie Object .. 144

The wlCookie Object ... 144

How WebLOAD Works with Cookies .. 144

wlCookie Methods ... 145

Example: using a cookie ... 145

Handling Binary Data .. 146

Recording Binary Data .. 146

Handling Authentication in the Agenda ... 153

Appendix A. Scripting Samples ... 155

Scripting Sample of a Basic Recording .. 155

Scripting Sample of Correlation ... 159

Scripting Sample of Parameterizing an Agenda .. 164

Scripting Sample Using AJAX and Web Services .. 174

Scripting Sample Using AJAX and JSON to Validate a Web Server Response 183

Appendix B. LiveConnect Overview .. 189

Working with Wrappers .. 189

JavaScript to Java Communication... 189

The Packages Object .. 190

Working with Java Arrays .. 191

Package and Class References.. 191

Arguments of Type Char .. 192

Handling Java Exceptions in JavaScript ... 192

Java to JavaScript Communication... 193

Using the LiveConnect Classes .. 193

Data Type Conversions .. 197

JavaScript to Java Conversions .. 197

Java to JavaScript Conversions .. 204

iv Table of Contents

Exception Handling Statements ... 205

The Throw Statement .. 205

The Try...Catch Statement .. 206

The Catch Block ... 207

The Finally Block ... 207

Nesting Try...Catch Statements ... 208

JSException and JSObject Classes ... 208

JSException Class ... 208

JSObject Class ... 210

Appendix C. Load Engine CLI .. 215

Index ... 217

WebLOAD Scripting Guide 1

Chapter 1

Introduction

Welcome to WebLOAD, the premier performance, scalability, and reliability testing

solution for internet applications.

WebLOAD is easy to use and delivers maximum testing performance and value.

WebLOAD verifies the scalability and integrity of internet applications by generating a

load composed of Virtual Clients that simulate real-world traffic.

This section provides a brief introduction to WebLOAD technical support, including

both documentation and online support.

WebLOAD Documentation

WebLOAD is supplied with the following documentation:

WebLOAD™ Installation Guide

Instructions for installing WebLOAD and its add-ons.

WebLOAD™ IDE User Guide

Instructions for recording, editing, and debugging load test Agendas to be

executed by WebLOAD to test your Web-based applications.

WebLOAD™ Console User Guide

A guide to using WebLOAD console, RadView’s load/scalability testing tool to

easily and efficiently test your Web-based applications. This guide also includes a

quick start section containing instructions for getting started quickly with

WebLOAD using the RadView Software test site.

WebLOAD™ Analytics User Guide

Instructions on how to use WebLOAD Analytics to analyze data and create

custom, informative reports after running a WebLOAD test session.

 2 Chapter 1. Introduction

WebRM™ User Guide

Instructions for managing testing resources with the WebLOAD Resource

Manager.

WebLOAD™ Scripting Guide

Complete information on scripting and editing JavaScript Agendas for use in

WebLOAD and WebLOAD IDE.

WebLOAD™ JavaScript Reference Guide

Complete reference information on all JavaScript objects, variables, and functions

used in WebLOAD and WebLOAD IDE test Agendas.

WebLOAD™ Extensibility SDK

Instructions on how to develop extensions to tailor WebLOAD to specific working

environments.

The guides are distributed with the WebLOAD software in online help format. The

guides are also supplied as Adobe Acrobat files. View and print these files using the

Adobe Acrobat Reader. Install the Reader from the Adobe website

http://www.adobe.com.

Typographical Conventions

Before you start using this guide, it is important to understand the terms, icons, and

typographical conventions used in the documentation.

The following icons appear next to the text to identify special information.

Table 1: Icon Conventions

Icon Type of Information

Indicates a note.

Indicates a feature that is available

only as part of a WebLOAD Add-on.

http://www.adobe.com/

WebLOAD Scripting Guide 3

The following kinds of formatting in the text identify special information.

Table 2: Typographical Conventions

Formatting Convention Type of Information

Special Bold Items you must select, such as menu options, command buttons, or

items in a list.

Emphasis Use to emphasize the importance of a point or for variable

expressions such as parameters.

CAPITALS Names of keys on the keyboard. for example, SHIFT, CTRL, or ALT.

KEY+KEY Key combinations for which the user must press and hold down one

key and then press another, for example, CTRL+P, or ALT+F4.

Where to Get More Information

This section contains information on how to obtain technical support from RadView

worldwide, should you encounter any problems.

Online Help

WebLOAD provides a comprehensive on-line help system with step-by-step

instructions for common tasks.

You can press the F1 key on any open dialog box for an explanation of the options or

select Help Contents to open the on-line help contents and index.

Technical Support Website

The technical support pages on our website contain:

 FAQ (Frequently Asked / Answered Questions).

 Agenda Center

 Documentation

 RadView’s Product Resource Center, where you can find prepared test scripts,

product information, and industry related news.

 http://www.radview.com/support/index.asp

http://www.radview.com/support/index.asp

 4 Chapter 1. Introduction

Technical Support

For technical support in your use of this product, contact:

North American Headquarters International Headquarters

e-mail: support@RadView.com

Phone: 1-888-RadView

 (1-888-723-8439) (Toll Free)

 908-526-7756

Fax: 908-864-8099

e-mail: support@RadView.com

Phone: +972-3-915-7060

Fax: +972-3-915-7683

Note: We encourage you to use e-mail for faster and better service.

When contacting technical support please include in your message the full name of the

product, as well as the version and build number.

mailto:support@RadView.com
mailto:support@RadView.com

WebLOAD Scripting Guide 5

Chapter 2

Programming your JavaScript Agenda

WebLOAD functions on many different levels. WebLOAD IDE provides a wide range

of testing tools and features, ranging from basic tools that are available through a

simple graphic user interface, to features that require only a small amount of Agenda

‘tweaking’, to complex functionality that assumes a sophisticated understanding of

programming techniques. Beginning users may take advantage of the basic WebLOAD

IDE tool set without ever understanding exactly how these features are implemented.

Most WebLOAD testing features and configuration settings are handled automatically

by WebLOAD and never require any manual intervention. These GUI-only features are

described in the WebLOAD IDE User Guide.

Understanding JavaScript Agendas

This chapter focuses on the options available to users who wish to customize their

recorded Agendas and are comfortable looking at, and possibly giving a small ‘tweak’

to the JavaScript code within Agenda files. Major programming skills are not required

for the tools in this chapter. A basic understanding of programming logic, an

introduction to the internals of Agenda files, and careful reading of the examples

provided are enough to get started using the tools documented here.

Note: The topics presented in this chapter include fragments of JavaScript Agenda

code. To view the JavaScript code of an Agenda, select JavaScript View from the

toolbar or drop-down View menu. This opens a JavaScript View pane that

automatically displays the JavaScript code corresponding to any item highlighted in

the Agenda Tree.

The WebLOAD IDE tools described in the rest of this manual involve some degree of

intervention within the JavaScript code of an Agenda. Users will have an easier time

working with these tools if they have a basic understanding of JavaScript Agendas.

This chapter therefore begins with a description of the components, structure, and

grammar of JavaScript Agendas.

 6 Chapter 2. Programming your JavaScript Agenda

What are JavaScript Agendas?

WebLOAD tests applications by running JavaScript Agendas that simulate the actions

of real users. You don’t have to be familiar with the JavaScript language to work with

WebLOAD and WebLOAD IDE, and test applications. JavaScript Agendas are

recorded through WebLOAD IDE. As you execute a typical sequence of activities,

WebLOAD IDE records the HTTP protocol level traffic that is generated by the Web

browser according to your accesses. By the conclusion of your recording session, a

complete JavaScript Agenda file is created.

The basic ‘Building Blocks’ of a recording session are HTTP requests, which are

triggered by user actions. Each time a user navigates to a new URL or submits a form,

the browser emits an HTTP method and the resulting HTTP request is recorded.

Externally, user activities (at the protocol level) are represented on the WebLOAD IDE

desktop by a set of clear, intuitive icons and visual devices arranged in a visual

Agenda Tree. Internally, WebLOAD IDE automatically creates JavaScript Agendas that

act as scripts, recreating the HTTP traffic created by the actions of the original user

during later test sessions.

Most users begin application testing by simply recording and then running a series of

basic Agendas, without ever looking into an Agenda’s internal Building Blocks to see

the actual JavaScript code inside. As their understanding of the WebLOAD IDE tool set

grows, many users decide to expand or tailor their original set of Agendas to meet a

particular testing need, adding customized features that sometimes require some

editing of the JavaScript code within the Agenda itself. WebLOAD IDE offers a wide

range of features and options, for users who wish to add more functionality to their

Agendas, rather than simply replaying the same set of HTTP methods exactly as

originally recorded. Many of these tools are available through the WebLOAD IDE GUI

and do not require any additional programming skills. These tools are documented in

the WebLOAD IDE User Guide. The more complex tools that require some familiarity

with JavaScript programming are described in the remaining chapters of this guide,

with detailed syntax specifications provided in the WebLOAD JavaScript Reference

Guide.

Test session Agendas are written in JavaScript. JavaScript is an object-oriented

scripting language originally developed by Netscape Communications Corporation

and is currently maintained by the Mozilla Foundation. JavaScript is best known for its

use in conjunction with HTML to automate World Wide Web pages. However,

JavaScript is actually a full-featured programming language that can be used for many

purposes besides Web automation. WebLOAD and WebLOAD IDE have chosen

JavaScript as the scripting language for test session Agendas. WebLOAD IDE

JavaScript Agendas combine the ease and simplicity of WebLOAD’s visual, intuitive

programming environment with the flexibility and power of JavaScript object-oriented

programming.

WebLOAD Scripting Guide 7

Agenda Tree Structure

Agenda Tree Nodes

JavaScript Agendas are represented on the WebLOAD IDE desktop by an Agenda

Tree. Each item that appears in the Agenda Tree is an Agenda node. As you work in

your application during a recording session, WebLOAD IDE adds nodes to the Agenda

Tree. Each node in the Agenda Tree represents a single user action at the HTTP

protocol level, such as submitting a form or navigating to a new URL. Agenda Tree

nodes provide an intuitive, graphic representation of the underlying JavaScript code

that actually implements the user activities to be recreated at run time.

The following figure illustrates a typical Agenda Tree fragment:

Figure 1: Typical Agenda Tree Fragment

Agenda Tree nodes are arranged sequentially.

The sequential arrangement of icons in the Agenda Tree means that icons appear in the

Agenda Tree in the order in which the user actions and HTTP methods occurred when

originally recorded. URL nodes in an Agenda Tree will appear in the order in which

the browser requested each Web page over the course of a recording session. In cases

where the browser emits asynchronous requests (for example, while using AJAX), the

requests are recorded and appear in the Agenda Tree in the order that the browser

emitted them.

Note: WebLOAD IDE offers users a wide range of tools and features that can add very

powerful functionality to a testing Agenda. While users are certainly encouraged to

incorporate these tools in their Agenda Tree, users must also be careful when editing

URL nodes in the Agenda Tree. Because the order of HTTP activities within an Agenda

is so significant, changing the sequence of URLs in the Agenda Tree in effect means

changing the sequence of activities, and may destroy the functionality of the Agenda.

 8 Chapter 2. Programming your JavaScript Agenda

Agenda Program Structure

After a user has finished recording a typical session with the system under test,

WebLOAD IDE saves a complete record of all user activities at the protocol level and

converts the user activity information to a JavaScript Agenda. This Agenda can be run

repeatedly, with a variety of testing configurations, until the user is satisfied that the

system has been thoroughly tested. The Agenda created by the WebLOAD IDE

JavaScript interpreter has the following underlying structure.

Main Script

The main script contains JavaScript code representing the user activities at the protocol

level to be simulated during a test session. The main script is required. Without it,

WebLOAD and WebLOAD IDE cannot run a test.

The main script is constructed and based on an exact recording of the specific sequence

of user activities, such as the following, which are completed during a recording

session:

 Web page navigations

 Form submissions

 User think time (sleep)

In addition to the original recording session activities, users may also add other

features to the Agenda, such as messages or pause and sleep times. These features are

usually added through WebLOAD IDE. WebLOAD executes the main script

repeatedly, presenting the results in a series of analysis reports produced at the end of

testing sessions.

Initialization and Termination Functions

These are JavaScript functions that WebLOAD or WebLOAD IDE executes once, in a

fixed sequence, before or after the main script. These functions are used to prepare for

or clean up from a testing session. The following functions are automatically included

in the Agenda when needed:

 InitAgenda()— Initialize global objects shared by all WebLOAD IDE clients that

run the Agenda.

 InitClient()— Initialize local objects and variables for individual clients.

 TerminateClient()— Free resources of individual clients.

 TerminateAgenda()— Free global resources shared by all clients running the

Agenda.

WebLOAD Scripting Guide 9

 OnScriptAbort()— Executes user-defined code to free resources whenever the

Agenda stops the execution of a round (ErrorMessage), a session

(SevereErrorMessage), or in the event of an error. In addition, OnScriptAbort() is

called in the Console whenever the script stops abruptly. This occurs when the end

of a scheduled session is in the middle of a round, or when a user manually stops

the session.

 OnErrorTerminateClient()— Clean up and free resources after a runtime

error (per client).

 OnErrorTerminateAgenda()— Clean up and free resources after a runtime

error (per Agenda).

The initialization and termination functions are not part of the WebLOAD performance

test. WebLOAD does not include the operations of these functions in the performance

statistics.

Use the initialization and termination functions to create or free objects or to set global

variables. Besides these tasks, the functions may contain other JavaScript statements

and may call other functions in your Agenda. The termination functions are used both

when a test session finishes successfully, and when it is terminated early by an error.

See Agenda Execution Sequence (on page 11), and Non-Standard Agenda Execution

Sequence (on page 45), for more information.

Initialization and termination functions may be added directly to the code in an

Agenda through the IntelliSense Editor, as described in Editing the JavaScript Code in an

Agenda (on page 15).

To bring up a list of available functions:

 While working in Java Editing mode, select the node in the Agenda Tree to which

you want to add a function, right-click the JavaScript pane, and select Insert

General Init/Terminate Functions from the pop-up menu.

 10 Chapter 2. Programming your JavaScript Agenda

WebLOAD IDE automatically inserts the correct code for the selected function into

the Agenda file. You may then add any other necessary commands to the functions

without any concerns about mistakes in the function syntax.

Figure 2: Function Insertion using the Insert Menu

Navigation Functions

When a URL node is selected in the Agenda Tree, the corresponding Agenda code that

appears in the JavaScript View pane will usually include basic navigation and

validation functions such as wlHTTP.Get() and wlHTTP.Post(). The

wlHTTP.Get() and wlHTTP.Post() methods store the HTML from the navigated

page in the document.wlSource property. The code is refreshed when the Agenda calls

wlHTTP.Get() or wlHTTP.Post() again. The stored code includes any scripts or

other data embedded in the HTML, which the Agenda can retrieve and interpret in any

desired way.

These functions are almost always visible at the start of the JavaScript code for every

URL node in the Agenda Tree. While additional Tree nodes add their own additional

corresponding JavaScript code to the Agenda, these functions form the basis for all test

session Agendas.

WebLOAD Scripting Guide 11

Agenda Execution Sequence

Basic Execution Sequence

WebLOAD executes JavaScript Agendas in a simple, fixed sequence. The normal

sequence is as follows.

1. The optional InitAgenda() initialization function runs once for each Load

Generator, initializing the global WebLOAD objects, or any other global data or

resources, that are shared by all clients in a Load Generator process.

2. The Agenda splits into a separate thread for each client. Load Generator processes

may include any number of Virtual Clients, all running the same Agenda. After

WebLOAD runs InitAgenda(), it runs each client in a separate thread. Each

thread can have its own local variables and objects. In essence, each client runs an

independent instance or copy of the Agenda.

For example, suppose you want each WebLOAD client to connect to a different

Web page. You can use a local object within each thread to store the Web address

and perform the HTTP connection. Because the object is local, there is no confusion

between the addresses. Each thread connects to the appropriate address, without

any effect on the other threads of the same Agenda.

3. The optional InitClient() initialization function runs once for each thread,

initializing local WebLOAD objects, or any other variables or resources, which

belong to an individual thread of the Agenda. In this way, each thread of an

Agenda can work with different data and can operate independently of the other

threads.

4. The main script runs repeatedly in a separate loop for each thread. When

WebLOAD reaches the end of the main script, it starts again at the beginning. The

main script continues to iterate until you stop the WebLOAD test. You can stop the

test by issuing a Stop command in the WebLOAD Console, or you can tell the

Console to stop the test automatically after a predefined time.

WebLOAD collects performance statistics while the main script runs. The various

statistics that WebLOAD displays (round time, average round time, etc.) apply

only to the main script, not to operations in the initialization and termination

functions.

5. The optional TerminateClient() termination function runs once for each

thread. Strictly speaking, most Agendas do not need a TerminateClient()

function, because JavaScript automatically frees objects and releases most

resources when the Agenda terminates. In a complex Agenda, however, it is good

programming practice to free local objects and resources explicitly using

TerminateClient().

6. The separate threads for each client terminate.

 12 Chapter 2. Programming your JavaScript Agenda

7. The optional TerminateAgenda() termination function runs once for each Load

Generator process. Most simple Agendas do not need a TerminateAgenda()

function. In a complex Agenda, including TerminateAgenda() is recommended

to free global resources.

8. The OnScriptAbort(), OnErrorTerminateClient(), and

OnErrorTerminateAgenda() functions clean up and free resources after a

runtime error. For more information about handling errors during a test session,

see Error Management (on page 41).

The following figure illustrates the steps in a normal Agenda execution sequence:

Figure 3: Steps in a Typical Agenda Execution Sequence

EvaluateScript Function

The EvaluateScript() function is used to define JavaScript code to be executed at

specific points during the execution of the Agenda. The function allows testers to

include scripts from an external library and specify the point during Agenda execution

at which the script should be executed. You can specify to execute the script at any of

the following points within the Agenda:

 WLBeforeInitClient

 WLAfterInitAgenda

 WLBeforeThreadActivation

 WLOnThreadActivation

 WLAfterTerminateClient

 WLBeforeRound

 WLAfterTerminateAgenda

WebLOAD Scripting Guide 13

 WLAfterRound

If the script run is successful, the value from the last executed expression statement

processed in the script is saved and then parsed when the engine reaches the relevant

point. The saved value includes the following information:

 The text of the script.

 The size of the script text, in bytes.

 The name of the file or URL containing the script text.

If the script run is unsuccessful, the value is left undefined.

The following example is used to call a function that is defined in an external file:

IncludeFile(filename.js)

EvaluateScript(“MyFunction()”,WLAfterRound)

In this example, the EvaluateScript string is parsed, executed, and instructs the

JavaScript engine to call the MyFunction() function right after each round is

completed. At this point WebLOAD returns any syntax or runtime errors.

For more information on the EvaluateScript function, see the WebLOAD’s JavaScript

Reference Guide.

Cleanup at the End of Each Round

The main script retains its variables and objects from one round (iteration) to the next.

For example, you can increment a variable in each round, or you can store data in an

object in one round and access the data in the next.

There are three exceptions to this rule. At the end of each round:

 Any cookies that the script sets are deleted.

 The SSL Cache is cleared.

 Any open HTTP connections are closed.

Execution Sequence for Scheduled Clients

WebLOAD lets you schedule the number of clients running a single Agenda in a single

Load Generator. WebLOAD runs the initialization and termination functions of the

Agenda according to your schedule.

 14 Chapter 2. Programming your JavaScript Agenda

For example, suppose you configure a Load Generator to run an Agenda according to

the following schedule:

Table 3: Load Generator Schedule—Sample 1

Number of Threads Scheduled Time

50 threads For the first 30 minutes.

20 threads From 30 to 60 minutes.

100 threads For the remainder of the test.

In this case:

 WebLOAD runs the InitAgenda() function when the Load Generator starts to

run. WebLOAD then starts the first 50 threads, running InitClient() and the

main script for each thread.

 After 30 minutes, 30 of the threads stop. WebLOAD runs TerminateClient()

for these 30 threads. The main script of the other 20 threads continues running.

 At 60 minutes, 80 additional threads start. For each of these 80 threads, WebLOAD

runs InitClient() and the main script.

 At the end of the test, WebLOAD runs TerminateClient() for each of the 100

threads currently running, and then runs TerminateAgenda().

Execution Sequence for Mixed Clients

You can configure a single Load Generator to run more than one Agenda. In that case,

WebLOAD splits the time on each thread between the Agendas. WebLOAD runs the

initialization and termination functions of each Agenda at the beginning and end of the

threads, respectively. It does not run the functions each time the threads switch

between Agendas.

For example, suppose you configure a Load Generator to run 100 threads as follows:

Table 4: Load Generator Schedule—Sample 2

Percentage of time Selected Agenda

50% of the time agenda1. wlp

50% of the time agenda2. wlp

WebLOAD Scripting Guide 15

In this case, WebLOAD runs:

 The InitAgenda() functions of both Agendas when the Load Generator starts.

 The InitClient() functions of both Agendas in each thread when the thread

starts.

 The TerminateClient() functions of both Agendas, in each thread at the end of

the test.

 The TerminateAgenda() functions of both Agendas when all the threads have

stopped.

Editing the JavaScript Code in an Agenda

WebLOAD is a fully automated testing tool. WebLOAD users are able to record

Agendas, add testing tools, run test sessions, and analyze the results, without any

programming skills whatsoever. Nevertheless, there are users who wish to manually

edit the JavaScript code of a recorded Agenda to add functionality to test session

Agendas created with WebLOAD IDE, creating more complex, sophisticated test

sessions.

For example, many users design test sessions around a set of basic Agendas created

through WebLOAD IDE and then expand or tailor those Agendas to meet a particular

testing need. Some of the reasons for editing JavaScript Agendas include:

 Recycling and updating a useful library of test Agendas from earlier versions of

WebLOAD.

 Testing websites that work with Java or COM components.

 Creating advanced, specialized verification functions.

 Adding global variables and messages.

 Debugging the system under test.

 Optimization capabilities, to maximize your application’s functionality at minimal

cost.

This section describes the tools provided by WebLOAD IDE to help you access and

edit the JavaScript code within your Agenda.

Accessing the JavaScript Code within the Agenda Tree

WebLOAD IDE provides a complete graphic user interface for creating and editing

Agenda files. Additions or changes to an Agenda are usually made through the

WebLOAD IDE GUI, working with intuitive icons representing user actions in a

graphic Agenda Tree. For greater clarity, the JavaScript code that corresponds to each

user action in an Agenda is also visible in the JavaScript View pane on the WebLOAD

IDE desktop.

 16 Chapter 2. Programming your JavaScript Agenda

While most people never really work with the JavaScript code within their Agenda,

some users do wish to manually edit the JavaScript code underlying their Agenda

Tree. For example, some test sessions may involve advanced WebLOAD testing

features that can not be completely implemented though the GUI, such as Java or XML

objects. Editing the JavaScript code in an Agenda does not necessarily mean editing a

huge JavaScript file. Most of the time users only wish to add or edit a specific feature

or a small section of the code. WebLOAD IDE provides access to the JavaScript code in

an Agenda through JavaScript Object nodes, which are seen on the following levels:

 JavaScript Object nodes—individual nodes in the Agenda Tree. Empty JavaScript

Object nodes may be dragged from the WebLOAD IDE toolbar and dropped onto

the Agenda Tree at any point selected by the user, as described in Adding JavaScript

Object Nodes (on page 19). Use the IntelliSense Editor, described in Using the

IntelliSense JavaScript Editor (on page 16), to add lines of code or functions to the

JavaScript Object.

 Imported JavaScript File—an external JavaScript file that should be incorporated

within the body of the current Agenda.

 While working in JavaScript Editing mode, right-click the JavaScript pane and

select Import JavaScript File from the WebLOAD IDE menu.

Often, testers work with a library of pre-existing library files from which they

may choose functions that are relevant to the current test session. This modular

approach to programming simplifies and speeds up the testing process, and is

fully supported and endorsed by WebLOAD.

Using the IntelliSense JavaScript Editor

For those users who wish to manually edit their Agendas, WebLOAD IDE provides

three levels of programming assistance:

 An IntelliSense Editor mode for the JavaScript View pane.

Add new lines of code to your Agenda or edit existing JavaScript functions

through the IntelliSense Editor mode of the JavaScript View pane. The IntelliSense

Editor helps programmers write the JavaScript code for a new function by

formatting new code and prompting with suggestions and descriptions of

appropriate code choices and syntax as programs are being written. For example,

in the following figure the IntelliSense Editor displays a drop-down list of

available properties and objects for the wlHttp object being added to the program,

with a pop-up box describing the highlighted method in the list.

WebLOAD Scripting Guide 17

Figure 4: wlHttp Drop-Down List of Available Properties and Objects in IntelliSense Editor

 A selection of the most commonly used programming constructs, can be accessed

by right-clicking in the JavaScript Editing Pane, and selecting Insert Java

Objects from the pop-up menu.

Users who choose to program their own JavaScript Object code within their

Agenda may take advantage of the WebLOAD IDE GUI to simplify their

programming efforts. Manually typing out the code for each command, risks

making a mistake, even a trivial typo, and adding invalid code to the Agenda file.

Instead, users may bring up a list of available commands and functions for a

specific item, by right-clicking in the JavaScript Editing Pane after selecting a

specific node from the Agenda Tree, selecting Insert from the pop-up menu, and

selecting an item illustrated in the following figure to display the item’s available

commands. WebLOAD IDE automatically inserts the correct code for the selected

item into the JavaScript Object currently being edited. The user may then change

specific parameter values without any worries about accidental mistakes in the

function syntax.

 18 Chapter 2. Programming your JavaScript Agenda

Figure 5: Insert Java Options Menu

In addition to the Insert menu, you may select an item from the Insert Variable

menu, to add system and user-defined parameters to the Agenda. This eliminates

the need for manual coding.

Figure 6: Insert Variable Menu

 A Syntax Checker that checks the syntax of the code in your Agenda file and

catches simple syntax errors before you spend any time running a test session.

WebLOAD Scripting Guide 19

Select Tools CheckSyntax while standing in the JavaScript View pane of the

WebLOAD IDE desktop to check the syntax of the code in your Agenda file.

Agenda code that you wish to write or edit must be part of a JavaScript Object in the

Agenda Tree. Adding or converting JavaScript Objects in an Agenda Tree is described

in Accessing the JavaScript Code within the Agenda Tree (on page 15).

Notes: If you do decide to edit the JavaScript code in an Agenda, be careful not to

damage the Agenda structure by changing the sequence or integrity of the Agenda

navigation blocks. A test session Agenda is constructed and based on a specific

sequence of user activities at the protocol level, such as URL navigations, form

submissions, and others. Changing the sequence of code blocks in effect means

changing the sequence of user activities, and may destroy the functionality of the test

session Agenda. In addition, you should be careful not to change the automatically

generated WebLOAD IDE comments, since necessary information for running the

Agenda may become lost.

If you use an external text editor to modify the JavaScript code in a JavaScript Agenda

that was created through WebLOAD IDE, the changes you made through the external

editor will be lost if you open the Agenda in WebLOAD IDE again. Therefore, be sure

to do all JavaScript code editing through the IntelliSense Editor in WebLOAD IDE

only.

For detailed information about the JavaScript language, please refer to the WebLOAD

JavaScript Reference Guide. This guide is supplied in Adobe Acrobat format with the

WebLOAD software. You may also learn the elements of JavaScript programming from

many books on Web publishing. Keep in mind that some specific JavaScript objects

relating to Web publishing do not exist in the WebLOAD test environment.

Adding JavaScript Object Nodes

WebLOAD IDE stores user activities at the protocol level as they are completed during

recording sessions. These activities are later recreated during subsequent testing

sessions. However, the system being tested may also involve user activities that are

significant to the system testers, yet cannot be entirely recorded through WebLOAD

IDE. Or testers may wish to add additional functionality to their tests that require

inserting extra JavaScript functions into the body of their Agenda code. WebLOAD

IDE therefore provides a mechanism for including such items within a test session

Agenda.

For example, some of the steps involved in access to an external database are executed

outside the control of WebLOAD IDE and therefore cannot be completely recorded

through WebLOAD IDE alone. Users may add these activities to a test Agenda by

adding empty JavaScript Object Nodes to the Agenda Tree and then filling in the code

to complete the desired activity. The specific code needed within the JavaScript Object

 20 Chapter 2. Programming your JavaScript Agenda

Node will obviously vary from Node to Node depending on the activity, but adding

the generic JavaScript Object Nodes themselves is a standard WebLOAD IDE feature.

To add JavaScript Object Nodes to your test Agenda directly through the WebLOAD

IDE GUI:

 Drag the JavaScript Object icon from the toolbox and drop it into the Agenda Tree

at the preferred spot, as described in the WebLOAD IDE User Guide.

The following figure illustrates a typical JavaScript Object Node highlighted in the

Agenda Tree.

Figure 7: Typical JavaScript Object Node

The specific code needed within the JavaScript Object Node will obviously vary from

Node to Node depending on the activity. Some of the activities that may require

manual programming within a JavaScript Object Node include:

 Getting data from a database.

 Working with COM, XML, or Java objects.

 Calculating expressions.

 Working with global variables such as a user-defined value to include in messages.

 Working with other protocols.

 Doing specific custom made verifications.

JavaScript syntax specifications for some of these activities are documented in the

WebLOAD JavaScript Reference Guide.

To add or edit lines of code in a JavaScript Object:

 Click the JavaScript Object node in the Agenda Tree.

The JavaScript object’s code appears in the JavaScript View pane. You can edit the

code directly in the JavaScript view or by selecting Edit Start Java Script Editing

which opens the full JavaScript view screen. This helps programmers write the

JavaScript code for a new function by formatting new code and prompting with

WebLOAD Scripting Guide 21

suggestions and descriptions of appropriate code choices and syntax as programs

are written, as described in Using the IntelliSense JavaScript Editor (on page 16).

File Management

JavaScript Agendas work with many different types of files. Users may wish to add to

their Agendas programming elements that include the following file types:

 Including Files (on page 21)

 Copying Files (on page 25)

 Output Files (on page 27)

 Input Files (on page 30)

Including Files

WebLOAD IDE allows you to include external files within your JavaScript program.

This facilitates modular programming, where you may develop different recyclable

modules of JavaScript source code to be reused by different test Agendas. Rather than

inserting the complete original source code text over and over again into the body of

each Agenda, use the IncludeFile() command to make all functions defined within

the included file available to all including Agendas.

Adding an IncludeFile() Function

IncludeFile() functions can be added directly to a JavaScript Object in an Agenda

through the IntelliSense Editor, as described in Editing the JavaScript Code in an Agenda

(on page 15).

To insert an IncludeFile function:

 While working in JavaScript Editing mode, right-click the JavaScript Pane and

select Insert JavaScript Copy/Include Files from the pop-up menu that

appears. Select the IncludeFile() function from the sub-menu.

 22 Chapter 2. Programming your JavaScript Agenda

WebLOAD IDE automatically inserts the correct code for the selected function into

the Agenda file. The user may then edit parameter values without any worries

about mistakes in the function syntax.

Figure 8: IncludeFile() Function Insertion using Copy/Include Files Menu

For example, to include the external file MyFunction.js, located on the Console

during WebLOAD testing, your Agenda file should begin with the following

command included in a JavaScript Object node:

function InitAgenda() {

...

IncludeFile(“MyFunction.js”)

}

See the WebLOAD JavaScript Reference Guide for a complete syntax specification.

WebLOAD Scripting Guide 23

Determining the Included File Location

WebLOAD assumes that the source file is located in the default directory specified in

the File Locations tab in the Tools Global Options dialog box in the WebLOAD

Console desktop, illustrated in the following figure:

Figure 9: File Locations Tab

Included files by default should be in the User Include Files directory specified in the

File Locations dialog box. You may reset the default directory location if necessary by

selecting the User Include Files entry and clicking Modify. You can select a new file

location from the pop-up Browse for Folder dialog box and click OK. In general, the

system searches for the included file using the following search precedence:

 The load engine first looks for the included file in the default User Include Files

directory. If the file is not there, the file request is handed over to WebLOAD,

which searches for the file using the following search path order:

a. If a full path name has been hardcoded into the IncludeFile command, the

system searches the specified location. If the file is not found in an explicitly

coded directory, the system returns an error code of File Not Found and

will not search in any other locations.

 24 Chapter 2. Programming your JavaScript Agenda

Note: It is not recommended to hardcode a full path name, since the Agenda will then

not be portable between different systems. This is especially important for networks

that use both UNIX and Windows systems.

b. Assuming no hardcoded full path name in the Agenda code, the system looks

for the file in the default User Include Files directory.

c. If the file is not found, the system looks for the file in the current working

directory, the directory from which WebLOAD or WebLOAD IDE was

originally executed.

d. Finally, if the file is still not found, the system searches for the file sequentially

through all the directories listed in the File Locations tab.

Example: Working with an Included Function

Included files are files whose functions and other contents are included and accessible

from the current Agenda file without the file text actually appearing within the

Agenda. Use included files to take advantage of an external library of modular

functions without adding extra lines of code to your Agenda, improving the clarity of

your Agenda code while saving both Agenda space and development time. For

example, in the following Agenda fragment, the external file myjs.js is included

within the InitAgenda() initialization function. One of the functions within that

included file, sayHello(), is later accessed within the main body of the Agenda. The

text of the sayHello() is embedded in a nearby comment for easy reference.

function InitAgenda()

{

IncludeFile("C:\\Documents and Settings\\uriw\\My

Documents\\myjs.js")

}

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/general_sample/include

/form.php")

Sleep(4765)

wlHttp.Header["Referer"] = "http://qa50/form.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["item"] = "Brushes"

wlHttp.FormData["quantity"] = "55"

var item = wlHttp.FormData["quantity"]

wlHttp.Post("http://www.webloadmpstore.com/general_sample/includ

e/process.php")

// here the outside function is being called

sayHello()

WebLOAD Scripting Guide 25

The myjs.js file contains the following sayHello() function, which prints the

checkout message to the customer:

function sayHello()

{

InfoMessage("you ordered " +item + " items")

}

Copying Files

WebLOAD enables text and binary data file copying from the Console to a Load

Generator automatically during a test session. This is an important feature if your test

uses an Agenda that references auxiliary files, such as I/O files, that are found only on

the Console. The WebLOAD send option in the Console only sends the Agenda itself

and will not send auxiliary files together with an Agenda file to a Load Generator. Use

the CopyFile command instead to copy any necessary files from a source file on the

Console to a destination file on the Load Generator before the main body of the

Agenda is executed.

Adding a CopyFile() Function

CopyFile() functions can be added directly to a JavaScript Object in an Agenda

through the IntelliSense Editor, as described in Editing the JavaScript Code in an Agenda

(on page 14).

To insert a CopyFile function:

 While working in JavaScript Editing mode, right-click the JavaScript Pane and

select Insert Copy/Include Files from the pop-up menu that appears.

Select the preferred CopyFile() function from the sub-menu (see Figure 8).

WebLOAD IDE automatically inserts the correct code for the selected function into the

Agenda file. The user may then edit parameter values without any worries about

mistakes in the function syntax.

For example, to copy the auxiliary file src.txt, located on the Console, to the

destination file dest.txt on the current Load Generator, your Agenda file should

include the following command:

function InitAgenda() {

...

CopyFile(“src.txt”, “dest.txt”)

...

}

 26 Chapter 2. Programming your JavaScript Agenda

You may then access the file as usual in the main body of the Agenda. For example:

DataArr = GetLine(“dest.txt”)

See the JavaScript Reference Guide for a complete syntax specification.

Determining the Copied File Location

WebLOAD assumes that the source file is located on the Console in the default

directory identified in the File Locations tab of the Tools Global Options dialog box

in the Console desktop, illustrated in the following figure:

Figure 10: File Locations Dialog Box

Files to be copied by default should be in the User Copy Files directory specified in the

File Locations dialog box. You may reset the default directory location if necessary by

selecting the User Copy Files entry and clicking Modify. You can select a new file

location from the pop-up Browse for Folder dialog box and click OK. Remember that

WebLOAD does not create new directories, so any directories specified as source or

target directories must already exist. In general the system searches for the file using

the following search precedence:

WebLOAD Scripting Guide 27

 The load engine first looks for the file to be copied in the default User Copy Files

directory. If the file is not there, the file request is handed over to WebLOAD,

which searches for the file using the following search path order:

a. If a full path name has been hardcoded into the CopyFile command, the system

searches the specified location. If the file is not found in an explicitly coded

directory, the system returns an error code of File Not Found and will not

search in any other locations.

Note: It is not recommended to hardcode a full path name, since the Agenda will then

not be portable between different systems. This is especially important for networks

that use both UNIX and Windows systems.

b. Assuming no hardcoded full path name in the Agenda code, the system looks

for the file in the current working directory, the directory from which

WebLOAD was originally executed.

c. Finally, if the file is still not found, the system searches for the file sequentially

through all the directories listed in the File Locations tab.

Output Files

Writing Agenda Output Messages to a File

Realistic testing requires multiple testing passes using a variety of realistic scenarios.

The resulting output data should be stored in output files for later access, verification,

study, and analysis. WebLOAD IDE provides the wlOutputFile object to simplify

saving Agenda output. See the WebLOAD JavaScript Reference Guide for a complete

syntax specification. This section will provide a brief introduction to the

wlOutputFile object.

The wlOutputFile object lets you write Agenda output messages to an output file.

Declaring a new wlOutputFile object creates a new, empty output file. If a file of that

name already exists, the file will be completely overwritten. Information will not be

appended to the end of an existing file. Be sure to choose a unique filename for the new

output file if you do not want to overwrite previous Agenda data.

Adding the wlOutputFile Object

The wlOutputFile object can be added directly to a JavaScript Object in an Agenda

through the IntelliSense Editor, as described in Editing the JavaScript Code in an Agenda

(on page 14). Users who are programming their own JavaScript Object code within

their Agenda may take advantage of the WebLOAD IDE GUI to simplify their

programming efforts. Manually typing out the code to create a wlOutputFile object,

risks making a mistake, and adding invalid code to the Agenda file. Instead, users may

bring up a list of available constructor and methods for the wlOutputFile object, by

right-clicking in the JavaScript Editing Pane, selecting Insert General from the pop-

 28 Chapter 2. Programming your JavaScript Agenda

up menu, and selecting one of the available items. WebLOAD IDE automatically

inserts the correct code for the selected command into the JavaScript Object currently

being edited. The user may then change the parameters without any worries about

mistakes in the object syntax.

Figure 11: wlOutputFile() Insertion using General Menu

The preceding figure highlights the standard JavaScript syntax to create and work with

wlOutputFile objects.

For example:

MyFileObj = new wlOutputFile(“filename”)

...

MyFileObj.Write(“Happy Birthday”)

...

delete MyFileObj

Note: The wlOutputFile object saves Agenda output messages. To save server

response data, use the Outfile property described in Saving Server Output to a File (on

page 29).

WebLOAD Scripting Guide 29

wlOutputFile Object Scope Limitations

If you declare a new wlOutputFile object in the InitAgenda() function of an

Agenda, the output file will be shared by all the Agenda threads. There is no way to

specify a specific thread writing sequence—each thread will write to the output file in

real time as it reaches that line in the Agenda execution.

If you declare a new wlOutputFile object in the InitClient() function or main

body of an Agenda, use the thread number variable as part of the new filename to be

sure that each thread will create a unique output file.

If you declare a new wlOutputFile object in the main body of an Agenda, and then

run your Agenda for multiple iterations, use the RoundNum variable as part of the new

filename to be sure that each new round will create a unique output file.

Generally, you should only create new wlOutputFile objects in the InitAgenda()

or InitClient() functions of an Agenda, not in the main script. If a statement in the

main script creates an object, a new object is created each time the statement is executed. If

WebLOAD repeats the main script many times, a large number of objects may be

created and the system may run out of memory.

Saving Server Output to a File

It is often important to save server response data for later study and analysis.

WebLOAD and WebLOAD IDE provide the Outfile property for this purpose.

Outfile is a property of the wlGlobals, wlLocals, and wlHttp objects. See the

WebLOAD JavaScript Reference Guide, for a complete syntax specification.

The following Agenda shows a typical entry to a server output file. The ClientNum

and RoundNum global variables are used to distinguish between Agenda instances in

the server output file entries.

// Main script actions go here

...

// Write the downloaded server output to a unique file

// for each Agenda instance, identified by ClientNum

// and RoundNum. The output file is named

// <fullpath>\SessionOutput.<ClientNum.RoundNum>.html

wlHttp.Outfile = "c:\\webld\\SessionOutput."

ClientNum + "." + RoundNum + ".html"

The Outfile property can be added directly to a JavaScript Object in an Agenda

through the IntelliSense Editor, as described in Editing the JavaScript Code in an Agenda

(on page 14).

 30 Chapter 2. Programming your JavaScript Agenda

Input Files

To test an application on a realistic scale, you need large numbers of Virtual Clients

using a wide range of realistic input data. Realistic testing also requires multiple

testing passes using a variety of realistic scenarios. Working with such extensive input

data is only feasible using input files. Input files are a useful tool in application testing,

providing all the test input needed without requiring a great deal of manual

intervention. Input files may contain a wide range of realistic data, including erroneous

data lines that have been deliberately added, such as an invalid date for a date field.

This is a useful technique to test server performance when users submit invalid data.

WebLOAD IDE provides the GlobalInputFile Building Block to simplify the use of

input files. WebLOAD IDE enables you to insert a file that contains fields which will be

used as global variables throughout the entire script. The GlobalInputFile Building

Block is the recommended method for managing input data files, as it is a user-friendly

GUI approach that does not require any programming skills on the part of the user.

However, users who prefer to edit the JavaScript code within their Agenda files may

choose to work directly with the internal input file function set, described in this

section. For more information on the GlobalInputFile Building Block, refer to

GlobalInputFile in the WebLOAD IDE User Guide.

Working with ASCII Input Files

Input files are text-delimited files containing data that users might submit on a form.

WebLOAD uses the GetLine() function to read input file data. The input files

themselves must already exist in order to be used during a test session. WebLOAD and

WebLOAD IDE will not create input files for you.

Input files contain data tokens, text strings that correspond to the input fields on a

form. Each input file line should contain the same number of tokens, separated by a

delimiter and terminated by newline and linefeed characters. For example, each line of

the following file contains three tokens:

 First name

 Last name

 Email address

The delimiter in this file is the default comma (,) character.

FirstName,LastName,email@address.com

John,Smith,jsmith@ABC.com

Mary,Todd,mtodd@GHI.com

Betty Sue, ,bettysue@MNO.edu

Tom,Jones,invalid*email

...

WebLOAD Scripting Guide 31

A token may contain any characters or spaces except the delimiter character. Thus the

first two tokens in the fourth line of the example are ”Betty Sue“ and “ “ (a string

containing a single space character).

Note: You may also deliberately include erroneous data lines in your input file, such as

an invalid date for a date field.

Understanding the GetLine Function

The GetLine() function reads and parses data from an ASCII file. The lines of data

are stored in a LineArray object. The LineArray object contains both the actual file

data and information about the file data, such as the line number on which that data

token was found and the round number during which that data token was read from

the file.

The GetLine() function reads an input file one line at a time, either sequentially or in

a random order:

 If you choose the WLSequential (default) mode, then:

 The first GetLine() call in the Agenda reads the first line of the file.

 Each successive call in the Agenda reads the next line of the file.

 When the last line of the file has been read, the next access loops back to the

first line of the file.

 If you choose the WLRandom mode, then:

 Each successive call in any thread of the Load Generator reads some randomly

chosen line of the file.

 You must include Open(filename, WLRandom) in the Agenda’s

InitAgenda() function.

You can specify if you want to read a random unique, unused row/value from the file.

If another Virtual Client is using this value/row, the Virtual Client is not able to access

this value/row and will read another random value/row.

In Unique mode, there is a significant performance difference between Sequential and

Random. Sequential causes some performance degradation and heavier network

communication. Therefore, if working in Unique mode, you should select Random

unless the lines must be in sequential order. If working in non-Unique mode, Sequential

is the preferable method in terms of performance, since Random uses more memory.

In this way, a relatively small file can supply an unending stream of test data, and

different clients are supplied with different sequences of data.

For example, the following lines read the input data lines stored in

MyFavoriteInputFile in a random order. The data tokens on each line are

 32 Chapter 2. Programming your JavaScript Agenda

separated by semicolons (;). The first data token found in the data file is then assigned

to a variable in the program.

InitAgenda(){

wlGlobals.TokenNumber = 0

...Open(filename, WLRandom)

}

...

MyInputDataArray =

GetLine(“MyFavoriteInputFile”, “;”)

...

NextDataToken = MyInputDataArray[wlGlobals.TokenNumber++]

See the WebLOAD JavaScript Reference Guide, for a complete syntax specification.

Adding Input File Commands to your Agenda Code

Input file command lines can be added directly to a JavaScript Object in an Agenda

through the IntelliSense Editor, as described in Editing the JavaScript Code in an Agenda

(on page 14). Users who are programming their own JavaScript Object code within

their Agenda may take advantage of the WebLOAD IDE to simplify their

programming efforts.

Manually typing out the code for a GetLine() function for example, risks making a

mistake, and adding invalid code to the Agenda file. Instead, users may bring up a list

of input file functions for the wlOutputFile object, by right-clicking in the JavaScript

Editing Pane, selecting Insert General from the pop-up menu, and selecting one of

the available items. WebLOAD IDE automatically inserts the correct code for the

selected function into the JavaScript Object currently being edited. The user may then

change the specific object names or parameter values without worrying about mistakes

in the function syntax.

WebLOAD Scripting Guide 33

Figure 12: GetLine() Function Insertion using General Menu

JavaScript Objects are described in Adding JavaScript Object Nodes (on page 19). The

exact JavaScript syntax of input file functions can be found in the WebLOAD JavaScript

Reference Guide.

Sharing Input File Data

The rules of scope, described in Rules of Scope for Local and Global Variables (on page 49),

apply to input files as well. One or more line counter variables are used to keep track

of which line is to be read next in the file, cycling through the file and starting over at

the beginning of the file when the end is reached. Some of the input file access

configurations that are possible include:

 Multiple threads of a single Agenda on a single Load Generator may share a single

input file. In this case, a single line counter variable keeps track of which lines have

been read already in the file, enabling each input file access from any of the

participating threads to read the next line in the file.

 A single Load Generator running multiple threads may either use a single input

file or read from different files. A separate line counter variable is maintained by

the Load Generator for each input file being accessed.

 Multiple Load Generators may all read from the same input file, but each Load

Generator maintains its own, independent line counter for that file. A Load

 34 Chapter 2. Programming your JavaScript Agenda

Generator’s line counter is incremented each time one of that Load Generator’s

threads reads the file.

Note: If multiple Load Generators share a single input file, using multiple line

counters, it is possible that more than one Load Generator may reach the same line of

the input file simultaneously, which may or may not be a problem, depending on the

situation. This is illustrated in the following example.

Example: Reading an Input File

In the following example, we use an input file containing the following names and

email addresses:

FirstName,LastName,email@address.com

John,Smith,jsmith@ABC.com

Mary,Todd,mtodd@GHI.com

Betty Sue,Jackson,bettysue@MNO.edu

Tom,Jones,invalid*email

...

The sample Agenda reads the lines of the file, fills in an HTML form with the data, and

uploads the form to a website. Because the GetLine() function in this example is

working in the default WLSequential mode, each thread of the Load Generator reads

a successive line of the file. When any thread reaches the last line, the file cycles back to

the beginning. In that way, the threads can obtain an unending sequence of data from

the file.

function InitAgenda() {

//Set the URL of the server that processes the form

wlGlobals.Url ="http://www.ABCDEF.com/FormProc.exe"

}

//Main Agenda Body

// Read and parse a line of the input file

DataArr = GetLine("c:\\temp\\mydata.txt")

//Enter the data in simulated HTML form fields

wlHttp.FormData["FirstName"] = DataArr[1]

wlHttp.FormData["LastName"] = DataArr[2]

wlHttp.FormData["Email"] = DataArr[3]

//Post the form to the server

wlHttp.Post()

Suppose you configure a Load Generator with 20 clients running this Agenda. By

chance, it may happen that thread 14 of the Load Generator reaches the GetLine()

statement first. In that case, thread 14 reads John Smith’s name and email address and

sends the data to the server. Other threads of the Load Generator read the data for

WebLOAD Scripting Guide 35

Mary Todd, Betty Sue Jackson, Donald Gallop, etc. In the second round, thread 14

reads whatever line is next in the sequence.

The threads continue to cycle through the file in this way. When any thread of the

Load Generator reaches the last line of the file, the next thread that happens to read the

file starts again with the data for John Smith. If the file is large enough (say 50-100

lines), no two threads submit the same data to the server simultaneously, or even in

close succession.

Now suppose you configure two different Load Generators running the same Agenda.

The two Load Generators access the input file independently. Therefore, it may happen

that a thread of the first Load Generator and a thread of the second Load Generator

submit the data for John Smith simultaneously or in close succession. In many

WebLOAD tests, this behavior is perfectly acceptable. It may be a problem, however, if

the server cannot accept simultaneous accesses with the same data (for example if the

server doesn’t allow John Smith to log in simultaneously from two different

computers). In that case, you should create a different input file for the second Load

Generator and modify the Agenda to read from the second file.

Security

Security is important for most Web users, whether the access is recreational, personal,

or work related. Most Web applications work with some combination of user

authentication together with SSL protocol use to ensure application security. Both

these security features are handled automatically by WebLOAD. By default, test

sessions use the settings that were in effect during the original recording session.

Specific security settings may be reset through the WebLOAD IDE or Console GUI

dialog boxes.

Security methods and properties can be edited directly within a JavaScript Object in an

Agenda through the IntelliSense Editor, as described in Editing the JavaScript Code in an

Agenda (on page 14). This section provides a general introduction to the internal

implementation of the user authentication and SSL security features. See the WebLOAD

JavaScript Reference Guide, for a complete syntax specification of the security functions

introduced here.

 36 Chapter 2. Programming your JavaScript Agenda

Authentication

Users are authenticated through a system of usernames and passwords. Most servers

use either a basic user authentication protocol or the Windows NT Challenge Response

protocol. WebLOAD supports both protocols, as well as proxy servers that require user

authorization. WebLOAD automatically selects the authentication protocol appropriate

for the current test session. By default, WebLOAD navigates authorization protocols

using the user data saved during the original recording session, but these values may

be reset as needed.

For example, many Web applications involve logging in to a site. The original user

name and password typed in during a recording session are saved for use during later

test sessions.

Testers may reset user authentication values in one of the following ways:

 Through the Authentication tab.

 By manually editing the authentication property set.

These options are described here.

Using the Authentication Tab

Access the Authentication tab by selecting the Tools Default Options menu in the

WebLOAD IDE or Console. Select the Authentication tab in the dialog box that opens.

You can simply type the relevant values into the input text fields, as illustrated in the

following figure.

Note: Passwords will not appear in readable form.

WebLOAD Scripting Guide 37

Figure 13: Authentication Tab

Setting User Authentication Values Manually

If you are editing the JavaScript code in your Agenda, you may reset user

authentication values manually using the wlGlobals, wlLocals, or wlHTTP

property set.

There are three approaches to setting these properties, corresponding to the desired

authentication scope:

 Set the authentication properties that correspond to the Authentication tab at the

Agenda level using wlGlobals.

 Set the authentication properties for a specific HTTP request using wlHTTP.

 Set the authentication properties that correspond to the Authentication tab at the

Virtual Client level using wlLocals.

For example, set the user name and password using either of the following approaches:

wlGlobals.UserName = "Bill"

wlGlobals.PassWord = "TopSecret"

 38 Chapter 2. Programming your JavaScript Agenda

The authentication related properties include the following:

 NTUserName, NTPassWord

 PassWord

 Proxy, ProxyUserName, ProxyPassWord

 SSLClientCertificateFile, SSLClientCertificatePassWord

 UserName

See the WebLOAD JavaScript Reference Guide, for a complete syntax specification of the

properties used for user authentication.

Secure Data Transmission through SSL

Web and HTTP communications require a practical, reliable, universally recognized

protocol to ensure the secrecy, integrity, and authentication of transmitted information.

The Internet Engineering Task Force (IETF) has developed such a standard, commonly

referred to as SSL/TLS 1.0.

For a basic introduction to SSL, see:

http://www.cisco.com/en/US/netsol/ns340/ns394/ns50/ns140/networking_solutions_wh

ite_paper09186a0080136858.shtml

For more information on the new TLS Protocol Version 1.0, see:

http://www.ipa.go.jp/security/rfc/RFC2246-00EN.html

WebLOAD fully supports the SSL/TLS 1.0 standard, including backward compatibility

with earlier versions and standards. See Appendix A in the WebLOAD JavaScript

Reference Guide, for a complete list of the supported SSL protocols and ciphers.

By default, WebLOAD enables use of all cipher versions at the maximum

cryptographic strength possible, allowing participating clients and servers to

determine the most appropriate connection to other clients and servers through

negotiation at connect time. These setting may be changed or reset through dialog

boxes on the Console.

http://www.cisco.com/en/US/netsol/ns340/ns394/ns50/ns140/networking_solutions_white_paper09186a0080136858.shtml
http://www.cisco.com/en/US/netsol/ns340/ns394/ns50/ns140/networking_solutions_white_paper09186a0080136858.shtml
http://www.ipa.go.jp/security/rfc/RFC2246-00EN.html

WebLOAD Scripting Guide 39

For example, reset the SSL bit limit through the SSL tab of the Tools Default

Options dialog box on the WebLOAD Console, illustrated in the following figure:

Figure 14: Resetting SSL Bit Limit

By default, WebLOAD handles all SSL activities, setting the appropriate configuration

settings automatically. WebLOAD also provides both Cipher Command Suite

functions and a complete set of SSL wlGlobals properties that allow users to fine-

tune their security settings within the Agenda code, identifying, enabling, or disabling

specific protocols or cryptography levels, depending on testing preferences.

Note: Changes that are made within Agenda code override anything that has been set

through the Console.

These properties and functions work on two levels:

 Higher level functions used for browser emulation.

 Lower level functions for client- or server-specific cipher testing.

See the WebLOAD JavaScript Reference Guide for complete syntax specifications for the

wlGlobals SSL property set and the Cipher Command Suite.

Note: The SSL configuration for your test session is usually set through dialog boxes in

the Console. You may change the default session settings within your Agenda, using

either the wlGlobals properties or the Cipher Command Suite functions. While the

SSL property set is also defined for the wlHttp and wlLocals objects, RadView

strongly recommends using these properties with the wlGlobals object only.

Any changes to an Agenda’s SSL property configuration must be made in the

Agenda’s initialization functions. Configuration changes made in the InitAgenda()

function will affect all client threads spawned during that Agenda’s test session.

Configuration changes made in the InitClient() function will affect only

individual clients. Do not make changes to the SSL property configuration in an

Agenda’s main body. The results will be undefined for all subsequent transactions.

 40 Chapter 2. Programming your JavaScript Agenda

Browser Emulation

The browser emulation functions emphasize a high-level, categorical approach to

cryptographic strength definition. For example, you may wish to test access to foreign

browsers who use only earlier versions of SSL, or who are limited to export-only

cryptographic strength. This ‘smarter’ approach of selecting appropriate categories is

usually preferable to the low-level approach of enabling or disabling individual

protocols.

Browser emulation functionality includes the ability to:

 Enable, disable, and list SSL protocols.

 Define the cryptographic categories to be used in the current test session.

 Limit the strength and complexity of the cipher set in current use by limiting the

number of bits used by the cipher.

 Define the SSL version that WebLOAD should use for the current test session.

Server-Specific Cipher Testing

The server-specific cipher testing functions emphasize a low-level, bit-specific

approach to cryptographic strength definition. For example, you may wish to enable or

disable specific ciphers, to check the limits of certain client site abilities or server

configurations.

SSL Cipher Command Suite provides the ability to:

 Enable and disable a specific cipher by name.

 Enable and disable a specific cipher by ID number.

 Obtain a specific cipher’s name or ID number.

 Get information about a specific cipher, identified by name or ID number.

 Learn the number of ciphers enabled during the current test session.

The wlGlobals SSL property set provides the ability to:

 Support use of SSL client certificates by supplying the certificate filename and

password to the SSL server.

 Enable caching of SSL decoding keys received from an SSL (HTTPS) server.

Complete syntax specifications for the SSL Cipher Command Suite and the

wlGlobals SSL property set are available in the WebLOAD JavaScript Reference Guide.

WebLOAD Scripting Guide 41

Error Management

Agenda scripts that encounter an error during runtime do not simply fail and die. This

would not be helpful to testers who are trying to analyze when, where, and why an

error in their application occurs. WebLOAD IDE Agendas incorporate a set of error

management routines to provide a robust error logging and recovery mechanism

whenever possible.

Error Management Tools

Analyzing Possible Errors

Error management works on multiple levels that must be defined by the testers and

tailored to the application being tested. For example, when first designing a test

session, testers may wish to ask:

 What is considered an error for my application? How do I define an error? Are

there different types of errors for this application that should possibly be handled

in different ways?

 How serious a problem is this specific error, or a type of error? When is an error

fatal?

 Depending on the source of the error, how do I want to handle this? Do I want to

retry the command? Should I simply continue execution? Skip to the next

command? Skip to the next navigation block? Stop execution completely?

 How many errors of a specific type are needed to trigger an error condition? Is

even one error of this type considered intolerable and fatal to the application? Are

up to 10 errors considered reasonable and will not cause damage to the

application? Could too many warnings also be a reason to stop the test session?

 Does this application routinely experience a certain error rate that may safely be

ignored? Perhaps a rate of up to 5% errors is considered reasonable? Perhaps the

application takes a certain amount of time to get started and errors in the first 5

minutes of run time should be ignored?

The answers to these questions should be a part of your test session design. Once you

have categorized the various types of errors possible, you should also analyze how you

wish to handle these errors, should they occur.

Set the error configuration values through the Pass/Fail Definition and Error Handling

tabs of the Tools Default or Global Project Options dialog boxes.

 42 Chapter 2. Programming your JavaScript Agenda

Standard Message Functions

On the most basic level, you may simply insert message functions into your Agenda

and have them executed wherever anything unusual or problematic occurs. Insert a

message function into your Agenda through the WebLOAD IDE GUI.

Choose from four possible message levels:

 InfoMessage()— prints a simple informative message to the Log window. Has

no affect on Agenda execution.

 WarningMessage()— prints a warning message to the Log window. Has no

affect on Agenda execution.

 ErrorMessage()— prints an error message to the Log window. Causes the

current test round to abort, but the test session continues with the start of the next

round.

 SevereErrorMessage()— prints an error message to the Log window and

stops the current test session.

 DebugMessage()— prints a message to the IDE Log window. Has no affect on

Agenda execution.

Standard Error Constants

You may also manage errors by checking function return codes, both for built-in and

user-defined functions. WebLOAD IDE provides a set of constants that define the error

severity level, acting as a useful means for redirecting Agenda behavior. Use the

severity level to determine the execution path to be followed in case of error. Less

severe errors may be noted and ignored. More severe failures may cause the whole test

to be aborted. All failures are logged and displayed in the both the WebLOAD IDE and

Console Log Windows. Refer to Appendix A in the WebLOAD IDE User Guide for

more information on return codes and error levels.

WebLOAD and WebLOAD IDE include the following error levels:

 WLSuccess — the activity terminated successfully.

 WLMinorError — this specific activity failed, but the test session may continue as

usual. The Agenda displays a warning message in the Log window and continues

execution from the next statement.

 WLError — this specific activity failed and the current test round was aborted.

The Agenda displays an error message in the Log window and begins a new

round.

 WLSevereError — this specific activity failed and the test session must be

stopped completely. The Agenda displays an error message in the Log window

and the Load Generator on which the error occurred is stopped.

WebLOAD Scripting Guide 43

Note: These built-in message functions and error levels provide a single, standard set

of error management options. After an error occurs, testers may choose to continue

with the current round, stop the current round, or stop the whole test session. But not

every error falls into these three broad categories. Sometimes an error is serious

enough to invalidate the current activity, yet the current round may still be able to

continue execution. Very often the set of activities on a specific Web page is not

successful, but that does not have any affect on the activities recorded on subsequent

Web pages.

Variable Activity Blocks

WebLOAD IDE offers an additional level of error management, which can be manually

added to an Agenda. This is done by the try()/catch() function pair. Users may

add try()/catch() pairs around their own logical blocks of code, through the

IntelliSense Editor.

The try()/catch() pair of error handling functions allows users to catch errors, skip

a single set of corrupted activities, and still continue with the current round. Use these

functions to delimit a specific logical activity unit and define an alternate error-

handling routine to be executed in case an error occurs within that block of code. The

try()/catch() functions limit the scope of an error to individual logical component

branches of your Agenda tree.

Limited scope for an error has two advantages:

 Pinpointing the source of the error, enabling easier debugging and recovery.

 Isolating the error to a specific Agenda branch, in many cases allowing test

execution to continue with the rest of the Agenda Tree despite the error.

Navigation blocks and other logical activity blocks are useful for error management,

especially when running “hands-free” test sessions. For example, the user can define

the default testing behavior to be that if a non-fatal error is encountered during a test

session, WebLOAD IDE should throw the error, skip to the next navigation block, and

continue with the test session.

The Pass/Fail Definition tab of the Tools Default or Global Project Options dialog

box is used to define the default WebLOAD IDE behavior in case of error.

Note: At each testing level, WebLOAD IDE provides a choice of error handling

options. Depending on the context, you may choose to repeat the action, skip to the

next line, skip to the next navigation block, or stop execution completely.

 44 Chapter 2. Programming your JavaScript Agenda

The wlException Object

Agenda scripts that encounter an error during runtime do not simply fail and die. This

would not be helpful to testers who are trying to analyze when, where, and why an

error in their application occurs. WebLOAD Agendas incorporate a set of error

management routines to provide a robust error logging and recovery mechanism

whenever possible. The wlException object is part of the WebLOAD error

management protocol.

WebLOAD users have a variety of options for error recovery during a test session. The

built-in error flags provide the simplest set of options; an informative message, a

simple warning, stop the current round and skip to the beginning of the next round, or

stop the test session completely. Users may also use try()/catch() commands to

enclose logical blocks of code within a round. This provides the option of catching any

minor errors that occur within the enclosed block and continuing with the next logical

block of code within the current round, rather than skipping the rest of the round

completely.

Users may add their own try()/catch() pairs to an Agenda, delimiting their own

logical code blocks and defining their own alternate set of activities to be executed in

case an error occurs within that block. If an error is caught while the Agenda is in the

middle of executing the code within a protected logical code block (by try()),

WebLOAD will detour to a user-defined error function (the catch() block) and then

continue execution with the next navigation block in the Agenda.

wlException objects store information about errors that have occurred, including

informative message strings and error severity levels. Users writing error recovery

functions to handle the errors caught within a try()/catch() pair may utilize the

wlException object. Use the wlException methods to perhaps send error messages

to the Log Window or trigger a system error of the specified severity level.

Example

The following code fragment illustrates a typical error-handling routine:

try{

...

//do a lot of things

...

//error occurs here

...

}

WebLOAD Scripting Guide 45

catch(e){

myException = new wlException(e,“we have a problem”)

//things to do in case of error

if (myException.GetSeverity() == WLError) {

// Do one set of Error activities

myException.ReportLog()

throw myException

}

else {

// Do a different set of Severe Error activities

throw myException

}

}

Non-Standard Agenda Execution Sequence

Agenda Execution Sequence (on page 11) describes the sequence of activities during a

normal, standard test session. However, many test sessions do not simply follow a

normal execution sequence. Test sessions are designed to catch application errors, and

these errors often interrupt the test session. This section describes what happens within

your Agenda if it is interrupted in mid-session.

Minor Error Management—Continue the Test Session as Usual

In the event of a minor error, WebLOAD and WebLOAD IDE record the error in a log

and continues processing. This occurs when you call an InfoMessage() or

WarningMessage() function or use the WLMinorError constant.

For example, one of the most common runtime errors is the failure of an HTTP Get,

Post, or Head command. This can occur, for example, if the HTTP server is temporarily

unavailable. In most cases, an HTTP failure is a minor error and should not stop the

test, although it can affect the performance statistics. You may optionally include

additional error-handling functions in your Agenda.

Standard Error Management—Stopping a Single Round

In the event of a standard error, WebLOAD records the error in a log and stops the

current round. This may occur under the following circumstances:

 If you call an ErrorMessage() function or use the WLError constant.

 If the user issues a Stop or Pause command in the WebLOAD Console that

happens to catch a thread in mid-round.

 46 Chapter 2. Programming your JavaScript Agenda

 If a thread encounters a non-severe error such as a failed HTTP connection.

In these circumstances, WebLOAD does the following:

 Sends an error message to the Log window.

 Stops the main script in the current round.

 Runs the OnScriptAbort() function, if it exists in your Agenda, in the thread

where the error occurred, to free objects and resources.

 Continues with the next round of the thread, at the beginning of the main script.

Non-severe errors affect only the thread where the error occurred. They have no effect

on other threads of the Load Generator, and they do not run the OnError...

functions.

Severe Error Management—Stopping a Test Session

In the event of a severe runtime error, WebLOAD sends a severe error message to the

Log window and stops the whole test session. This may occur under the following

circumstances:

 If you call a SevereErrorMessage() function or use the WLSevereError

constant.

 If a thread encounters a severe error such as an overflow or an illegal operation, or

any other error that the user has specified should trigger a severe error condition.

When stopping an entire test session, WebLOAD uses the following execution

sequence.

 In the thread where the error occurred, WebLOAD runs the OnScriptAbort()

and OnErrorTerminateClient() functions. These functions are used for error

handling that is specific to individual threads, such as freeing local objects and

resources.

 In the other threads of the Load Generator, WebLOAD runs the

OnScriptAbort() and TerminateClient() functions.

 The separate threads terminate.

 WebLOAD runs the OnErrorTerminateAgenda() function instead of

TerminateAgenda(). This function is used to free global resources, or for other

types of error handling at the global level.

Like the other initialization and termination functions, the error-handling functions are

optional. Omit them from your Agenda if they are not needed.

WebLOAD Scripting Guide 47

In the event of a severe runtime error, WebLOAD IDE sends a severe error message to

the Log window and stops the whole test session. This may occur under the following

circumstances:

 If you call a SevereErrorMessage() function or use the WLSevereError

constant.

 If the Agenda encounters a severe error such as an overflow or an illegal operation,

or any other error that the user has specified should trigger a severe error

condition. A severe error is also triggered if WebLOAD IDE cannot find a specified

object on the Web page, for example if the object was deleted or the current Web

page does not match the expected Web page accessed during the recording

session.

When stopping an entire test session, WebLOAD IDE uses the following execution

sequence.

 First WebLOAD IDE runs the OnScriptAbort() function, used for error

handling such as freeing local objects and resources.

 Then WebLOAD IDE runs the OnErrorTerminateAgenda() function instead of

TerminateAgenda(). This function is used to free global resources, or for other

types of error handling at the global level.

Like the other initialization and termination functions, the error-handling functions are

optional. Omit them from your Agenda if they are not needed.

Defining a Standard or Severe Error

By default, WebLOAD and WebLOAD IDE only stop an Agenda if a severe error

occurs, such as an overflow or an illegal operation. However, users may redefine when

exactly WebLOAD should halt a test session through the WebLOAD IDE GUI through

the Pass/Fail Definition tab of the Tools Default / Current Options dialog box.

Options include:

 Failing on the first severe error occurrence.

 Specifying an absolute error threshold of failure if more than a specified number of

errors or warnings occur.

 Specifying a relative error threshold of failure if more than a specified percentage

of errors or warnings occur.

 Tracking numbers of errors only after a certain amount of time has elapsed from

the start of the test session. This slight delay allows the test session to establish and

stabilize an initial Web connection that may have no connection to the actual

application being tested, preventing premature (and meaningless) session failures.

 48 Chapter 2. Programming your JavaScript Agenda

Execution Sequence after Stop and Abort

Stop an Agenda by issuing a Stop command through the Console or WebLOAD IDE

GUI. Abort an Agenda during its debugging by issuing an Abort command through

the WebLOAD IDE. An Abort command cannot be issued through the Console. Stop

and Abort commands halt the Load Generator.

After you issue the Stop command in the Console or IDE, WebLOAD:

 Stops the main script in each thread.

 Runs the OnScriptAbort() function in any thread that you happen to stop in

mid-round. OnScriptAbort() does not run in a thread that you happen to stop

at the end of a round.

 Runs the TerminateClient() function in each thread.

 Stops the separate threads.

 Runs the TerminateAgenda() function of the Agenda.

Note: The Agenda doesn’t necessarily stop immediately when you issue the Stop

command in the Console. The Agenda checks for the command at the end of each

round and during certain operations that may take a long time, such as HTTP Get and

Post commands. For this reason, it is recommended that you do not program a very

long loop in an Agenda. Depending on the operations in the loop, the WebLOAD

Console may have no way to interrupt the loop.

After you issue the Abort command, WebLOAD IDE:

 Stops the main script in each thread.

 Runs the OnScriptAbort() function in any thread that you happen to stop in

mid-round. OnScriptAbort() does not run in a thread that you happen to stop

at the end of a round.

See the WebLOAD IDE User Guide for more information on using these commands.

Note: If you stop or abort WebLOAD IDE during execution, a message dialog appears,

telling the user that WebLOAD IDE is collecting data in preparation for stopping the

test session. While the window pops up immediately, it may stay open for a while if

there is extensive clean-up work necessary before the current session may be shut

down.

The Agenda doesn’t necessarily stop immediately when you issue a Stop or Abort

command. The Agenda only checks for the command at the end of each round and

during certain operations that may take a long time, such as certain HTTP transactions.

For this reason, it is recommended that you do not program a very long loop in an

Agenda. Depending on the operations in the loop, WebLOAD IDE may have no way to

interrupt the loop.

WebLOAD Scripting Guide 49

Execution Sequence after Stopping a Virtual Client

If an error condition occurs, you can stop a Virtual Client using StopClient() in

your Agenda. This function stops the execution of the Virtual Client running the script

from which StopClient() was called. After StopClient() is called, this Virtual

Client cannot be resumed. This function does not affect any other Virtual Client.

When using StopClient(), you can specify the error level to display and a reason

why the Virtual Client was terminated.

After you issue the StopClient() command, WebLOAD does the following on the

current (calling) thread only:

 Stops the main script in the current thread.

 Runs the OnScriptAbort() function in case the current thread is stopped in

mid-round. OnScriptAbort() does not run in a thread that you happen to stop

at the end of a round.

 Runs the TerminateClient() function in the current thread.

See the WebLOAD IDE User Guide for more information on using these commands.

See the WebLOAD JavaScript Reference Guide for more information on using the

StopClient() function.

Rules of Scope for Local and Global Variables

To maximize testing options, WebLOAD offers the ability to run multiple Agendas, in

multiple threads, often across multiple Load Generators and machines. This may

involve setting variables or flags or accessing data across multiple threads, Agendas,

Load Generators, or machines. Such multiple accesses must be handled carefully.

This section describes the scope rules for all variables, both built-in configuration

properties and user-defined shared variables, explaining how Agendas can juggle

multiple configuration settings and share data either locally or globally. This

information supplements the usual JavaScript scope rules, which apply within a single

thread.

To understand the scope rules for user-defined variables, we need to distinguish

between the following testing contexts:

 Limited Context (on page 50), limited to a specific browser action within an Agenda

 Local Context (on page 52), local to a single thread of a single Agenda

 50 Chapter 2. Programming your JavaScript Agenda

 Global Context (on page 53), which may be global to the following extent:

 Shared by all threads of a single Agenda running on a single Load Generator.

 Shared by all threads of multiple Agendas, including a mix of Agendas,

running on a single Load Generator.

 Global to all threads of a single Agenda, running on multiple Load Generators,

potentially on multiple machines, system-wide.

 Global to all threads of multiple Agendas, including a mix of Agendas,

running on multiple Load Generators, potentially on multiple machines,

system-wide.

Each of these testing contexts is described in the following sections.

Note: The HTTP configuration properties documented in this section may be edited

through the IntelliSense Editor, as described in Editing the JavaScript Code in an Agenda

(on page 15). However, remember that the majority of application tests rarely require

anything more than perhaps a few user-defined global variables or configuration

settings, which can be created and set through the WebLOAD IDE or Console dialog

boxes. Manual intervention in individual configuration values within the JavaScript

code of an Agenda is not usually recommended.

Limited Context

Limited variables are only visible or accessible within the bounds of a specific function

or code block. Users may also define configuration properties that are only applicable

to a specific browser action, managed through the wlHttp object.

For example, to limit a variable LimitedX to a specific function only, use the

IntelliSense Editor to create a function within a JavaScript Object and assign a value to

a LimitedX variable within that function. The LimitedX variable will only be

meaningful within the context of the function in which it appears.

This is illustrated in the following code fragment:

//Context limited to specific function only

function MyFavoriteFunction() {

var limitedX = 20 //Scope of limitedX is the

//current function only

}

//Main Agenda Body

y = limitedX + 2 //Error, limitedX is undefined here

WebLOAD Scripting Guide 51

Working with the wlHttp Object

Configuration properties that are limited to a single transaction are managed through

the wlHttp object, described in this section.

In WebLOAD Agendas, HTTP transactions are performed using wlHttp objects. You

do not need to declare or create a wlHttp object before using it in your Agenda.

WebLOAD automatically creates a single wlHttp object for each thread of an Agenda.

wlHttp objects include a complete set of HTTP configuration properties. HTTP

configuration properties are also included with the more general wlGlobals and

wlLocals objects. However, the configuration values assigned in a wlHttp object are

the definitive configuration values for the transaction immediately following the

property value assignment, overriding both the local defaults assigned in wlLocals

and the global defaults assigned in wlGlobals. WebLOAD uses the wlLocals or

wlGlobals defaults only if you do not assign values to the corresponding properties

in the wlHttp object.

For example, one of the properties of wlHttp is the FormData, which stores

information that the user entered during the session. In the main body of the following

Agenda, the user defines FormData value and then completes the browser activity.

For the specific command that immediately follows the wlHttp property assignment,

the wlHttp FormData value will override any default local or global FormData

value.

//Main Agenda Body

wlHttp.FormData["login"] = "demo"

wlHttp.FormData["password"] = "demo"

Erasing and Preserving the HTTP Configuration

By default, wlHttp properties are cleared automatically after every HTTP transaction.

This lets you assign different values for each connection (for example, a different URL,

user name, or form data), without having to explicitly delete your previous connection

data. In general it is better to assign special wlHttp properties at the specific point

where they are needed, in the main script and not in InitClient(), so they will be

reassigned as needed in every round.

The decision of whether or not to erase wlHttp values is based on the value of the

wlHttp.Erase property, which by default is set to true. You may optionally set the

Erase property value to false. If Erase is set to false, the wlHttp property data will

not be deleted automatically. This may be convenient if you know you will always

need the same information, and do not wish to reassign the same values over and over

again for each transaction. However, it could also leave you with unexpected,

unintended wlHttp property values. See the WebLOAD JavaScript Reference Guide, for a

complete syntax specification.

 52 Chapter 2. Programming your JavaScript Agenda

A better way to preserve the HTTP configuration is to define it using the wlGlobals

and wlLocals objects, rather than wlHttp. The properties of wlGlobals and

wlLocals are not erased unless you change them yourself. However, the

recommended way to set configuration values is through the Default or Current

Project Options dialog boxes under the Tools menu in the WebLOAD IDE or Console

desktop.

Local Context

The local Agenda thread context is local to each individual thread of an Agenda. Local

objects may not be accessed in the global context. Different threads may not access or

alter the value of the same local variable, since it is local to a single thread. Different

threads may only share variable values through global variables.

Local configuration properties are managed through the wlLocals object. Local

values for both user-defined variables and configuration properties are initialized in

the InitClient() function of an Agenda. Read or assign local values using

JavaScript Object nodes added to the main script, as described in Editing the JavaScript

Code in an Agenda (on page 15).

Working with the wlLocals Object

Configuration properties that are local to a single Agenda thread are managed through

the wlLocals object, described in this section. You do not need to declare or create a

wlLocals object before using it in your Agenda. WebLOAD automatically creates a

single wlLocals object for each thread of an Agenda.

wlLocals is a WebLOAD-supplied local object, which sets the local default

configuration for HTTP commands (overriding any global defaults set in wlGlobals,

but overridden in turn by any values set in wlHttp). For example, one of the

properties of wlLocals is the URL to which the object connects. If you set a different

value of wlLocals.Url in each thread of an Agenda, then each thread can connect to a

different URL, as the following Agenda illustrates:

function InitClient() {//Local context

//Set the URL for each thread

if (ClientNum == 0)

wlLocals.Url = "http://www.ABCDEF.com"

else

wlLocals.Url = "http://www.GHIJKL.com"

}

//Thread 0 connects to www.ABCDEF.com

//All other threads connect to www.GHIJKL.com

wlHttp.Get()

WebLOAD Scripting Guide 53

Working with User-Defined Variables (Local Context)

Within the local context, you can define any variables that you wish. The variables are

local to a single thread. By default, the scope of a local variable is the entire local thread

context. For example, you can define a variable localX in the InitClient()

function and use it in the main script to store different values depending on the

Agenda thread or round number.

The corresponding JavaScript code may look similar to this:

//Local context

function InitClient() {

//Assign a different value to the local copy

//of localX in thread 0 only

if (ClientNum == 0)

{localX = 20}

else

{localX = 10}

}

//Main Agenda Body

//Access the local values of localX & y

y = localX + 2 //y = 22 in thread 0

//y = 12 in all other threads

You can also limit the scope to a single function by defining the variable using a var

statement, as described in Limited Context (on page 50).

Global Context

Global variables are universally accessible and shared by all Agenda components in all

threads of an Agenda, within the initialization and termination functions as well as the

main script body. Global variables and configuration properties are defined within the

InitAgenda() initialization function of an Agenda. Once a global variable has been

declared you may read and assign values to that variable at any subsequent point in

your Agenda.

For example, it may be convenient to define as a global variable a message text or a

URL string that you expect to use and reuse frequently within your Agenda. Or you

may need a global counter that should be incremented each time any Agenda thread

reaches a certain point in the test session. You could increment the variable value using

JavaScript Object nodes added to the main script, as described in Editing the JavaScript

Code in an Agenda (on page 15). Add an InfoMessage node to the Agenda Tree to check

on how the global variable value changes over the course of a test session, as illustrated

in the following figure:

 54 Chapter 2. Programming your JavaScript Agenda

Figure 15: InfoMessage Node Addition to Agenda Tree

In the preceding figure, the Agenda contains nodes for a:

 JavaScript Object

 Short sleep period

 Message to the Log Window

The JavaScript View pane displays the corresponding JavaScript code, beginning with

the navigation to the new Web page and a short sleep period. The code that

corresponds to the InfoMessage node in the Agenda Tree is circled. This node is used

to increment and then print the value of a user-defined global variable.

Working with the wlGlobals Object

Configuration properties that are global to all threads of a single Agenda are managed

through the wlGlobals object, described in this section. The global Agenda context

includes global variables and settings that are shared by all threads of a single Agenda,

running on a single Load Generator.

Globally shared values are managed through the following objects:

 wlGlobals

 wlGeneratorGlobal

 wlSystemGlobal

This section describes the wlGlobals object properties used for global HTTP

configuration settings, and reviews HTTP command search-order precedence.

wlGlobals object properties used for user-defined global variables are described in

the WebLOAD IDE User Guide.

WebLOAD Scripting Guide 55

WebLOAD provides a global object called wlGlobals. The wlGlobals object stores

the default configuration properties for HTTP connections, such as:

 The URL

 user name and password

 proxy server

 HTML parsing behavior

WebLOAD creates exactly one wlGlobals object for each Agenda. You can access

wlGlobals properties and methods anywhere in an Agenda, in both the global and

local contexts.

Initialize and set the properties of wlGlobals in the InitAgenda() function of your

Agenda. The values are then set globally and shared by each Agenda’s set of threads.

For example, set a property such as wlGlobals.DisableSleep in InitAgenda()

for it to automatically have the same value for all rounds. The value may be overridden

by resetting the wlHttp.DisableSleep value, as illustrated in the following

Agenda:

Note: Remember that HTTP configuration settings and sleep configuration preferences

are usually set directly through a dialog box in the WebLOAD IDE or Console desktop,

as described in the WebLOAD IDE User Guide and the WebLOAD Console User Guide.

The JavaScript coding example here is only intended to illustrate the balance between

global defaults and local overrides.

// Initialization function—wlGlobals context

function InitAgenda() {

// By default, do not include ‘sleep pauses’ in this Agenda

wlGlobals.DisableSleep = true

}

// Main Script Body—wlHttp context

if (RoundNum<20)

wlHttp.DisableSleep = false

...

WebLOAD executes the InitAgenda() method when test execution first starts, and

decides by default to disable all sleep pauses over the course of Agenda execution:

wlGlobals.DisableSleep = true

For rounds 0-19, the main script overrides the global default and allows pausing

during Agenda execution:

wlHttp.DisableSleep = false

After the first 20 rounds of execution are completed, there is no local value assigned, so

the Agenda will again, by default, no longer allow sleep pauses.

 56 Chapter 2. Programming your JavaScript Agenda

wlGlobals object commands may be added directly to the code in a JavaScript Object

within an Agenda through the IntelliSense Editor, as described in Editing the JavaScript

Code in an Agenda (on page 15). Users who are programming their own JavaScript

Object code within their Agenda may take advantage of the WebLOAD IDE GUI to

simplify their programming efforts. Manually typing out the code to create a

wlGlobals object method or property, risks making a mistake, and adding invalid

code to the Agenda file. Instead, users may bring up a list of available objects for the

wlGlobals object, by right-clicking in the JavaScript Editing Pane, selecting

Insert General from the pop-up menu, and selecting one of the available items.

Figure 16: wlGlobals Insertion using General Menu

Select wlGlobals from the list and WebLOAD IDE automatically inserts the correct

code for a wlGlobals object into the Agenda code currently being edited. The

IntelliSense Editor then helps programmers write the JavaScript code for wlGlobals

properties and methods by bringing up a list of appropriate choices together with pop-

up boxes that describe each item on the list, as illustrated in the following figure:

WebLOAD Scripting Guide 57

Figure 17: wlGlobals Selection from List

Working with the IntelliSense Editor is described in Editing the JavaScript Code in an

Agenda (on page 15). See the description of wlGlobals objects in the WebLOAD

JavaScript Reference Guide for a complete syntax specification.

Variables Defined through the wlGeneratorGlobal Object with

WLCurrentAgenda Flag

For users who are comfortable working inside the JavaScript code of their Agendas,

WebLOAD provides a global object called wlGeneratorGlobal. The

wlGeneratorGlobal object, when used with the WLCurrentAgenda scope flag,

stores variable values that you wish to share between all threads of a single Agenda,

running on a single Load Generator. WebLOAD creates exactly one

wlGeneratorGlobal object for each Agenda. You can access wlGeneratorGlobal

properties and methods anywhere in the Agenda, in both the global and local contexts.

wlGeneratorGlobal includes the following methods:

 Set(“SharedVarName”, value, WLCurrentAgenda)— assigns a number,

Boolean, or string value to the specified shared variable. If the variable does not

exist, WebLOAD will create a new variable.

 Get(“SharedVarName”, WLCurrentAgenda)— returns the current value for

the specified shared variable. The calling Agenda thread waits for the requested

value to be returned before continuing execution.

 Add(“SharedIntVarName”, number, WLCurrentAgenda)— increments the

specified shared number variable by the specified amount. If the variable has not

 58 Chapter 2. Programming your JavaScript Agenda

been declared or Set previously, the Add function both declares and sets the

variable to the specified value.

Variables Defined through the wlGeneratorGlobal Object with

WLAllAgendas Flag

The shared multiple Agenda context includes global variables and settings that are

shared by all threads of a multiple Agendas. The wlGeneratorGlobal object, when

used with the WLAllAgendas scope flag, stores variable values that you wish to share

between all threads of one or more Agendas, including a mix of Agendas, part of one

or more spawned processes, running on a single Load Generator. You can access

wlGeneratorGlobal properties and methods anywhere in the Agenda, in both the

global and local contexts.

wlGeneratorGlobal includes the methods with the WLAllAgendas scope flag

instead of the WLCurrentAgenda flag:

 Set(“SharedVarName”, value, WLAllAgendas)

 Get(“SharedVarName”, WLAllAgendas)

 Add(“SharedIntVarName”, number, WLAllAgendas)

wlGeneratorGlobal Example

wlGeneratorGlobal properties and methods can be accessed from anywhere within

an Agenda. They do not have to be set or initialized in any special place, and are not

limited in where they may appear. Simply use the variables as necessary within your

Agenda code.

For example:

function InitAgenda() {

B = new Number

B = 0

wlGeneratorGlobal.Set("B", 1, WLAllAgendas)

wlGeneratorGlobal.Set("C", 4, WLCurrentAgenda)

}

function InitClient() {

wlGeneratorGlobal.Add("B", 2, WLAllAgendas)

wlGeneratorGlobal.Add("C", 5, WLCurrentAgenda)

InfoMessage("C—agenda1 = " +

wlGeneratorGlobal.Get("C", WLCurrentAgenda))

}

// Main Agenda Body

B = wlGeneratorGlobal.Get("B", WLAllAgendas)

WebLOAD Scripting Guide 59

if (RoundNum==1){

InfoMessage("B—agenda1 = " + B)

}

Sleep(1000)

wlGeneratorGlobal.Add("B", 10 , WLAllAgendas)

InfoMessage("B2—agenda2 = " +

wlGeneratorGlobal.Get("B", WLAllAgendas))

wlGeneratorGlobal.Add("C", 25, WLCurrentAgenda)

InfoMessage("C—agenda1 = " +

wlGeneratorGlobal.Get("C", WLCurrentAgenda))

...

Note: In the preceding example, the globally shared value of “B” is assigned to a local

variable B. If you plan to use many InfoMessage commands, it is more efficient to

assign the value to a local variable, rather than using a new

wlGeneratorGlobal.Get call each time.

See Editing the JavaScript Code in an Agenda (on page 15), for an introduction to editing

your JavaScript code with the IntelliSense Editor. See the description of the

wlGeneratorGlobal object in the WebLOAD JavaScript Reference Guide for a complete

syntax specification.

Variables Defined through the wlSystemGlobal Object with
WLCurrentAgenda Flag

The global Agenda context includes global variables and settings that are shared by all

threads of a single Agenda, system-wide. The wlSystemGlobal object, when used

with the WLCurrentAgenda scope flag, stores variable values that you wish to share

between all threads of a single Agenda, part of one or more spawned processes,

potentially running on multiple Load Generators, and multiple machines. You can

access wlSystemGlobal properties and methods anywhere in the Agenda, in both

the global and local contexts.

wlSystemGlobal includes essentially the same methods described in Variables Defined

through the wlGeneratorGlobal Object with WLAllAgendas Flag (on page 57), applied here

to global variables:

 Set(“GlobalVarName”, value, WLCurrentAgenda)—assigns a number,

Boolean, or string value to the specified global Agenda variable. If the variable

does not exist, WebLOAD will create a new variable.

 Get(“GlobalVarName”, WLCurrentAgenda)—returns the current value for

the specified global variable. The calling Agenda thread waits for the requested

value to be returned before continuing execution.

 Add(“GlobalIntVarName”, number, WLCurrentAgenda)—increments the

specified global number variable by the specified amount. If the variable has not

 60 Chapter 2. Programming your JavaScript Agenda

been declared or Set previously, the Add function declares and sets the variable to

the specified value.

Variables Defined through the wlSystemGlobal Object with

WLAllAgendas Flag

The global multiple Agenda context provides full, system wide global variables, shared

by all elements of a test session. The wlSystemGlobal object, when used with the

WLAllAgendas flag, stores variable values that you wish to share between all threads

of all Agendas, part of one or more spawned processes, on all Load Generators and

machines, system-wide. You can access wlSystemGlobal properties and methods

anywhere in the Agenda, in both the global and local contexts.

wlSystemGlobal includes essentially the same methods described in Variables Defined

through the wlSystemGlobal Object with WLCurrentAgenda Flag (on page 59), with the

WLAllAgendas scope flag in stead of the WLCurrentAgenda flag:

 Set(“GlobalVarName”, value, WLAllAgendas)

 Get(“GlobalVarName”, WLAllAgendas)

 Add(“GlobalIntVarName”, number, WLAllAgendas)

wlSystemGlobal Example

wlSystemGlobal properties and methods can be accessed from anywhere within an

Agenda. They do not have to be set or initialized in any special place, and are not

limited in where they may appear. Simply use the variables as necessary within your

Agenda code.

For example:

function InitAgenda() {

<snip>

}

function InitClient() {

wlSystemGlobal.Set("E", -2, WLCurrentAgenda)

wlSystemGlobal.Set("D", 0, WLAllAgendas)

wlSystemGlobal.Set("S","http://www.yahoo.com",WLAllAgendas)

}

// Main Agenda Body

wlSystemGlobal.Add("D", 100, WLAllAgendas)

if (RoundNum==1){

InfoMessage("D—agenda4 = " +

wlSystemGlobal.Get("D", WLAllAgendas))

wlSystemGlobal.Add("E", 0.5, WLCurrentAgenda)

WebLOAD Scripting Guide 61

if (RoundNum==1){

InfoMessage("E—agenda3 = " +

wlSystemGlobal.Get("E", WLCurrentAgenda))

}

Sleep(1000)

See Editing the JavaScript Code in an Agenda (on page 15), for an introduction to editing

your JavaScript code with the IntelliSense Editor. See the description of

wlSystemGlobal objects in the WebLOAD JavaScript Reference Guide for a complete

syntax specification.

Example: Using a Combination of Global Variables

The following sample Agenda combines the different global variable options

introduced in the previous sections:

function InitAgenda() {

wlGeneratorGlobal.Set("C", 4, WLCurrentAgenda)

wlGeneratorGlobal.Set("B", 1, WLAllAgendas)

<snip>

}

function InitClient() {

wlGeneratorGlobal.Add("C", 5, WLCurrentAgenda)

InfoMessage("C - agenda1 = " +

wlGeneratorGlobal.Get("C", WLCurrentAgenda))

wlGeneratorGlobal.Add("B", -2, WLAllAgendas)

wlSystemGlobal.Set("E", +1, WLCurrentAgenda)

wlSystemGlobal.Set("D", 0, WLAllAgendas)

wlSystemGlobal.Set("S","http://www.yahoo.com",WLAllAgendas)

}

// Main Agenda Body

B = wlGeneratorGlobal.Get("B", WLAllAgendas)

wlSystemGlobal.Add("E", -1, WLCurrentAgenda)

wlSystemGlobal.Add("D", 100, WLAllAgendas)

if (RoundNum==1){

InfoMessage("B - agenda1 = " + B)

InfoMessage("E - agenda1 = " +

wlSystemGlobal.Get("E", WLCurrentAgenda))

 InfoMessage("D - agenda1 = " +

 wlSystemGlobal.Get("D", WLAllAgendas))

}

wlHttp.Get(wlSystemGlobal.Get("S", WLAllAgendas))

Sleep(1000)

 62 Chapter 2. Programming your JavaScript Agenda

Search Order Precedence

Before WebLOAD begins a browser action, it searches for configuration parameters in

the following order of precedence:

1. wlHttp properties (configuration property values limited to a specific browser

object)

2. wlLocals properties (configuration property values that are local to a specific

Agenda thread)

3. wlGlobals properties (configuration property values that are global defaults, set

at Agenda initialization)

For example:

1. WebLOAD decides whether or not it will use recorded sleep times based on the

value of wlHttp.DisableSleep.

2. If wlHttp.DisableSleep is not set, WebLOAD then searches for a value in the

local default wlLocals.DisableSleep.

3. Finally, if both wlHttp.DisableSleep and wlLocals.DisableSleep are both

not set, WebLOAD will use the global default value found in

wlGlobals.DisableSleep, set at Agenda initialization.

The same order of precedence applies to all the wlGlobals, wlLocals, and wlHttp

properties. You can set global and local defaults for the UserName, Url, or other

configuration properties. When WebLOAD executes a transaction, it uses any

configuration property values that you have specified for that specific connection. If

you have not assigned a value for the connection, WebLOAD searches for the local and

global defaults, in that order.

Note: The recommended way to set configuration values is through the Default or

Current Project Options dialog boxes under the Tools menu in the WebLOAD IDE or

Console desktop. Explicitly setting these values for a specific browser action, which is

possible only if you set these properties within your Agenda code, does give you a

much more focused and sophisticated power, but it is also more risky, triggering

unexpected side effects or complications. Configuration property settings within an

Agenda will always override the configuration property values set globally through the

WebLOAD GUI. Keep these points in mind when deciding how to set your system

configuration to get the most out of your Agenda test session.

Global Sharing Considerations

A WebLOAD test session measures an application’s performance. The testing tool,

your Agenda, must consume minimal system resources to have as small an impact as

possible on the performance of the application being tested. To minimize system

WebLOAD Scripting Guide 63

overhead when running your test Agenda, WebLOAD recommends using the minimal

level of global sharing required to run your test correctly.

Variables that are accessible within a single Agenda only have the smallest impact on

system performance, as noted in wlGeneratorGlobal Example (on page 58). For maximum

efficiency and simplicity, WebLOAD strongly recommends creating and managing

user-defined variables through the WebLOAD IDE GUI, as described in the WebLOAD

IDE User Guide.

Values shared between multiple Agendas, but within a single Load Generator, are the

next most efficient choice. Global values shared system wide should only be included

in your Agenda if it is truly necessary to check values or synchronize data shared

across multiple Load Generators or machines.

To optimize performance times during a test, multiple access requests from multiple

sources are accommodated sequentially. Agenda execution is not held for the Set() or

Add() methods, which are queued and processed sequentially. Only the Get()

method actually holds an Agenda while waiting for the requested value to be returned.

Over the course of a typical test session, multiple Agenda threads may all be accessing,

and potentially changing, the values of the same global variables. For example, two

threads may each get GlobalVarX, currently set to 10. The two threads may then wish

to increment GlobalVarX by 1, setting it to a new value of 11. These two Get() and

two Set() commands are processed sequentially, independent of each other. Since

each Agenda got an initial value of 10, each Agenda will independently set the value

to 11. The final value will be set to 11, even though the variable was actually

incremented twice, and should now equal 12. To avoid this potential inconsistency,

WebLOAD recommends using the Add() command, which gets, changes, and resets a

global value in a single action, ensuring /that each thread always accesses the most

current value for a global variable and avoiding potential conflicts between threads.

Identification Variables and Functions

For performance statistics to be meaningful, testers must be able to identify the exact

point being measured. WebLOAD therefore provides the following identification

variables and functions:

 Two variables, ClientNum and RoundNum, identify the client and round number

of the current Agenda instance.

 The GeneratorName() function identifies the current Load Generator.

 The GetOperatingSystem() function identifies the operating system of the

current Load Generator.

 The VCUniqueID() function identifies the current Virtual Client instance.

 64 Chapter 2. Programming your JavaScript Agenda

An example is provided at the end of this section to illustrate common use of these

variables and functions. Use these variables and function to support the WebLOAD

measurement features and obtain meaningful performance statistics.

These identification variables and functions are usually accessed and inserted into

Agenda files directly through the WebLOAD IDE GUI.

To open the Variables Window:

1. Start debugging. Click Run or Step Into .

2. In the main window, click View Debug Windows Variables,

-Or-

Click the Variables Window toolbar button.

Figure 18: Variables Window

The window includes two tabs:

 Auto tab: Displays variables used in the current statement and in the previous

statement. It also displays return values when you step over or out of a function.

 This tab: Displays the object pointed to by this.

Each tab contains a grid with fields for the variable name and value. The debugger

automatically fills in these fields. You cannot add variables or expressions to the

Variables window (you must use the Watch window), but you can expand or collapse

the variables shown. You can expand an array, object, or structure variable in the

Variables window if it has a plus sign (+) box in the Name field. If an array, object, or

structure variable has a minus sign (-) box in the Name field, the variable is already

fully expanded.

In addition to the tabs, the Variables window has a Context box that displays the

current scope of the variables displayed. To view variables in a different scope, select

the scope from the drop-down list box.

WebLOAD Scripting Guide 65

Viewing the Value of a Variable

You can view the value of a variable in the Variables window.

To view a variable in the Variables window:

1. Start debugging. Click Run or Step Into .

2. In the main window, click View Debug Windows Variables,

-Or-

Click the Variables Window toolbar button.

3. Click the Auto or This tab, according to the type of variables you want to see.

ClientNum

This is the serial number of the client in the WebLOAD test configuration. ClientNum

is a read-only local variable. Each client in a Load Generator has a unique ClientNum.

However, two clients in two different Load Generators may have the same

ClientNum.

Note: ClientNum is not unique system wide. Use VCUniqueID() (on page 68), to

obtain an ID number which is unique system-wide.

Add RoundNum directly to the code in any JavaScript Object in your Agenda. Work

through the IntelliSense Editor, described in Using the IntelliSense JavaScript Editor (on

page 16).

For example, if there are N clients in a Load Generator, the clients are numbered 0,

1, 2, ..., N-1. You can access ClientNum anywhere in the local context of the

Agenda (InitClient(), main script, TerminateClient(), etc.). ClientNum does

not exist in the global context (InitAgenda(), TerminateAgenda(), etc.).

If you mix Agendas within a single Load Generator, instances of two or more Agendas

may run simultaneously on each client. Instances on the same client have the same

ClientNum value.

ClientNum reports only the main client number. It does not report any extra threads

spawned by a client to download nested images and frames. See WebLOAD Actions,

Objects, and Functions in the WebLoad JavaScript Reference Guide for more information

about spawning threads.

Note: Earlier versions of WebLOAD referred to this value as ClientNum. The variable

name ClientNum will still be recognized for backward compatibility.

 66 Chapter 2. Programming your JavaScript Agenda

RoundNum

The number of times that WebLOAD has executed the main script of a client during

the WebLOAD test, including the current execution. RoundNum is a read-only local

variable, reporting the number of rounds for the specific WebLOAD client, no matter

how many other clients may be running the same Agenda.

RoundNum does not exist in the global context of an Agenda (InitAgenda(), etc.). In

the local context:

 In InitClient(), RoundNum = 0.

 In the main script, RoundNum = 1, 2, 3,

 In TerminateClient(), OnScriptAbort(), or

OnErrorTerminateClient(), RoundNum keeps its value from the final round.

The WebLOAD clients do not necessarily remain in synchronization. The RoundNum

may differ for different clients running the same Agenda.

If a thread stops and restarts for any reason, the RoundNum continues from its value

before the interruption. This can occur, for example, after you issue a Pause command

from the WebLOAD Console.

If you mix Agendas in a single Load Generator, WebLOAD maintains an independent

round counter for each Agenda. For example, if agenda1 has executed twice and

agenda2 has executed three times on a particular thread, the RoundNum of agenda1

is 2 and the RoundNum of agenda2 is 3.

Add RoundNum directly to the code in an Agenda through the IntelliSense Editor,

described in Editing the JavaScript Code in an Agenda (on page 15). Select a function by

right-clicking the JavaScript Editing Pane, and selecting Insert General from the

pop-up menu. WebLOAD IDE automatically inserts the correct code for the selected

function into the Agenda file. The user may then edit parameter values without any

worries about mistakes in the function syntax.

WebLOAD Scripting Guide 67

Figure 19: Adding RoundNum using the Copy/Include Files Menu

Example: identifying a client and round

For example, suppose your Agenda submits data to a server on an HTML form. You

want to label one of the form fields so you can tell which WebLOAD client submitted

the data, and in which round of the main script.

You can do this using a combination of the ClientNum and RoundNum variables.

Together, these variables uniquely identify the WebLOAD client and round. For

example, you can submit a string such as the following in a form field:

"C" + ClientNum.toString() + "R" + RoundNum.toString()

GeneratorName()

This returns a unique identification string for the current Load Generator.

GeneratorName() provides a unique identification for the current Load Generator

instance, even with multiple spawned processes running simultaneously. The

identification string is composed of a combination of the current Load Generator name,

computer name, and other internal markers.

 68 Chapter 2. Programming your JavaScript Agenda

GetOperatingSystem()

This returns a string that identifies the operating system running on the current Load

Generator. If an operating system is available in more than one version, returns the

name of the operating system followed by an identifying version number.

For example:

 If the Load Generator is working with a Windows platform, possible return values

include:

 Windows 95

 Windows 98

 Windows NT/2000

 Windows XP

 Windows OtherVersionNumber

 If the Load Generator is working with a Solaris platform, this function would

return the string ‘Solaris’ followed by the version name and release number,

such as SunOS2.

 If the Load Generator is working with a Linux platform, this function would return

the string ‘Linux’ followed by the version name and release number, such as

RedHat1.

VCUniqueID()

This returns a unique identification string for the current Virtual Client instance.

VCUniqueID() provides an identification for the current Virtual Client instance

which is unique system-wide, across multiple Load Generators, even with multiple

spawned processes running simultaneously. Compare this to ClientNum (on page 65),

which provides an identification number that is only unique within a single Load

Generator. The identification string is composed of a combination of the current thread

number, round number, and other internal markers.

WebLOAD Scripting Guide 69

Chapter 3

Advanced JavaScript Agenda Features

Previous chapters discussed the basic set of Agenda tools used to test typical Internet

applications. However, to evaluate and test your Internet application most effectively,

it is not enough to measure the total transaction turn-around time or throughput of the

website. A website is often only the front-end for applications that reside behind the

scenes, for back-end components that do the actual work for an application. Testing the

components that stand behind your Internet application is essential for comprehensive

Internet application testing. A detailed breakdown and analysis of the results of each

user activity helps pinpoint the source of any potential bottlenecks or other problems,

and expedites the work required for any corrections or improvements.

WebLOAD fully supports component based testing. WebLOAD IDE Agendas do not

simply measure the time required for transactions to a website to be completed.

WebLOAD JavaScript Agenda objects can also directly access the back-end

applications that compose your Internet application.

WebLOAD provides a single, uniform environment for all your testing needs.

WebLOAD JavaScript is the single scripting language that is able to work seamlessly

with COM, Java, and XML DOM, accessing the applications that use these technologies

through a variety of protocols, or your own proprietary protocol, in addition to

standard Web-site testing, adding power to and increasing the universal applicability

of your testing Agendas.

This chapter introduces various component-based testing features.

Syntax specifications for the WebLOAD objects that appear in the examples in this

chapter are provided in the WebLOAD JavaScript Reference Guide.

Working with the XML DOM

XML is a meta-language developed by W3C to organize and transfer data in a generic,

universally recognized manner. XML relies on a simple, logical structure that is both

easy to learn and works quickly and reliably, focusing on transferring hard data only,

with no formatting or presentation information. XML acts as a gateway between

autonomous, heterogeneous, component-based systems. This allows users to connect

 70 Chapter 3. Advanced JavaScript Agenda Features

or link to any platform. XML provides an elegant solution for Web masters who wish

to reach a wide range of clients, working on any number of diverse systems.

WebLOAD provides full support for work with the XML Document Object Model.

Using XML DOM objects, WebLOAD Agendas are able to both access XML site

information, and generate new XML data to send back to the server for processing,

taking advantage of all the additional benefits that XML provides.

WebLOAD supports:

 Working with existing XML Data Islands. Data Islands are XML documents

embedded within HTML documents. WebLOAD IDE, like the IE Browser,

produces an XML DOM object for each Data Island.

 Creating new XML DOM objects via the XML Object Constructor. WebLOAD

supports XML Native Browsing through use of the XML Object Constructor.

 Parsing and manipulating any XML data, using the XML Parser Object.

Both WebLOAD and the IE Browser use the MSXML parser to create XML DOM

objects. Since WebLOAD XML DOM objects and Browser XML DOM objects are

created by the same MSXML parser, the XML DOM objects that are produced for both

WebLOAD and the IE Browser are identical.

When working through the IE Browser, XML DOM objects are accessed through the

all collection. When working through WebLOAD, XML DOM objects are accessed

through the wlXmls collection. Since a WebLOAD XML DOM object is identical to an

IE Browser XML DOM object, the WebLOAD XML DOM uses the same Document

Interface (programming methods and properties) found in the IE Browser XML DOM.

The next few sections of this guide explain basic XML concepts and usage. Look in the

WebLOAD JavaScript Reference Guide for a description of the WebLOAD wlXmls

collection syntax and for a complete list of the WebLOAD-supported XML DOM

Interfaces.

For more general XML support and cross platform capabilities, WebLOAD offers the

XMLParserObject as another alternative for accessing XML data. The XMLParserObject

is based on the open source Xerces XML parser. In addition to the multi-platform

support, using this object will result in lower memory consumption and increased

performance during load testing.

The following sections contain examples using the XMLParserObject. For more

information about the XMLParserObject please refer to the WebLOAD JavaScript

Reference Guide. Additional information about the XMLParserObject’s underlying

Xerces component can be found at http://xml.apache.org/xerces-c/.

http://xml.apache.org/xerces%1ec/

WebLOAD Scripting Guide 71

WebLOAD XML DOM Objects

WebLOAD XML DOM objects produced from HTML documents may be used on two

different levels:

 The simplest approach is to use the XML DOM object to work directly with text

strings through the standard HTML properties id, src, and innerHTML. These

properties refer to the text strings found within an HTML document.

 On a more sophisticated level, programmers may use the same XML DOM object

to work with a full set of XML DOM Document Interface properties and methods,

as listed in Appendix B of the WebLOAD JavaScript Reference Guide. The following

figure illustrates these options:

window

document

wlXmls collection of XML DOM objects

produced from an HTML document

DOM: Browser Mode

Focus on XML DOM

access options

XML DOM object. Includes the following two access levels:

Direct access to HTML string properties

id, innerHTML, src

for example: document.wlXmls[0].src

Direct access to XML DOM properties & methods

listed in Appendix B

for example: document.wlXmls[1].documentElement.tagName

Figure 20: XML DOM Object Options

See the WebLOAD JavaScript Reference Guide for a complete description of the wlXmls

collection.

Data Islands

Data Islands are XML documents embedded within HTML documents. Data Islands

found on HTML documents are located either between a set of <xml> and </xml>

tags or between a set of <script> and </script> tags. Data Islands consist of either

a complete body of in-line XML code or a reference to XML code found in another

location, with the location specified in a src=location statement.

WebLOAD, like the Internet Explorer browser, produces an XML DOM object for each

Data Island. No matter how a Data Island is specified, either within a set of <xml> tags

or a set of <script> tags, either as in-line XML code or through a reference to another

location, WebLOAD produces a full XML DOM object for each Data Island. These XML

DOM objects are accessible through the wlXmls collection.

 72 Chapter 3. Advanced JavaScript Agenda Features

Data Island XML DOM objects expose both aspects of each XML DOM object, (as

described in WebLOAD XML DOM Objects (on page 71)):

 The standard HTML properties id, src, and innerHTML. These properties refer to

text strings found within the HTML document.

 The XML Document Interface. The interface provides access to the properties and

methods of the XML DOM object.

The following figure illustrates the various Data Islands options.

Note: Not all these Data Islands would be found in a single wlXmls collection if they

have been taken from different sources. They appear here in a single figure to illustrate

the various Data Island possibilities.

XML DOM object created directly from

Data Island found between

<script> and </script> tags on HTML page.

XML DOM object provides access to both

HTML string properties id, innerHTML, & src,

for example: document.wlXmls[2].src

and XML DOM properties & methods for example:

 document.wlXmls[2].documentElement.tagName

XML DOM object created directly from

Data Island found between

<XML> and </XML> tags on HTML page.

XML DOM object provides access to both

HTML string properties id, innerHTML, & src,

for example: document.wlXmls[1].src

and XML DOM properties & methods for example:

 document.wlXmls[1].documentElement.tagName

window

document

wlXmls collection of XML DOM objects

created from Data Islands

DOM: Browser Mode

Focus on Data Islands

XML DOM object

loaded from location

reference in HTML

page between

<XML> and </XML>

tags.

 Illustrated in second

Data Island example.

XML DOM object

created from in-line

XML text embedded in

HTML page between

<XML> and </XML>

tags. Illustrated in first

Data Island example.

XML DOM object

created from in-line

XML text embedded in

HTML page between

<script> and </script>

tags. Illustrated in

third Data Island

example.

XML DOM object

loaded from location

reference in HTML

page between

<script> and </script>

tags.

 Illustrated in fourth

Data Island example.

Figure 21: Data Island Possibilities

Data Islands are accessible through WebLOAD Agendas using the wlXmls collection

of XML DOM objects corresponding to all the Data Islands found in an HTML

document. Each Data Island produces a different XML DOM object.

For example, when working with an HTML document that includes two Data Islands,

use the following code to assign the XML object that references the first Data Island to

another object:

XMLDataIsland1 = document.wlXmls[0]

To access the second Data Island use:

XMLDataIsland2 = document.wlXmls[1]

If a Data Island is identified by name through an ID, you could also access the Data

Island through the id property. For example, if the first Data Island begins:

<xml id=“xmlBookstoreDatabase”>

Then you could access the Data Island using any of the following:

WebLOAD Scripting Guide 73

MyBookstore = document.wlXmls.xmlBookstoreDatabase

MyBookstore = document.wlXmls[“xmlBookstoreDatabase”]

MyBookstore = document.wlXmls[0]

The following HTML code fragments illustrate these Data Islands options.

Data Island—In-Line Code

In this code fragment, in-line XML data is embedded in the HTML page. WebLOAD

uses this data to create the XML DOM object.

<html>

<head>

...

</head>

<body>

...

<!—in-line XML data>

<xml id=“xmldoc_1”>

<?xml version=“1.0” standalone = true?>

Programmer’s Guide

<author>Mark Twain</author>

<title>Tom Sawyer</title>

<price>$11.00</price>

</book>

<foo>

...

</foo>

</xml>

...

</body>

</html>

Data Island—Reference to Another Source

In this code fragment, a reference to XML data found at another location is found in the

HTML page. WebLOAD creates an XML DOM object from the source found at that

location only.

Note: If a Data Island includes an src=location statement, then any additional XML

data found embedded within the Data Island on the HTML page will be ignored.

<html>

<head>

 74 Chapter 3. Advanced JavaScript Agenda Features

...

</head>

<body>

...

<!—reference to another source>

<xml id=“xmldoc_2” src=“http://demo/bookstore.xml”>

</xml>

...

</body>

</html>

Data Island—Scripted In-Line

XML DOM objects created from scripts within HTML documents may also be based on

either in-line XML data or references to other sources.

For example:

<SCRIPT language=“xml” id=“xmlscript”>

<?xml version=“1.0”?>

<!—XML data in-line within a script element.>

<bookstore>

Programmer’s Guide

<author>Mark Twain</author>

<title>Tom Sawyer</title>

<price>$11.00</price>

</book>

Programmer’s Guide

<author>Oscar Wilde</author>

<title>The Giant And His Garden</title>

<price>$8.00</price>

</book>

</bookstore>

</SCRIPT>

Data Island—Scripted Reference to Another Source

The preceding code illustrates XML data embedded in a script. Scripts may also

include references to other sources:

<SCRIPT language=“xml” id=“xmlscript” src=“book.xml”>

</SCRIPT>

WebLOAD Scripting Guide 75

Example: Using Data Islands in an Agenda

The following example illustrates Data Island usage. Assume you are working with a

Web Bookstore site that includes the following inventory database code fragment:

<HTML>

<HEAD>

<TITLE> </TITLE>

</HEAD>

<BODY>

<h3>Html file with embedded XML</h3>

<P>Here begins the XML Data Island</P>

<xml id="WebStudents">

<wclass>

<!-- My students who attended my web programming class -

->

<student id="1">

<name>Linda Jones</name>

<legacySkill>Access, VB5.0</legacySkill>

</student>

<student id="2">

<name>Adam Davidson</name>

<legacySkill>Cobol, MainFrame</legacySkill>

</student>

<student id="3">

<name>Charles Boyer</name>

<legacySkill>HTML, Photoshop</legacySkill>

</student>

<student id="4">

<name>Charles Mann</name>

<legacySkill>Cobol, MainFrame</legacySkill>

</student>

</wclass>

</xml> <P>Here ends the XML Data Island</P>

</BODY>

</HTML>

Working with HTML Properties

When accessing this website, your Agenda may use the standard HTML properties id

and innerHTML to print out text strings showing the information found within the

XML tags, as follows:

 76 Chapter 3. Advanced JavaScript Agenda Features

JavaScript Agenda Code:

function InitAgenda()

{

wlGlobals.Parse = true

wlGlobals.ParseXML = true

}

wlHttp.SaveSource = true

wlHttp.Get("http://www.webloadmpstore.com/xmlsamples/sample2.htm

l")

var XMLstudents = document.wlXmls[0]

InfoMessage("ID : " +XMLstudents.id)

InfoMessage("HTML text : " +XMLstudents.innerHTML)

Output Text:

Running this Agenda produces the following output, essentially a text copy of the Data

Island fields:

ID : WebStudents

HTML text :

<wclass>

<!-- My students who attended my web programming class -->

<student id="1">

<name>Linda Jones</name>

<legacySkill>Access, VB5.0</legacySkill>

</student>

<student id="2">

<name>Adam Davidson</name>

<legacySkill>Cobol, MainFrame</legacySkill>

</student>

<student id="3">

<name>Charles Boyer</name>

<legacySkill>HTML, Photoshop</legacySkill>

</student>

<student id="4">

<name>Charles Mann</name>

<legacySkill>Cobol, MainFrame</legacySkill>

</student>

</wclass>

WebLOAD Scripting Guide 77

Working with XML DOM Properties

Your Agenda may also access the complete XML DOM Document Interface for the

XML DOM object created from this Data Island. For example, to see a printout of the

complete XML DOM structure for the xmlBookSite Data Island described on the

preceding pages, use the following recursive function. See Appendix B in the WebLOAD

JavaScript Reference Guide, for a description of the XML DOM properties used in this

Agenda fragment.

JavaScript Agenda Code:

function InitAgenda()

{

wlGlobals.Parse = true

wlGlobals.ParseXML = true

}

wlHttp.SaveSource = true

wlHttp.Get("http://www.webloadmpstore.com/xmlsamples/sample2.htm

l")

var XMLstudents = document.wlXmls[0]

var XMLstudentDoc = XMLstudents.XMLDocument

var XMLstudentElement = XMLstudentDoc.documentElement

InfoMessage("Printing XML under the root")

InfoMessage(XMLstudentElement.xml)

InfoMessage("Element structure of the DOM")

printChildren(XMLstudentElement)

// function that will print all the fields and their attributes

function printChildren(element)

{

switch(element.nodeTypeString)

{

case "element":

InfoMessage(element.nodeName)

for(var i=0; i<element.childNodes.length; i++)

{

printChildren(element.childNodes.item(i))

}

 78 Chapter 3. Advanced JavaScript Agenda Features

break

case "text":

InfoMessage("\"" + element.nodeValue + "\"")

break

}

}

InfoMessage("End of test")

Output Text:

Running this Agenda produces the following output:

Printing XML under the root

<wclass>

<!-- My students who attended my web programming class -->

<student id="1">

<name>Linda Jones</name>

<legacySkill>Access, VB5.0</legacySkill>

</student>

<student id="2">

<name>Adam Davidson</name>

<legacySkill>Cobol, MainFrame</legacySkill>

</student>

<student id="3">

<name>Charles Boyer</name>

<legacySkill>HTML, Photoshop</legacySkill>

</student>

 <student id="4">

<name>Charles Mann</name>

<legacySkill>Cobol, MainFrame</legacySkill>

</student>

</wclass>

Element structure of the DOM

wclass

student

name

"Linda Jones"

WebLOAD Scripting Guide 79

legacySkill

"Access, VB5.0"

student

name

"Adam Davidson"

legacySkill

"Cobol, MainFrame"

student

name

"Charles Boyer"

legacySkill

"HTML, Photoshop"

student

name

"Charles Mann"

legacySkill

"Cobol, MainFrame"

End of test

JavaScript Agenda Code Using the XMLParser Object:

A similar Agenda, with the same functionality, can be written using the

XMLParserObject, as shown in the code snippet below:

xmlObject = new XMLParserObject();

doc = xmlObject.

parseURI("http://www.webloadmpstore.com/xmlsamples/sample2.html"

)

doc1 = doc.getDocumentElement()

//used to present only the xml

domNode = doc1.getElementsByTagName("xml").item(0);

InfoMessage("Printing XML under the root")

printChildren(domNode)

function printChildren(element)

{

switch(element.nodeTypeString)

{

case "element":

InfoMessage(element.nodeName)

for(var i=0; i<element.childNodes.length; i++)

{

printChildren(element.childNodes.item(i))

}

 80 Chapter 3. Advanced JavaScript Agenda Features

break

case "text":

InfoMessage("\"" + element.nodeValue + "\"")

break

}

}

InfoMessage("End of test")

Changing Bookstore Data

After you have accessed the website and created an XML DOM object from the XML

data found on the site, you may wish to change some of the data and post the new

version back to the website. To change the author of the first book to ‘S. B. David Lee

Eddings’:

function InitAgenda()

{

wlGlobals.Parse = true

wlGlobals.ParseXML = true

}

wlHttp.SaveSource = true

wlHttp.Get

("http://www.webloadmpstore.com/xmlsamples/sample1.xml")

//Getting the XML file

var xmlBookListDoc = document.wlXmls[0]

var xmlBookListIsland = xmlBookListDoc.XMLDocument

var xmlBookListElement = xmlBookListIsland.documentElement

InfoMessage("Printing xml under the root: " +

xmlBookListElement.xml)

//First access the node of the first book

var FirstBook = xmlBookListElement.childNodes.item(0)

//Next access the node of the author of the first book

var AuthorFirstBook = FirstBook.childNodes.item(1)

//Finally access the node of the text of the author of the first

book

var TextAuthorFirstBook = AuthorFirstBook.childNodes.item(0)

//In other words, the node in the XML database tree

WebLOAD Scripting Guide 81

//that actually stores the author name value is located at:

// document.wlXmls[0].XMLDocument.

// documentElement.childNodes.item(0).childNodes.

// item(1).childNodes.item(0)

//Now assign a new value

TextAuthorFirstBook.nodeValue = "S. B. David Lee Eddings"

InfoMessage("The changed author value, from J.R.R. Tolkein, to:

"

+ TextAuthorFirstBook.nodeValue)

InfoMessage("Print xml under the root: " +

xmlBookListElement.xml)

The changed bookstore database will look as follows:

<bookstore name="NODE1NAME">

<book>

<title lang="en">Everyday Italian</title>

<author>David Eddings</author>

<year>2005</year>

<price>30.00</price>

</book>

<book category="CHILDREN">

<title lang="en">Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category="WEB">

<title lang="en">XQuery Kick Start</title>

<author>James McGovern</author>

<author>Per Bothner</author>

<author>Kurt Cagle</author>

<author>James Linn</author>

<author>Vaidyanathan Nagarajan</author>

<year>2003</year>

<price>49.99</price>

</book>

<book category="WEB">

<title lang="en">Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

 82 Chapter 3. Advanced JavaScript Agenda Features

<price>39.95</price>

</book>

</bookstore>

You can change the bookstore data in the same way by using the XMLParserObject.

The Agenda code is even shorter:

xmlObject = new XMLParserObject();

doc = xmlObject.

parseURI("http://www.webloadmpstore.com/xmlsamples/sample1.xml")

;

InfoMessage("The xml under the root : " + doc.xml)

doc1 = doc.getDocumentElement()

FirstBook = doc1.getElementsByTagName("book").item(0);

AuthorFirstBook = FirstBook.childNodes.item(1) ;

TextAuthorFirstBook = AuthorFirstBook.childNodes.item(0)

TextAuthorFirstBook.nodeValue = "S. B. David Lee Eddings"

InfoMessage("The changed author value, from J.R.R. Tolkein,

to: " + TextAuthorFirstBook.nodeValue)

InfoMessage("The xml under the root : " + doc.xml)

Adding New Bookstore Data

The following Agenda fragment illustrates adding a new ‘book element’ to the

xmlBooksite database. See Appendix B in the WebLOAD JavaScript Reference Guide,

for a description of the XML DOM properties used here.

var xmlBookListDoc = document.wlXmls[0]

var xmlBookListIsland = xmlBookListDoc.XMLDocument

//STEP 1, create the new book element

// and append it to the tree

newBook = xmlBookListIsland.createElement("book")

xmlBookListIsland.documentElement.appendChild(newBook)

//STEP 2, create and name the new book’s title element

title1 = xmlBookListIsland.createElement("title")

name = xmlBookListIsland.createTextNode("River God")

//append the new name node to the title node

title1.appendChild(name)

//append the new title node to the book node

newBook.appendChild(title1)

WebLOAD Scripting Guide 83

//STEP 3, create and name the new book’s author element

author = xmlBookListIsland.createElement("author")

name = xmlBookListIsland.createTextNode("Wilbur Smith")

author.appendChild(name)

newBook.appendChild(author)

//STEP 4, create and name the new book’s year element

year = xmlBookListIsland.createElement("year")

name = xmlBookListIsland.createTextNode("1975")

year.appendChild(name)

newBook.appendChild(year)

//STEP 4, create and name the new book’s price element

price = xmlBookListIsland.createElement("price")

amount = xmlBookListIsland.createTextNode("40.55")

price.appendChild(amount)

newBook.appendChild(price)

The newly expanded bookstore database will look as follows:

<bookstore name="NODE1NAME">

<book>

<title lang="en">Everyday Italian</title>

<author>S. B. David Lee Eddings</author>

<year>2005</year>

<price>30.00</price>

</book>

<book category="CHILDREN">

<title lang="en">Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category="WEB">

<title lang="en">XQuery Kick Start</title>

<author>James McGovern</author>

<author>Per Bothner</author>

<author>Kurt Cagle</author>

<author>James Linn</author>

<author>Vaidyanathan Nagarajan</author>

 84 Chapter 3. Advanced JavaScript Agenda Features

<year>2003</year>

<price>49.99</price>

</book>

<book category="WEB">

<title lang="en">Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

<price>39.95</price>

</book>

<book>

<title>River God</title>

<author>Wilbur Smith</author>

<year>1975</year>

<price>40.55</price>

</book></

</bookstore>

You can achieve the same result using XMLParserObject. The Agenda Code is as

follows:

xmlObject = new XMLParserObject();

doc = xmlObject.

parseURI("http://www.webloadmpstore.com/xmlsamples/sample1.xml")

;

doc1 = doc.getDocumentElement()

newNode1 = doc.createElement("book");

doc1.appendChild(newNode1);

title1 = doc.createElement("title") ;

titleText = doc.createTextNode("River God");

newNode1.appendChild(title1)

title1.appendChild(titleText)

author = doc.createElement("author") ;

authorName = doc.createTextNode("Wilbur Smith");

newNode1.appendChild(author)

author.appendChild(authorName)

year = doc.createElement("year") ;

yearInd = doc.createTextNode("1975");

newNode1.appendChild(year)

WebLOAD Scripting Guide 85

year.appendChild(yearInd)

price = doc.createElement("price") ;

priceAmount = doc.createTextNode("40.55");

newNode1.appendChild(price)

price.appendChild(priceAmount)

Creating and Filling New XML DOM Objects

WebLOAD supports the creation of new XML DOM objects through the

WLXmlDocument() constructor. New XML DOM objects may either be created:

 Empty, with the user adding data as needed.

 Already loaded with data found in existing XML files or text strings.

New XML DOM objects created by the WLXmlDocument() constructor are not

produced from HTML documents, so they do not include the HTML property set (id,

innerHTML, and src). HTML properties have no meaning for XML DOM objects

created without any connection to an HTML document.

XML DOM objects created with the WLXmlDocument() constructor include the

complete XML DOM Document Interface described in Appendix B in the WebLOAD

JavaScript Reference Guide. Users may also load and reload XML data into XML DOM

objects through the load() and loadXML() methods. This section describes the

different methods of creating and filling data into XML DOM objects.

WLXmlDocument(xmlStr)—Creating XML DOM Object from XML

String

The WLXmlDocument(xmlStr) constructor accepts an optional parameter, an XML

string that includes the entire XML document data. For example:

NewXMLObj = new WLXmlDocument(xmlStr)

Use this form of the WLXmlDocument() constructor to create new XML DOM objects

from an XML string parameter rather than relying on Data Islands from an HTML

page.

Working with XML in Native (Direct) Browsing Mode

WebLOAD automatically processes Data Islands found on HTML documents.

WebLOAD also provides access to pure XML documents. For example, assume a

website uses Native Browsing rather than having XML data explicitly embedded in

Data Islands. If you wish to work with this website you could issue a Get transaction to

access the XML page after enabling the SaveSource property to save the page source

to a file. Once the XML string has been saved in the data file produced by the Get

 86 Chapter 3. Advanced JavaScript Agenda Features

transaction, you may then use WLXmlDocument() to create a new XML DOM object

from that XML data string. You now have a fully functional XML DOM object, with a

Document Interface identical to that of XML DOM objects created from Data Islands.

You may use this XML DOM object to manipulate the data, assign or change data

values, and post the changed data back to the server, exactly as you would when

working with a Data Island.

The following Agenda fragments illustrates this sequence:

1. Set SaveSource so that the downloaded XML data will be saved to a file that can

later be passed to the WLXmlDocument() constructor:

wlHttp.SaveSource=true

2. Get the XML page, either as a static page from the server:

wlHttp.Get(“http://demosite/bookstore.xml”)

Or through a database query to the bookstore:

wlHttp.Get(“http://demosite/bookstore.exe?

author=Mark Twain&MaxPrice=$20.00”)

3. Create a new XML DOM object using the saved page source, which happens to

include the XML string:

newXmlObj = new WLXmlDocument(document.wlSource)

4. At this point you have an XML DOM object which may be manipulated in any way

just as you would manipulate XML DOM objects produced by Data Islands. You

may make any changes or additions you wish to the XML DOM object data, as

described in previous examples illustrating changing or adding bookstore data.

For example, you may post the new XML DOM data back to the server:

wlHttp.Data.Type=“text/xml”

wlHttp.Data.Value=xmlobj.xml

wlHttp.Post(“Http://demosite/bookstore.exe?operation=upd

ate”)

Note: The WLXmlDocument(xmlStr) constructor must be passed complete, self-

contained XML strings only. The DTD section must not contain any external references

when using this form of the constructor. See Document Type Definition (DTD) (on

page 92), for more information.

WLXmlDocument()—Creating a New, Blank XML DOM Object

The WLXmlDocument() constructor may be used without any parameters. In this case,

a new, blank XML DOM object will be created. For example:

NewBlankXMLObj = new WLXmlDocument()

WebLOAD Scripting Guide 87

You may now use the loadXML() method to add XML data to your new blank XML

DOM object.

NewBlankXMLObj = loadXML(“<?xml version=‘1.0’?>

<bookstore></bookstore>”)

To add more content to the document, create elements and add them as child nodes as

described in the example in the previous section.

Loading XML Files into XML Objects

The MSXML Document Interface provides two methods for loading XML documents

into XML DOM objects:

 loadXML(“XMLdocumentstring”)

 load(“URL”)

This section describes the advantages and limitations of the loadXML() and load()

methods when used in WebLOAD IDE Agendas, and discusses how to select the

method that will be most effective in your Agendas.

Note: You may use loadXML() and load() repeatedly to load and reload XML data

into XML DOM objects. Remember that each new ‘load’ into an XML DOM object will

overwrite any earlier data stored in that object.

Using loadXML(XMLDocString)

The loadXML(XMLDocString) method accepts a literal XML document in string

format as its only parameter. This allows users to work with XML documents and data

that did not originate in HTML Data Islands, such as with Native Browsing. In a

typical scenario, a user downloads an XML document. WebLOAD saves the document

contents in string form. The string is then used as the parameter for loadXML(). The

information is loaded automatically into an XML object.

For example:

// Create a new XML document object

NewXMLObj = new WLXmlDocument()

wlHttp.SaveSource = true

wlHttp.Get(http://www.server.com/xmls/doc.xml)

XMLDocStr = document.wlSource

// Load the new object with XML data from the saved source.

// We are assuming no external references, as explained below

NewXMLObj.loadXML(XMLDocStr)

 88 Chapter 3. Advanced JavaScript Agenda Features

Note: Creating a new, blank XML DOM object with WLXmlDocument() and then

loading it with an XML string using loadXML() is essentially equivalent to creating a

new XML DOM object and loading it immediately using WLXmlDocument(xmlStr).

As with the WLXmlDocument(xmlStr) constructor, only standalone, self-contained

DTD strings may be used for the loadXML() parameter. External references in the

DTD section are not allowed.

Using load("URL")

The load("URL") method accepts a URL or filename where the XML document may

be found as its only parameter. load() relies on the MSXML parser to handle any Get

transactions needed to download the XML document. The XML data is then loaded

automatically into the XML object.

For example:

myXMLDoc = document.wlXmls[0]

myXMLdoc.load(http://server/xmls/file.xml”)

When you use the load() method in your Agenda, the MSXML module performs all

the underlying HTTP transactions. External references in the DTD section are not

allowed when using load(). However, the MSXML module accesses external servers

and completes all necessary transactions without any control or even knowledge on the

part of the WebLOAD system tester. From WebLOAD’s perspective, these transactions

are never performed in the context of the test session. For this reason, any settings that

the user enters through the WebLOAD IDE or Console will not be relayed to the

MSXML module and will have no effect on the document ‘load’. For the same reason,

the results of any transactions completed this way will not be included in the

WebLOAD statistics reports.

Comparing loadXML() and load()

WebLOAD supports both the load() and the loadXML() methods to provide the

user with maximum flexibility. The following table summarizes the advantages and

disadvantages of each method:

Table 5: load() and loadXML() comparison

Advantages Disadvantages

loadXML() Parameters that the user has

defined through WebLOAD

for the testing session will be

applied to this transaction.

The method fails if the DTD section of the XML

document string includes any external

references.

WebLOAD Scripting Guide 89

Advantages Disadvantages

load() The user may load XML files

that include external

references in the DTD

section.

Parameters that the user has defined through

WebLOAD for the testing session will not be

applied to this transaction.

WebLOAD does not record the HTTP Get

operation. (See note below.)

The transaction results are not included in the

session statistics report.

Using this method may adversely affect the test

session results.

Note: If you wish to measure the time it took to load the XML document using the

load() method, create a timer whose results will appear in the WebLOAD IDE

statistics. For example:
myXMLDoc = document.wlXmls[0]

SetTimer(“GetXML”)

myXMLdoc.load(“http://server/xmls/file.xml”)

SendTimer(“GetXML”)

Example: Building an XML Database from Scratch

The next example will put together some of the pieces from the previous sections. Here

we will create a new, skeletal XML DOM object for a bookstore database, build new

book elements, and add each new book to our bookstore database.

// 1. CREATE AN EMPTY XML OBJECT with a skeleton:

xmlBookstoreDoc = new WLXmlDocument

(“<?xml version=‘1.0’?><bookstore></bookstore>”)

// 2. ADD CONTENT TO THE DOCUMENT:

//create the first book element

newBook = xmlBookstoreDoc.createElement(“book”)

//append the new book to the bookstore tree

xmlBookstoreDoc.documentElement.appendChild(newBook)

//create, name, and append the new book’s author element

author = xmlBookstoreDoc.createElement(“author”)

name = xmlBookstoreDoc.createTextNode(“Mark Twain”)

author.appendChild(name)

newBook.appendChild(author)

//create, name, and append the new book’s title element

title = xmlBookstoreDoc.createElement(“title”)

name = xmlBookstoreDoc.createTextNode(“Tom Sawyer”)

 90 Chapter 3. Advanced JavaScript Agenda Features

title.appendChild(name)

newBook.appendChild(title)

//create, name, and append the new book’s price element

price = xmlBookstoreDoc.createElement(“price”)

amount = xmlBookstoreDoc.createTextNode(“$12.00”)

price.appendChild(amount)

newBook.appendChild(price)

// 3. CONTINUE TO ADD CONTENT TO THE DOCUMENT:

//create the second element and append it to the tree

newBook = xmlBookstoreDoc.createElement(“book”)

xmlBookstoreDoc.documentElement.appendChild(newBook)

//create, name, and append author, title, and price elements

author = xmlBookstoreDoc.createElement(“author”)

name = xmlBookstoreDoc.createTextNode(“Leo Tolstoy”)

author.appendChild(name)

newBook.appendChild(author)

title = xmlBookstoreDoc.createElement(“title”)

name = xmlBookstoreDoc.createTextNode(“War and Peace”)

title.appendChild(name)

newBook.appendChild(title)

price = xmlBookstoreDoc.createElement(“price”

amount = xmlBookstoreDoc.createTextNode(“$20.00”)

price.appendChild(amount)

newBook.appendChild(price)

A new XML DOM bookstore database object has now been created and filled with

information about two books. The product of the

xmlBookstoreDoc.documentElement.xml property would be:

<?xml version=“1.0”?>

<bookstore>

<book>

<author>Mark Twain</author>

<title>Tom Sawyer</title>

<price>$12.00</price>

</book>

<book>

<author>Leo Tolstoy</author>

<title>War and Peace</title>

<price>$20.00</price>

</book>

WebLOAD Scripting Guide 91

</bookstore>

Handling Web Service Transactions

WebLOAD supports working with Web services, including manipulating the Web

service’s responses.

A Web service response is a soap-formatted XML message. Accessing this XML

message becomes possible, after parsing the response using WebLOAD’s

XMLParserObject. This enables you to locate the node containing the desired part of

the web service response.

The following sample Agenda demonstrates how WebLOAD handles web service

transactions by extracting the dynamic XML from the web service response and

parsing it using the XMLParserObject. The desired return value is then located by

searching through the parsed XML.

xmlObject = new XMLParserObject()

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/ajaxsample")

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/ajaxsample/"

wlHttp.FormData["wsdl"] = "WLVOID$STRING$"

wlHttp.Get("http://www.webloadmpstore.com/ajaxsample/serveradd1.

php")

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/ajaxsample/"

wlHttp.Data["Type"] = "text/xml; charset=utf-8"

wlHttp.Data["Value"] = "<?xml version=\"1.0\" encoding=\"utf-

8\"?><soap:Envelope

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"><soap:B

ody><add

xmlns=\"urn:addwsdl\"><a>2030</add></soap:Body></soap

:Envelope>"

wlHttp.Post("http://www.webloadmpstore.com/ajaxsample/serveradd1

.php")

//Extract the XML part from the response

doc = document.wlXmls[0]

InfoMessage (doc.xml)

 92 Chapter 3. Advanced JavaScript Agenda Features

//Load the extracted XML into the XMLParserObject

xo = xmlObject.loadXML(doc.xml)

//Locate the node containing the Web Service result according to

the name of the node: "return"

node = xo.getElementsByTagName("return").item(0)

InfoMessage(node.xml)

 Document Type Definition (DTD)

The term DTD is an acronym for Document Type Definition. The Document Type

Definition is a set of rules that describes the grammar of a particular XML document.

The DTD is used to validate an XML document.

For example, the DTD for a bookstore database would do the following:

1. Define the structure and attributes of that database.

Based on the rules found in the DTD, you might have a database that requires

every book entry to include information on the book’s title, author, and price.

Information on publishers and reprint requests may be declared optional.

2. After the DTD defines the structure and attributes of the database, the XML Data

Island assigns values to the attributes listed in the DTD.

3. Once an XML document has been downloaded, the Browser validates the document

by checking that the XML data follows the rules set by the DTD.

If the price is missing from a certain book item, for example, and a price is required

by the DTD, then the Browser will not be able to validate that XML document.

Note: For the Browser to parse and validate an XML document according to a

particular DTD, the author must include a <DOCTYPE> section in the XML document.

WebLOAD IDE supports DTD verification only if the DTD is completely included in

the Data Island and there are no external references in the DTD.

The following code illustrates a self contained DTD for the bookstore example used

throughout this section of the manual:

<!-DOCUMENT STARTS HERE->

<?xml version="1.0"?>

<!-THE DTD STARTS HERE -->

<!DOCTYPE

[

<!ELEMENT books-table (book)+>

WebLOAD Scripting Guide 93

<!ELEMENT book (title,author+,isbn,publication-date,book-

type,book-family+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT isbn (#PCDATA)>

<!ELEMENT publication-date (#PCDATA)>

<!ELEMENT book-type (#PCDATA)>

<!ELEMENT book-family (#PCDATA)>

<!--attribute list-->

<!ATTLIST book id ID #REQUIRED>

<!ATTLIST author rank CDATA #IMPLIED>

]>

<!--THE DTD ENDS HERE-->

<!--DATA PART OF THE DOCUMENT->

<books-table>

<book id="thisbook">

<title></title>

<author rank=""></author>

<isbn></isbn>

<publication-date></publication-date>

<book-type></book-type>

<book-family></book-family>

</book>

</books-table>

<!-DOCUMENT ENDS HERE->

Working with Java

Java is an object-oriented, dynamic, platform-independent programming language

developed by Sun Microsystems in the mid-1990s. Java provides its users with a

complete run-time environment, a Virtual Machine (VM). With the Java VM sitting in

your Web browser, any HTML document can include embedded Java, adding active

content to your Web page. Java includes a variety of useful features, such as Remote

Method Invocation (RMI), which allows local developers to seamlessly access

distributed application functions and procedures, and Java Database Connectivity

(JDBC), which allows Java clients to interact with any ODBC- or JDBC-compliant

database, whether it resides locally or on a remote server. By utilizing Java tools and

classes, user applications are able to offer far greater power and capabilities than when

working with simple HTML code alone. For this reason, over the past few years, Java

has become one of the most popular development mediums for large-scale Internet

applications.

 94 Chapter 3. Advanced JavaScript Agenda Features

WebLOAD supports full Java access from your JavaScript Agendas. Full Java support

means that your WebLOAD Agendas will not only test access time to an HTML page.

WebLOAD Agendas can also invoke and run local Java classes used by the Java

applications embedded within an HTML page. The Java components that stand behind

that Web page need no longer be considered ‘black boxes’. Your JavaScript Agenda can

directly access and test the classes of each locally residing Java component, allowing

you to test each aspect of your application.

WebLOAD uses LiveConnect3, developed by Netscape Communications Corporation

and maintained and supported by the Mozilla Foundation, to allow your JavaScript

Agendas to communicate with Java classes. LiveConnect is an invisible architecture

that runs in the background. Your JavaScript code may work directly with Java. Your

WebLOAD Agenda can even include both JavaScript code that calls Java code and Java

code that calls JavaScript code. The interface between Java and JavaScript is managed

for you, allowing you to create the Java/JavaScript testing scenario that best meets your

needs.

For a detailed specification of the syntax and classes used by LiveConnect, see

LiveConnect Overview (on page 189). For more information about the interaction

between Java and JavaScript using LiveConnect, as well as complete documentation for

Java, JavaScript, and LiveConnect, including the latest features and enhancements, go

to the following websites:

 https://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:LiveConnect_Ov

erview

The basic manual for JavaScript, containing an excellent LiveConnect overview

and syntax summary.

 https://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:LiveConnect

Core JavaScript reference manual index. LiveConnect Class Reference, for a

comprehensive explanation of the JSException and JSObject classes.

 https://www.mozilla.org/js/liveconnect/lc3_method_overloading.html

Provides a clear, complete explanation of type conversions and method

overloading.

 https://developer.mozilla.org/en/docs/LiveConnect

The main LiveConnect page on the Mozilla Developer Center.

Requirements

This section provides a brief explanation of how to work with Java components

directly from your JavaScript Agenda. Sample Agendas illustrate typical usage.

https://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:LiveConnect_Overview
https://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:LiveConnect_Overview
https://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:LiveConnect
https://www.mozilla.org/js/liveconnect/lc3_method_overloading.html
https://developer.mozilla.org/en/docs/LiveConnect

WebLOAD Scripting Guide 95

JDK/JRE 1.5 (or Higher)

Install the standard Sun Microsystems Java Virtual Machine (JVM), version 1.5 or

higher, on your system.

To verify that you are working with version 1.5 or higher:

1. Select Control Panel from the Windows Start Settings menu and double click

the Add/Remove Programs icon.

2. Check the items listed in the dialog box. Entries that reference Java should be

labeled version 1.5 or higher.

3. If you wish to update your version of Java, download the latest version from

http://java.sun.com (http://java.sun.com).

Follow the standard Sun installation instructions. It makes no difference if you

install the JVM before or after installing WebLOAD.

If you are doing any development work that may require application compilation, you

must install the complete Java Developer’s Kit (JDK). If your application is complete

and you will only be running it, without making any changes or corrections that may

require compilation, then the Java Runtime Environment (JRE) will be enough to

simply run a test session. The decision to install only the JRE, or the complete JDK,

depends on your own application’s requirements. WebLOAD IDE provides full Java

support in both cases.

PATH Environment Variable

Your command path must include both the Java bin and Java classic directories. The

Java bin directory is where the Java programs and compiler are located. The Java

classic directory is where the jvm.dll file is located.

For example, after a typical installation of JDK version 1.5, your PATH should include

something similar to this:

PATH=%PATH%;C:\Program Files\jdk1.5\bin;

C:\Program Files\jdk1.5\jre\bin\classic

CLASSPATH Environment Variable

Your CLASSPATH environment variable must point to the following:

 JVM class libraries

 LiveConnect class libraries

 Your application’s class libraries (a series of *.class and *.jar files)

http://java.sun.com/

 96 Chapter 3. Advanced JavaScript Agenda Features

For example, assuming your Java class libraries are located in the Java\lib

directory, the LiveConnect class libraries are located in LiveConnect\classes, and

your application class libraries are located in the AppDev\lib directory, your

CLASSPATH should include the following:

CLASSPATH=%CLASSPATH%;C:\Java\lib\rt.jar;

C:\LiveConnect\classes;C:\AppDev\lib

In general, following a WebLOAD IDE installation, the LiveConnect class libraries are

located in:

C:\Program Files\RadView\WebLOAD\LiveConnect\classes

Setting PATH and CLASSPATH Environment Variables

Set the PATH and CLASSPATH environment variables to include the necessary

directories. The settings can be modified through Windows or a DOS command

window.

To verify that both your PATH and CLASSPATH environment variables include the

necessary directories:

1. From the Windows taskbar, select Start Settings Control Panel.

2. Double click the System icon and select the Environment tab.

3. Check the Environment Variables to confirm that your environment variables are

set correctly.

Alternatively, you could open a DOS command window:

 Type path, and press <Enter>.

Your current PATH setting will appear in the window.

If you type set classpath and press <Enter>, your current CLASSPATH setting

will appear in the window.

Remember that the exact full directory path name will differ from system to system.

Check with your system administrator to verify the correct Java directory path names

for your system.

Alternatively, you could do the following:

1. Right-click the My Computer icon on your desktop.

2. Select find…, and search for jvm.dll.

This file is usually found in a directory path that ends with …\bin\classic. This

directory, and the same directory without the \classic ending, should both appear

in the PATH environment variable.

WebLOAD Scripting Guide 97

If your PATH or CLASSPATH environment variables do not include the necessary

directories do the following:

1. Add the correct directory names for your system to the PATH or CLASSPATH

environment variable definitions in the Environment tab of the System dialog box.

2. Click Set.

3. Click Apply, to reset the variables to the new settings.

You do not have to reboot your system. But you do have to restart TestTalk for

WebLOAD to recognize the new PATH environment variable definition.

Public Methods

JavaScript Agendas adhere to the same rules of object-oriented programming (OOP) as

any other program. All programs must respect the OOP concepts of public and private.

As in any OOP language, Java class methods may be either public or private. Public

methods are functions that are externally visible and can be called by other Java classes

and by JavaScript. For JavaScript to be able to control a Java class, the Java class must

provide public methods.

Identifying Java Objects in JavaScript Agendas

Java uses its own specific terminology. Java objects are referred to as classes. These

classes are organized hierarchically within packages. To access Java objects, specify the

full path to that class, using the format:

<java package full path>.<java class>

For example, to reference the Java class Lassie contained in the package dogs, which

is contained within the package animals, write animals.dogs.Lassie.

Accessing Java Objects from JavaScript Agendas

Java objects found in JavaScript Agendas are accessed according to the rules listed

here. Detailed explanations and examples illustrating these rules are provided in the

Netscape websites listed in Working with Java (on page 93).

 To access a built-in Java object, use the package java. This package acts as a flag,

informing the compiler that it is about to start work with a built-in Java object. You

may then continue to work directly with that object, its properties, and methods.

For example:

var myJavaString = new java.lang.String("Hello world")

…

stringlen = myJavaString.length()

 98 Chapter 3. Advanced JavaScript Agenda Features

…

-Or-

s = new java.net.Socket ("12.3.5.56",23)

…

s.getInputStream

…

In these examples, java.lang and java.net are the full package names and

String and Socket are the class names.

 To access a locally defined or third party Java object that is not part of the Java, Sun,

or Netscape packages, use the reserved Java keyword Packages. This keyword

acts as a flag, informing the compiler that it is about to start work with a locally-

defined Java object. You may then continue to work directly with that object, its

properties, and methods.

For example:

var myJavaDog = new Packages.JavaDog(Lassie)

…

dogbreed = myJavaDog.dogBreed

…

Use the Packages keyword to access any user-defined class whose definition is

included in the CLASSPATH library list, described in Requirements (on page 94).

Forestalling Errors

Most common compilation and runtime errors can be prevented if you follow the

instructions in this guide. Usually, you won’t have any problems as long as you verify

that Java was installed correctly and specify Java objects with the correct full path and

argument list. This section lists the most common potential pitfalls, in an effort to

prevent problems before they occur.

 You must have Java version 1.2 installed on your system. Working with earlier

versions of Java will cause your Agendas to fail with the following WebLOAD IDE

error message:

WebLOAD can’t find jvm.dll

If you receive this error message, you may have an older version of the JVM, or

you may not have Java installed at all on your system. If this is the problem,

download and install the newer version of Java from http://java.sun.com.

 Java version 1.2 or higher must be installed and environment variables defined on

each Load Generator included in your test session. Test sessions that involve

multiple Load Generators require a resident JVM with the correct environment

variable settings on each Load Generator.

http://java.sun.com/

WebLOAD Scripting Guide 99

 Whether to install only the JRE or the complete JDK depends on your application’s

requirements. If you will be doing any development or compilation, install the

complete JDK. Trying to compile Java class files (such as JavaClass.java) on a

computer that does not have the JDK installed will trigger an error. The JDK must

be installed on each computer on which Java files will be compiled. The JRE can not

handle any compilation requests.

 Each system environment is slightly different. When setting the PATH or

CLASSPATH environment variables for your system, substitute the actual path to

the required Java directories and libraries on your system. Use the Environment

tab in the System dialog box from the Windows Control Panel to set the

environment variables.

 Environment variables must be set with the correct values before starting TestTalk

or running any Load Generators. Make sure you first verify and set the

environment variables through the Windows Control Panel and only then start

TestTalk.

 If you do not have the correct Java class directories included in your PATH, your

Agendas may fail with the following WebLOAD error message:

WebLOAD can’t find jvm.dll

If you receive this error message and your version of the JVM is 1.2 or higher,

check your system PATH (through the Windows Control Panel) to be sure it points

to the jvm.dll library. Make sure the directories listed are in fact the correct

directories, and verify the correct path name in your Agenda code.

 The class path and name in your Agenda files must be specified absolutely

correctly, with all elements spelled correctly and with the correct case. For

example, the class name MyJavaClass is not the same as myJavaClass.

 The directories included in the CLASSPATH environment variable must also be

specified absolutely correctly, with all elements spelled correctly, to exactly match

the class path and names that appear in your JavaScript Agendas.

For example, assume you are working with an application that includes the Java

class MyJavaClass, whose constructor expects a single string argument, located

in the directory I:\AppFiles\libs.

Your CLASSPATH environment variable should include:

CLASSPATH=%CLASSPATH%;I:\AppFiles\libs

Your Agenda should reference this class as follows:

var myJavaObj = new Packages.MyJavaClass(“stringArg”)

If you were not careful, you could accidentally define CLASSPATH to include the

wrong directory, such as:

CLASSPATH=%CLASSPATH%;I:\AppFiles\orig-libs

 100 Chapter 3. Advanced JavaScript Agenda Features

Or you could accidentally include an incorrect package path in the Agenda file,

such as:

var myJavaObj = new

Packages.Jlib.MyJavaClass(“stringArg”)

In either of these cases the constructor call would fail and WebLOAD would return

the following error message:

TypeError: <classname> is not a constructor

 Make sure to pass the correct number and types of arguments to Java class

constructors or methods.

Realize that working with Java from your JavaScript Agenda is really very simple and

intuitive, as illustrated in the simple examples found in the remainder of this section.

You simply must take care to specify objects correctly. Careless spelling mistakes will

trigger errors, as they would in most programming languages.

Example: passing simple variables between Java and
JavaScript

You may pass any legal JavaScript variable or object as a parameter to a Java object or

method. Conversions between basic variable types, such as integer, string, or Boolean,

will be completed automatically. Return values will also convert correctly. Conversions

between Java and JavaScript types are based on the conversion tables listed in Data

Type Conversions (on page 197).

The following example illustrates passing basic values between Java and JavaScript

objects. The Java class method expects two parameters, a string and an integer, and

returns the concatenation of both parameters into a single string. Conversions between

Java and JavaScript strings and integers are completed automatically.

Java side:

public class SimpleExample

{

public String Concat(String a, int b)

{

return a + " : " + b;

}

}

JavaScript side:

a = new Packages.SimpleExample()

InfoMessage(a.Concat("RoundNum",RoundNum))

WebLOAD Scripting Guide 101

Passing Objects Between Java and JavaScript

LiveConnect uses the reserved Java class JSObject to pass a JavaScript object to Java

objects. JSObject tells the Java side that it is being sent a JavaScript object. To pass a

JavaScript object as a parameter to a Java method, your Java file must include the

following:

 Import the netscape.javascript package.

 Define the corresponding formal parameter of the method to be of type JSObject.

You may set and change a JavaScript object property value, and even add a new

member to a JavaScript object, while working from the Java side.

For example, the following code illustrates passing values between parallel Java and

JavaScript objects.

Java Side:

import netscape.javascript.JSObject;

public class JavaDog

{

public String dogBreed;

public String dogColor;

public String dogSex;

public JavaDog(JSObject jsDog)

{

this.dogBreed = (String)jsdog.getMember("breed");

this.dogColor = (String)jsdog.getMember("color");

this.dogSex = (String)jsdog.getMember("sex");

}

}

Note: The getMember method of JSObject is used to access the properties of the

JavaScript object. This example uses getMember to assign the value of the JavaScript

property jsDog.breed to the Java data member JavaDog.dogBreed.

JavaScript Side:

To continue with this example, look at the following definition of the JavaScript object

Dog:

function Dog(breed, color, sex)

{

this.breed = breed

this.color = color

this.sex = sex

 102 Chapter 3. Advanced JavaScript Agenda Features

}

Create an instance of the JavaScript object Dog as follows:

Lassie = new Dog("collie", "chocolate", "female")

The JavaScript property Lassie.color here has been assigned the value chocolate.

Now create an instance of the Java object JavaDog in the JavaScript code by passing

the JavaScript Lassie object to the JavaDog constructor as follows:

JavaDog = new Packages.JavaDog(Lassie)

Note: The JavaScript code uses the Packages class to identify JavaDog as a locally

defined Java object, as described in Identifying Java Objects in JavaScript Agendas (on

page 97).

The Java property javaDog.dogColor has the value chocolate because the

getMember method in the Java constructor assigns the value of Lassie.color to

dogColor.

Detailed explanations of the JSObject class are provided in

http://developer.netscape.com/docs/manuals/js/core/jsref/lcjsobj.htm.

A sample Agenda illustrating joint Java and JavaScript activity is found in Calling a

WebLOAD API from a Java Application (on page 104).

Automatic Timers And Counters For Java Objects

WebLOAD provides automatic timers and counters that wrap around every Java class

method invocation found in your Agenda. Automatic timers and counters allow you to

effortlessly measure and quantify the behavior and response time of each specific Java

component individually, enabling the most comprehensive testing of your Java-based

application.

Every time your JavaScript Agenda calls a Java class method, a timer and a counter are

automatically created for that method. The results are included in the Statistics Report

for that test session. These automatic Java timers are in addition to the standard

WebLOAD Timer functions, which may be called from the Java side of your Agenda as

well as the standard JavaScript side. An example illustrating JavaScript Timer calls

from Java code appears in Calling a WebLOAD API from a Java Application (on page 104).

For example, assume you are communicating with a server using the Java socket class:

try

{

// Connect to a server through Java socket

s = new java.net.Socket ("12.3.5.56",23)

http://developer.netscape.com/docs/manuals/js/core/jsref/lcjsobj.htm

WebLOAD Scripting Guide 103

// Create Java I/O streams

from_server = new java.io.DataInputStream(s.getInputStream())

to_server = new java.io.PrintStream(s.getOutputStream())

//Read line from Input stream to JavaScript string value

line = from_server.readLine()

InfoMessage("" + line)

// Write JavaScript string value to the Output stream

to_server.println ("Client " + ClientNum + "-" + RoundNum)

// Get answer from the server via the Input stream

line = from_server.readLine()

InfoMessage("" + line)

}

catch (Exception) {

ErrorMessage ("Server is not connected")

}

finally

{

try {

if (s != null)

s.close();

}

catch(Exception) {}

}

Each time you call any of the Java class methods, a timer and counter for that method

is automatically incremented. The results appear in the Statistics Report. Each timer

and counter is uniquely identified with the Java class, object, and method name, as

illustrated in the following figure:

 104 Chapter 3. Advanced JavaScript Agenda Features

Figure 22: Timer and Counter Identification with Java Class, Object, and Method Name

The counter and timer information is collected and displayed automatically, every time

you call a Java class method from your Agenda. You do not have to add anything to

your Agenda code to take advantage of this feature.

Calling a WebLOAD API from a Java Application

WebLOAD utilizes the locally understood, generic ‘this’ object, passing the current

‘this’ object as a parameter to a Java method. The JavaScript concept of ‘this’

object as your current working object is preserved even while working with that

object’s properties and methods from the Java side.

Using ‘this’ object, WebLOAD is able to call WebLOAD functions directly from

within Java method code, passing to the Java functions the default ‘this’ object that

is expected by the function.

For example:

Use the WebLOAD SetTimer and SendTimer functions to time Java activities.

Use InfoMessage to print messages to the log window.

The following Agenda illustrates calling WebLOAD functions from Java code.

WebLOAD Scripting Guide 105

Java side:

import netscape.javascript.JSObject;

// The JSObject class must be imported for the

// code to successfully compile

public class MyJClass

{

public void TimersFromJava(JSObject myJavaScriptObj)

{

String args[] = {"Timer1"};

myJavaScriptObj.call("SetTimer",args);

…<do any other work> …;

myJavaScriptObj.call("SendTimer",args);

}

}

Note: You can call the JavaScript SetTimer and SendTimer functions directly from

the Java class using the JSObject.call() method. Pass parameters to the functions

being called (in this case the timer name expected by the timer functions), using the

args array.

JavaScript side:

// The following JavaScript code uses the Java class

// defined in the preceding Java section.

myJavaObject = new Packages.MyJClass()

// The JavaScript code uses the Packages class to

// identify MyJClass as a locally defined Java object

try

{

myJavaObject.TimersFromJava(this)

}

catch (e)

{

SevereErrorMessage("Error : " + e);

}

Note: You work with myJavaObject as you would with any JavaScript object.

TimersFromJava is called as a simple object method, passing the locally understood

‘this’ object as the parameter to the Java method.

The try...catch statement in the JavaScript code marks a block of statements to try.

The catch block specifies the response the program should supply should an

exception be thrown. If an exception is thrown, the try...catch statement catches it.

WebLOAD recommends wrapping the JavaScript calls to Java functions within

try...catch statements, to add robustness and error recovery to your code.

 106 Chapter 3. Advanced JavaScript Agenda Features

Example: reading data from a JDBC database

The following example illustrates a very common website activity—accessing a

database. The Java side of the example is a straightforward Java program to access a

JDBC, including methods to:

 Load a driver

 Open a connection

 Create and execute SQL queries

The JavaScript side of the example illustrates exactly how simple it is to work with the

Java program from a JavaScript Agenda.

Java side:

import java.sql.*;

public class jdbcExample

{

Connection conn;

Statement st1;

ResultSet rs;

public static void loadDriver(String js_driver)

throws ClassNotFoundException

{

Class.forName(js_driver);

}

public void getConnection(String js_url,

String js_login, String js_pswd)

throws SQLException

{

//get the connection & also create a statement:

conn = DriverManager.getConnection

(js_url, js_login, js_pswd);

st1 = conn.createStatement();

}

public String executeQuery(String js_query)

throws SQLException

{

//execute sql statement:

rs = st1.executeQuery(js_query);

// loop over the result set.

WebLOAD Scripting Guide 107

String strOnSuccess = "3. Result Set is:";

while (rs.next())

{

strOnSuccess = strOnSuccess + "\n" +

rs.getString("ReportName");

}

// return the data

return strOnSuccess;

}

}

JavaScript side:

The JavaScript side of this test session Agenda runs a JDBC load test which checks the

ability of the database to handle a large number of SQL queries.

Note: The following is the sequence of JDBC activity in this Agenda:

1. The JDBC driver is loaded only once for the test session, in the InitAgenda()

function.

2. A JDBC connection is created once for each thread, in the InitClient() function.

3. Queries are created in the main body of the Agenda. Answers are sent to the

Console.

function InitAgenda()

{

try

{

// load the JDBC driver once per session

jdbcDriver = "<driver class name>"

Packages.jdbcExample.loadDriver(jdbcDriver);

}

catch (e)

{

SevereErrorMessage("Error : " + e);

}

}

function InitClient()

{

// create a separate jdbcObj object and connection

// for each thread

jdbcObj = new Packages.jdbcExample()

// connect to the database

url = "<jdbc:driver-name:host>"

login = "<username>"

 108 Chapter 3. Advanced JavaScript Agenda Features

password = "<password>"

try

{

jdbcObj.getConnection(url, login, password)

}

catch (e)

{

SevereErrorMessage("Error : " + e);

}

}

//Main body of Agenda

try

{

// create query and send the results to the Console

query = "SELECT * FROM Reports WHERE ReportId < 10 "

query_result = jdbcObj.executeQuery(query)

InfoMessage(""+ query_result)

}

catch (e)

{

WarningMessage("Error : " + e);

}

Working with the Component Object Model (COM)

What is COM

Microsoft’s Component Object Model (COM) provides a way for distinct software

components to communicate with each other. COM technology provides universally

reusable binary components. These components can be mixed and matched over

versions and years, accessed by applications written in any of a variety of languages,

running on any of a variety of platforms, located either locally or over a network. COM

automation simplifies application development by maximizing component reusability

while increasing the application’s universality. Today, most Windows users rely on

COM technology, often without even realizing it. For example, suppose you wish to

work with a restricted website. Access to the application behind that website is

controlled by a security database. To work with that application, you must first enter

your name and password. A COM component will automatically access the database

and verify your permission status.

COM components are objects that consist of a combination of properties, methods, and

interfaces. An object’s interface is simply a set of methods together with a defined set

WebLOAD Scripting Guide 109

of standards for what those methods do and how they are accessed, their parameters

and return values. WebLOAD JavaScript provides direct object access to any

component that has a COM wrapping and an IDispatch interface. These are known

as ActiveX objects. See ActiveX Object Interfaces (on page 109), for more information.

An ActiveX object is viewed and manipulated exactly as any other JavaScript object

within the Agenda. WebLOAD encapsulates COM automation functionality, providing

an interface between JavaScript Agendas and ActiveX objects. For example, a

WebLOAD JavaScript Agenda is able to fully test an ASP Web page or a Web page that

manipulates an ADO database. In both of these technologies, ActiveX objects are

widely used.

This section of the guide explains how to work with ActiveX objects within your

JavaScript Agenda. For a detailed explanation of COM programming, see the Microsoft

MSDN Online Library at http://msdn.microsoft.com (http://msdn.microsoft.com).

Note: If you are working with COM objects that are not thread-safe and can not handle

multi-threading, you must set the multithreading to one thread per process (this is

WebLOAD’s default setting).

To set the multithreading:

1. In the WebLOAD Console, open the Tools Default/Current Session/Agenda

Options dialog box.

2. Select the Browser Parameters tab.

3. In the Multi-thread Virtual Clients->Load Generator field, enter or scroll to 1,

which sets one thread per process.

ActiveX Object Interfaces

ActiveX objects usually include the following interfaces:

 IUnknown—the core interface. Defines the ActiveX object. Includes the definitive

ActiveX object methods QueryInterface, AddRef, and Release.

 IDispatch—the access interface. Enables ActiveX object automation, allowing the

WebLOAD IDE JavaScript Agenda to manipulate the ActiveX object’s properties

and methods.

 Custom Interfaces—additional, specialized interfaces. Created by the user, specific

to each ActiveX object.

JavaScript Agendas access the methods and properties of the object interface

exposed by the IDispatch interface.

 ITypeInfo—the index interface. Includes a list of all objects, properties, and

methods for each interface included in the ActiveX object (optional).

http://msdn.microsoft.com/

 110 Chapter 3. Advanced JavaScript Agenda Features

The ITypeInfo interface of an ActiveX object provides access to the TypeInfo

library for that object.

Note: The ITypeInfo interface is optional. WebLOAD is able to work with ActiveX

objects whether or not they supply a TypeInfo library file. However, access to the

TypeInfo library for an object saves overhead. Programs that can take information

from the TypeInfo library do not have to spend time and energy analyzing an object

to identify a specific item’s characteristics. For example, access to the TypeInfo library

eliminates the need to figure out a variable’s data type or insert casting functions into

your Agendas for greater security.

Activating ActiveX Objects from a JavaScript Agenda

A typical website is often the front end of an application that includes many ActiveX

components. WebLOAD Agendas enable thorough testing of both the website and the

applications that are accessed via that website by allowing you to activate an

application’s ActiveX object from your Agenda. For example, to use your WebLOAD

Agenda to directly test access time to an ADO database, you would activate the

ActiveX objects for that database.

To use ActiveX objects in your Agenda do the following(as you would with any

JavaScript object):

1. Create a reference to a new object instance.

2. Assign and get values for the object’s properties.

3. Execute the object’s methods.

This section describes how to activate ActiveX objects from your WebLOAD JavaScript

Agenda.

Note: The object you are accessing must already exist and be registered. When working

with a remote server, through DCOM over HTTP, the object you are accessing should

reside on the remote server. (This is described in DCOM over HTTP (on page 117)).

When working locally, the COM object you are accessing should reside on the Load

Generator.

The following section describes the ActiveXObject function syntax.

ActiveXObject() (constructor)

Method of Object

 ActiveX

WebLOAD Scripting Guide 111

Description

Creates a new ActiveX object. The new object is simply a local JavaScript object, and

may be handled and manipulated like any other JavaScript object.

Syntax

my_ActiveXobject = new

ActiveXObject(“ApplicationName.ObjectName” [, “rServer”])

In VBScript terminology, the syntax appears as follows:

my_ActiveXobject = new ActiveXObject(“ServerName.TypeName”)

Parameters

ApplicationName—The name of the application providing the object.

ObjectName—The type or class of the object being created. When working with local

COM objects, the object resides on the local Load Generator.

rServer—The name of the remote server being accessed. Optional, used when

working through DCOM, to access objects residing on the remote server.

Return Value

A pointer to the new ActiveX object. The new object is simply a local JavaScript object,

and may be handled and manipulated like any other JavaScript object.

Example

To create a new Excel spreadsheet:

ExcelSheet = new ActiveXObject (“Excel.Sheet”)

Assigning Values to ActiveX Objects

At this point, now that you have created a reference to an ActiveX object, the fact that it

refers to an ActiveX object does not affect usage and syntax within your JavaScript

Agenda. Once the new object has been activated, my_ActiveXobject is simply a

local JavaScript object that is used to communicate with a COM object. Your Agenda

works with this object exactly as it would work with any other JavaScript object. You

do not have to deal with any COM overhead or syntax issues. You access the new

object’s properties and methods as you would access any other JavaScript object.

This section describes how to work with local ActiveX objects in your WebLOAD

JavaScript Agenda. For an example illustrating working with ActiveX objects on a

remote server, see DCOM over HTTP (on page 117).

 112 Chapter 3. Advanced JavaScript Agenda Features

Work with your ActiveX objects properties and methods as you would with any

JavaScript object’s properties and methods, using the following syntax:

my_ActiveXobject.method(method-parameters)

orig_property_value = my_ActiveXobject.property

my_ActiveXobject.property = new_property_value

index_property_value =

my_ActiveXobject.indexproperty(indexvalue)

The following JavaScript examples illustrate this use:

// To explicitly create two new object instances

mother = new ActiveXObject ("Family.MotherObject")

father = new ActiveXObject ("Family.FatherObject")

//mother and father are local JavaScript objects

// To assign values directly to my object’s 4 properties

mother.Name = "Jane"

mother.Age = 21

mother.BirthDate = "Jan 20, 1978"

mother.Smoke = false

// To assign values to my object’s 4 properties through an

// object passed as a parameter to my object’s SetInfo method

father_birthday = new Date("Mar 20,1975")

father.SetInfo("John",25,father_birthday,true)

// To implicitly create a new child object

child = mother.MakeChild(father)

// To assign values to my child object’s 4 properties through

// a combination of direct property assignment and

// method execution

child.Name = "Patrick"

color = child.GetEyesColor()

child.DemandCare(mother,father)

Timers and Counters for ActiveX Objects

WebLOAD provides automatic timers and counters for ActiveX objects. Automatic

timers and counters allow you to effortlessly measure and quantify the behavior and

response time of each specific ActiveX component individually, enabling the most

comprehensive testing of your COM-based application.

Every time your Agenda calls an ActiveX method, a timer and a counter are

automatically created for that method. The results are included in the Statistics Report

for that test session.

WebLOAD Scripting Guide 113

For example, assume you are working on a project about animal behavior, using the

following ActiveX object:

animal = new ActiveXObject ("Animals.Dog")

animal.Name = "Bingo"

animal.Drink("Water")

animal.Eat("Meat","Fish")

Each time you call any of the animal object’s methods, a timer and counter for that

method is automatically incremented. The results appear in the Statistics Report. Each

timer and counter is uniquely identified with the ActiveX application, object, and

method name, as illustrated in the following figure:

Figure 23: Timer and Counter Identification with ActiveX Application, Object and Method Name

The counter and timer information is collected and displayed automatically, every time

you call an ActiveX method from your Agenda. You do not have to add anything to

your Agenda code to take advantage of this feature.

Note: There are no counters for calls to ActiveX object constructors.

Automatic Conversion between JavaScript and COM Data
Types

The examples found in the preceding section illustrate how simple it is to refer to

ActiveX objects within your JavaScript Agenda. You do not need to know or declare

anything special about an object’s definition or typing when working within your

 114 Chapter 3. Advanced JavaScript Agenda Features

Agenda. The fact that JavaScript and COM use slightly different data types is not an

issue. WebLOAD simply supports all standard JavaScript and COM data types.

WebLOAD JavaScript Agendas automatically convert between JavaScript and the

corresponding COM data types. The table below illustrates the data type conversions

that are supported. The default choices used if no data type information is available are

marked in bold in the table.

Working with JavaScript and COM data types within a JavaScript Agenda is simple.

Passing values from JavaScript Agendas as parameters to COM objects can be more

complicated. COM does not expect, nor does COM know how to convert from, a

JavaScript data type. WebLOAD is responsible for smoothing the interface between

JavaScript and COM, converting between JavaScript and the corresponding COM data

types when necessary.

When the data type is known, WebLOAD automatically converts between JavaScript

data types and the corresponding COM data type. If the data type is unknown,

WebLOAD checks to see if a TypeInfo library is available for the object. (TypeInfo

is usually available.) When available, WebLOAD takes the data type information from

the TypeInfo library and completes the conversion as usual.

If TypeInfo information is not accessible, WebLOAD uses a basic common-sense

heuristic to determine the data type and select the appropriate conversion, based on

the preceding default conversion table. For example, if a variable A has been assigned a

value of 5, WebLOAD assumes that the variable should be of type Integer.

However, relying on sensible assumptions may inadvertently lead to complications.

For example, the user may actually intend to pass that variable A as a parameter to a

method that expects a String “5”. Or you may be working with an array containing

a whole set of variables of unknown data types, a more complicated situation. For

these reasons, WebLOAD recommends using casting functions when the data type is

unknown, to ensure that the variables are converted to the correct data type before

being passed as parameters to an ActiveX object method. The WebLOAD casting

functions are described in the following section, Using Casting Functions for JavaScript

and COM Data Types (on page 115).

Table 6: JavaScript-COM supported data type conversions

JavaScript
Data Type ®

Integer Double Boolean String Date ActiveX
Object

Array

COM Data

Type

Byte Yes Yes Yes - - - -

Short Yes Yes Yes - - - -

Long Yes Yes Yes - - - -

WebLOAD Scripting Guide 115

JavaScript

Data Type ®

Integer Double Boolean String Date ActiveX

Object

Array

Float Yes Yes Yes - - - -

Double Yes Yes Yes - - - -

VARIANT_

BOOL

Yes Yes Yes - - - -

Date - - - - Yes - -

BSTR Yes Yes Yes Yes - - -

IUnknown - - - - - Yes -

IDispatch - - - - - Yes -

SAFEARRAY - - - - - - Yes

(Arrays of a specific type. See discussion of array data types in Using Casting Functions for

JavaScript and COM Data Types on page 115.)

VARIANT Yes Yes Yes Yes Yes Yes -

Using Casting Functions for JavaScript and COM Data

Types

WebLOAD recommends using casting functions under the following circumstances:

 When no TypeInfo library is available.

 When you know you are passing mismatched data types.

 If you receive a TypeError message from COM.

Casting functions ensure that JavaScript variables are converted to the correct data

type before being passed as parameters to an ActiveX object method. To explain why

casting functions are recommended, this section focuses on how JavaScript and COM

work with arrays.

Arrays are collections or sets of variables. The values stored within a JavaScript array

may either all be of the same data type, (i.e., all integers or all strings), or they may

consist of a variety of different data types. COM includes a SafeArray option,

asserting that all the items within the array are of the same type. For maximum

flexibility, SafeArrays also provide the option of all items being of type Variant.

While each item is officially of the ‘same type’, this actually means that each item may

be of any Variant– compatible data type.

While there are very few restrictions on the kinds of data types acceptable by ActiveX

objects for array parameters, the one requirement is that whatever is passed must be of

the correct (expected) data type. If an ActiveX object method expects to receive an

array of type Integer, it must be passed an array of type Integer and not an array

of type Variant, even if all the array elements do happen to be integers. When

 116 Chapter 3. Advanced JavaScript Agenda Features

passing a JavaScript array object as a parameter to an ActiveX object method, the items

of that array must be converted correctly to the corresponding ActiveX object data

types or the method will fail.

If nothing is known about the data type of an array’s elements, WebLOAD tries to

choose the most logical data type for that array. For example, if all the values in the

array appear to be of the same data type, WebLOAD will pass an array of that data

type. If the values in the array appear to be of different data types, WebLOAD will pass

an array of type Variant. While this approach will almost always work, it may

occasionally fail. For example, in the rare event that an array of type Variant

coincidentally contains only items that happen to all be of the same Integer data

type, WebLOAD will analyze the elements of that array, conclude that it must be of

type Integer, and convert it accordingly to an ActiveX array object of type Integer.

This may be a logical decision, but the method will fail.

To avoid this small possibility of failure during your testing session, WebLOAD

provides a complete set of casting functions. While casting functions may be used at

any time, explicitly setting a data type is usually recommended only when no

TypeInfo library is available, when you know you are passing mismatched data

types, or if you receive a TypeError message from COM. (COM errors, which appear

as standard error messages on the WebLOAD Console, are usually triggered by an

error in the application being tested, for example, by an error in the ActiveX object’s

TypeInfo library.)

WebLOAD provides the following casting functions:

 CByte()

 CInt()

 CLng()

 CDbl()

 CFlt()

 CBool()

 CVARIANT()

These functions take a variable as a parameter and return that value cast to the

specified data type. Only legal data type conversions, as listed the table in Automatic

Conversion between JavaScript and COM Data Types (on page 113), are allowed.

For example, assume you had an array that should be passed as data type Variant, but

it only holds items with integer values. To prevent problems, use the CVARIANT()

function to explicitly cast the array elements to the Variant data type, as follows:

My_variant_arr = new Array()

My_variant_arr[0] = CVARIANT(1)

My_variant_arr[1] = CVARIANT(21)

WebLOAD Scripting Guide 117

My_variant_arr[2] = CVARIANT(32)

My_variant_arr[4] = CVARIANT(44)

Result = RemoteCOMobject.Add(My_variant_arr)

Remember, if your array contains elements with a variety of data types, you don’t have

to explicitly cast the array elements to force the array to be converted to data type

Variant. WebLOAD will understand that this is a Variant array based on the

variety of data types found. However, you may always use a casting function if you

wish:

My_variant_arr = new Array()

My_variant_arr[0] = CVARIANT(1)

My_variant_arr[1] = CVARIANT(21.1)

My_variant_arr[2] = CVARIANT("John")

My_variant_arr[4] = CVARIANT(new Date(1999,1,1))

Result = RemoteCOMobject.Concat(My_variant_arr)

In another example, assume you had an array that should be passed as data type

Double. The elements were assigned a variety of Integer and Double data type

values. There is no TypeInfo library available. WebLOAD, seeing a combination of

integer and double values, will assume that this is an array of data type Variant.

However, the method is expecting an array of data type Double. To prevent

problems, use the CDbl() function to explicitly cast the integer array elements to the

Double data type, as follows:

My_double_arr = new Array()

My_double_arr[0] = 100.1

My_double_arr[1] = CDbl(21)

My_double_arr[2] = 22.2

Result = RemoteCOMobject.AddDoubles(My_double_arr)

DCOM over HTTP

In today’s work environment, applications are often distributed over a network. In the

course of your testing session, you may need to activate an ActiveX object that is

located on a remote server and accessed through a network. For this reason,

WebLOAD supports ActiveX object access through Remote Data Service (RDS).

Remote object access is accomplished in two steps: First, declare a new RDS object.

That RDS object is used as a bridge, pointing to the ActiveX object residing on the

remote server. Then, activate an ActiveX object located on a remote server, use the

initial instantiation syntax described in Remote ActiveXObject() Constructor (on

page 118).

 118 Chapter 3. Advanced JavaScript Agenda Features

Note: WebLOAD assumes a basic familiarity with RDS use, including object

declaration and initialization, and system configuration. For more information about

Microsoft’s Remote Data Services of ADO (RDS), go to the following websites:

For a general overview, see the Microsoft MSDN Online Library at

http://msdn.microsoft.com.

For a more complete example that illustrates RDS use, see

http://support.microsoft.com/kb/q184630/.

To learn how to configure RDS.DataSpace to create a Custom Business Object

(ActiveX DLL) on either NT or Win2000, see http://support.microsoft.com/kb/q185169/.

To learn how to configure RDS for Windows 2003, see

http://support.microsoft.com/kb/837981/en-us.

Remote ActiveXObject() Constructor

Method of Object

 ActiveX

Description

Creates a new remote ActiveX object. The new object is simply a local JavaScript object,

and may be handled and manipulated like any other JavaScript object.

Syntax

RDS_object = new ActiveXObject (“RDS.DataSpace”)

my_RemoteActiveXobject =

RDS_object.CreateObject(“AppName.ObjName”, “http://rServer”)

Parameters

RDS.DataSpace—Creates an RDS object to act as a ‘bridge’ to an ActiveX object

residing on the remote server.

ApplicationName—The name of the application providing the object.

ObjectName—The type or class of the object being created.

rServer—The name of the remote server being accessed.

Return Value

A pointer to the new ActiveX object. The new object is simply a local JavaScript object,

and may be handled and manipulated like any other JavaScript object.

http://msdn.microsoft.com/
http://support.microsoft.com/kb/q184630/
http://support.microsoft.com/kb/q185169/
http://support.microsoft.com/kb/837981/en-us

WebLOAD Scripting Guide 119

Comments

When working with a remote server, the object you are accessing must reside on the

Web server computer (in this example: http://rserver).

Once your new object is instantiated, it is simply a local JavaScript object, just like any

other JavaScript object. You may manipulate the object as you would any other

JavaScript object. An example of remote ActiveX object instantiation and use is

illustrated in the next section.

Example: Remote ActiveX Object Access

The following Agenda fragment illustrates ActiveX object access from a WebLOAD

JavaScript Agenda. This example retrieves a recordset from a database, updates the

recordset, and then makes the necessary changes to the database.

// Instantiate a new ActiveX object

DataSpace = new ActiveXObject(“RDS.Dataspace”)

// Invoke server object. localhost is the server here

svrObject = DataSpace.CreateObject

("RDSServer.DataFactory", "http://localhost")

// svrObject is now a local JavaScript object used to

// access the remote ActiveX object. svrObject is

// manipulated exactly as any other JavaScript object.

// Create output file with the unique ClientNum included

// as part of the name for identification purposes

wlLocals.MyFileObj = new wlOutputFile

(“C:\\OutputFile” + ClientNum + “.txt”)

// svrObject.Query returns a recordset

strRecord = svrObject.Query

("DSN=AdvWorks2", "Select* from Customers")

// Initialize database record counter

n_recordCounter = 0

// The objField2 variable is used for debugging,

// to verify the correct field and check its value.

objField2 = strRecord.Fields("Threads")

// Notice that it is not necessary to explicitly state:

// objField2 = strRecord.Fields.item("Threads")

// because WebLOAD supports default fields

// The Agenda works in a While-loop that

// verifies that I am not at the last record.

// If I am, then the update code does not run

while(strRecord.EOF == false)

 120 Chapter 3. Advanced JavaScript Agenda Features

{

// Access the current field value

strCurrentFieldValue = strRecord.Fields(0).Value

// Add five to current record value and

// verify that I am talking to the dataSource

// so I can keep track of where I am in the field

if (strCurrentFieldValue == 5)

strCurrentFieldValue += 5

// Update just saves the field.dot value

objField2.Value = strCurrentFieldValue

objField2.Value.Update

// More debug coded when necessary.

txtCurrent = strRecord.Fields(0).Value

// Submit changes to the record source and

// move to the next record

svrObject.SubmitChanges("DSN=AdvWorks2", strRecord)

strRecord.MoveNext()

}

// End of While-loop

COM Error Management

Failure of a COM function call always triggers a WebLOAD error message, whether or

not the COM call was enclosed in a try...catch block. This gives the Agenda

programmer an opportunity to handle application errors within the context of the

WebLOAD test session Agenda.

ActiveX Object Limitations

Due to the nature of ActiveX object implementation, WebLOAD ActiveX support is

subject to certain limitations. The following items are not supported:

 Events. The ActiveX object is not able to make a call to the client.

For example, work with the IConnectionPoint interface is not supported.

 Setting a property value within a function parameter.

For example, you cannot write:

ReturnValue = FunctionCall((My_Object.Property=5))

 Passing method calls that return values as parameters to another method call of the

same object.

For example, the following method call will fail:

WebLOAD Scripting Guide 121

AU = new ActiveXObject ("Persits.AspUser")

CurrentUser = AU.GetUser(AU.GetUserName())

Instead, either call the method using a second, temporary object, such as this:

AU = new ActiveXObject ("Persits.AspUser")

AUTemp = new ActiveXObject ("Persits.AspUser")

CurrentUser = AU.GetUser(AUTemp.GetUserName())

Or use a method and a property rather than two methods, such as this:

AU = new ActiveXObject ("Persits.AspUser")

CurrentUser = AU.GetUser(AU.UserNameProp)

 Assigning values to indexed properties.

For example, you cannot assign a value as follows:

My_object.property(1) = 5

 Calling an indexed property without parentheses.

For example, the following call to the indexed property Environment will fail:

WshShell = new ActiveXObject("WScript.Shell")

env = WshShell.Environment

Instead, use the following syntax:

WshShell = new ActiveXObject("WScript.Shell")

env = WshShell.Environment("System")

WebLOAD Scripting Guide 123

Chapter 4

Working with HTTP Protocol

Website load testing usually means testing how typical user activities are handled by

the system under test not in a single-user scenario but rather under heavy usage load.

Using load testing, we can test the system’s performance, scalability and reliability, all

in real-life simulated usage scenarios and patterns. A system’s performance is all about

how fast it functions; its reliability is about how often it’s available (where a system

might be unavailable due to a lack of a certain resource or because of a bug); and a

system’s scalability is about how these two factors (performance and reliability) change

as the usage of the system increases.

WebLOAD was designed as a protocol-level load testing tool, enabling the QA

professional to “bombard” the system under test with protocol-level commands and

transactions, simulating real usage of a large amount of users. The main and most

important protocol for load testing Internet applications is the HTTP protocol.

WebLOAD supports the common HTTP methods and headers, as defined in the HTTP

RFCs, most notably RFC 2616 (1999), that was defined by the W3C and the IETF.The

WebLOAD DOM extension set includes objects, methods, properties, and functions

that support designing tests at the HTTP protocol level. Using the DOM, functional

and verification tests can be done, to check the system’s reliability under load.

This chapter documents the features that apply to QA professionals creating Agendas

based on the HTTP Protocol, where HTTP transactions and the responses they trigger

are the focus of the test session. This chapter includes a few sample Agendas that you

can study to help learn the HTTP Protocol testing technique. The examples are

fictitious, but you can copy the Agendas and edit them for use in real WebLOAD tests.

More sample Agendas may be found on the WebLOAD Script Libraries, at

http://www.webload.org/index.php?option=com_wrapper&Itemid=160.

http://www.webload.org/index.php?option=com_wrapper&Itemid=160

 124 Chapter 4. Working with HTTP Protocol

Understanding the WebLOAD DOM Structure

For optimum website testing, WebLOAD extended the standard browser DOM with

many features and functions that are critical to site testing and evaluation. The

following figure, an extended version of the basic DOM hierarchy tree, highlights

many of the added elements of the WebLOAD DOM hierarchy. The remainder of this

chapter provides more detailed information about some of the special elements and

features that WebLOAD added to the basic DOM model that are used when working

in HTTP Protocol mode.

window

document frameslocation

imagesforms linksframes

window window

windowwindow
href

host

hostname

protocol

port

search

hash

pathname

target

wlSearchPairs

href

host

hostname

protocol

port

search

hash

pathname

 wlSearchPairs

src

protocol

elements

location

wlSource

wlVersion

wlStatusNumber

wlStatusLine

wlHeaders

wlMetas

wlTables

wlXmls

wlGetAllForms

wlGetAllFrames

wlGetAllLinks

DOM: WebLoad

Extensions—Complete Tree

name

type

value

defaultvalue

checked

defaultchecked

selectedindex

length

options

title

string

scripts

src

language

event

id

innerHTML

action

method

name

target

encoding

text

value

selected

defaultselected

valuekey

wlSearchPairs

THTD

wlTables

valuekey

wlHeaders

Figure 24: WebLOAD DOM Hierarchy

The preceding illustration highlights in bold the WebLOAD extensions used by

WebLOAD when working with the Document Object Model.

Note: WebLOAD-specific objects are identified by the wl prefix.

The following table lists some of the extensions that WebLOAD has added to the

standard DOM objects, properties, and methods.

WebLOAD Scripting Guide 125

Table 7: WebLOAD DOM Extension Set Highlights

WebLOAD extensions Description

Objects

wlCookie Sets and deletes cookies.

wlException WebLOAD error management object.

wlGeneratorGlobal and

wlSystemGlobal objects
Handles global values shared between Agenda threads or Load

Generators.

wlGlobals Manages global system and configuration values.

wlHeader Contains the key/value pairs in the HTTP command headers that

brought the document. (Get, Post, etc.)

wlHtml Retrieves parsed elements of HTTP header fields.

wlHttp Performs HTTP transactions and stores configuration property values

for individual transactions.

wlLocals Stores local configuration property values.

wlMeta Stores the parsed data for an HTML meta object.

wlOutputFile Writes Agenda output messages to a global output file.

wlRand Generates random numbers.

wlSearchPair Contains the key/value pairs in a document’s URL search strings.

wlTable, row, and cell

objects
Contains the parsed data from an HTML table.

XML DOM objects XML DOM object set that both accesses XML site information and

generates new XML data to send back to the server for processing.

Properties

wlSource Contains the complete HTML source code of the frame, in a read-

only string.

wlStatusLine Contains the status line of the HTTP header, in a read-only string.

wlStatusNumber Contains the HTTP status value, which WebLOAD retrieves from the

HTTP header, in a read-only integer.

wlVersion Contains the HTTP protocol version, which WebLOAD retrieves

from the HTTP header, in a read-only string.

Methods

wlGetAllForms Retrieves a collection of all forms (<FORM> elements) in an HTML

page and its nested frames.

wlGetAllFrames Retrieves a collection of all frames in an HTML page, at any level of

nesting.

wlGetAllLinks Retrieves a collection of all links (<A> elements) in an HTML page

and its nested frames.

 126 Chapter 4. Working with HTTP Protocol

Using Multiple IP Addresses

WebLOAD enables the creation of a single test script that includes multiple IP

addresses, simulating the behavior of actual users.

Note: Before you enable support of multiple IP addresses, you must first generate

additional IP addresses on your machine to use when testing. For more information,

see Generating IP Addresses in the Agenda on page 126.

Enable the use of all available IP addresses through the property

wlGlobals.MultiIPSupport. The values of MultiIPSupport are:

 false – Use only one IP address. (default)

 true – Use all available IP addresses.

Indicate whether WebLOAD should use the same IP or a different IP for every round,

by setting the value of the wlGlobals.MultiIPSupportType property which

supports the following values:

 PerClient – WebLOAD preserves the current behavior, meaning that there are

different IPs per client but the same IP is used for all rounds. This is the default

setting.

 PerRound – WebLOAD supports the use of a different IP from the pool per client,

per round, until the pool is exhausted, after which it returns to the beginning.

The exact number of IPs that WebLOAD supports depends on the operating system

being used:

 With Unix, WebLOAD uses the gethostbyname() function to access the IP

address. There is no limit to the number of IP addresses that WebLOAD supports.

 With Windows, WebLOAD loads an SNMP agent dll file, through which

WebLOAD accesses the IP information. The SNMP agent exists on all Windows

versions since Win95 and NT, even if an SNMP agent is not installed. This method

queries all of the IPs, one at a time, and places the result in a list maintained in the

WebLOAD’s engine code. WebLOAD continues to go over the entire IP list, until it

reaches the engine code’s limit of 100,000 IPs.

If for some reason the SNMP does not work, WebLOAD uses another method

whose limitation is 35 IPs.

Generating IP Addresses in the Agenda

After enabling the use of all available IP addresses, you can generate additional IP

addresses on your machine by setting the TCP/IP properties through the Windows UI.

For further instructions consult your system administrator. Alternatively, you can use

the FillIP.bat file provided with WebLOAD, as described below.

WebLOAD Scripting Guide 127

To generate IP addresses in the Agenda:

1. Locate the FillIP.bat file in <WebLOAD directory>\bin.

2. Run the batch file by entering the file name in the command line or double-clicking

the file.

The command line window appears.

Figure 25: Command Line Window

3. Enter the netsh command to generate the list of IP addresses.

FillIP IP_prefix subnet_mask gateway from to

The netsh command parameters are described in the following table:

Table 8: FillIP Command Parameters

Parameter Description

IP_prefix The prefix used for all of the generated IP addresses. For example, if IP_prefix

is 192.168 then the generated IP address structure is 192.168.xxx.xxx.

subnet_mask The subnet_mask is matched with the IP address to determine the fourth section

of the generated IP address, along with the gateway value. For example

255.255.0.0.

gateway The gateway used for all of the generated IP addresses to determine the fourth

section of the generated IP address, along with the subnet_mask value. For

example, 192.168.0.1.

from to Used to generate the third section in the IP address. For example, if from to is 1

24, then the generated IP addresses are all from xxx.xxx.1.xxx to

xxx.xxx.24.xxx.

Upon successful completion, the Command Line window returns OK. If an error is

encountered (for example, an illegal IP address), the Command Line window

returns details about the error.

 128 Chapter 4. Working with HTTP Protocol

For example, to generate approximately 6000 IP addresses, use the following

command in the Agenda:

FillIP 192.168 255.255.0.0 192.168.0.1 1 24

The following IP addresses are generated:

192.168.1.1 192.168.2.1 … 192.168.24.1

192.168.1.2 192.168.2.2 … 192.168.24.2

…

192.168.1.255 192.168.2.255 … 192.168.24.255

Parsing Web Pages

Web testing sessions work with Web pages, by accessing a specified page and verifying

that all operations are completed correctly. As part of the Web page access,

downloaded Web pages are parsed and the data from each page stored in a logical

structure. This section gives a brief overview of the parsing approach to a Web page.

A Typical Web Page and the Corresponding Parse Tree

The following is an example of a typical Web page, including three child windows

with their own nested frames, forms, and links:

WebLOAD Scripting Guide 129

Parent Web Page Window

•

.

.

.

This is the first window nested within the parent web page.
This first child window is referred to as frames[0].

It includes its own 2 child windows:

This is the first window nested within frames[0].

This ‘grandchild’ window is referred to as
frames[0].frames[0].

It includes the following 2 links:

This is the second window nested within frames[0].

This ‘grandchild’ window is referred to as
frames[0].frames[1].

LINK1,

referred to as
frames[0].frames[0].links[1]

This is the second window nested within the parent web page.
This second child window is referred to as frames[1].

It includes the following form:

.

This is the form nested within frames[1].

This ‘grandchild’ form is referred to as
frames[1].forms[0].

It includes the following 3 fields:

.

This is the third window nested within the parent web page.
This third child window is referred to as frames[2].

 .

Field1

UserID

Field2

FirstName

Field3

LastName

LINK0

referred to as
frames[0].frames[0].links[0]

1 2

3

A
C

B

a

b

c

d

e

Figure 26: Typical Web Page

The figure above illustrates a URL that includes a single document with three child

windows (1, 2, and 3).

The first child window (1) includes two children of its own, here referred to as

‘grandchildren’ (A and B).

The first ‘grandchild window’ (A) includes two links (a and b).

The second child window (2) contains a single form, here referred to as a ‘grandchild

form’ (C). This grandchild form includes three element fields (c, d, and e).

The frames and links are identified by index numbers (0, 1, 2, 3,...). The form fields are

identified by name ("UserId", "FirstName", etc.).

The preceding Web page relies on a hierarchical window structure that corresponds to

the following virtual tree:

 130 Chapter 4. Working with HTTP Protocol

Parent Web Page

http://MyCompany/WebPage.html

Frames[1].Forms[0]

http://MyCompany/Submit.html

Field1
“UserID” contains “AB1234”

Frames[0]

Frames[0]http://MyCompany/Frame0.html

Frames[1]

http://MyCompany/Frame1.html

Frames[2]

http://MyCompany/Frame2.html

Frames[0].Frames[0]

http://MyCompany/Frame0A.html

Frames[0].Frames[1]

http://MyCompany/Frame0B.html

Frames[0].Frames[0].Links[0]

‘go to first link’

http://MyCompany/link0.html

Frames[0].Frames[0].Links[1]

“go to second link’

http://MyCompany/link1.html

Field2
“FirstName” contains “Bill”

Field3
“LastName” contains “Smith”

2
1

1

1

1

1

1

3
1

1

A
1

1

1

1

1

1

1

1

1

B
1

1

1

1

1

1

1

1

1

C
1

1

1

1

1

1

a
1

1

1

1

1

1

1

1

1

1

b
1

1

1

1

1

1

1

1

c
1

1

1

1

1

d
1

1

1

1

e
1

1

1
1

1

1

1

1

1

1

1

1

Figure 27: Web Page Virtual Hierarchy Tree

In the document object property description, the examples given will refer to the Web

page illustrated here.

Parsing and Navigating Nested Frames on a Dynamic

HTML Page

The following Agenda downloads a dynamic HTML page belonging to a retailer that

advertises on the Internet. The second frame on the page offers bargain prices on three

different items each hour. The Agenda performs the following operations, some of

which are marked in bold in the Agenda code:

 Downloads the page including the nested frames.

 Retrieves the second frame.

 Searches the HTML source code of the second frame to find the <TITLE> element.

 Confirms that the title is "Offer of the Hour". (If it is not, the Agenda displays an

error message and stops the current round of the thread where the error occurred.

The thread continues with the next round.)

 Randomly selects one of the first three links in the second frame.

 Follows the link.

Note: This Agenda includes DOM objects that are not explained in this section. For

more information about a specific object or usage, (such as wlGlobals, wlRand, or

wlHttp), see that object’s section in the WebLOAD JavaScript Reference Guide.

WebLOAD Scripting Guide 131

function InitAgenda()

{

//Enable parsing of all links

wlGlobals.ParseLinks = true

//Enable downloading nested frames

wlGlobals.GetFrames = true

}

function InitClient()

{

//Initialize the random number generator with a

//different seed for each thread (ensures that each

//thread follows a different sequence of links)

wlRand.Seed(ClientNum)

}

//Main Agenda Body

//Store the most recent download in document.wlSource

wlHttp.SaveSource = true

//Download the dynamic HTML page

wlHttp.Get("http://www.webloadmpstore.com/general_sample/frames/

frames.htm")

//Retrieve the second frame

MyFrame = document.frames[1]

InfoMessage(MyFrame)

InfoMessage(MyFrame.document.wlSource)

//Confirm that the <TITLE> element of the frame is

//"Offer of the Hour". If it is not, display an error

//message and abort the current round.

//Remember to escape the slash in </TITLE>

// Using extractValue to catch the title

myTitle = extractValue("<title>", "<\/title>",

MyFrame.document.wlSource)

// will print the content of the title

InfoMessage (myTitle)

if (myTitle != "offer of the hour")

{

ErrorMessage("Thread " + ClientNum.toString() + ", Round " +

RoundNum.toString() + ": Title is not ‘Offer of the Hour’ but

is " + myTitle)

 132 Chapter 4. Working with HTTP Protocol

}

//Retrieve the URL of a randomly selected link

SelectedItem = wlRand.Select(0, 1, 2)

LinkUrl = MyFrame.document.links[SelectedItem].href

InfoMessage(LinkUrl)

//Follow the link

wlHttp.Get(LinkUrl)

Using wlHtml to Follow a Dynamic Link

The third link on a company’s home page is an advertisement that links to one of

several products. On successive accesses, the advertisement switches dynamically

among the products.

The following WebLOAD Agenda tests the time that a user would need to follow the

link.

The Agenda:

 Links to the home page and parses the HTML code.

 Retrieves the URL of the third link.

 Measures the time it takes WebLOAD to:

 Download the main page and, depending on the parameters, do any of the

following:

 Download frames, images, tables, or whatever else has been specified.

 Download nested subframes, images, etc.

 Parse the document.

In this Agenda, WebLOAD displays two time statistics:

 The Round Time.

 The Link Time.

function InitAgenda()

//Set the default URL to the dynamic HTML home page

wlGlobals.Url = "http://www.ABCDEF.com"

//Parse links. Forms are not needed.

wlGlobals.ParseLinks = true

wlGlobals.ParseForms = false

}

//Main script

//Connect to the home page

wlHttp.Get()

WebLOAD Scripting Guide 133

// Retrieve the third link on the home page using the manual

// GetLinkByIndex() method.

// See IdentifyObject() for the dynamic ASM alternative

Link3 = wlHtml.GetLinkByIndex(3)

//Measure the time to connect to the link

SetTimer("Link Time")

wlHttp.Get(Link3.href)

SendTimer("Link Time")

Data Submission Properties

You may submit many types of data to an HTTP server in a Get, Post, or Head

command. For example, you can submit a search string, the results of form fields, or a

file. You may assign values to variable data stored in these collections using the wlSet

method.

The wlHttp object provides the following collections to store the data that you want to

submit:

 FormData

 Data

 DataFile

 Header

At the time you first create your test Agenda, you should decide which collection is

most appropriate for your test session activities.

 FormData is the standard collection of field values, common to all HTML forms.

 Header is the collection of header field values only.

 Data and DataFile are both collections that hold sets of data.

 Data collections are stored within the Agenda itself, and are useful when you

prefer to see the data directly.

 DataFile collections store the data in local text files, writing only the name of

the data file within the Agenda itself, and are useful when you are working

with large amounts of data, which would be too cumbersome to store within

the Agenda code itself.

Your Agenda can work with both Data and DataFile collections. Do not use both

properties on the same object (a single HTTP request can use either Data or DataFile

collections, but not both).

 134 Chapter 4. Working with HTTP Protocol

FormData

FormData is a collection containing form field values. WebLOAD submits the field

values to the HTTP server when you call one of the following methods of the wlHttp

object:

 Get()

 Post()

 Head()

The collection indices are the field names (HTML name attributes). Before you call

wlHttp.Post(), set the value of each element to the data that you want to submit in

the HTML field. The fields can be any HTML controls, such as:

 buttons

 text areas

 hidden controls

Generally, when an HTTP client (Microsoft Internet Explorer/Firefox or WebLOAD)

sends a URL-encoded request to the server, the data is HTTP encoded. Different clients

– browsers or JavaScript functions such as Ajax – perform encoding with slight

differences. Encoding form data replaces special characters such as blanks, “>“ signs,

and so on, with “%xx” (an ASCII hexa number). For example, a space is encoded as

“%20” or as a “+”.

The Get() method converts a URL address to contain only allowed URL characters.

The Post() method converts the content of forms to contain only allowed URL

characters. Forms contain one of the following content types:

 FormData [“key”] – a value

 Data [] – raw information

 DataFile [] – both a value and raw information

Turn off the encoding when the Agenda sends large requests that have no data that

needs to be encoded. This improves performance as it bypasses the scanning and

reformatting of the request buffer. You can enable or disable encoding, by accessing the

HTTP Parameters tab in the Current or Default Project Options dialog box, in

WebLOAD IDE. Check or uncheck Encode Form Data to enable or disable encoding.

Getting FormData Using Get()

You can get form data using a Get() call.

For example:

wlHttp.FormData["FirstName"] = "Bill"

WebLOAD Scripting Guide 135

wlHttp.FormData["LastName"] = "Smith"

wlHttp.FormData["EmailAddress"] = "bsmith@ABCDEF.com"

wlHttp.Get("http://www.ABCDEF.com/submit.cgi")

WebLOAD appends the form data to the URL as a query statement, using the

following syntax:

http://www.ABCDEF.com/submit.cgi

?FirstName=Bill&LastName=Smith

&EmailAddress=bsmith@ABCDEF.com

Submitting FormData Using Post()

Suppose you are testing an HTML form that requires name and email address data.

You need to submit the form to the submit.cgi program, which processes the data.

You can code this in the following way:

wlHttp.FormData["FirstName"] = "Bill"

wlHttp.FormData["LastName"] = "Smith"

wlHttp.FormData["EmailAddress"] = "bsmith@ABCDEF.com"

wlHttp.Post("http://www.ABCDEF.com/submit.cgi")

The Post() call connects to submit.cgi and sends the FormData fields. In the

above example, WebLOAD would post the following fields:

FirstName=Bill

LastName=Smith

EmailAddress=bsmith@ABCDEF.com

Submitting FormData with Missing Fields

You can use the string "WLEMPTY$STRING$" to represent a missing name or value

(an empty string) in a FormData field. You can use the string "WLVOID$STRING$"

to represent a token that is posted alone, without even an equal sign.

The following lines illustrate the syntax:

wlHttp.FormData["FirstName"] = "WLEMPTY$STRING$"

wlHttp.FormData["WLEMPTY$STRING$"] = "Smith"

wlHttp.FormData["EmailAddress"] = "WLVOID$STRING$"

wlHttp.Post("http://www.ABCDEF.com/submit.cgi")

In this example, the Post() call sends the following data:

FirstName=

=Smith

EmailAddress

 136 Chapter 4. Working with HTTP Protocol

A Get() call using the same form data would send:

http://www.ABCDEF.com/submit.cgi?FirstName=&=Smith&EmailAddress

Note: JavaScript supports two equivalent notations for named collection elements:
FormData.FirstName
FormData["FirstName"]

The latter notation also supports spaces in the name, for example, FormData["First

Name"].

 Using FormData with Data Files

You can coordinate the FormData property with input data files. In this case, one of

the FormData fields stores identifying information about the data file, including the

name of the file and the type of data in the file (text, binary, bmp, etc.).

The following lines illustrate the syntax:

wlHttp.FormData[“InputFile.wlFile-Name”] = ”myFavoritePicture”

wlHttp.FormData[“InputFile.wlContent-Type] = ”bmp”

The following Agenda fragment illustrates the FormData properties documented in

this section. The input file lines are marked in bold.

...

/***** WLIDE - URL : http://ws3/webft/fullform.asp - ID:4 *****/

wlGlobals.UserAgent = "Mozilla/4.0 (compatible; MSIE 7.0;

Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR

3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 1.1.4322)"

wlHttp.Header["Referer"] = "http://ws3/webft/index.asp"

wlHttp.Get("http://ws3/webft/fullform.asp")

 // END WLIDE

/***** WLIDE - Sleep - ID:5 *****/

Sleep(18890)

 // END WLIDE

/***** WLIDE - URL : http://ws3/webft/fullform.asp - ID:6 *****/

wlGlobals.UserAgent = "Mozilla/4.0 (compatible; MSIE 7.0;

Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR

3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 1.1.4322)"

wlHttp.Header["Referer"] = "http://ws3/webft/fullform.asp"

wlHttp.FormdataEncodingType = 1

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["text1"] = "user1"

wlHttp.FormData["password1"] = "password1"

WebLOAD Scripting Guide 137

wlHttp.FormData["textarea1"] = "some text"

wlHttp.FormData["checkbox1"] = "second value"

wlHttp.FormData["select1"] = "first select value"

wlHttp.FormData["submit2"] = "Submit2"

wlHttp.Post("http://ws3/webft/fullform.asp")

 // END WLIDE

...

/***** WLIDE - URL : http://ws3/upload/ssl-upload.html - ID:16

*****/

wlGlobals.UserAgent = "Mozilla/4.0 (compatible; MSIE 7.0;

Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR

3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 1.1.4322)"

wlHttp.Get("http://ws3/upload/ssl-upload.html")

 // END WLIDE

/***** WLIDE - Sleep - ID:17 *****/

Sleep(22999)

 // END WLIDE

/***** WLIDE - URL : http://ws3/upload/ssl-upload-handler.php -

ID:18 *****/

wlGlobals.UserAgent = "Mozilla/4.0 (compatible; MSIE 7.0;

Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR

3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 1.1.4322)"

wlHttp.Header["Referer"] = "http://ws3/upload/ssl-upload.html"

wlHttp.EncodeFormdata = false;

wlHttp.ContentType = "multipart/form-data"

wlHttp.FormData["text"] = "abcd"

wlHttp.FormData["uploadFile[].wlFile-Name"] = "a.txt"

wlHttp.FormData["uploadFile[].wlContent-Type"] = "text/plain"

wlHttp.FormData["uploadFile[].wlFile-Name"] =

"WLEMPTY$STRING$"

wlHttp.FormData["uploadFile[].wlContent-Type"] =

"application/octet-stream"

wlHttp.FormData["uploadFile[].wlFile-Name"] =

"WLEMPTY$STRING$"

wlHttp.FormData["uploadFile[].wlContent-Type"] =

"application/octet-stream"

wlHttp.FormData["submit"] = "Submit Query"

wlHttp.Post("http://ws3/upload/ssl-upload-handler.php")

 // END WLIDE

 138 Chapter 4. Working with HTTP Protocol

Data

Data is a string to be submitted in an HTTP Post command.

The Data property has two subfields:

 Data.Type—the MIME type for the submission

 Data.Value—the string to submit

You can use Data in two ways:

 As an alternative to FormData if you know the syntax of the form submission.

 To submit a string that is not a standard HTML form and cannot be represented by

FormData.

Thus the following three code samples are equivalent:

//Sample 1

wlHttp.Data.Type =

"application/x-www-form-urlencoded"

wlHttp.Data.Value =

"SearchFor=icebergs&SearchType=ExactTerm"

wlHttp.Post("http://www.ABCDEF.com/query.exe")

//Sample 2

wlHttp.FormData.SearchFor = "icebergs"

wlHttp.FormData.SearchType = "ExactTerm"

wlHttp.Post("http://www.ABCDEF.com/query.exe")

//Sample 3

wlHttp.Post

("http://www.ABCDEF.com/query.exe" +

"?SearchFor=icebergs&SearchType=ExactTerm")

Note: Data and DataFile are both collections that hold sets of data.

Data collections are stored within the Agenda itself, and are useful when you prefer to

see the data directly.

DataFile collections store the data in local text files, and are useful when you are

working with large amounts of data, which would be too cumbersome to store within

the Agenda code itself. When working with DataFile collections, only the name of

the text file is stored in the Agenda itself.

Your Agenda can work with both Data and DataFile collections. Do not use both

properties for the same lHTTP object (a single HTTP request can use either Data or

DataFile properties, but not both). When you record your Agenda with the

WebLOAD IDE, use the Post Data tab in the Recording and Script Generation Options

dialog box to define the default behavior for submitting content types. The default

WebLOAD Scripting Guide 139

behaviors are Data and DataFile, although you can edit these definitions and add

additional predefined behaviors for other content types as well.

DataFile

DataFile is a file to be submitted in an HTTP Post command. WebLOAD sends the

file using a MIME protocol.

DataFile has two subfields:

 DataFile.Type—the MIME type

 DataFile.Filename—the name of the file, for example:

"c:\\MyWebloadData\\BigFile.doc"

WebLOAD sends the contents of the file stored in <filename> in the Post command.

Header

A collection of HTTP header fields that you want to send in a Get(), Post(), or

Head() call.

By default, WebLOAD sends the following header in any HTTP command:

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Host: <host>

Connection:Keep-Alive

Here, <host> is the host name to which you are connecting, for example:

www.ABCDEF.com:81.

By default, the Referer header is also recorded and sent, where it is being used by the

Web server.

You may reset these properties, for example, as follows:

wlHttp.UserAgent = "Mozilla/4.03 [en] (WinNT; I)"

Note: The user-agent header is defined in WebLOAD IDE. Access Tools Default or

Current Project Options, select the Browser Parameters tab, and edit the user-agent

field.

Alternatively, you can use the Header property to override one of the default header

fields. For example, you can redefine the following header field:

wlHttp.Header["user-agent"] =

"Mozilla/4.03 [en] (WinNT; I)"

 140 Chapter 4. Working with HTTP Protocol

Additional header fields are recorded and sent according to the checked Record

Headers options in the Script Content tab of the Recording and Script Generation

Options dialog box (in WebLOAD IDE):

Accept-Language: en-us

UA-CPU: x86

Pragma: no-cache

Note: The headers If-Modified-Since and If-None-Matched will be commented

out to overcome the situation where recorded links were fetched from the browser’s

cache during the recording. The request header Accept-Encode: gzip will also be

commented out, to ensure correct behavior.

When the Record Custom Headers option is enabled, WebLOAD records any headers

that are not explicitly defined in the RFC, such as the SOAP Action header. This option

is not selected by default.

Note: Any information set using the wlHttp.Header property takes priority over any

defaults set using the global, local, or other wlHttp properties. If there is any

discrepancy between the document header information and the HTTP values,

WebLOAD will work with the information found in the wlHttp.Header property

while also issuing a warning to the user.

WebLOAD offers a simple way to reset configuration properties using the Options tab

of the Session Control menu. Resetting configuration properties as you run and rerun

various testing scenarios allows you to fine tune your tests to match your exact needs

at that moment. However, that this real-time configuration setting will be overruled by

any configuration properties that are explicitly set by wlHttp.Header within your

test Agendas. For greatest reliability and flexibility, WebLOAD recommends that you

set header properties using the more general wlGlobals, wlLocals, and wlHttp

object properties, fine-tuning your test sessions using the WebLOAD Session menu.

See Rules of Scope for Local and Global Variables (on page 49), for more information on

precedence and priority in Agenda variables. Remember that you cannot override the

host header or set a cookie header using the Header property. To set a cookie, see How

WebLOAD Works with Cookies (on page 144).

Erase

Clear the WebLOAD properties of a wlHttp object after each Get(), Post(), or

Head() call.

WlHttp.Erase is a read/write property. The default value is true. This section will

describe the implications of each setting.

WebLOAD Scripting Guide 141

Erase=true (default)

When Erase is set to true, WebLOAD automatically erases all wlHttp property

values after each HTTP access. You must reassign any properties you need before the

next HTTP access. For this reason, assign the properties of wlHttp only in the main

script, not in InitClient(), so they will be reassigned in every round.

Thus if Erase is set to true the following Agenda is incorrect. In this Agenda, the

wlHttp properties are assigned values in InitClient(). The Agenda would connect

to the Url and submit the FormData only in the first round. After the first Post()

call, the Url and FormData property values are erased, so WebLOAD cannot use

them in subsequent rounds.

The following script displays the incorrect method of assigning the wlHttp properties:

function InitClient() { //Wrong!

wlHttp.Url =

"http://www.ABCDEF.com/products.exe"

wlHttp.FormData["Name"] = "John Smith"

wlHttp.FormData["Product Interest"] = "Modems"

}

//Main script

wlHttp.Post()

To solve the problem, assign the wlHttp property values in the main script, so that the

assignments are executed before each Get(), Post(), or Head() call:

//Main script //OK

wlHttp.Url =

"http://www.ABCDEF.com/products.exe"

wlHttp.FormData["Name"] = "John Smith"

wlHttp.FormData["Product Interest"] = "Modems"

wlHttp.Post()

Alternatively, you could assign values to wlLocals properties, which are not erased:

function InitClient() { //OK

wlLocals.Url =

"http://www.ABCDEF.com/products.exe"

wlLocals.FormData["Name"] = "John Smith"

wlLocals.FormData["Product Interest"] =

"Modems"

}

//Main script

wlHttp.Post()

 142 Chapter 4. Working with HTTP Protocol

Erase=false

You may set Erase to false to prevent erasure. For example, if for some reason you

absolutely had to assign values to the wlHttp properties in the InitClient()

function of the Agenda, change the value of the Erase property to false. If Erase is

false, the properties retain their values through subsequent rounds.

Thus another way to correct the preceding example is to write:

function InitClient() { //OK

wlHttp.Erase = false

wlHttp.Url = "http://www.ABCDEF.com/products.exe"

wlHttp.FormData["Name"] = "John Smith"

wlHttp.FormData["Product Interest"] = "Modems"

}

//Main script

wlHttp.Post()

User-defined properties are not linked to the wlHttp.Erase property and will not be

erased automatically by WebLOAD. The only way to reset or erase user-defined

properties is for the user to set the new values explicitly.

Posting form Data Using Elements

Note: This Agenda includes DOM objects that are not explained in this section. For

more information about a specific object or usage, (such as wlGlobals or wlHttp),

see that object’s section in the WebLOAD JavaScript Reference Guide.

The home page of a company displays the following form, where a user can specify

interest in different products.

Figure 28: Home Page Form Example

The HTML code for the form is:

<FORM

action="http://www.ABCDEF.com/FormProcessor.exe"

method="post">

<P>Your name: <INPUT type="text" name="yourname">

<SELECT name="interest">

<OPTION selected>Modems</OPTION>

WebLOAD Scripting Guide 143

<OPTION>CD-ROMs</OPTION>

</SELECT>

<INPUT type="submit" value="Send">

</FORM>

An Agenda can download the form as follows:

function InitAgenda() {

wlGlobals.Url = "http://www.ABCDEF.com"

wlGlobals.ParseForms = true

}

wlHttp.Get()

WebLOAD parses the HTML code and creates an elements collection containing the

first two form elements (the text box and the drop-down list). WebLOAD does not

include the third element (the Send button) in the collection because it does not have a

name attribute.

This is a listing of the elements collection:

document.forms[0].elements[0].name = "yourname"

document.forms[0].elements[0].type = "text"

document.forms[0].elements[0].value = ""

document.forms[0].elements[1].name = "interest"

document.forms[0].elements[1].type = "SELECT"

document.forms[0].elements[1].selectedindex = 0

document.forms[0].elements[1].options[0].text = "Modems"

document.forms[0].elements[1].options[0].value = "Modems"

document.forms[0].elements[1].options[0].selected = true

document.forms[0].elements[1].options[1].text = "CD-ROMs"

document.forms[0].elements[1].options[1].value = "CD-ROMs"

document.forms[0].elements[1].options[1].selected = false

The Agenda can use the above data to post the form back to the server. The following

code illustrates how the Agenda might do this.

MyArray = document.forms[0].elements

i = 0

while (i < MyArray.length) {

switch MyArray[i].type {

case "text" :

//Retrieve the default value of a text box

wlHttp.FormData[MyArray[i].name] = MyArray[i].value]

break

case "SELECT"

//Retrieve the first option in a drop-down list

 144 Chapter 4. Working with HTTP Protocol

wlHttp.FormData[MyArray[i].name]=MyArray[i].options[0].v

alue

break

}

i++

}

//Post the data to the form server

wlHttp.Post(document.forms[0].action)

Managing Cookies through the wlCookie Object

The wlCookie Object

The wlCookie object sets and deletes cookies. These activities may be required by an

HTTP server.

Note: You may use the methods of wlCookie to create as many cookies as needed. For

example, each WebLOAD client running an Agenda can set its own cookie identified

by a unique name.

wlCookie is a local object. WebLOAD automatically creates an independent

wlCookie object for each thread of an Agenda. You cannot manually declare

wlCookie objects yourself. See the WebLOAD JavaScript Reference Guide for a complete

syntax specification for the wlCookie object and its methods.

How WebLOAD Works with Cookies

WebLOAD always accepts cookies that are sent from a server. When WebLOAD

connects to a server, it automatically submits any cookies in the server’s domain that it

has stored. By default, WebLOAD clears the cookie cache after every round.

The wlCookie object lets you supplement or override this behavior in the following

ways:

 A thread can create its own cookies.

 A thread can delete cookies that it created.

Except for the above, WebLOAD does not distinguish in any way between cookies that

it receives from a server and those that you create yourself. For example, if a thread

creates a cookie in a particular domain, it automatically submits the cookie when it

connects to any server in the domain.

WebLOAD Scripting Guide 145

wlCookie Methods

The wlCookie object works with the following methods:

 ClearAll()—Delete all cookies set by wlCookie in the current thread.

 Delete()—Delete the cookie identified by the method parameters.

The cookie must have been previously created by wlCookie.

 Get()—Returns the cookie value. If there is more than one cookie with the same

parameters it returns the first cookie.

 Set()—Creates a cookie. You can set an arbitrary number of cookies in any

thread. If you set more than one cookie applying to a particular domain,

WebLOAD submits them all when it connects to the domain.

Note: Set cookies within the main script of the Agenda. WebLOAD deletes all the

cookies at the end of each round. If you wish to delete cookies in the middle of a

round, use the Delete() or ClearAll() method.

Example: using a cookie

Cookies are used by applications to store the application requests on the client side.

This enables the client to perform a one-time application request and from then on the

request information is retrieved from the client’s cookies.

//Request information entered into the application

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["username"] = "zadp10"

wlHttp.FormData["password"] = "Start100"

wlHttp.FormData["submit1"] = "Login"

//Setting the cookie

wlCookie.Set(“UserID”, “zapd10”, “www.abcdef.net,”, “/”, “Sun, 19-
Jun-2011 17:29:00 GMT”)

//WebLOAD submits the cookie

wlHttp.Post("https://www.abcdef.net/default.aspx")

//Getting the cookie

CookieValue = wlCookie.Get("UserID")

//The value returned in CookieValue is “zapd10”

http://www.abcdef.net/

 146 Chapter 4. Working with HTTP Protocol

In some cases it is also necessary to delete the cookie settings. You can do this by

entering:

//Delete the cookie

wlCookie.ClearAll()

Handling Binary Data

WebLOAD supports the simulation of binary data sent from the browser to the server.

Binary data is handled specially, since it cannot be displayed as JavaScript literals in

the Agenda, unlike other types of data that can be displayed, such as numbers or text.

Recording Binary Data

WebLOAD supports recording binary data in an Agenda in one of the following ways:

 Recording binary data as a data file, which is external to the Agenda.

 Encoding binary data in the Agenda, so that you can view and edit the data.

Recording Binary Data as a Data File

Modifying the Agenda Options settings in the WebLOAD IDE enables writing binary

data into a data file, which is stored locally. When working with data files, only the

name of the file is stored in the Agenda itself.

Recording binary data as a data file, enables WebLOAD to simulate sending binary

data to the application, although the data itself cannot be edited in the Agenda.

To record binary data as a data file:

1. In WebLOAD IDE, select Tools Recording and Script Generation Options.

The Recording and Script Generation Options dialog box appears.

2. In the Recording and Script Generation Options dialog box select the Post Data

tab.

The Post Data tab appears.

WebLOAD Scripting Guide 147

Figure 29: Recording and Script Generation Options – Post Data Tab

3. In the Add New Type field, enter the binary content-type, such as

application/x-amf, which is used for binary content generated by a Flash

application.

4. Click As DATAFILE.

The binary content-type is added to the DATAFILE block list.

5. In the Recording and Script Generation Options dialog box, select the Content

Types tab.

The Content Types tab appears.

 148 Chapter 4. Working with HTTP Protocol

Figure 30: Recording and Script Generation Options – Content Types Tab

6. Ensure that the appropriate binary content-type appears in the Recorded Types

area. If the content does not appear, add the binary content type in the Add new

content type field and click Add.

After setting the Record Option settings, binary data is stored in a local data file

and the name of the file appears in the Agenda.

The following sample Agenda demonstrates how WebLOAD records binary data as a

data file:

function InitAgenda()

{

CopyFile("wl2288601006.dat","wl2288601006.dat")

}

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/flex/bin/Sample.html")

Sleep(9056)

WebLOAD Scripting Guide 149

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/flex/bin/Shop.swf"

wlHttp.Header["Content-type"] = "application/x-amf"

wlHttp.Header["Content-length"] = "58"

wlHttp.DataFile["Type"] = "application/x-amf"

wlHttp.DataFile["Filename"] = "wl2288601006.dat"

wlHttp.Post("http://www.webloadmpstore.com/flashservices/gateway

.php")

Encoding Binary Data in the Agenda

Modifying the Agenda Options settings in the IDE enables the encoding of binary data

in the Agenda during the recording. Once recorded, the Agenda can be edited,

parameterized, and load tested as a regular Agenda.

To enable encoding binary data in the Agenda:

1. In WebLOAD IDE, select the Tools Recording and Script Generation Options

dialog box.

The Recording and Script Generation Options dialog box appears.

2. In the Recording and Script Generation Options dialog box select the Script

Generation tab.

The Script Generation tab appears.

 150 Chapter 4. Working with HTTP Protocol

Figure 31: Recording and Script Generation Options - Script Generation Tab

3. Select the Encode binary data checkbox.

This enables the user to view and parameterize the binary content.

4. In the Recording and Script Generation Options dialog box, select the Post Data

tab.

The Post Data tab appears.

WebLOAD Scripting Guide 151

Figure 32: Recording and Script Generation Options – Post Data Tab

5. In the Add New Type field, enter the binary content-type, such as

application/x-amf, which is used for binary text generated by a Flash

application.

6. Click As DATA.

The binary content-type is added to the DATA block list.

7. In the Recording and Script Generation Options dialog box, select the Content

Types tab.

The Content Types tab appears (see Figure 30).

8. Ensure that the appropriate binary content-type appears in the Recorded Types

area. If the content does not appear, add the binary content type in the Add new

content type field and click Add.

After setting the Record Option settings, when binary data is recorded and encoded in

an Agenda, wlHttp.EncodeRequestBinaryData = true is automatically added

to the script. This encodes the binary data into the following usable format:

 152 Chapter 4. Working with HTTP Protocol

wlHttp.Data["Value"] =

"%00%00%00%00%00%01%00/com.oreilly.frdg.SearchProducts.getSearch

Result%00%02/1%00%00%00%18%0a%00%00%00%01%03%00%06search%02%00%0

4wood%00%00%09"

The following sample Agenda demonstrates how WebLOAD handles binary data

encoded in the Agenda:

function InitAgenda()

{

IncludeFile("wlamf.js",WLExecuteScript);

}

wlGlobals.GetFrames = false

wlHttp.EncodeRequestBinaryData = true

wlGlobals.UserAgent = "Mozilla/4.0 (compatible; MSIE 8.0;

Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR

3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 1.1.4322)"

wlHttp.Get("http://www.webloadmpstore.com/flex/bin/Sample.html")

wlHttp.EncodeRequestBinaryData = true

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/flex/bin/Sample.html"

wlHttp.Get("http://www.webloadmpstore.com/flex/bin/history.htm")

wlHttp.EncodeRequestBinaryData = true

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/flex/bin/history.htm"

wlHttp.Get("http://www.webloadmpstore.com/flex/bin/history.swf")

wlHttp.EncodeRequestBinaryData = true

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/flex/bin/Sample.html"

wlHttp.Get("http://www.webloadmpstore.com/flex/bin/Shop.swf")

wlHttp.EncodeRequestBinaryData = true

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/flex/bin/Shop.swf"

wlHttp.Data["Type"] = "application/x-amf"

wlHttp.Data["Value"] =

"%00%03%00%00%00%01%00%15talkback.returnString%00%02/1%00%00%00%

15%0a%00%00%00%02%02%00%06George%02%00%04Bush"

WebLOAD Scripting Guide 153

wlHttp.Post("http://www.webloadmpstore.com/flashservices/gateway

.php")

Handling Authentication in the Agenda

WebLOAD supports working with Agendas containing Basic, NTLM, and Kerberos

user authentication methods.

WebLOAD handles authentication in playback in the following way:

1. WebLOAD sends a regular request with no request for authentication, to which the

server responds with an “unauthorized” error (401), and a prompt to enter a

username and password.

2. If WebLOAD is using:

 Basic authentication, WebLOAD encrypts the username and password in

wlHttp.Username and wlHttp.Password, and makes a request.

 NTLM authentication, WebLOAD sets the following:

wlGlobals.AuthType = "NTLM", where NTLM is the default value if no

authentication type is specified.

 Kerberos authentication, WebLOAD sets the following:

wlGlobals.AuthType = "Kerberos".

wlGlobals.KDCServer = <server name>. If no value is specified for

KDCServer, the authentication type is automatically assumed to be NTLM,

even if the AuthType is Kerberos.

The following examples demonstrate the authentication processes in WebLOAD.

Kerberos authentication:

wlGlobals.AuthType = "Kerberos"

wlGlobals.KDCServer = "mulier.qalab.internal"

wlHttp.NTPassWord = "Buga859"

wlHttp.NTUserName = "qalab.internal\\test"

wlHttp.Get("http://mulier.qalab.internal/")

NTLM authentication:

wlGlobals.AuthType = "NTLM"

wlHttp.NTPassWord = "Buga859"

wlHttp.NTUserName = "qalab.internal\\test"

wlHttp.Get("http://mulier.qalab.internal/")

OR

http://mulier.qalab.internal/
http://mulier.qalab.internal/

 154 Chapter 4. Working with HTTP Protocol

wlHttp.NTPassWord = "Buga859"

wlHttp.NTUserName = "qalab.internal\\test"

wlHttp.Get("http://mulier.qalab.internal/")

Basic authentication:

wlHttp.PassWord = "Buga859"

wlHttp.UserName = "test"

wlHttp.Get("http://mulier.qalab.internal/")

http://mulier.qalab.internal/
http://mulier.qalab.internal/

WebLOAD Scripting Guide 155

Appendix A

Scripting Samples

This chapter provides sample scripts which you can adapt to your own Agendas. Each

scripting sample demonstrates different features that can be performed by editing your

Agenda’s script.

The following scripting samples are provided:

 Basic Recording

 Correlation

 Parameterizing an Agenda

 Using AJAX and Web services

 Using AJAX and JSON

Scripting Sample of a Basic Recording

The sample Agenda in this section demonstrates how a basic Agenda is recorded. This

Agenda is used as a basis for the scripts that appear in the following sections.

What the Script Does

 Records user actions in the website. This is done by recording the HTTP traffic

between the browser and the Web server.

 Records Html form data sent from the browser.

 Records the Get() and Post() methods.

How to Create the Script

The basic Agenda is created by starting to record in the IDE, browsing through the

www.webloadmpstore.com website, stopping the recording, and saving the Agenda.

Step 1 – Starting to Record the Agenda

1. In WebLOAD IDE open a new Agenda.

http://www.webloadmpstore.com/

 156 Appendix A. Scripting Samples

2. Click or select Record Start Record to start recording.

3. Browse to www.webloadmpstore.com in the browser that opens.

The following script describing your action appears in the Agenda.

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/")

Sleep(9094)

Step 2 – Logging in to the Site

1. Click Login in the webloadmpstore website and the Login page appears. The script

for this action is as follows:

wlHttp.Header["Referer"] = "http://www.webloadmpstore.com/"

wlHttp.Get("http://www.webloadmpstore.com/login.php")

Sleep(7704)

2. In the username and password fields, enter demo-username and demo-

password to log in to the website.

WebLOAD IDE records the login action and simulates a script containing the

username and password that you entered in the login page.

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/login.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["login"] = "demo"

wlHttp.FormData["password"] = "demo"

wlHttp.FormData["sessionID"] =

"webloadmpstore.62.90.23.122.ae97bc7877d7bd4ebcb64c4c0e21ba1c"

wlHttp.FormData["event"] = "login"

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

Sleep(3015)

The site approves your login information and the WebLOAD MP Store home page

appears.

wlHttp.Get("http://www.webloadmpstore.com/index.php")

Sleep(5282)

http://www.webloadmpstore.com/

WebLOAD Scripting Guide 157

Step 3 – Purchasing a Product

1. From the product page, click Debugging and Handling Dynamic Data to view the

product’s additional details.

A page with the product description for Debugging and Handling Dynamic Data

appears.

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.FormData["id"] = "1"

wlHttp.Get("http://www.webloadmpstore.com/product.php")

Sleep(4984)

2. Click Add to Cart to purchase the product.

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/product.php?id=1"

wlHttp.FormData["event"] = "addproduct"

wlHttp.FormData["id"] = "1"

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

Step 4 – Saving the Agenda

1. In WebLOAD IDE, click to stop recording the Agenda.

2. Select File Save As to save the Agenda.

The Save As dialog box appears.

3. In the Save As dialog box browse to the following location:
D:\\Radview\\<Sample scripts folder>\\ Agenda 1-Basic

Recording Agenda.wlp

4. Click Save.

The Full Agenda: Agenda 1-Basic Recording Agenda

Note: The WLIDE – URL comments throughout the Agenda are modified to give the

Agenda nodes meaningful names.

/***** WLIDE - URL : Open webloadmpstore home page - ID:2 *****/

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/")

// END WLIDE

/***** WLIDE - Sleep - ID:3 *****/

Sleep(9094)

 158 Appendix A. Scripting Samples

// END WLIDE

/***** WLIDE - URL : Open login page - ID:4 *****/

wlHttp.Header["Referer"] = "http://www.webloadmpstore.com/"

wlHttp.Get("http://www.webloadmpstore.com/login.php")

// END WLIDE

/***** WLIDE - Sleep - ID:5 *****/

Sleep(7704)

// END WLIDE

/***** WLIDE - URL :Insert login and password - ID:6 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/login.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["login"] = "demo"

wlHttp.FormData["password"] = "demo"

wlHttp.FormData["sessionID"] =

"webloadmpstore.62.90.23.122.ae97bc7877d7bd4ebcb64c4c0e21ba1c"

wlHttp.FormData["event"] = "login"

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

// END WLIDE

/***** WLIDE - Sleep - ID:7 *****/

Sleep(3015)

// END WLIDE

/***** WLIDE - URL : http://www.webloadmpstore.com/index.php -

ID:8 *****/

wlHttp.Get("http://www.webloadmpstore.com/index.php")

// END WLIDE

/***** WLIDE - Sleep - ID:9 *****/

Sleep(5282)

// END WLIDE

/***** WLIDE - URL : Select show product details - ID:10 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.FormData["id"] = "1"

wlHttp.Get("http://www.webloadmpstore.com/product.php")

WebLOAD Scripting Guide 159

// END WLIDE

/***** WLIDE - Sleep - ID:11 *****/

Sleep(4984)

// END WLIDE

/***** WLIDE - URL : Add to cart - ID:12 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/product.php?id=1"

wlHttp.FormData["event"] = "addproduct"

wlHttp.FormData["id"] = "1"

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

// END WLIDE

Scripting Sample of Correlation

When you record HTML pages using the IDE, there can be dynamic values that the

application is using, which WebLOAD records automatically to the Agenda. Such

dynamic values can contain state management information, such as the session-id,

which is usually passed as URL encoded parameters or hidden form fields. The

dynamic values that are recorded in the IDE are different during each run. Since the

value that was recorded in the IDE is static, using it in further executions of the

Agenda will result in an application error.

To overcome this situation, you need to manually edit the Agenda and perform

correlation. Correlation enables you to store the dynamic value when it is received in a

local parameter in the application and then use the dynamic value instead of the static

value, in the rest of the Agenda.

What the Script Does

 Demonstrates how to extract the contents of the hidden field.

 Demonstrates how to perform correlation of the session ID.

How to Create the Script

The script is created by locating and extracting the contents of the hidden field. Add a

variable to store the contents and then replace the static values with the variable.

Step 1 – Locating and Extracting the Hidden Field

1. Open the Agenda1-Basic Recording Agenda and run the Agenda.

 160 Appendix A. Scripting Samples

2. Select View Browser View and then View DOM View to display the Browser

and DOM views.

The Browser view appears with the DOM view open.

3. In the Execution Tree, select the first node.

4. In the Browser View, search for an error message. If there is no error message,

select the next node in the Execution Tree and search for an error message there.

Figure 33: Browser View Displaying Error Message

5. Once you locate the error message, select View Java Script View to open the

JavaScript View.

The JavaScript View appears.

6. Reselect the node in the Execution Tree to display the requested block of code in

the Agenda.

7. Within the selected block of code, locate the dynamic value (for example, the

session-id field). This field must be retrieved from the previous block of code.

WebLOAD Scripting Guide 161

Figure 34: Browser View Displaying Error Message

8. Select the previous node in the Execution Tree to search for the element that

contains the dynamic value. Make sure the Browser and DOM Views are open.

(Select View Browser View and View DOM View.)

9. In the DOM View, locate the element that contains the dynamic value. This is

usually a hidden input field.

The following figure displays the hidden field in the DOM view.

Figure 35: Hidden Field in DOM View

10. Right-click the hidden field and select Smart Copy from the pop-up window to

extract the dynamic value of the hidden field.

The Smart Copy dialog box appears.

Figure 36: Smart Copy Dialog Box

11. Click Copy to clipboard and click Close.

 162 Appendix A. Scripting Samples

Step 2 – Adding the Variable for the Dynamic Data

1. Select Edit Start Visual Editing to edit the JavaScript.

2. Drag the JavaScript Building Block from the Toolbox to the Agenda Tree to create a

variable for the extracted dynamic field.

3. Type the following in the new JavaScript Building Block:

session_id =

4. Paste the clipboard text by placing the cursor after the equal sign and selecting

Edit Paste.

session_id = document.forms[1].elements[2].value

Step 3 – Replacing the Static Values with the Variable

1. Locate the dynamic value (for example the session-id field). This is the same value

that you located in step 7 of Step 1 – Locating and Extracting the Hidden Field (see

Figure 34).

2. Remove the static value of the Session ID from the hidden field and replace it with

the variable containing the dynamic field.

Before:

wlHttp.Header["Referer"]

="http://www.webloadmpstore.com/login.php"

wlHttp.ContentType ="application/x-www-form-urlencoded"

wlHttp.FormData["login"] = "demo"

wlHttp.FormData["password"] = "demo"

wlHttp.FormData["sessionID"] =

"webloadmpstore.62.90.23.122.ae97bc7877d7bd4ebcb64c4c0e21ba1c"

wlHttp.FormData["event"] = "login"

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

After:

wlHttp.Header["Referer"]

="http://www.webloadmpstore.com/login.php"

wlHttp.ContentType ="application/x-www-form-urlencoded"

wlHttp.FormData["login"] = "demo"

wlHttp.FormData["password"] = "demo"

wlHttp.FormData["sessionID"] = session_id

wlHttp.FormData["event"] = "login"

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

WebLOAD Scripting Guide 163

3. Save the Agenda as Agenda2-Correlation Agenda.

The Agenda is now corrected. You can now run the Agenda successfully without

receiving error messages.

The Full Agenda: Agenda 2-Correlation Agenda

/***** WLIDE - URL : Open webloadmpstore home page - ID:2 *****/

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/")

// END WLIDE

/***** WLIDE - Sleep - ID:3 *****/

Sleep(9094)

// END WLIDE

/***** WLIDE - URL : Open login page - ID:4 *****/

wlHttp.Header["Referer"] = "http://www.webloadmpstore.com/"

wlHttp.Get("http://www.webloadmpstore.com/login.php")

// END WLIDE

/***** WLIDE - Sleep - ID:5 *****/

Sleep(7704)

// END WLIDE

/***** WLIDE - Session ID correlation - ID:13 *****/

session_id = document.forms[1].elements[2].value

/***** WLIDE - URL :Insert login and password - ID:6 *****/

wlHttp.Header["Referer"]

="http://www.webloadmpstore.com/login.php"

wlHttp.ContentType ="application/x-www-form-urlencoded"

wlHttp.FormData["login"] = "demo"

wlHttp.FormData["password"] = "demo"

wlHttp.FormData["sessionID"] = session_id

wlHttp.FormData["event"] = "login"

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

 // END WLIDE

/***** WLIDE - Sleep - ID:7 *****/

 164 Appendix A. Scripting Samples

Sleep(3015)

 // END WLIDE

/***** WLIDE - URL : http://www.webloadmpstore.com/index.php -

ID:8 *****/

wlHttp.Get("http://www.webloadmpstore.com/index.php")

// END WLIDE

/***** WLIDE - Sleep - ID:9 *****/

Sleep(5282)

// END WLIDE

/***** WLIDE - URL : Select show product details - ID:10 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.FormData["id"] = "1"

wlHttp.Get("http://www.webloadmpstore.com/product.php")

// END WLIDE

/***** WLIDE - Sleep - ID:11 *****/

Sleep(4984)

// END WLIDE

/***** WLIDE - URL : Add to cart - ID:12 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/product.php?id=1"

wlHttp.FormData["event"] = "addproduct"

wlHttp.FormData["id"] = "1"

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

// END WLIDE

Scripting Sample of Parameterizing an Agenda

You can replace the static variables that were recorded in your WebLOAD Agenda

with parameters, making it easier to manage the script. When you want to update a

recorded value, you need to locate each instance where the value appears in the script

and update the value. After parameterizing your Agenda, the recorded values are

replaced with parameters, whose definitions can easily be modified, without having to

go over the whole script and modify each recorded value.

You can parameterize your script from within the Agenda using the JavaScript

Building Block. With this method the parameters are defined within the Agenda. To

WebLOAD Scripting Guide 165

update the parameter values, you must edit the definition of the parameter within the

script.

You can also parameterize your script from an external file. This method enables you

to update the parameter values by simply editing the information saved in the external

file without having to edit the script. In addition, storing the parameter values in an

external file ensures that the information is kept in a more secure location.

What the Script Does

 Demonstrates how to add additional code to an existing Agenda.

 Demonstrates how to work with the parameters within the script and parameters

whose values are imported from an external file.

 Demonstrates how to work with Building Blocks.

How to Create the Script

In this Agenda you create parameters, both within the Agenda and from an external

file. The parameter within the Agenda is created by adding a JavaScript Building Block

to your Agenda. Within the building block’s script you define the new parameters.

In this Agenda you also import additional parameter values from an external file. You

create the external file by using the GlobalInputFile Building Block. The Building Block

stores the location and contents of the external file. Once you add the Building Block to

your Agenda, the InitAgenda function associates the location and contents of the

external file with the script. The script added by the GlobalInputFile Building Block to

the Agenda, contains a variable that stores the contents of the current line of the

external file.

Both of these methods enable you to control the login information by simply updating

the parameter definition in a single location, instead of having to edit each of the

recorded values in the script. After creating the parameters, you must search through

the Agenda for each instance where the username and password information was

recorded, and replace the recorded value with the parameter.

Step 1 – Continuing the Recording

1. Open the Agenda2-Correlation Agenda.

2. Open a browser, navigate to the Cart page of the webloadmpstore site, and copy

the URL of the page.

3. In the IDE, click or select Record Start Record to start recording.

4. Paste the URL of the cart page in the browser that opens.

The new script is appended to the end of the existing Agenda.

 166 Appendix A. Scripting Samples

5. In the cart page, in the quantity field, enter 3 and click to update the page.

The appended script is as follows:

wlGlobals.GetFrames = false

wlHttp.FormData["event"] = "update"

wlHttp.FormData["id"] = 1

wlHttp.FormData["quantity"] = 3

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

6. In WebLOAD IDE, click to stop recording the Agenda.

Step 2 – Creating Parameters

1. In the IDE, drag the JavaScript Building Block from the Toolbox to the top of the

Agenda Tree.

2. In the JavaScript Building Block, create two internal parameters by defining a

name and value for each of the parameters.

For example:

product_id = "1"

quantity = "3"

3. Instead of giving the parameters a static value, you can define a range from which

a random value is chosen when the Agenda is run.

product_id = wlRand.Range(1,9)

quantity = wlRand.Range(1,12)

Step 3 – Adding the GlobalInput File Building Block

In this step, an external file is created and associated with the Agenda. Two variables

are created to store the information from the external file to use within the Agenda.

1. Drag the GlobalInputFile Building Block anywhere in the Agenda Tree.

The Global Input File dialog box appears.

WebLOAD Scripting Guide 167

Figure 37: Global Input File Building Block

2. Check Use first row as title row.

3. Click to create a new external file.

The Create Data File dialog box appears.

Figure 38: Create Data File

 168 Appendix A. Scripting Samples

4. In the Grid Size area, in the Rows field enter 3 and in the Columns field enter 2.

Click OK.

The newly sized grid appears.

5. In the title row, enter Username and Password. Enter two new usernames

(demo1,and demo2) and passwords (password1, and password2) in the grid

fields and click OK. This creates two sets of parameters to be used during each

round in the Agenda.

The Save As dialog box appears.

6. In the Save As dialog box, save the file in the folder where the sample scripts are

located.

After saving the file, you are prompted with the Create message box asking you if

you want to set this file to be imported by the GlobalInputFile Building Block.

7. In the Create message box, click Yes.

The Global Input File dialog box appears (Figure 37) with the path to the file

location in the File Name field and the file information displayed in the grid.

Figure 39: Global Input File Building Block Displaying Grid

8. Click to save the file and create the Building Block in the Agenda.

WebLOAD Scripting Guide 169

The external file is automatically associated with the script in the initAgenda()

function. The external file is referred to within the Agenda as Infile1. When

there is more than one external file, files are referred to as Infile2, Infile3 etc.

Note: You can optionally provide a filename of your choice in the Global Input File

dialog box, while saving the external file.

function InitAgenda()

{

InFile1 = CopyFile("P:\\Supporting Tools\\Sample

Scripts\\New\\InFile1.txt")

Open(InFile1)

strGlobalInputFileLine = GetLine(InFile1,",")

}

In the GlobalInputFile Building Block script, the strGlobalInputFileLine

parameter stores the contents of the current line that was read from Infile1.

strGlobalInputFileLine = GetLine(InFile1,",")

inFile1_Col1 = strGlobalInputFileLine[1]

9. In the GlobalInputFile node, edit the existing variable name to be user_name and

add a second variable to store the password information from the

strGlobalInputFileLine parameter.

Note: This step is only necessary if you did not check Use first row as title row in the

Global Input file dialog box in step 2 of Step 3 – Adding the GlobalInput File Building

Block.

Before:

strGlobalInputFileLine = GetLine(InFile1,",")

inFile1_Col1 = strGlobalInputFileLine[1]

After:

strGlobalInputFileLine = GetLine(InFile1,",")

user_name = strGlobalInputFileLine[1]

password = strGlobalInputFileLine[2]

Step 4 – Replacing the Recorded Values with the New Parameters

1. Throughout the Agenda, replace the values for the product_id and quantity with

the new parameters that you set up in Step 2 – Creating Parameters (product_id

and quantity).

 170 Appendix A. Scripting Samples

Before:

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.FormData["id"] = 1

wlHttp.Get("http://www.webloadmpstore.com/product.php")

Sleep(4984)

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/product.php?id=product_id

"

wlHttp.FormData["event"] = "addproduct"

wlHttp.FormData["id"] = 1

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

wlGlobals.GetFrames = false

wlHttp.FormData["event"] = "update"

wlHttp.FormData["id"] = 1

wlHttp.FormData["quantity"] = 3

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

After:

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.FormData["id"] = product_id

wlHttp.Get("http://www.webloadmpstore.com/product.php")

Sleep(4984)

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/product.php?id=product_id

"

wlHttp.FormData["event"] = "addproduct"

wlHttp.FormData["id"] = product_id

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

wlGlobals.GetFrames = false

wlHttp.FormData["event"] = "update"

wlHttp.FormData["id"] = product_id

wlHttp.FormData["quantity"] = quantity

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

WebLOAD Scripting Guide 171

2. Throughout the Agenda, replace the static login values with the new parameters

that you set up in Step 3 – Adding the GlobalInput File Building Block (user_name

and password).

Before:

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/login.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["login"] = "demo_user"

wlHttp.FormData["password"] = "demo_password"

wlHttp.FormData["sessionID"] = session_id

wlHttp.FormData["event"] = "login"

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

After:

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/login.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["login"] = user_name

wlHttp.FormData["password"] = password

wlHttp.FormData["sessionID"] = session_id

wlHttp.FormData["event"] = "login"

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

3. Save the Agenda as Agenda3-Parametrizing an Agenda.

The Agenda is now parameterized.

Note: Before running the Agenda set the number of iterations in Playback to two, by

selecting Tools Settings Playback. For every round WebLOAD reads a different

set of parameters from the file and uses the parameters during the login process. You

can check the Browser View to see whether the login was successful for each round.

The Full Agenda: Agenda3-Parameterizing an Agenda

function InitAgenda()

{

InFile1 = CopyFile("P:\\Supporting Tools\\Sample

Scripts\\New\\InFile1.txt")

Open(InFile1)

strGlobalInputFileLine = GetLine(InFile1,",")

 172 Appendix A. Scripting Samples

}

/***** WLIDE - GlobalInputFile: InFile1 (P:\\Supporting

Tools\\Sample Scripts\\New\\InFile1.txt) - ID:18 *****/

strGlobalInputFileLine = GetLine(InFile1,",")

if (strGlobalInputFileLine.LineNum == 1)

strGlobalInputFileLine = GetLine(InFile1,",")

Username = strGlobalInputFileLine[1]

Password = strGlobalInputFileLine[2]

// END WLIDE

/***** WLIDE - URL : Open webloadmpstore home page - ID:2 *****/

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/")

// END WLIDE

/***** WLIDE - Sleep - ID:3 *****/

Sleep(9094)

// END WLIDE

/***** WLIDE - URL : Open login page - ID:4 *****/

wlHttp.Header["Referer"] = "http://www.webloadmpstore.com/"

wlHttp.Get("http://www.webloadmpstore.com/login.php")

// END WLIDE

/***** WLIDE - Sleep - ID:5 *****/

Sleep(7704)

// END WLIDE

/***** WLIDE - Session ID correlation - ID:13 *****/

session_id = document.forms[1].elements[2].value

// END WLIDE

/***** WLIDE - URL : Insert login and password - ID:6 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/login.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["login"] = user_name

wlHttp.FormData["password"] = password

wlHttp.FormData["sessionID"] = session_id

wlHttp.FormData["event"] = "login"

WebLOAD Scripting Guide 173

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

// END WLIDE

/***** WLIDE - Sleep - ID:7 *****/

Sleep(3015)

// END WLIDE

/***** WLIDE - URL : http://www.webloadmpstore.com/index.php -

ID:8 *****/

wlHttp.Get("http://www.webloadmpstore.com/index.php")

// END WLIDE

/***** WLIDE - Sleep - ID:9 *****/

Sleep(5282)

// END WLIDE

/***** WLIDE - Parameterizing product ID and category number -

ID:16 *****/

product_id = wlRand.Range(1,9)

quantity = wlRand.Range(1,12)

// END WLIDE

/***** WLIDE - URL : Select show product details - ID:10 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.FormData["id"] = product_id

wlHttp.Get("http://www.webloadmpstore.com/product.php")

// END WLIDE

/***** WLIDE - Sleep - ID:11 *****/

Sleep(4984)

// END WLIDE

/***** WLIDE - URL : Add to cart - ID:12 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/product.php?id=product_id"

wlHttp.FormData["event"] = "addproduct"

wlHttp.FormData["id"] = product_id

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

// END WLIDE

 174 Appendix A. Scripting Samples

/***** WLIDE - URL : Product quantity - ID:17 *****/

wlGlobals.GetFrames = false

wlHttp.FormData["event"] = "update"

wlHttp.FormData["id"] = product_id

wlHttp.FormData["quantity"] = quantity

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

// END WLIDE

Scripting Sample Using AJAX and Web Services

WebLOAD supports automatic recording of AJAX calls into the test Agenda, enabling

debugging and full access to all request data (headers and body), both in the script and

during runtime. WebLOAD supports various formats for the AJAX payload: XML,

JSON, other text-based formats, and binary data.

Besides demonstrating the use of AJAX calls, this Agenda demonstrates the use of

functions and external files in the script.

Storing sections of the logic in a function enables you to reuse the same lines of code

without duplications, making the script more modular. A function can be part of your

main script file or can be stored in a separate, external JavaScript file. When storing the

function in a separate file, the main Agenda file includes the function so that it can be

used within the Agenda.

One of the main benefits of including files in the Agenda, is to reduce the maintenance

needed for the scripts. The same included file can be used in a number of Agendas

simply by adding the include command and calling the function in the script.

Using included files is also more efficient. When the information in the included file

needs to be updated, the included file is the only place that needs to be modified and

the whole script will be affected. Without using an included file, you would need to

search for every place that the information is used and update the information

manually.

What the Script Does

 Demonstrates how to record user actions in a website that is accessed on a secure

server.

 Demonstrates how WebLOAD supports AJAX and Web services.

 Demonstrate how to validate a Web Service reply by parsing the XML content of

its SOAP message.

 Demonstrates how to modify a recorded Agenda where a specific option is

selected, so that the Agenda can accept additional options during runtime.

WebLOAD Scripting Guide 175

 Demonstrates adding a function to the script.

 Demonstrates how to extract a login script to an external JavaScript file and then

reuse the code in the Agenda.

How to Create the Script

In this Agenda, you will record a webpage that is accessed on a secure server. Once the

Agenda is recorded, you will modify the script so that during runtime, an InfoMessage

notifies you whether your credit card information has been validated. This is done by

adding a function that uses a Web Service to check the validation of the credit card and

a parameter to store the result of the function.

You will create a function to store the script of the login process. Then, you can extract

the function to an external file, which enables you to create a generic scenario, instead

of a specific case. The function checks the login information received from the site and

determines whether the user’s login information is accurate. Although the login

information was correct when the Agenda was recorded, by modifying the script you

can add additional scenarios to be accepted during runtime, such as, when the login

information is incorrect.

This script also demonstrates WebLOAD’s support of AJAX and Web services. During

the recording, when the credit card information is being validated, the IDE records the

Web service transactions that take place within the application.

Step 1 – Entering Credit Card Information and Checking Out

1. Open the Agenda3-Parametrizing an Agenda Agenda.

2. Open a browser, navigate to the Cart page, and copy the URL of the page.

3. In the IDE, click or select Record Start Record to start recording.

4. Paste the URL of the cart page in the browser that opens.

The new script is appended to the end of the existing Agenda.

5. In the cart page, click Checkout.

The credit card information page appears. This page is an HTTPS page and is

appended to the Agenda as follows:

wlGlobals.GetFrames = false

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/cart.php?event=update&id=

2&quantity=3"

wlHttp.Get("https://www.webloadmpstore.com/checkout.php"

)

 176 Appendix A. Scripting Samples

6. In the credit card information page, enter your credit card information and click

Done. The Agenda is recorded as follows:

wlGlobals.GetFrames = false

wlHttp.Header["Referer"] =

"https://www.webloadmpstore.com/checkout.php"

wlHttp.FormData["wsdl"] = "WLVOID$STRING$"

wlHttp.Get("https://www.webloadmpstore.com/soap/server.p

hp")

wlHttp.Header["Referer"] =

"https://www.webloadmpstore.com/checkout.php"

wlHttp.Data["Type"] = "text/xml; charset=utf-8"

wlHttp.Data["Value"] = "<?xml version=\"1.0\"

encoding=\"utf-8\"?><soap:Envelope

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"

><soap:Body><checkValidity

xmlns=\"http://example.org/CreditCardProcess\"><strCardN

umber>ABCD</strCardNumber><strHolderID>AB1234</strHolder

ID></checkValidity></soap:Body></soap:Envelope>"

wlHttp.Post("https://www.webloadmpstore.com/soap/server.

php")

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["name"] = "Radview"

wlHttp.FormData["address"] = "Hamelacha 14"

wlHttp.FormData["shippingAddress"] = "Park Afek"

wlHttp.FormData["cardNumber"] = "ABCD"

wlHttp.FormData["idNumber"] = "AB1234"

wlHttp.FormData["event"] = "process"

wlHttp.Post("https://www.webloadmpstore.com/checkout.php

")

7. In WebLOAD IDE, click to stop recording the Agenda.

Step 2 – Adding the Results Parameter and ResultParser Function

1. Add a results parameter to the Validate Cred – Pass Node of the Agenda.

The results parameter stores a value received from the resultParser

function, which checks whether your credit card information is valid. The HTTP

response containing the result of the credit card validation Web Service

WebLOAD Scripting Guide 177

(document.wlXmls[0]) that is extracted from the script, is sent to the

resultParser function.

The results parameter appears in the Validate Cred – Pass Node of the Agenda

as follows:

wlHttp.Header["Referer"] =

"https://www.webloadmpstore.com/checkout.php"

wlHttp.Data["Type"] = "text/xml; charset=utf-8"

wlHttp.Data["Value"] = "<?xml version=\"1.0\"

encoding=\"utf-8\"?><soap:Envelope

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"

><soap:Body><checkValidity

xmlns=\"http://example.org/CreditCardProcess\"><strCardN

umber>ABCD</strCardNumber><strHolderID>AB1234</strHolder

ID></checkValidity></soap:Body></soap:Envelope>"

wlHttp.Post("https://www.webloadmpstore.com/soap/server.

php")

results = resultParser(document.wlXmls[0])

2. Create an infoMessage to notify you whether your credit card has been validated

or not according to the result parameter value.

wlHttp.Header["Referer"] =

"https://www.webloadmpstore.com/checkout.php"

wlHttp.Data["Type"] = "text/xml; charset=utf-8"

wlHttp.Data["Value"] = "<?xml version=\"1.0\"

encoding=\"utf-8\"?><soap:Envelope

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"

><soap:Body><checkValidity

xmlns=\"http://example.org/CreditCardProcess\"><strCardN

umber>ABCD</strCardNumber><strHolderID>AB1234</strHolder

ID></checkValidity></soap:Body></soap:Envelope>"

wlHttp.Post("https://www.webloadmpstore.com/soap/server.

php")

results = resultParser(document.wlXmls[0])

if (results == "1")

InfoMessage("Validation check return ‘Check OK’ like it

should")

else

 178 Appendix A. Scripting Samples

InfoMessage("Validation check is not working correctly")

3. Add the resultParser function to the script, which checks whether your credit

card information is valid. The function retrieves the information from

document.wlXmls[0] in the results parameter and uses the built-in

WebLOAD XML DOM to parse and return XML data to the parameter.

function resultParser (doc)

{

//get ‘Result’ tags, we expect exactly one result:

ResultsElements =

doc.getElementsByTagName("Result")

if (ResultsElements.length != 1)

// Verify only one element with that name exists

throw "Expecting a single Result tag. received " +

ResultsElements.length + "elements"

ResultElm = ResultsElements.item(0)

if (ResultElm.childNodes.length == 0)

return null

else

{

Result = ResultElm.firstChild

return Result.nodeValue

}

}

Step 3 – Creating the External Login JavaScript File

1. Select the section of the script that is responsible for the login process.

2. Copy the script to a separate JavaScript file and save the file as login_js.js.

The script in the login_js.js file is as follows:

function Login() {

strGlobalInputFileLine = GetLine(InFile1,",")

user_name = strGlobalInputFileLine[1]

password = strGlobalInputFileLine[2]

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/")

WebLOAD Scripting Guide 179

Sleep(9094)

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/"

wlHttp.Get("http://www.webloadmpstore.com/login.php")

Sleep(7704)

session_id = document.forms[1].elements[2].value

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/login.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["login"] = user_name

wlHttp.FormData["password"] = password

wlHttp.FormData["sessionID"] = session_id

wlHttp.FormData["event"] = "login"

wlHttp.FormData["Submit"] = "Login"

wlHttp.Post("http://www.webloadmpstore.com/login.php")

}

Step 4 – Including and Using the External File in the Agenda

1. Include the external JavaScript file in the Agenda by copying the following into the

InitAgenda() function of the Agenda:

IncludeFile("login_js.js")

2. Drag the JavaScript object Building Block into the Agenda.

3. Add the rs parameter that calls the login function from the included

login_js.js file.

rs = Login()

4. Save the Agenda as Agenda 4–Ajax and Web services.

The Full Agenda: Agenda 4-AJAX and Web Services

function InitAgenda()

{

InFile1 = CopyFile("P:\\Supporting Tools\\Sample

Scripts\\New\\InFile1.txt")

Open(InFile1)

IncludeFile("login_js.js")

}

 180 Appendix A. Scripting Samples

/***** WLIDE -function resultParser - ID:33 *****/

function resultParser (doc)

{

//get ‘Result’ tags, we expect exactly one result:

ResultsElements = doc.getElementsByTagName("Result")

if (ResultsElements.length != 1)

// Verify only one element with that name exist

throw "Expecting a single Result tag. received " +

ResultsElements.length + "elements"

ResultElm = ResultsElements.item(0)

if (ResultElm.childNodes.length == 0)

return null

else

{

Result = ResultElm.firstChild

return Result.nodeValue

}

}

 // END WLIDE

/***** WLIDE - Login Function - ID:19 *****/

rs = Login()

 // END WLIDE

/***** WLIDE - Sleep - ID:7 *****/

Sleep(3015)

 // END WLIDE

/***** WLIDE - URL : http://www.webloadmpstore.com/index.php -

ID:8 *****/

wlHttp.Get("http://www.webloadmpstore.com/index.php")

 // END WLIDE

/***** WLIDE - Sleep - ID:9 *****/

Sleep(5282)

 // END WLIDE

/***** WLIDE - Parameterizing product ID and category number -

ID:28 *****/

WebLOAD Scripting Guide 181

product_id = wlRand.Range(1,9)

quantity = wlRand.Range(1,12)

 // END WLIDE

/***** WLIDE - URL : Select show product details - ID:10 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.FormData["id"] = product_id

wlHttp.Get("http://www.webloadmpstore.com/product.php")

 // END WLIDE

/***** WLIDE - Sleep - ID:11 *****/

Sleep(4984)

 // END WLIDE

/***** WLIDE - URL : Add to cart - ID:12 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/product.php?id=product_id"

wlHttp.FormData["event"] = "addproduct"

wlHttp.FormData["id"] = product_id

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

 // END WLIDE

/***** WLIDE - URL : Product quantity - ID:17 *****/

wlGlobals.GetFrames = false

wlHttp.FormData["event"] = "update"

wlHttp.FormData["id"] = product_id

wlHttp.FormData["quantity"] = quantity

wlHttp.Get("http://www.webloadmpstore.com/cart.php")

 // END WLIDE

/***** WLIDE - URL : HTTPS - ID:22 *****/

wlGlobals.GetFrames = false

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/cart.php?event=update&id=2&quanti

ty=3"

wlHttp.Get("https://www.webloadmpstore.com/checkout.php")

 // END WLIDE

/***** WLIDE - URL :

https://www.webloadmpstore.com/soap/server.php?wsdl - ID:23

*****/

 182 Appendix A. Scripting Samples

wlGlobals.GetFrames = false

wlHttp.Header["Referer"] =

"https://www.webloadmpstore.com/checkout.php"

wlHttp.FormData["wsdl"] = "WLVOID$STRING$"

wlHttp.Get("https://www.webloadmpstore.com/soap/server.php")

 // END WLIDE

/***** WLIDE - URL : Validate Cred - Pass - ID:26 *****/

wlHttp.Header["Referer"] =

"https://www.webloadmpstore.com/checkout.php"

wlHttp.Data["Type"] = "text/xml; charset=utf-8"

wlHttp.Data["Value"] = "<?xml version=\"1.0\" encoding=\"utf-

8\"?><soap:Envelope

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"><soap:B

ody><checkValidity

xmlns=\"http://example.org/CreditCardProcess\"><strCardNumber>AB

CD</strCardNumber><strHolderID>AB1234</strHolderID></checkValidi

ty></soap:Body></soap:Envelope>"

wlHttp.Post("https://www.webloadmpstore.com/soap/server.php")

results = resultParser(document.wlXmls[0])

if (results == "1")

InfoMessage("Validation check return ‘Check OK’ like it

should")

else

InfoMessage("Validation check is not working correctly")

 // END WLIDE

/***** WLIDE - URL : Confirm Order - ID:27 *****/

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["name"] = "Radview"

wlHttp.FormData["address"] = "Hamelacha 14"

wlHttp.FormData["shippingAddress"] = "Park Afek"

wlHttp.FormData["cardNumber"] = "ABCD"

wlHttp.FormData["idNumber"] = "AB1234"

wlHttp.FormData["event"] = "process"

wlHttp.Post("https://www.webloadmpstore.com/checkout.php")

 // END WLIDE

WebLOAD Scripting Guide 183

Scripting Sample Using AJAX and JSON to Validate a

Web Server Response

WebLOAD supports automatic recording of AJAX calls into the test Agenda using

JSON, enabling debugging and full access to all request data (headers and body), both

in the script and during runtime.

What the Script Does

 Demonstrates how WebLOAD supports AJAX and JSON.

 Demonstrates how to validate a Web service response.

How the Script Works

In this Agenda, you will search for a product in the webloadmpstore site and in the

search results page, you will request to see the site’s statistics. The statistics displayed

include the number of users online and the date and time. These statistics are updated

every ten seconds to ensure their accuracy by using an asynchronous AJAX call. Each

time the information is updated, the AJAX script is recorded in the Agenda by

WebLOAD IDE.

The following steps demonstrate how to modify the AJAX script so that the IDE

displays the JSON information in the log view during runtime. This is done by adding

an InfoMessage to the Agenda, which displays the information based on the JSON

response.

Step 1 – Recording AJAX Calls in the Agenda

1. Start recording a new Agenda and browse to www.webloadmpstore.com.

The Agenda is recorded as follows:

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/index.php")

2. In the webloadmpstore website, enter WebLOAD in the Search field and click

SEARCH.

The search results for WebLOAD appear. In the IDE the following script is

recorded:

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["event"] = "search"

wlHttp.FormData["searchTerm"] = "webload"

http://www.webloadmpstore.com/

 184 Appendix A. Scripting Samples

wlHttp.Post("http://www.webloadmpstore.com/search.php")

3. Check the Show statistics checkbox. The script in the Agenda appears as follows:

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/search.php"

wlHttp.Get("http://www.webloadmpstore.com/usersonlinecou

nter.php")

New nodes are recorded repeatedly and added to the script as the site

automatically refreshes itself every ten seconds.

4. After a few nodes have been added to the script, click in WebLOAD IDE to

stop recording the Agenda.

Step 2 – Parsing the JSON Response

1. In the InitAgenda() function in the Agenda, define the global variable values of

the SaveSource property as follows:

function InitAgenda()

{

wlGlobals.SaveSource = true

}

This instructs WebLOAD to store the complete HTML source code downloaded in

the document.wlSource object.

2. Drag the JavaScript object Building Block from the Toolbox to the Agenda Tree. In

the Building Block, add a function that receives the document.wlSource object

and manipulates it to retrieve the statistics. The script is as follows:

function evalResponse (source) {

json_response = eval("(" + source + ")")

}

3. Create an InfoMessage to notify you of the statistic values during runtime. The

edited script is as follows:

function evalResponse (source) {

json_response = eval("(" + source + ")")

InfoMessage ("The number of online users is: " +

json_response.usersOnline + " and The current time is: "

+ json_response.time)

}

4. In each of the AJAX calls recorded in the Agenda, add a call to the newly created

function:

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/search.php"

WebLOAD Scripting Guide 185

wlHttp.Get("http://www.webloadmpstore.com/usersonlinecou

nter.php")

evalResponse(document.wlSource)

5. Save the Agenda as Agenda 5-AJAX and JSON.

Step 3 – Displaying JSON Information During Runtime

 Run the script. Each time the browser refreshes itself, a message in the log view is

displayed. The message contains the statistics recorded in the browser, including

the time and number of users online:

The number of online users is: 1 and The current time

is: 11:23:11am

The Full Agenda: Agenda 5-AJAX and JSON

function InitAgenda()

{

wlGlobals.SaveSource = true

 // END WLIDE

}

/***** WLIDE - URL : Home Page - ID:20 *****/

wlGlobals.GetFrames = false

wlHttp.Get("http://www.webloadmpstore.com/index.php")

 // END WLIDE

/***** WLIDE - Sleep - ID:22 *****/

Sleep(8371)

 // END WLIDE

/***** WLIDE -Search page - ID:23 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/index.php"

wlHttp.ContentType = "application/x-www-form-urlencoded"

wlHttp.FormData["event"] = "search"

wlHttp.FormData["searchTerm"] = "webload"

wlHttp.Post("http://www.webloadmpstore.com/search.php")

 // END WLIDE

/***** WLIDE - Sleep - ID:24 *****/

Sleep(8542)

 // END WLIDE

/***** WLIDE - JavaScriptObject - ID:27 *****/

 186 Appendix A. Scripting Samples

function evalResponse (source) {

json_response = eval("(" + source + ")")

InfoMessage ("The number of online users is: " +

json_response.usersOnline + " and The current time is: " +

json_response.time)

 }

 // END WLIDE

/***** WLIDE - URL : Ajax - ID:7 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/search.php"

wlHttp.Get("http://www.webloadmpstore.com/usersonlinecounter.php

")

evalResponse(document.wlSource)

 // END WLIDE

/***** WLIDE - Sleep - ID:8 *****/

Sleep(10811)

 // END WLIDE

/***** WLIDE - URL : Ajax - ID:9 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/search.php"

wlHttp.Get("http://www.webloadmpstore.com/usersonlinecounter.php

")

evalResponse(document.wlSource)

 // END WLIDE

/***** WLIDE - Sleep - ID:10 *****/

Sleep(10640)

 // END WLIDE

/***** WLIDE - URL : Ajax - ID:11 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/search.php"

wlHttp.Get("http://www.webloadmpstore.com/usersonlinecounter.php

")

evalResponse(document.wlSource)

 // END WLIDE

WebLOAD Scripting Guide 187

/***** WLIDE - Sleep - ID:12 *****/

Sleep(10655)

 // END WLIDE

/***** WLIDE - URL : Ajax - ID:13 *****/

wlHttp.Header["Referer"] =

"http://www.webloadmpstore.com/search.php"

wlHttp.Get("http://www.webloadmpstore.com/usersonlinecounter.php

")

evalResponse(document.wlSource)

 // END WLIDE

WebLOAD Scripting Guide 189

Appendix B

LiveConnect Overview

This appendix describes using LiveConnect technology to let Java and JavaScript code

communicate with each other. LiveConnect is a registered trademark of Netscape

Communications Corporation. This information is provided by Netscape, and can be

found in the JavaScript Reference site at

http://www.js-examples.com/page/reference__partjava.html).

This appendix assumes you are familiar with Java programming. For additional

information on LiveConnect, see the LiveConnect information on the Mozilla

Developer Center (http://developer.mozilla.org/en/docs/LiveConnect).

Working with Wrappers

In JavaScript, a wrapper is an object of the target language data type that encloses an

object of the source language. On the JavaScript side, you can use a wrapper object to

access methods and fields of the Java object; calling a method or accessing a property

on the wrapper results in a call on the Java object. On the Java side, JavaScript objects

are wrapped in an instance of the class netscape.javascript.JSObject and passed to Java.

When a JavaScript object is sent to Java, the runtime engine creates a Java wrapper of

type JSObject. When a JSObject is sent from Java to JavaScript, the runtime engine

unwraps the JSObject revealing the original JavaScript object type. The JSObject class

provides an interface for invoking JavaScript methods and examining JavaScript

properties.

JavaScript to Java Communication

When you refer to a Java package or class, or work with a Java object or array, you use

one of the special LiveConnect objects. All JavaScript access to Java takes place with

these objects, which are summarized in the following table.

http://www.js-examples.com/page/reference__partjava.html
http://developer.mozilla.org/en/docs/LiveConnect

 190 Appendix B. LiveConnect Overview

Table 9: The LiveConnect object set

Object Description

JavaArray A wrapped Java array, accessed from within

JavaScript code.

JavaClass A JavaScript reference to a Java class.

JavaObject A wrapped Java object, accessed from within

JavaScript code.

JavaPackage A JavaScript reference to a Java package.

Note: Because Java is a strongly typed language and JavaScript is weakly typed, the

JavaScript runtime engine converts argument values into the appropriate data types

for the other language when you use LiveConnect. See Data Type Conversions (on

page 197), for more information.

In some ways, the existence of the LiveConnect objects is transparent, because you

interact with Java in a fairly intuitive way. For example, you can create a Java String

object and assign it to the JavaScript variable myString by using the new operator

with the Java constructor, as follows:

var myString = new java.lang.String("Hello world")

In the previous example, the variable myString is a JavaObject because it holds an

instance of the Java object String. As a JavaObject, myString has access to the public

instance methods of java.lang.String and its superclass, java.lang.Object.

These Java methods are available in JavaScript as methods of the JavaObject, and you

can call them as follows:

myString.length() // returns 11

The Packages Object

If a Java class is not part of the java, sun, or netscape packages, you access it with the

Packages object. For example, suppose the Redwood Corporation uses a Java package

called redwood to contain various Java classes that it implements.

To create an instance of the HelloWorld class in redwood, you access the constructor of

the class as follows:

var red = new Packages.redwood.HelloWorld()

You can also access classes in the default package (that is, classes that don’t explicitly

name a package). For example, if the HelloWorld class is directly in the CLASSPATH

and not in a package, you can access it as follows:

var red = new Packages.HelloWorld()

WebLOAD Scripting Guide 191

The LiveConnect java, sun, and netscape objects provide shortcuts for commonly used

Java packages. For example, you can use the following:

var myString = new java.lang.String("Hello world")

instead of the longer version:

var myString = new Packages.java.lang.String("Hello world")

Working with Java Arrays

When any Java method creates an array and you reference that array in JavaScript, you

are working with a JavaArray. For example, the following code creates the JavaArray x

with ten elements of type int:

x = java.lang.reflect.Array.newInstance(java.lang.Integer, 10)

Like the JavaScript Array object, JavaArray has a length property that returns the

number of elements in the array. Unlike Array.length, JavaArray.length is a read-only

property, because the number of elements in a Java array are fixed at the time of

creation.

Package and Class References

Simple references to Java packages and classes from JavaScript create the JavaPackage

and JavaClass objects. In the earlier example about the Redwood corporation, for

example, the reference Packages.redwood is a JavaPackage object. Similarly, a

reference such as java.lang.String is a JavaClass object.

Most of the time, you don’t have to worry about the JavaPackage and JavaClass

objects—you just work with Java packages and classes, and LiveConnect creates these

objects transparently.

In JavaScript 1.3 and earlier, JavaClass objects are not automatically converted to

instances of java.lang.Class when you pass them as parameters to Java methods--you

must create a wrapper around an instance of java.lang.Class. In the following example,

the forName method creates a wrapper object theClass, which is then passed to the

newInstance method to create an array.

// JavaScript 1.3

theClass = java.lang.Class.forName("java.lang.String")

theArray = java.lang.reflect.Array.newInstance(theClass, 5)

In JavaScript 1.4 and later, you can pass a JavaClass object directly to a method, as

shown in the following example:

// JavaScript 1.4

theArray =

 192 Appendix B. LiveConnect Overview

java.lang.reflect.Array.newInstance(java.lang.String, 5)

Arguments of Type Char

In JavaScript 1.4 and later, you can pass a one-character string to a Java method that

requires an argument of type char. For example, you can pass the string "H" to the

Character constructor as follows:

c = new java.lang.Character("H")

In JavaScript 1.3 and earlier, you must pass such methods an integer that corresponds

to the Unicode value of the character. For example, the following code also assigns the

value "H" to the variable c:

c = new java.lang.Character(72)

Handling Java Exceptions in JavaScript

When Java code fails at run time, it throws an exception. If your JavaScript code

accesses a Java data member or method and fails, the Java exception is passed on to

JavaScript for you to handle. Beginning with JavaScript 1.4, you can catch this

exception in a try...catch statement.

For example, suppose you are using the Java forName method to assign the name of a

Java class to a variable called theClass. The forName method throws an exception if

the value you pass it does not evaluate to the name of a Java class. Place the forName

assignment statement in a try block to handle the exception, as follows:

function getClass(javaClassName) {

try {

var theClass = java.lang.Class.forName(javaClassName);

} catch (e) {

return ("The Java exception is " + e);

}

return theClass

}

In this example, if javaClassName evaluates to a legal class name, such as

"java.lang.String", the assignment succeeds. If javaClassName evaluates to an invalid

class name, such as "String", the getClass function catches the exception and returns

something similar to the following:

The Java exception is java.lang.ClassNotFoundException: String

See Exception Handling Statements (on page 205), for more information about JavaScript

exceptions.

WebLOAD Scripting Guide 193

Java to JavaScript Communication

If you want to use JavaScript objects in Java, you must import the netscape.javascript

package into your Java file. This package defines the following classes:

 netscape.javascript.JSObject allows Java code to access JavaScript methods and

properties.

 netscape.javascript.JSException allows Java code to handle JavaScript errors.

Starting with JavaScript 1.2, these classes are delivered in a .jar file; in previous

versions of JavaScript, these classes are delivered in a .zip file. See JSException and

JSObject Classes (on page 208), for more information about these classes.

To access the LiveConnect classes, place the .jar or .zip file in the CLASSPATH of

the JDK compiler in either of the following ways:

 Create a CLASSPATH environment variable to specify the path and name of .jar

or .zip file.

 Specify the location of .jar or .zip file when you compile by using the -classpath

command line parameter.

For example, in Navigator 4.0 for Windows NT, the classes are delivered in the

java40.jar file in the Program\Java\Classes directory beneath the Navigator

directory.

To specify an environment variable in Windows NT:

1. Double-click the System icon in the Control Panel.

2. Create a user environment variable called CLASSPATH with a value similar to the

following:

D:\Navigator\Program\Java\Classes\java40.jar

See the Sun JDK documentation for more information about CLASSPATH.

Note: Because Java is a strongly typed language and JavaScript is weakly typed, the

JavaScript runtime engine converts argument values into the appropriate data types

for the other language when you use LiveConnect. See Data Type Conversions (on

page 197), for complete information.

Using the LiveConnect Classes

All JavaScript objects appear within Java code as instances of

netscape.javascript.JSObject. When you call a method in your Java code, you can pass it

a JavaScript object as one of its argument. To do so, you must define the corresponding

formal parameter of the method to be of type JSObject.

 194 Appendix B. LiveConnect Overview

Also, any time you use JavaScript objects in your Java code, you should put the call to

the JavaScript object inside a try...catch statement that handles exceptions of type

netscape.javascript.JSException. This allows your Java code to handle errors in

JavaScript code execution that appear in Java as exceptions of type JSException.

Accessing JavaScript with JSObject

For example, suppose you are working with the Java class called JavaDog. As shown in

the following code, the JavaDog constructor takes the JavaScript object jsDog, which is

defined as type JSObject, as an argument:

import netscape.javascript.*;

public class JavaDog

{

public String dogBreed;

public String dogColor;

public String dogSex;

// define the class constructor

public JavaDog(JSObject jsDog)

{

// use try...catch to handle JSExceptions here

this.dogBreed = (String)jsDog.getMember("breed");

this.dogColor = (String)jsDog.getMember("color");

this.dogSex = (String)jsDog.getMember("sex");

}

}

Note: The getMember method of JSObject is used to access the properties of the

JavaScript object. The previous example uses getMember to assign the value of the

JavaScript property jsDog.breed to the Java data member JavaDog.dogBreed.

A more realistic example would place the call to getMember inside a try...catch

statement to handle errors of type JSException. See Handling JavaScript Exceptions in

Java (on page 195), for more information.

To get a better sense of how getMember works, look at the definition of the custom

JavaScript object Dog:

function Dog(breed,color,sex) {

this.breed = breed

this.color = color

this.sex = sex

}

WebLOAD Scripting Guide 195

You can create a JavaScript instance of Dog called gabby as follows:

gabby = new Dog("lab","chocolate","female")

If you evaluate gabby.color, you can see that it has the value "chocolate". Now suppose

you create an instance of JavaDog in your JavaScript code by passing the gabby object

to the constructor as follows:

javaDog = new Packages.JavaDog(gabby)

If you evaluate javaDog.dogColor, you can see that it also has the value "chocolate",

because the getMember method in the Java constructor assigns dogColor the value of

gabby.color.

Handling JavaScript Exceptions in Java

When JavaScript code called from Java fails at run time, it throws an exception. If you

are calling the JavaScript code from Java, you can catch this exception in a

try...catch statement. The JavaScript exception is available to your Java code as an

instance of netscape.javascript.JSException.

JSException is a Java wrapper around any exception type thrown by JavaScript, similar

to the way that instances of JSObject are wrappers for JavaScript objects. Use

JSException when you are evaluating JavaScript code in Java.

When you are evaluating JavaScript code in Java, the following situations can cause

run-time errors:

 The JavaScript code is not evaluated, either due to a JavaScript compilation error or

to some other error that occurred at run time.

The JavaScript interpreter generates an error message that is converted into an

instance of JSException.

 Java successfully evaluates the JavaScript code, but the JavaScript code executes an

unhandled throw statement.

JavaScript throws an exception that is wrapped as an instance of JSException.

Use the getWrappedException method of JSException to unwrap this

exception in Java.

For example, suppose the Java object eTest evaluates the string jsCode that you pass to

it. You can respond to either type of run-time error the evaluation causes by

implementing an exception handler such as the following:

import netscape.javascript.JSObject;

import netscape.javascript.JSException;

 196 Appendix B. LiveConnect Overview

public class eTest {

public static Object doit(JSObject obj, String jsCode) {

try {

obj.eval(jsCode);

} catch (JSException e) {

if (e.getWrappedException()==null)

return e;

return e.getWrappedException();

}

return null;

}

}

In this example, the code in the try block attempts to evaluate the string jsCode that

you pass to it. Let’s say you pass the string "myFunction()" as the value of jsCode. If

myFunction is not defined as a JavaScript function, the JavaScript interpreter cannot

evaluate jsCode. The interpreter generates an error message, the Java handler catches

the message, and the doit method returns an instance of

netscape.javascript.JSException.

However, suppose myFunction is defined in JavaScript as follows:

function myFunction() {

try {

if (theCondition == true) {

return "Everything’s ok";

} else {

throw "JavaScript error occurred" ;

}

} catch (e) {

if (canHandle == true) {

handleIt();

} else {

throw e;

}

}

}

If theCondition is false, the function throws an exception. The exception is caught in

the JavaScript code, and if canHandle is true, JavaScript handles it. If canHandle is

false, the exception is rethrown, the Java handler catches it, and the doit method

returns a Java string:

JavaScript error occurred

WebLOAD Scripting Guide 197

See Exception Handling Statements (on page 205), for complete information about

JavaScript exceptions.

Backward Compatibility

In JavaScript 1.3 and earlier versions, the JSException class had three public

constructors that optionally took a string argument, specifying the detail message or

other information for the exception. The getWrappedException method was not

available.

Use a try...catch statement such as the following to handle LiveConnect

exceptions in JavaScript 1.3 and earlier versions:

try {

global.eval("foo.bar = 999;");

} catch (Exception e) {

if (e instanceof JSException) {

jsCodeFailed()";

} else {

otherCodeFailed();

}

}

In this example, the eval statement fails if foo is not defined. The catch block executes

the jsCodeFailed method if the eval statement in the try block throws a JSException; the

otherCodeFailed method executes if the try block throws any other error.

Data Type Conversions

Because Java is a strongly typed language and JavaScript is weakly typed, the

JavaScript runtime engine converts argument values into the appropriate data types

for the other language when you use LiveConnect.

JavaScript to Java Conversions

When you call a Java method and pass it parameters from JavaScript, the data types of

the parameters you pass in are converted according to the rules described in the

following sections:

 Number Values (on page 198)

 Boolean Values (on page 199)

 String Values (on page 200)

 198 Appendix B. LiveConnect Overview

 Undefined Values (on page 200)

 Null Values (on page 201)

 JavaArray and JavaObject Objects (on page 201)

 JavaClass Objects (on page 203)

 Other JavaScript Objects (on page 203)

The return values of methods of netscape.javascript.JSObject are always converted to

instances of java.lang.Object. The rules for converting these return values are also

described in these sections.

For example, if JSObject.eval returns a JavaScript number, you can find the rules for

converting this number to an instance of java.lang.Object in Number Values (on

page 198).

Number Values

When you pass JavaScript number types as parameters to Java methods, Java converts

the values according to the rules described in the following table:

Table 10: Number type conversion rules

Java parameter type Conversion rules

double The exact value is transferred to Java without

rounding and without a loss of magnitude or sign.

lava.lang.Double

java.lang.Object

A new instance of java.lang.Double is created, and

the exact value is transferred to Java without

rounding and without a loss of magnitude or sign.

float Values are rounded to float precision.

Values that are unrepresentably large or small are

rounded to +infinity or -infinity.

byte char

int long

short

Values are rounded using round-to-negative-

infinity mode.

Values that are unrepresentably large or small

result in a run-time error.

NaN values are converted to zero.

java.lang.String Values are converted to strings. For example:

237 becomes "237"

boolean 0 and NaN values are converted to false.

Other values are converted to true.

WebLOAD Scripting Guide 199

When a JavaScript number is passed as a parameter to a Java method that expects an

instance of java.lang.String, the number is converted to a string. Use the == operator to

compare the result of this conversion with other string values.

Boolean Values

When you pass JavaScript Boolean types as parameters to Java methods, Java converts

the values according to the rules described in the following table:

Table 11: Boolean type conversion rules

Java parameter type Conversion rules

boolean All values are converted directly to the Java

equivalents.

lava.lang.Boolean

java.lang.Object

A new instance of java.lang.Boolean is created.

Each parameter creates a new instance, not one

instance with the same primitive value.

java.lang.String Values are converted to strings. For example:

true becomes "true"

false becomes "false"

byte char

double float

int long

short

true becomes 1

false becomes 0

When a JavaScript Boolean is passed as a parameter to a Java method that expects an

instance of java.lang.String, the Boolean is converted to a string. Use the == operator to

compare the result of this conversion with other string values.

 200 Appendix B. LiveConnect Overview

String Values

When you pass JavaScript string types as parameters to Java methods, Java converts

the values according to the rules described in the following table:

Table 12: String type conversion rules

Java parameter type Conversion rules

lava.lang.String

java.lang.Object

JavaScript 1.4:

A JavaScript string is converted to an instance of

java.lang.String with a Unicode value.

JavaScript 1.3 and earlier:

A JavaScript string is converted to an instance of

java.lang.String with an ASCII value.

byte double

float int

long short

All values are converted to the appropriate

numbers.

char JavaScript 1.4:

One-character strings are converted to Unicode

characters.

All other values are converted to numbers.

JavaScript 1.3 and earlier:

All values are converted to numbers.

boolean The empty string becomes false.

All other values become true.

Undefined Values

When you pass undefined JavaScript values as parameters to Java methods, Java

converts the values according to the rules described in the following table:

Table 13: Undefined type conversion rules

Java parameter type Conversion rules

lava.lang.String

java.lang.Object

The value is converted to an instance of

java.lang.String whose value is the string

"undefined".

boolean The value becomes false.

double float The value becomes NaN.

WebLOAD Scripting Guide 201

Java parameter type Conversion rules

byte char

int long

Short

The value becomes 0.

The undefined value conversion is possible in JavaScript 1.3 and later versions only.

Earlier versions of JavaScript do not support undefined values.

When a JavaScript undefined value is passed as a parameter to a Java method that

expects an instance of java.lang.String, the undefined value is converted to a string.

Use the == operator to compare the result of this conversion with other string values.

Null Values

When you pass null JavaScript values as parameters to Java methods, Java converts the

values according to the rules described in the following table:

Table 14: Null value conversion rules

Java parameter type Conversion rules

Any class, any interface type The value becomes null.

byte char

double float

int long

short

The value becomes 0.

boolean The value becomes false.

JavaArray and JavaObject Objects

In most situations, when you pass a JavaScript JavaArray or JavaObject as a parameter

to a Java method, Java simply unwraps the object; in a few situations, the object is

coerced into another data type according to the rules described in the following table:

Table 15: JavaArray and JavaObject type conversion rules

Java parameter type Conversion rules

Any interface or class that is

assignment-compatible with

the unwrapped object.

The object is unwrapped.

 202 Appendix B. LiveConnect Overview

Java parameter type Conversion rules

java.lang.String The object is unwrapped, the toString method of

the unwrapped Java object is called, and the result

is returned as a new instance of

java.lang.String.

byte char

double float

int long

short

The object is unwrapped, and either of the

following situations occur:

 If the unwrapped Java object has a

doubleValue method, the JavaArray or

JavaObject is converted to the value returned

by this method.

 If the unwrapped Java object does not have a

doubleValue method, an error occurs.

boolean In JavaScript 1.3 and later versions, the object is

unwrapped and either of the following situations

occur:

 If the object is null, it is converted to false.

 If the object has any other value, it is converted

to true.

In JavaScript 1.2 and earlier versions, the object is

unwrapped and either of the following situations

occur:

 If the unwrapped object has a booleanValue

method, the source object is converted to the

return value.

 If the object does not have a booleanValue

method, the conversion fails.

An interface or class is assignment-compatible with an unwrapped object if the

unwrapped object is an instance of the Java parameter type. That is, the following

statement must return true:

unwrappedObject instanceof parameterType

WebLOAD Scripting Guide 203

JavaClass Objects

When you pass a JavaScript JavaClass object as a parameter to a Java method, Java

converts the object according to the rules described in the following table:

Table 16: JavaClass object conversion rules

Java parameter type Conversion rules

java.lang.Class The object is unwrapped.

java.lang.JSObject

java.lang.Object

The JavaClass object is wrapped in a new instance

of java.lang.JSObject.

java.lang.String The object is unwrapped, the toString method of

the unwrapped Java object is called, and the result

is returned as a new instance of java.lang.String.

boolean In JavaScript 1.3 and later versions, the object is

unwrapped and either of the following situations

occur:

 If the object is null, it is converted to false.

 If the object has any other value, it is converted

to true.

In JavaScript 1.2 and earlier versions, the object is

unwrapped and either of the following situations

occur:

 If the unwrapped object has a booleanValue

method, the source object is converted to the

return value.

 If the object does not have a booleanValue

method, the conversion fails.

Other JavaScript Objects

When you pass any other JavaScript object as a parameter to a Java method, Java

converts the object according to the rules described in the following table:

Table 17: Other JavaScript Object Conversion Rules

Java parameter type Conversion rules

java.lang.JSObject

java.lang.Object

The object is wrapped in a new instance of

java.lang.JSObject.

java.lang.String The object is unwrapped, the toString method of

the unwrapped Java object is called, and the result

is returned as a new instance of java.lang.String.

 204 Appendix B. LiveConnect Overview

Java parameter type Conversion rules

byte char

Double float

int long

short

The object is converted to an appropriate value

using the logic of the ToPrimitive operator. The

PreferredType hint used with this operator is

Number.

boolean In JavaScript 1.3 and later versions, the object is

unwrapped and either of the following situations

occur:

 If the object is null, it is converted to false.

 If the object has any other value, it is converted

to true.

In JavaScript 1.2 and earlier versions, the object is

unwrapped and either of the following situations

occur:

 If the unwrapped object has a booleanValue

method, the source object is converted to the

return value.

 If the object does not have a booleanValue

method, the conversion fails.

Java to JavaScript Conversions

Values passed from Java to JavaScript are converted as follows:

 Java byte, char, short, int, long, float, and double are converted to JavaScript

numbers.

 A Java Boolean is converted to a JavaScript Boolean.

 An object of class netscape.javascript.JSObject is converted to the original

JavaScript object.

 Java arrays are converted to a JavaScript pseudo-Array object; this object behaves

just like a JavaScript Array object: you can access it with the syntax

arrayName[index] (where index is an integer), and determine its length with

arrayName.length.

 A Java object of any other class is converted to a JavaScript wrapper, which can be

used to access methods and fields of the Java object:

 Converting this wrapper to a string calls the toString method on the original

object.

 Converting to a number calls the doubleValue method, if possible, and fails

otherwise.

WebLOAD Scripting Guide 205

 Converting to a Boolean in JavaScript 1.3 and later versions returns false if the

object is null, and true otherwise.

 Converting to a Boolean in JavaScript 1.2 and earlier versions calls the

booleanValue method, if possible, and fails otherwise.

Note: Instances of java.lang.Double and java.lang.Integer are converted to

JavaScript objects, not to JavaScript numbers. Similarly, instances of

java.lang.String are also converted to JavaScript objects, not to JavaScript strings.

Java String objects also correspond to JavaScript wrappers. If you call a JavaScript

method that requires a JavaScript string and pass it this wrapper, you’ll get an error.

Instead, convert the wrapper to a JavaScript string by appending the empty string to it,

as shown here:

var JavaString = JavaObj.methodThatReturnsAString();

var JavaScriptString = JavaString + "";

Exception Handling Statements

You can throw and catch exceptions using the throw and try...catch statements.

You also use the try...catch statement to handle Java exceptions. See Handling Java

Exceptions in JavaScript (on page 192), and Handling JavaScript Exceptions in Java (on

page 195), for information.

The Throw Statement

Use the throw statement to throw an exception. When you throw an exception, you

specify an expression containing the value of the exception:

throw expression

The following code throws several exceptions.

throw "Error2" // generates an exception with a string value

throw 42 // generates an exception with the value 42

throw true // generates an exception with the value true

You can specify an object when you throw an exception. You can then reference the

object’s properties in the catch block. The following example creates an object

myUserException of type UserException and uses it in a throw statement.

// Create an object type UserException

function UserException (message) {

this.message=message

this.name="UserException"

}

 206 Appendix B. LiveConnect Overview

// Create an instance of the object type and throw it

myUserException=new UserException("Value too high")

throw myUserException

The Try...Catch Statement

The try...catch statement marks a block of statements to try, and specifies a

response should an exception be thrown. If an exception is thrown, the try...catch

statement catches it.

Note: There are some exceptions that are not caught with the try...catch statement.

This includes the HTTP errors, which are thrown by the HTTP server.

The try...catch statement consists of the following:

 A try block, which contains one or more statements.

 A catch block, containing statements that specify what to do if an exception is

thrown in the try block.

That is, you want the try block to succeed, and if it does not succeed, you want

control to pass to the catch block.

If any statement within the try block (or in a function called from within the try

block) throws an exception, control immediately shifts to the catch block. If no

exception is thrown in the try block, the catch block is skipped.

 The finally block executes after the try and catch blocks execute but before

the statements following the try...catch statement.

The following example uses a try...catch statement. The example calls a function

that retrieves a month name from an array based on the value passed to the function. If

the value does not correspond to a month number (1-12), an exception is thrown with

the value "InvalidMonthNo" and the statements in the catch block set the

monthName variable to "unknown".

function getMonthName (mo) {

// Adjust month number for array index (1=Jan, 12=Dec)

mo=mo-1

var months=new Array ("Jan","Feb","Mar","Apr","May",

"Jun","Jul","Aug","Sep","Oct","Nov","Dec")

if (months[mo] != null) {

return months[mo]

} else {

throw "InvalidMonthNo"

}

}

WebLOAD Scripting Guide 207

try {

// statements to try

monthName=getMonthName(myMonth)

// function could throw exception

}

catch (e) {

monthName="unknown"

logMyErrors(e)

// pass exception object to error handler

}

The Catch Block

Use the try...catch statement’s catch block (recovery block) to execute error-

handling code. A catch block looks as follows:

catch (catchID) {

statements

}

Every catch block specifies an identifier (catchID in the preceding syntax) that holds

the value specified by the throw statement; you can use this identifier to get

information about the exception that was thrown. JavaScript creates this identifier

when the catch block is entered; the identifier lasts only for the duration of the catch

block; after the catch block finishes executing, the identifier is no longer available.

For example, the following code throws an exception. When the exception occurs,

control transfers to the catch block.

try {

throw "myException" // generates an exception

}

catch (e) {

// statements to handle any exceptions

logMyErrors(e) // pass exception object to error handler

}

The Finally Block

The finally block contains statements to execute after the try and catch blocks

execute but before the statements following the try...catch statement. The

finally block executes whether or not an exception is thrown. If an exception is

thrown, the statements in the finally block execute even if no catch block handles

the exception.

 208 Appendix B. LiveConnect Overview

You can use the finally block to make your script fail gracefully when an exception

occurs; for example, you may need to release a resource that your script has tied up.

The following example opens a file and then executes statements that use the file

(server-side JavaScript allows you to access files). If an exception is thrown while the

file is open, the finally block closes the file before the script fails.

try {

openMyFile() // tie up a resource

writeMyFile(theData)

}

finally {

closeMyFile() // always close the resource

}

Nesting Try...Catch Statements

You can nest one or more try...catch statements. If an inner try...catch

statement does not have a catch block, the enclosing try...catch statement’s

catch block is checked for a match.

JSException and JSObject Classes

This section describes the JSException and JSObject Classes.

JSException Class

The public class JSException extends RuntimeException.

java.lang.Object

|

+---java.lang.Throwable

|

+---java.lang.Exception

|

+---java.lang.RuntimeException

|

+----netscape.javascript.JSException

Description

JSException is an exception that is thrown when JavaScript code returns an error.

WebLOAD Scripting Guide 209

Constructor Summary

The netscape.javascript.JSException class has the following constructors:

Table 18: JSException constructors

Constructor Description

JSException Deprecated constructors optionally let you specify

a detail message and other information.

Method Summary

The netscape.javascript.JSException class has the following method:

Table 19: JSException methods

Method Description

GetWrappedException Instance method getWrappedException.

The following sections show the declaration and usage of the constructors and method.

Backward Compatibility

JavaScript 1.1 through 1.3. JSException had three public constructors that optionally

took a string argument, specifying the detail message or other information for the

exception. The getWrappedException method was not available.

JSException Constructor

Constructors, deprecated in JavaScript 1.4. Construct a JSException with an optional

detail message.

Declaration

1. public JSException()

2. public JSException(String s)

3. public JSException(String s,

String filename,

int lineno,

String source,

int tokenIndex)

 210 Appendix B. LiveConnect Overview

Arguments

Table 20: JSException arguments

Argument Name Description

s The detail message.

filename The URL of the file where the error occurred, if

possible.

lineno The line number if the file, if possible.

source The string containing the JavaScript code being

evaluated.

tokenIndex The index into the source string where the error

occurred.

GetWrappedException

Instance method getWrappedException.

Declaration

public Object getWrappedException()

JSObject Class

The public final class netscape.javascript.JSObject extends Object.

java.lang.Object

|

+----netscape.javascript.JSObject

Description

JavaScript objects are wrapped in an instance of the class netscape.javascript.JSObject

and passed to Java. JSObject allows Java to manipulate JavaScript objects.

When a JavaScript object is sent to Java, the runtime engine creates a Java wrapper of

type JSObject; when a JSObject is sent from Java to JavaScript, the runtime engine

unwraps it to its original JavaScript object type. The JSObject class provides a way to

invoke JavaScript methods and examine JavaScript properties.

Any JavaScript data brought into Java is converted to Java data types. When the

JSObject is passed back to JavaScript, the object is unwrapped and can be used by

JavaScript code. See Data Type Conversions (on page 197), for more information about

data type conversions.

WebLOAD Scripting Guide 211

Method Summary

The netscape.javascript.JSObject class has the following methods:

Table 21: JSObject methods

Method Description

call Calls a JavaScript method.

equals Determines if two JSObject objects refer to the same

instance.

eval Evaluates a JavaScript expression.

getMember Retrieves the value of a property of a JavaScript

object.

getSlot Retrieves the value of an array element of a

JavaScript object.

removeMember Removes a property of a JavaScript object.

setMember Sets the value of a property of a JavaScript object.

setSlot Sets the value of an array element of a JavaScript

object.

toString Converts a JSObject to a string.

Static Method

getWindow Gets a JSObject for the window containing the

given applet.

The following sections describe the declaration and usage of these methods.

call

Method. Calls a JavaScript method. Equivalent to

"this.methodName(args[0], args[1], ...)" in JavaScript.

Declaration

public Object call(String methodName, Object args[])

equals

Method. Determines if two JSObject objects refer to the same instance.

Overrides: equals in class java.lang.Object

 212 Appendix B. LiveConnect Overview

Declaration

public boolean equals(Object obj)

Backward compatibility

JavaScript 1.3. In JavaScript 1.3 and earlier versions, you can use either the equals

method of java.lang.Object or the == operator to evaluate two JSObject objects.

eval

Method. Evaluates a JavaScript expression. The expression is a string of JavaScript

source code that will be evaluated in the context given by "this".

Declaration

public Object eval(String s)

getMember

Method. Retrieves the value of a property of a JavaScript object. Equivalent to

"this.name" in JavaScript.

Declaration

public Object getMember(String name)

getSlot

Method. Retrieves the value of an array element of a JavaScript object. Equivalent to

"this[index]" in JavaScript.

Declaration

public Object getSlot(int index)

getWindow

Static method. Returns a JSObject for the window containing the given applet. This

method is useful in client-side JavaScript only.

Declaration

public static JSObject getWindow(Applet applet)

removeMember

Method. Removes a property of a JavaScript object.

WebLOAD Scripting Guide 213

Declaration

public void removeMember(String name)

setMember

Method. Sets the value of a property of a JavaScript object. Equivalent to "this.name =

value" in JavaScript.

Declaration

public void setMember(String name, Object value)

setSlot

Method. Sets the value of an array element of a JavaScript object. Equivalent to

"this[index] = value" in JavaScript.

Declaration

public void setSlot(int index, Object value)

toString

Method. Converts a JSObject to a String.

Overrides: toString in class java.lang.Object

Declaration

public String toString()

WebLOAD Scripting Guide 215

Appendix C

Load Engine CLI

You can use the following CLI commands to run the Load Generator and then run a

test simulating the load.

Note: The script name must always appear first in the command line. The order of the

other parameters is not significant.

Option Effect Default

<scenarios filename> Agenda or template name. This option must always

appear first in the command line.

-r:<reports interval> Interval of reporting. 100,000

milliseconds

(100 seconds)

-b Batch mode. Interactive

(menu) mode

-c:<clients> Virtual clients number. 1

-t:<abs|rel|off> Timestamp type switcher:

 Abs – absolute (PC time)

 rel – relative (from application start)

 off – no timestamps (suitable for functional tests)

Absolute time

stamps

-a Append log file if one exists. Overwrite

-u Attach auto-generated unique file name suffix:

timestamp and/or PID.

No suffix

-m Messages on. This option is only applicable in Interactive

and Batch mode.

off

-d Duplicate trace to console. Silent (no

console

output)

-s:<stats_file> Statistics file name. The Statistics file will appear in the

log directory. This option is only applicable in Interactive

and Batch mode.

No statistics

output

 216 Appendix C. Load Engine CLI

The following is an example using the CLI commands:

wlloadengine.exe E:\google.js –r:10 -b -c:2 –d –m –

s:google.stats

Where:

 Wlloadengine.exe runs the Load Generator engine.

 E:\google.js is the script being recorded.

 -r:10 indicates a 10 milliseconds interval of reporting.

 -b indicates that the Load Generator is working in batch mode.

 -c:2 indicates that there are two virtual clients.

 -d indicates to duplicate a trace to the Console, creating Console output.

 –m indicates that the Messages features is on.

 -s:google.stat indicates the name of the statistics output file that appears

in the log directory.

WebLOAD Scripting Guide 217

Index

A

A Typical Web Page And The Corresponding

Parse Tree ▪ 128

Accessing Java Objects From JavaScript

Agendas ▪ 97

Accessing JavaScript With JSObject ▪ 194

Accessing the JavaScript code within the

Agenda Tree ▪ 15

Activating ActiveX Objects From A JavaScript

Agenda ▪ 110

ActiveX Object ▪ 108

ActiveXObject() constructor ▪ 111

ActiveXObject() constructor (for RDS) ▪ 118

automatic conversion to JavaScript data

types ▪ 114

casting functions ▪ 115

remote data service (RDS) support ▪ 117

Remote Data Service (RDS) Support

example ▪ 119

ActiveX Object Interfaces ▪ 109

IDispatch ▪ 109

ITypeInfo ▪ 109

IUnknown ▪ 109

ActiveX Object Limitations ▪ 121

ActiveXObject() (Constructor) ▪ 111

ActiveXObject() Constructor

for RDS ▪ 118

Adding

JavaScript object nodes, to Agenda Tree ▪ 19

Adding a CopyFile() Function ▪ 25

Adding an IncludeFile() Function ▪ 21

Adding Input File Commands to your Agenda

Code ▪ 32

Adding JavaScript Object Nodes ▪ 19

Adding New Bookstore Data ▪ 82

Adding the wlOutputFile Object ▪ 27

Agenda Execution Sequence ▪ 11

Agenda Program Structure ▪ 8

Agenda Tree ▪ 7

nodes ▪ 7

structure ▪ 7

Agenda Tree Nodes ▪ 7

Agenda Tree structure ▪ 7

Agendas

creating ▪ 6

initialization and termination functions ▪ 8

main script ▪ 8, 11

threads ▪ 11

what are Agendas ▪ 6

Analyzing Possible Errors ▪ 41

Arguments Of Type Char ▪ 192

ASCII Files, Reading Input with GetLine()

Function ▪ 31

Assigning Values To ActiveX Objects ▪ 111

Authentication ▪ 36

Automatic Conversion Between JavaScript And

COM Data Types ▪ 114

Automatic Timers And Counters For Java

Objects ▪ 102

B

Backward Compatibility ▪ 197, 209

Basic Execution Sequence ▪ 11

Boolean Values ▪ 199

Browser Configuration

executing commands ▪ 51

search order precedence ▪ 62

transaction-specific ▪ 51

Browser Emulation ▪ 40

C

Cache, SSL, Cleared at Round’s End ▪ 13

call ▪ 211

Calling A WebLOAD API From A Java

Application ▪ 104

CBool() Function ▪ 115

CByte() Function ▪ 115

CDbl() Function ▪ 115

CFlt() Function ▪ 115

Changing Bookstore Data ▪ 80

CInt() Function ▪ 115

CLASSPATH Environment Variable ▪ 95

Cleanup at the End of Each Round ▪ 13

ClientNum ▪ 65

ClientNum Variable ▪ 65

Clients

example, identifying clients ▪ 67

mixed ▪ 14

scheduled ▪ 13

unique number ▪ 65

 218 Index

CLng() Function ▪ 115

COM Error Management ▪ 120

COM interface

CBool() ▪ 115

CByte() ▪ 115

CDbl() ▪ 115

CFlt() ▪ 115

CInt() ▪ 115

CLng() ▪ 115

CVARIANT() ▪ 115

Comparing loadXML() And load() ▪ 88

Component Object Model (COM) ▪ 108

ActiveXObject() constructor ▪ 111, 118

automatic conversion to JavaScript data

types ▪ 114

casting functions ▪ 115

remote data service (RDS) support ▪ 117

Remote Data Service (RDS) support ▪ 119

Component Object Model (COM) Interfaces

IDispatch ▪ 109

ITypeInfo ▪ 109

IUnknown ▪ 109

Configuration Properties

search order precedence ▪ 62

Connections, Closing ▪ 13

Constructor Summary ▪ 209

Constructors

ActiveXObject() ▪ 111

ActiveXObject() (for RDS) ▪ 118

Cookies

deleted at round’s end ▪ 13

example ▪ 145

how WebLOAD works with ▪ 144

CopyFile() Function ▪ 25

Copying Files ▪ 25

search order precedence ▪ 26

Counters, Automatic, For Java Class Methods ▪

102

Creating

an Agenda ▪ 6

Creating And Filling New XML DOM Objects ▪

85

CVARIANT() Function ▪ 115

D

Data ▪ 138

HTTP submission properties (protocol

mode) ▪ 133

input, from external files ▪ 31

wlHttp property (protocol mode) ▪ 138

Data Island

in-line code ▪ 73

reference to another source ▪ 73

scripted in-line ▪ 74

scripted reference to another source ▪ 74

Data Islands ▪ 71

Data Submission Properties ▪ 133

Data Type Conversions ▪ 197

DataFile ▪ 139

wlHttp property (protocol mode) ▪ 139

DCOM Over HTTP ▪ 117

Defaults, For Global And Local Browser

Actions ▪ 62

Defining a Standard or Severe Error ▪ 47

Description ▪ 208, 210

Determining the Copied File Location ▪ 26

Determining the Included File Location ▪ 23

Document

example (protocol mode) ▪ 130

Document Object Model (DOM)

WebLOAD extensions ▪ 124

Document Type Definition (DTD) ▪ 92

Dynamic HTML

example of parsing and navigating nested

frames (protocol mode) ▪ 130

Dynamic Link Example (Protocol Mode) ▪ 132

E

Editing the JavaScript Code in an Agenda ▪ 15

Element Object

example (protocol mode) ▪ 142

equals ▪ 211

Erase ▪ 140

Erase - wlHttp Property (Protocol Mode) ▪ 51

Erase wlHttp Property (Protocol Mode) ▪ 140

Erase=false ▪ 142

Erase=true (Default) ▪ 141

Erasing and Preserving the HTTP

Configuration ▪ 51

Error

handling ▪ 45

Error Handling ▪ 46

WebLOAD Scripting Guide 219

Error Management ▪ 41

Error Management Tools ▪ 41

eval ▪ 212

Example

automatic timers and counters ▪ 102

building a complete database in XML ▪ 89

calling a WebLOAD API ▪ 104

data islands used in an Agenda ▪ 75

dynamic HTML page, parsing, and

navigating nested frames (protocol

mode) ▪ 130

identifying a client and round ▪ 67

parse tree illustration (protocol mode) ▪ 128

passing objects between Java and JavaScript

▪ 101

passing simple variables between Java and

JavaScript ▪ 100

posting form data using elements (protocol

mode) ▪ 142

reading an input file ▪ 34

reading data from a JDBC database ▪ 106

reading data from a JDBC database ▪ 106

remote ActiveX object access ▪ 119

using a combination of global variables ▪ 61

using a cookie ▪ 145

using a cookie ▪ 145

using data islands in an Agenda ▪ 75

using wlHtml to follow a dynamic link

(protocol mode) ▪ 132

web page illustration (protocol mode) ▪ 128

Working with an included function ▪ 24

Examples

DTD in XML document ▪ 92

identifying clients and rounds ▪ 67

passing simple variables between Java and

JavaScript ▪ 100

Exception Handling Statements ▪ 205

Execution Sequence

after a runtime error ▪ 46

after Abort ▪ 48

after Stop ▪ 48

after Stopping a Virtual Client ▪ 49

mixed clients ▪ 14

normal ▪ 11

scheduled clients ▪ 13

F

File Management ▪ 21

File Management Functions

CopyFile() ▪ 25

GetLine() ▪ 30, 31

IncludeFile() ▪ 21

Open() ▪ 31

Files

IncludeFile() ▪ 21

copying ▪ 25

GetLine() ▪ 31

input ▪ 30

Open() ▪ 31

output ▪ 27

reading ASCII data ▪ 31

Flags

WLAllAgendas ▪ 58, 60

WLCurrentAgenda ▪ 57, 59

WLError ▪ 42

WLMinorError ▪ 42

WLRandom ▪ 31

WLSequential ▪ 31

WLSevereError ▪ 42

WLSuccess ▪ 42

Forestalling Errors ▪ 98

FormData ▪ 134

FormData - wlHttp Property

missing fields (protocol mode) ▪ 135

using Get() (protocol mode) ▪ 134

using Post() (protocol mode) ▪ 135

working with data files (protocol mode) ▪

136

Functions

CopyFile() ▪ 25

GetLine() ▪ 31

identification ▪ 63

IncludeFile() ▪ 21

InitAgenda() ▪ 11

InitClient() ▪ 11

initialization and termination ▪ 8

OnScriptAbort() ▪ 45

OnErrorTerminateAgenda() ▪ 46

OnErrorTerminateClient() ▪ 46

OnScriptAbort() ▪ 46

Open() ▪ 31

TerminateAgenda() ▪ 11

TerminateClient() ▪ 11

 220 Index

G

GeneratorName() ▪ 67

GetLine() Function ▪ 31

getMember ▪ 212

GetOperatingSystem() ▪ 68

getSlot ▪ 212

Getting FormData Using Get() ▪ 134

getWindow ▪ 212

GetWrappedException ▪ 210

Global

browser configuration defaults ▪ 62

objects ▪ 54

variables, user-defined ▪ 58, 59, 60

Global Context ▪ 53

Global Sharing Considerations ▪ 62

H

Handling Authentication In The Agenda ▪ 153

Handling Binary Data ▪ 146

Handling Java Exceptions In JavaScript ▪ 192

Handling JavaScript Exceptions In Java ▪ 195

Handling Web Service Transactions ▪ 91

Header ▪ 139

wlHttp property (protocol mode) ▪ 139

How the Script Works

using building blocks ▪ 166

How WebLOAD Works With Cookies ▪ 144

HTTP

data submission properties (protocol mode)

▪ 133

error handling ▪ 45

properties, setting & erasing (protocol

mode) ▪ 51

I

Identification

ClientNum ▪ 65

functions ▪ 63

individual clients ▪ 65

number of current round ▪ 66

RoundNum ▪ 66

variables ▪ 63

Identification Variables And Functions ▪ 63

Identifying Java Objects In JavaScript Agendas

▪ 97

IDispatch (COM interface) ▪ 109

IncludeFile() Function ▪ 21

Including

files, search order precedence ▪ 23

Including Files ▪ 21

InitAgenda() Function ▪ 11

InitClient() Function ▪ 11

Initialization and Termination Functions ▪ 8

Initialization Functions ▪ 8

InitAgenda() function ▪ 11

InitClient() function ▪ 11

Initializing an Agenda ▪ 11

Input Files ▪ 30

example ▪ 34

GetLine() ▪ 31

reading an ASCII file ▪ 30

requirements ▪ 30

Introduction ▪ 1

Introduction to Website Application Testing ▪

69, 123

ITypeInfo (COM Interface) ▪ 109

IUnknown (COM Interface) ▪ 109

J

Java

accessing Java objects from JavaScript

Agendas ▪ 97

automatic timers and counters ▪ 102

calling a WebLOAD API ▪ 104

LiveConnect interface ▪ 189

passing objects between Java and JavaScript

▪ 101

passing simple variables between Java and

JavaScript, example ▪ 100

reading data from a JDBC database ▪ 106

requirements ▪ 95

Java To JavaScript Communication ▪ 193

Java To JavaScript Conversions ▪ 204

JavaArray And JavaObject Objects ▪ 201

JavaClass Objects ▪ 203

JavaScript

adding object nodes to the Agenda Tree ▪ 19

automatic conversion to COM (ActiveX)

data types ▪ 114

JavaScript Agenda Code: ▪ 76, 77

JavaScript To Java Communication ▪ 189

WebLOAD Scripting Guide 221

JavaScript To Java Conversions ▪ 197

JSException and JSObject Classes ▪ 208

JSException Class ▪ 208

JSException Constructor ▪ 209

JSObject class ▪ 210

L

Limited Context ▪ 50

LineArray Object ▪ 31

LiveConnect Overview ▪ 189

Load Engine CLI ▪ 215

Load()

XML DOM method ▪ 88

Loading XML Files Into XML Objects ▪ 87

loadXML()

XML DOM method ▪ 87

Local

browser configuration defaults ▪ 62

Local Context ▪ 52

M

Main Script ▪ 8

in Agendas ▪ 8

running repeatedly ▪ 11

Managing Cookies Through The wlCookie

Object ▪ 144

Method Summary ▪ 209, 211

methods

XML DOM method ▪ 87

Methods

ActiveXObject() constructor ▪ 111

ActiveXObject() constructor (for RDS) ▪ 118

WLXmlDocument() - wlXmls constructor ▪

85, 86

XML DOM method ▪ 88

Minor Error Management—Continue the Test

Session as Usual ▪ 45

Mixed Clients ▪ 14

N

Native Browsing (XML) ▪ 85

Navigation and Validation Functions ▪ 10

Nesting Try...Catch Statements ▪ 208

Nodes - in an Agenda Tree ▪ 7

Non-standard Agenda Execution Sequence ▪ 45

Normal Execution Sequence ▪ 11

Null Values ▪ 201

Number Values ▪ 198

O

Objects

creating ▪ 29

global ▪ 54

LineArray ▪ 31

wlCookie ▪ 144

wlException ▪ 44

wlGeneratorGlobal ▪ 57, 58

wlGlobals (protocol mode) ▪ 54

wlHttp (protocol mode) ▪ 51

wlLocals (protocol mode) ▪ 52

wlOutputFile ▪ 27

wlSystemGlobal ▪ 59, 60

OnErrorTerminateAgenda() Function ▪ 46

OnErrorTerminateClient() Function ▪ 46

Online Help ▪ 3

OnScriptAbort() Function ▪ 45, 46

Open()

function ▪ 31

Other JavaScript Objects ▪ 203

Output files ▪ 27

Output Files ▪ 27

Output Text: ▪ 76, 78, 79

P

Package And Class References ▪ 191

Parsing

example (protocol mode) ▪ 128

files ▪ 31

tree illustration (protocol mode) ▪ 128

Parsing And Navigating Nested Frames On A

Dynamic HTML Page ▪ 130

Parsing Web Pages ▪ 126

Passing Objects Between Java and JavaScript ▪

101

PATH Environment Variable ▪ 95

Posting Form Data Using Elements ▪ 142

Programming your JavaScript Agenda ▪ 5

Properties

data - wlHttp property (protocol mode) ▪

138

DataFile - wlHttp property (protocol mode)

▪ 139

Erase - wlHttp property (protocol mode) ▪

51

 222 Index

erase wlHttp property (protocol mode) ▪

140

header - wlHttp property (protocol mode) ▪

139

Public Methods ▪ 97

R

Reading Input Files ▪ 34

Recording Binary Data ▪ 146

as a data file ▪ 146

encoding in the Agenda ▪ 149

Remote ActiveX Object Access ▪ 117

Remote ActiveXObject() Constructor ▪ 118

Remote Data Service (RDS) Support ▪ 117

removeMember ▪ 212

Requirements ▪ 94

Return Codes

transactions ▪ 42

RoundNum ▪ 66

RoundNum Variable ▪ 66

Rounds

aborting ▪ 45

cleanup at end ▪ 13

example, identifying ▪ 67

identification number of current round ▪ 66

Rules of Scope ▪ 49

Rules of Scope for Local and Global Variables ▪

49

S

Saving Server Output to a File ▪ 29

Scheduled Clients ▪ 13

Scope Rules ▪ 49

user-defined variables ▪ 49

Scripting Sample Of Basic Recording

logging in to the site ▪ 156

purchasing a product ▪ 157

saving the Agenda ▪ 157

starting to record the Agenda ▪ 155

the full Agenda ▪ 157

Scripting Sample of Correlation

adding the variable for the dynamic data ▪

162

locating and extracting the hidden field ▪

159

replacing the static values with the variable

▪ 162

the full Agenda ▪ 163

Scripting Sample of Parametrizing an Agenda

adding the GlobalInoputFile Building Block

▪ 166

continuing the recording ▪ 165

creating parameters ▪ 166

replacing the recorded values with the new

parameters ▪ 169

the full Agenda ▪ 171

Scripting Sample Using AJAX and JSON to

Validate a Web Server Response

displaying JSON information during

runtime ▪ 185

recording AJAX calls in the Agenda ▪ 183

the full Agenda ▪ 185

validating a web service response ▪ 184

Scripting Sample Using AJAX and Web

Services

adding the Results parameter and

ResultParser function ▪ 176

creating the external login JavaScript file ▪

178

entering credit card information and

checking out ▪ 175

including and using the external file in the

Agenda ▪ 179

the full Agenda ▪ 179

Scripting Samples ▪ 155

Search Order Precedence ▪ 62

browser configuration properties ▪ 62

copy file locations ▪ 26

include file locations ▪ 23

Secure Data Transmission Through SSL ▪ 38

Security ▪ 35

for data transmission ▪ 38

for Web applications ▪ 35

Sequence of Events in Agenda Execution ▪ 11

Server-specific Cipher Testing ▪ 40

setMember ▪ 213

setSlot ▪ 213

Setting PATH And CLASSPATH Environment

Variables ▪ 96

Setting User Authentication Values Manually ▪

37

WebLOAD Scripting Guide 223

Severe Error Management—Stopping a Test

Session ▪ 46

Sharing Input File Data ▪ 33

SSL

supported protocols ▪ 38

Standard Error Constants ▪ 42

Standard Error Management—Stopping a

Single Round ▪ 45

Standard Message Functions ▪ 42

String Values ▪ 200

Submitting FormData Using Post() ▪ 135

Submitting FormData With Missing Fields ▪ 135

T

Technical Support ▪ 4

Technical Support Website ▪ 3

TerminateAgenda() Function ▪ 11

TerminateClient() Function ▪ 11

Termination Functions ▪ 8

Text Files ▪ 31

The Catch Block ▪ 207

The Finally Block ▪ 207

The Packages Object ▪ 190

The Throw Statement ▪ 205

The Try...Catch Statement ▪ 206

The wlCookie Object ▪ 144

The wlException Object ▪ 44

Threads ▪ 11

example, identifying clients ▪ 67

unique client number ▪ 65

Timers

automatic, for Java class methods ▪ 102

Timers And Counters For ActiveX Objects ▪ 112

TLS 1.0 protocol ▪ 38

toString ▪ 213

Transactions

HTTP configuration, setting & erasing

(protocol mode) ▪ 51

return codes ▪ 42

Typographical Conventions ▪ 2

U

Undefined Values ▪ 200

Understanding JavaScript Agendas ▪ 5

Understanding the GetLine Function ▪ 31

Understanding the WebLOAD DOM Structure

▪ 124

User-defined Variables

global ▪ 58, 59, 60

rules of scope ▪ 49

Using Casting Functions For JavaScript And

COM Data Types ▪ 115

Using FormData With Data Files ▪ 136

Using Load(URL) ▪ 88

Using LoadXML(XMLDocString) ▪ 87

Using Multiple IP Addresses ▪ 126

Using the Authentication for Protocol Tab ▪ 36

Using the IntelliSense JavaScript Editor ▪ 16

Using The LiveConnect Classes ▪ 193

Using wlHtml To Follow A Dynamic Link ▪ 132

V

Variable Activity Blocks ▪ 43

Variables

ClientNum ▪ 65, 67

identification ▪ 63

RoundNum ▪ 66, 67

rules of scope ▪ 49

user-defined ▪ 58, 59, 60

Variables Defined Through The

wlGeneratorGlobal Object With

WLAllAgendas Flag ▪ 58

Variables Defined Through The

wlGeneratorGlobal Object With

WLCurrentAgenda Flag ▪ 57

Variables Defined Through The

wlSystemGlobal Object With

WLAllAgendas Flag ▪ 60

Variables Defined Through The

wlSystemGlobal Object With

WLCurrentAgenda Flag ▪ 59

VCUniqueID() ▪ 68

Viewing The Value Of A Variable ▪ 65

W

Web Page Illustration (Protocol Mode) ▪ 128

WebLOAD Documentation ▪ 1

WebLOAD XML DOM Objects ▪ 71

What are JavaScript Agendas? ▪ 6

What Is COM ▪ 108

What the Script Does

basic recording ▪ 155

correlation ▪ 159

parametrizing an Agenda ▪ 165

 224 Index

using AJAX and JSON to validate a web

server response ▪ 183

using AJAX and Web Services ▪ 174

using building blocks ▪ 165

Where to Get More Information ▪ 3

WLAllAgendas Flag ▪ 58, 60

wlCookie Methods ▪ 145

wlCookie Object ▪ 144

example ▪ 145

WLCurrentAgenda flag ▪ 59

WLCurrentAgenda Flag ▪ 57

WLError Flag ▪ 42

wlException Object ▪ 44

wlFile Name wlHttp.FormData Property

(Protocol Mode) ▪ 136

wlGeneratorGlobal Example ▪ 58

wlGeneratorGlobal Object ▪ 57, 58

wlGlobals Object ▪ 54

wlHtml Object

example (protocol mode) ▪ 132

wlHttp Object ▪ 51

data (protocol mode) ▪ 138

data submission properties (protocol mode)

▪ 133

DataFile (protocol mode) ▪ 139

erase (protocol mode) ▪ 140

header (protocol mode) ▪ 139

missing fields (protocol mode) ▪ 135

using Get() (protocol mode) ▪ 134

using Post() (protocol mode) ▪ 135

working with data files (protocol mode) ▪

136

wlLocals Object ▪ 52

WLMinorError Flag ▪ 42

wlOutputFile Object ▪ 27

wlOutputFile Object Scope Limitations ▪ 29

WLRandom Flag ▪ 31

WLSequential Flag ▪ 31

WLSevereError Flag ▪ 42

WLSuccess Flag ▪ 42

wlSystemGlobal Example ▪ 60

wlSystemGlobal Object ▪ 59, 60

WLXmlDocument() - wlXmls constructor ▪ 85,

86

Working in HTTP Protocol Mode ▪ 123

Working with ASCII Input Files ▪ 30

Working With HTML Properties ▪ 75

Working with Java ▪ 93

Working With Java Arrays ▪ 191

Working With The Component Object Model

(COM) ▪ 108

Working With The wlGlobals Object ▪ 54

Working with the wlHttp Object ▪ 51

Working With The wlLocals Object ▪ 52

Working with the XML DOM ▪ 69

Working With User-defined Variables (Local

Context) ▪ 53

Working with WebFT ▪ 5

Working With Wrappers ▪ 189

Working With XML DOM Properties ▪ 77

Working with XML in Native (Direct) Browsing

mode ▪ 85

Writing Agenda Output Messages to a File ▪ 27

X

XML DOM

building a complete database ▪ 89

data islands ▪ 71

DTD in an XML document ▪ 92

load() ▪ 88

loadXML() ▪ 87

native browsing ▪ 85

object ▪ 71

object construction ▪ 85

WLXmlDocument() constructor ▪ 85, 86

working with ▪ 69

XML DOM example

data island use ▪ 75

	Introduction
	WebLOAD Documentation
	Typographical Conventions
	Where to Get More Information
	Online Help
	Technical Support Website
	Technical Support

	Programming your JavaScript Agenda
	Understanding JavaScript Agendas
	What are JavaScript Agendas?
	Agenda Tree Structure
	Agenda Tree Nodes

	Agenda Program Structure
	Main Script
	Initialization and Termination Functions
	Navigation Functions

	Agenda Execution Sequence
	Basic Execution Sequence
	EvaluateScript Function
	Cleanup at the End of Each Round
	Execution Sequence for Scheduled Clients
	Execution Sequence for Mixed Clients

	Editing the JavaScript Code in an Agenda
	Accessing the JavaScript Code within the Agenda Tree
	Using the IntelliSense JavaScript Editor

	Adding JavaScript Object Nodes
	File Management
	Including Files
	Adding an IncludeFile() Function
	Determining the Included File Location
	Example: Working with an Included Function

	Copying Files
	Adding a CopyFile() Function
	Determining the Copied File Location

	Output Files
	Writing Agenda Output Messages to a File
	Adding the wlOutputFile Object
	wlOutputFile Object Scope Limitations

	Saving Server Output to a File

	Input Files
	Working with ASCII Input Files
	Understanding the GetLine Function
	Adding Input File Commands to your Agenda Code
	Sharing Input File Data
	Example: Reading an Input File

	Security
	Authentication
	Using the Authentication Tab
	Setting User Authentication Values Manually

	Secure Data Transmission through SSL
	Browser Emulation
	Server-Specific Cipher Testing

	Error Management
	Error Management Tools
	Analyzing Possible Errors
	Standard Message Functions
	Standard Error Constants
	Variable Activity Blocks
	The wlException Object

	Non-Standard Agenda Execution Sequence
	Minor Error Management—Continue the Test Session as Usual
	Standard Error Management—Stopping a Single Round
	Severe Error Management—Stopping a Test Session
	Defining a Standard or Severe Error
	Execution Sequence after Stop and Abort
	Execution Sequence after Stopping a Virtual Client

	Rules of Scope for Local and Global Variables
	Limited Context
	Working with the wlHttp Object
	Erasing and Preserving the HTTP Configuration

	Local Context
	Working with the wlLocals Object
	Working with User-Defined Variables (Local Context)

	Global Context
	Working with the wlGlobals Object
	Variables Defined through the wlGeneratorGlobal Object with WLCurrentAgenda Flag
	Variables Defined through the wlGeneratorGlobal Object with WLAllAgendas Flag
	wlGeneratorGlobal Example
	Variables Defined through the wlSystemGlobal Object with WLCurrentAgenda Flag
	Variables Defined through the wlSystemGlobal Object with WLAllAgendas Flag
	wlSystemGlobal Example
	Example: Using a Combination of Global Variables

	Search Order Precedence
	Global Sharing Considerations

	Identification Variables and Functions
	Viewing the Value of a Variable
	ClientNum
	RoundNum
	Example: identifying a client and round
	GeneratorName()
	GetOperatingSystem()
	VCUniqueID()

	Advanced JavaScript Agenda Features
	Working with the XML DOM
	WebLOAD XML DOM Objects
	Data Islands
	Data Island—In-Line Code
	Data Island—Reference to Another Source
	Data Island—Scripted In-Line
	Data Island—Scripted Reference to Another Source

	Example: Using Data Islands in an Agenda
	Working with HTML Properties
	JavaScript Agenda Code:
	Output Text:

	Working with XML DOM Properties
	JavaScript Agenda Code:
	Output Text:
	JavaScript Agenda Code Using the XMLParser Object:

	Changing Bookstore Data
	Adding New Bookstore Data

	Creating and Filling New XML DOM Objects
	WLXmlDocument(xmlStr)—Creating XML DOM Object from XML String
	Working with XML in Native (Direct) Browsing Mode
	WLXmlDocument()—Creating a New, Blank XML DOM Object
	Loading XML Files into XML Objects
	Using loadXML(XMLDocString)
	Using load("URL")
	Comparing loadXML() and load()

	Example: Building an XML Database from Scratch
	Handling Web Service Transactions
	Document Type Definition (DTD)

	Working with Java
	Requirements
	JDK/JRE 1.5 (or Higher)
	PATH Environment Variable
	CLASSPATH Environment Variable
	Setting PATH and CLASSPATH Environment Variables
	Public Methods

	Identifying Java Objects in JavaScript Agendas
	Accessing Java Objects from JavaScript Agendas

	Forestalling Errors
	Example: passing simple variables between Java and JavaScript
	Passing Objects Between Java and JavaScript
	Automatic Timers And Counters For Java Objects
	Calling a WebLOAD API from a Java Application
	Example: reading data from a JDBC database

	Working with the Component Object Model (COM)
	What is COM
	ActiveX Object Interfaces
	Activating ActiveX Objects from a JavaScript Agenda
	ActiveXObject() (constructor)
	Assigning Values to ActiveX Objects
	Timers and Counters for ActiveX Objects
	Automatic Conversion between JavaScript and COM Data Types
	Using Casting Functions for JavaScript and COM Data Types
	DCOM over HTTP
	Remote ActiveXObject() Constructor
	Example: Remote ActiveX Object Access
	COM Error Management
	ActiveX Object Limitations

	Working with HTTP Protocol
	Understanding the WebLOAD DOM Structure
	Using Multiple IP Addresses
	Generating IP Addresses in the Agenda

	Parsing Web Pages
	A Typical Web Page and the Corresponding Parse Tree
	Parsing and Navigating Nested Frames on a Dynamic HTML Page
	Using wlHtml to Follow a Dynamic Link

	Data Submission Properties
	FormData
	Getting FormData Using Get()
	Submitting FormData Using Post()
	Submitting FormData with Missing Fields
	Using FormData with Data Files

	Data
	DataFile
	Header
	Erase
	Erase=true (default)
	Erase=false

	Posting form Data Using Elements

	Managing Cookies through the wlCookie Object
	The wlCookie Object
	How WebLOAD Works with Cookies
	wlCookie Methods
	Example: using a cookie

	Handling Binary Data
	Recording Binary Data
	Recording Binary Data as a Data File
	Encoding Binary Data in the Agenda

	Handling Authentication in the Agenda
	Scripting Samples

	Scripting Sample of a Basic Recording
	What the Script Does
	How to Create the Script
	Step 1 – Starting to Record the Agenda
	Step 2 – Logging in to the Site
	Step 3 – Purchasing a Product
	Step 4 – Saving the Agenda

	The Full Agenda: Agenda 1-Basic Recording Agenda

	Scripting Sample of Correlation
	What the Script Does
	How to Create the Script
	Step 1 – Locating and Extracting the Hidden Field
	Step 2 – Adding the Variable for the Dynamic Data
	Step 3 – Replacing the Static Values with the Variable

	The Full Agenda: Agenda 2-Correlation Agenda

	Scripting Sample of Parameterizing an Agenda
	What the Script Does
	How to Create the Script
	Step 1 – Continuing the Recording
	Step 2 – Creating Parameters
	Step 3 – Adding the GlobalInput File Building Block
	Step 4 – Replacing the Recorded Values with the New Parameters

	The Full Agenda: Agenda3-Parameterizing an Agenda

	Scripting Sample Using AJAX and Web Services
	What the Script Does
	How to Create the Script
	Step 1 – Entering Credit Card Information and Checking Out
	Step 2 – Adding the Results Parameter and ResultParser Function
	Step 3 – Creating the External Login JavaScript File
	Step 4 – Including and Using the External File in the Agenda

	The Full Agenda: Agenda 4-AJAX and Web Services

	Scripting Sample Using AJAX and JSON to Validate a Web Server Response
	What the Script Does
	How the Script Works
	Step 1 – Recording AJAX Calls in the Agenda
	Step 2 – Parsing the JSON Response
	Step 3 – Displaying JSON Information During Runtime

	The Full Agenda: Agenda 5-AJAX and JSON
	LiveConnect Overview

	Working with Wrappers
	JavaScript to Java Communication
	The Packages Object
	Working with Java Arrays
	Package and Class References
	Arguments of Type Char
	Handling Java Exceptions in JavaScript

	Java to JavaScript Communication
	Using the LiveConnect Classes
	Accessing JavaScript with JSObject
	Handling JavaScript Exceptions in Java
	Backward Compatibility

	Data Type Conversions
	JavaScript to Java Conversions
	Number Values
	Boolean Values
	String Values
	Undefined Values
	Null Values
	JavaArray and JavaObject Objects
	JavaClass Objects
	Other JavaScript Objects

	Java to JavaScript Conversions

	Exception Handling Statements
	The Throw Statement
	The Try...Catch Statement
	The Catch Block
	The Finally Block
	Nesting Try...Catch Statements

	JSException and JSObject Classes
	JSException Class
	Description
	Constructor Summary
	Method Summary
	Backward Compatibility
	JSException Constructor
	GetWrappedException

	JSObject Class
	Description
	Method Summary
	call
	equals
	eval
	getMember
	getSlot
	getWindow
	removeMember
	setMember
	setSlot
	toString
	Load Engine CLI
	Index

