
 

ibm.com/redbooks

WebSphere Commerce High 
Availability and Performance 
Solutions

Rufus Credle
Aileen Guan

Martin Gerlach
Sanjeev Sharma
Xiao Qing Wang

High Availability solutions for 
unplanned and planned outages

Installing and configuring a 
highly available system

Monitoring and performance 
tuning

Front cover
 

 

 

 

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


 

 

 

 



WebSphere Commerce High Availability and 
Performance Solutions

August 2008

International Technical Support Organization

SG24-7512-00

 

 

 

 



© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2008)

This edition applies to IBM WebSphere Application Server Network Deployment 6.0 and 
WebSphere Commerce Version 6.0. 

Note: Before using this information and the product it supports, read the information in 
“Notices” on page xiii.

 

 

 

 



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
The team that wrote this book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Part 1.  Getting started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1  Introduction to some key High Availability terms. . . . . . . . . . . . . . . . . . . . . 4

1.1.1  High Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2  Failover and mutual failover  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3  Switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4  Fail back of fallback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5  Nodes, cells, and clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2  Introduction to different performance metrics and terminology . . . . . . . . . . 7
1.2.1  Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2  Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3  Scenario  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4  Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5  Response time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.6  Capacity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.7  Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3  Introduction to different WebSphere Commerce environments  . . . . . . . . 10
1.3.1  Development environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2  Runtime environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4  Considerations for implementing High Availability solution . . . . . . . . . . . . 12
1.4.1  Continuous business capacity and performance  . . . . . . . . . . . . . . . 13
1.4.2  Failover support and disaster recovery . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3  System monitoring and performance tuning . . . . . . . . . . . . . . . . . . . 14
1.4.4  Performance testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5  Types of system outages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.1  Different scopes of system outage . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2  Different causes of system outage . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. iii



1.6  High Availability solution for WebSphere Commerce . . . . . . . . . . . . . . . . 16

Chapter 2.  Project planning for High Availability and performance . . . . . 19
2.1  Identify your scenario  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2  Identify your resources and skills requirements  . . . . . . . . . . . . . . . . . . . . 20

2.2.1  Inventory of site assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2  Inventory skilled resources required . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3  Plan your activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1  Education and training  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2  Getting skilled help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3  Site development life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4  Scaling hardware versus performance tuning. . . . . . . . . . . . . . . . . . 24
2.3.5  Performance testing is critical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.6  Failover support for launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3.  Scenario for this book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1  Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2  Chapters overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1  High Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2  Application development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3  Performance monitoring and tuning  . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4  Performance test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.5  Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Part 2.  High Availability solutions for unplanned and planned outages . . . . . . . . . . . . . . 31

Chapter 4.  External clustering software . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1  Reliability Scalable Cluster Technology  . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2  Tivoli System Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2  Terms in Tivoli System Automation. . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3  Start with Tivoli System Automation . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.4  Relationship with RSCT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3  HACMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 5.  Database tier High Availability  . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1  High Availability Disaster Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2  Architecture of HADR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.3  How HADR works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.4  Synchronization modes for HADR  . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.5  Automatic Client Reroute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

 

 

 

 

iv WebSphere Commerce High Availability and Performance Solutions



5.2  HACMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3  SQL replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2  How SQL replication works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 6.  WebSphere Application Server High Availability. . . . . . . . . . . 55
6.1  Introduction to availability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1  Hardware-based High Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.2  Workload management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.3  Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.4  HAManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.5  Session management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2  WebSphere workload management defined . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.1  Distributing workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2  Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3  Web container clustering and failover (Web server plugin). . . . . . . . . . . . 66
6.3.1  Session management and failover inside the plug-in . . . . . . . . . . . . 68
6.3.2  Web container failures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.3  Web server plug-in failover tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4  WebSphere Application Server clustering. . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5  WebSphere Commerce cell and cluster setup  . . . . . . . . . . . . . . . . . . . . . 76

Chapter 7.  Web tier High Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1  Introduction to Web server High Availability  . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.1  Available solutions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1.2  IBM WebSphere Edge Components Load Balancer. . . . . . . . . . . . . 82

7.2  Introduction to Load Balancer High Availability . . . . . . . . . . . . . . . . . . . . . 85

Part 3.  Install and configure a High Availability WebSphere Commerce system . . . . . . . 87

Chapter 8.  Base product and fix pack installations for all tiers  . . . . . . . . 89
8.1  Database nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1.1  DB2 installation prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.2  Base product installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.1.3  Manually create DB2 64-bit instance  . . . . . . . . . . . . . . . . . . . . . . . 101
8.1.4  Installation of DB2 fix pack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2  WebSphere Commerce node 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.3  Additional WebSphere Commerce nodes . . . . . . . . . . . . . . . . . . . . . . . . 117
8.4  Configure a WebSphere Network Deployment Manager  . . . . . . . . . . . . 118

8.4.1  Install IBM WebSphere Application Server Network Deployment . . 118
8.4.2  Create the WebSphere Network Deployment Manager Profile. . . . 118

8.5  Install IBM HTTP Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.5.1  Base installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.5.2  Install fixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

 

 

 

 

 Contents v



8.6  Install Load Balancer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.6.1  Install the license. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.6.2  Install Load Balancer refresh pack . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 9.  High Availability solution for IBM DB2 Universal Database . 145
9.1  HADR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.1.1  Configuring HADR on a primary/standby database  . . . . . . . . . . . . 146
9.1.2  Enabling client reroute in a HADR environment . . . . . . . . . . . . . . . 155
9.1.3  Installing Tivoli System Automation  . . . . . . . . . . . . . . . . . . . . . . . . 155
9.1.4  Defining and administering a TSA cluster . . . . . . . . . . . . . . . . . . . . 157
9.1.5  Enabling instance and HADR with TSA  . . . . . . . . . . . . . . . . . . . . . 158

Chapter 10.  WebSphere Application Server and WebSphere Commerce 
federation and clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.1  Scenario setup as described in the clustering whitepaper  . . . . . . . . . . 168
10.2  Details on configuring Web server node 1  . . . . . . . . . . . . . . . . . . . . . . 170

10.2.1  Pre-instance creation tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.2.2  Post instance creation tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.2.3  Post federation tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Chapter 11.  Web server clustering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.1  Add additional Web servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

11.1.1  Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.1.2  Copy files from Web server node 1. . . . . . . . . . . . . . . . . . . . . . . . 186
11.1.3  Modify the Web server configuration. . . . . . . . . . . . . . . . . . . . . . . 187
11.1.4  Add the new Web server to the cell configuration. . . . . . . . . . . . . 187

11.2  Configure Load Balancer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
11.2.1  MAC forwarding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
11.2.2  NAT forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.2.3  Configure the Web servers for WebSphere Commerce . . . . . . . . 220
11.2.4  Configure the IBM HTTP Server Plug-in . . . . . . . . . . . . . . . . . . . . 222

11.3  Configure Load Balancer High Availability  . . . . . . . . . . . . . . . . . . . . . . 226
11.3.1  Configure basic High Availability . . . . . . . . . . . . . . . . . . . . . . . . . . 226
11.3.2  Adding reach targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
11.3.3  Command-line configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
11.3.4  Configuring the High Availability scripts  . . . . . . . . . . . . . . . . . . . . 239
11.3.5  Test Load Balancer High Availability. . . . . . . . . . . . . . . . . . . . . . . 244
11.3.6  Starting Dispatcher automatically after a reboot . . . . . . . . . . . . . . 244

Part 4.  Design with performance in mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Chapter 12.  Development performance considerations  . . . . . . . . . . . . . 249
12.1  Development best practices for performance . . . . . . . . . . . . . . . . . . . . 250

12.1.1  Access Bean usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

 

 

 

 

vi WebSphere Commerce High Availability and Performance Solutions



12.1.2  Java classes and keywords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
12.1.3  JSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
12.1.4  Registry objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
12.1.5  Database operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
12.1.6  Command execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
12.1.7  Web 2.0 considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

12.2  Performance best practices for database customizations. . . . . . . . . . . 256
12.2.1  Table design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
12.2.2  Index design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
12.2.3  Avoiding deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

12.3  Performance best practices for SQL queries  . . . . . . . . . . . . . . . . . . . . 259
12.3.1  Reduce the result set as early as possible . . . . . . . . . . . . . . . . . . 259
12.3.2  Avoid using sub-selects and redundant expressions  . . . . . . . . . . 259
12.3.3  IN versus Exists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
12.3.4  Other important SQL tuning hints . . . . . . . . . . . . . . . . . . . . . . . . . 262

Chapter 13.  Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
13.1  Types of caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

13.1.1  Dynamic caching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
13.1.2  Edge Side Includes (ESI) caching. . . . . . . . . . . . . . . . . . . . . . . . . 268

13.2  Set up ESI caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
13.2.1  Prerequisites for ESI caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
13.2.2  Configure ESI caching  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

13.3  Caching enhancements in WebSphere Commerce 6.0.0.1 and later . . 292
13.4  Cache replication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

13.4.1  Cache replication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
13.4.2  In-memory cache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
13.4.3  Offload to disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
13.4.4  FlushToDiskOnStop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
13.4.5  Limitation on invalidation when server is stopped. . . . . . . . . . . . . 295
13.4.6  Performance tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
13.4.7  Tune disk cache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
13.4.8  Instructions to set up cache replication . . . . . . . . . . . . . . . . . . . . . 301
13.4.9  Other options to ensure cache content consistency across cluster303
13.4.10  Monitor runtime cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
13.4.11  Monitor ESI caching  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
13.4.12  Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

 

 

 

 

 Contents vii



Chapter 14.  Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
14.1  SQL profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
14.2  Java code profiling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
14.3  Mapping an SQL statement to Java code . . . . . . . . . . . . . . . . . . . . . . . 310
14.4  IBM Page Detailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

14.4.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
14.4.2  Important considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
14.4.3  Key factors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
14.4.4  Tips for using Page Detailer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
14.4.5  Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Part 5.  Monitoring and performance tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Chapter 15.  Operating system monitoring tools  . . . . . . . . . . . . . . . . . . . 323
15.1  Operating system introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
15.2  General utilities related with operating system monitoring  . . . . . . . . . . 324

15.2.1  nmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
15.2.2  Top  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
15.2.3  vmstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
15.2.4  iostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
15.2.5  ps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
15.2.6  svmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

15.3  Best practices for AIX monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
15.4  Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Chapter 16.  IBM DB2 Universal Database . . . . . . . . . . . . . . . . . . . . . . . . . 343
16.1  DB2 performance considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

16.1.1  Physical environment considerations . . . . . . . . . . . . . . . . . . . . . . 344
16.1.2  DB2 objects management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

16.2  DB2 monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
16.2.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
16.2.2  Snapshot monitor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
16.2.3  Event monitor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

16.3  DB2 tuning in WebSphere Commerce  . . . . . . . . . . . . . . . . . . . . . . . . . 358
16.3.1  Parameters related to memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
16.3.2  Parameters related to transaction logs . . . . . . . . . . . . . . . . . . . . . 358
16.3.3  Parameters related to disk I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
16.3.4  Parameters related to locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
16.3.5  Parameters related to agents management . . . . . . . . . . . . . . . . . 360
16.3.6  Best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

16.4  Utilities in database tier for WebSphere Commerce . . . . . . . . . . . . . . . 362
16.4.1  Massload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
16.4.2  Staging server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
16.4.3  DBClean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

 

 

 

 

viii WebSphere Commerce High Availability and Performance Solutions



16.5  Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Chapter 17.  Monitor and tune WebSphere Application Server for 
WebSphere Commerce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

17.1  Web container thread connection pool . . . . . . . . . . . . . . . . . . . . . . . . . 376
17.2  Database connection pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
17.3  Prepared statement cache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
17.4  Dynamic caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
17.5  Java Virtual Machine heap management  . . . . . . . . . . . . . . . . . . . . . . . 379

17.5.1  Heap expansion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
17.5.2  Heap shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
17.5.3  Tuning the JVM heap size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
17.5.4  Monitoring JVM memory and garbage collection  . . . . . . . . . . . . . 382
17.5.5  Heap fragmentation due to pinned and dosed objects . . . . . . . . . 382
17.5.6  Heap fragmentation due to large objects  . . . . . . . . . . . . . . . . . . . 383

17.6  Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
17.6.1  Performance Monitoring Infrastructure (PMI) . . . . . . . . . . . . . . . . 387
17.6.2  Trace and logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

17.7  Tools and reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
17.8  Performance fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Chapter 18.  Monitor and tune Web servers  . . . . . . . . . . . . . . . . . . . . . . . 391
18.1  Monitor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

18.1.1  IBM HTTP Server status page  . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
18.1.2  Access log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
18.1.3  Monitoring performed by Load Balancer . . . . . . . . . . . . . . . . . . . . 395
18.1.4  IBM HTTP Server Plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

18.2  Tuning parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
18.2.1  Operating system settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
18.2.2  httpd.conf settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
18.2.3  IBM HTTP Server Plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Chapter 19.  Monitor and tune Load Balancer . . . . . . . . . . . . . . . . . . . . . . 417
19.1  Monitor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

19.1.1  Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
19.1.2  Graphical server monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
19.1.3  Binary logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

19.2  Tuning Load Balancer parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
19.2.1  Host. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
19.2.2  Executor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
19.2.3  Cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
19.2.4  Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
19.2.5  Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
19.2.6  Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

 

 

 

 

 Contents ix



19.2.7  Advisor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
19.3  Server affinity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

19.3.1  Types of server affinity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
19.3.2  Configure source IP affinity for MAC and NAT forwarding . . . . . . 442
19.3.3  Configure CBR and SSL session ID affinity  . . . . . . . . . . . . . . . . . 444
19.3.4  Testing server affinity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Part 6.  Performance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Chapter 20.  Introduction to performance testing . . . . . . . . . . . . . . . . . . . 453
20.1  Why is it complex  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
20.2  Why it is important. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
20.3  Overall site development life cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
20.4  Typical performance characteristics of a WebSphere Commerce site . 460
20.5  Types of performance tests for WebSphere Commerce . . . . . . . . . . . . 462

20.5.1  Stress testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
20.5.2  Scalability testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
20.5.3  Soak, endurance, or reliability testing . . . . . . . . . . . . . . . . . . . . . . 465
20.5.4  Stress-endurance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
20.5.5  100% + 1 testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
20.5.6  Capacity testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
20.5.7  Performance regression testing  . . . . . . . . . . . . . . . . . . . . . . . . . . 468
20.5.8  High Availability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Chapter 21.  Designing a test plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
21.1  Define scope and requirements of new design . . . . . . . . . . . . . . . . . . . 472
21.2  Define target environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
21.3  Define scenario and workload distribution. . . . . . . . . . . . . . . . . . . . . . . 473
21.4  Define test cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
21.5  Maintaining a well-defined test plan  . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Chapter 22.  Performance test tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
22.1  Test tools introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

22.1.1  How to select test tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
22.1.2  Performance test tools classification. . . . . . . . . . . . . . . . . . . . . . . 481

22.2  IBM Rational Performance Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
22.2.1  Architecture of Rational Performance Tester  . . . . . . . . . . . . . . . . 482
22.2.2  Features of RPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
22.2.3  Procedure to use RPT to run performance test  . . . . . . . . . . . . . . 483

22.3  Seague SilkPerformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
22.3.1  What SilkPerformer can do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
22.3.2  Procedure to use SilkPerformer to run performance test  . . . . . . . 493

22.4  Page Detailer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
22.4.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

 

 

 

 

x WebSphere Commerce High Availability and Performance Solutions



22.4.2  Important considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
22.4.3  Key factors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

22.5  Other performance test tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
22.6  Trend of performance test tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Chapter 23.  Applying performance testing to WebSphere Commerce  . 507
23.1  Key attributes of a performance test . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
23.2  Common test execution steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
23.3  Executing stress tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

23.3.1  Testing for throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
23.3.2  Testing for concurrency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
23.3.3  Analyzing stress test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

23.4  Scalability testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
23.5  Soak, endurance, or reliability testing . . . . . . . . . . . . . . . . . . . . . . . . . . 517
23.6  High Availability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Chapter 24.  Analyzing test results and solving performance problems  521
24.1  Test results to be collected and verified  . . . . . . . . . . . . . . . . . . . . . . . . 522
24.2  Common troubleshooting steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
24.3  Solving memory problems in WebSphere applications . . . . . . . . . . . . . 527

24.3.1  Gather verbose Garbage Collection logs  . . . . . . . . . . . . . . . . . . . 528
24.3.2  Analyzing verbose GC logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
24.3.3  Option 1: Tune max heap size to optimize GC frequency. . . . . . . 533
24.3.4  Tactic 2: Tune -Xk and -Xp to minimize fragmentation . . . . . . . . . 534
24.3.5  Tactic 4: identifying by swprofiler  . . . . . . . . . . . . . . . . . . . . . . . . . 539
24.3.6  Tactic 4: tuning the cache size . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
24.3.7  Tactic 5: performing the heap dump . . . . . . . . . . . . . . . . . . . . . . . 546

24.4  Solving throughput and response time problems  . . . . . . . . . . . . . . . . . 549
24.4.1  Identifying throughput problems in performance testing . . . . . . . . 549
24.4.2  Analyzing and solving throughput problems . . . . . . . . . . . . . . . . . 550

Part 7.  Maintenance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Chapter 25.  Database maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
25.1  DB2 database maintenance in WebSphere Commerce . . . . . . . . . . . . 564

25.1.1  DB2 database maintenance utilities . . . . . . . . . . . . . . . . . . . . . . . 564
25.1.2  WebSphere Commerce Database Cleanup utility. . . . . . . . . . . . . 568
25.1.3  Commerce DB2 database maintenance solution . . . . . . . . . . . . . 572

Chapter 26.  Maintain and update WebSphere Application Server tier . . 573
26.1  Maintenance not requiring planned outages . . . . . . . . . . . . . . . . . . . . . 574

26.1.1  WebSphere Application Server log maintenance . . . . . . . . . . . . . 574
26.1.2  Deployment of cachespec.xml  . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
26.1.3  Rollout update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

 

 

 

 

 Contents xi



26.2  Planned outages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
26.2.1  WebSphere Application Server fix pack/APAR upgrade. . . . . . . . 578
26.2.2  WebSphere Commerce fix pack/APAR upgrade  . . . . . . . . . . . . . 578

Chapter 27.  Maintain and update Web servers . . . . . . . . . . . . . . . . . . . . . 579
27.1  Maintenance not requiring planned outages . . . . . . . . . . . . . . . . . . . . . 580

27.1.1  Maintain IBM HTTP Server logs . . . . . . . . . . . . . . . . . . . . . . . . . . 580
27.1.2  Deploy new static content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

27.2  Maintenance involving planned outages . . . . . . . . . . . . . . . . . . . . . . . . 582
27.2.1  Quiescing a Web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
27.2.2  Compatible upgrades  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
27.2.3  Incompatible upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
27.2.4  Maintenance Web page for site downtimes  . . . . . . . . . . . . . . . . . 592

Chapter 28.  Maintain and update Load Balancer . . . . . . . . . . . . . . . . . . . 595
28.1  Maintenance not requiring planned outages . . . . . . . . . . . . . . . . . . . . . 596
28.2  Maintenance involving planned outages . . . . . . . . . . . . . . . . . . . . . . . . 596

28.2.1  Compatible upgrades  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
28.2.2  Incompatible upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Other publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
How to get Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

 

 

 

 

xii WebSphere Commerce High Availability and Performance Solutions



Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information about the products and services currently available in your 
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that 
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not give you any license to these patents. You can send license 
inquiries, in writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 
of express or implied warranties in certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm 
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the 
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, 
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. 

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. xiii



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International 
Business Machines Corporation in the United States, other countries, or both. These and other 
IBM trademarked terms are marked on their first occurrence in this information with the 
appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM 
at the time this information was published. Such trademarks may also be registered or common 
law trademarks in other countries. A current list of IBM trademarks is available on the Web at 
http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

AIX®
alphaWorks®
BladeCenter®
DB2 Connect™
DB2 Universal Database™
DB2®
developerWorks®
eServer™
Express Portfolio™

HACMP™
i5/OS®
IBM®
Informix®
iSeries®
OpenPower®
POWER5™
pSeries®
Rational®

Redbooks®
Redbooks (logo) ®
S/390®
System i™
System x™
Tivoli®
WebSphere®
zSeries®

The following terms are trademarks of other companies:

Juniper, and Portable Document Format (PDF) are either registered trademarks or trademarks of Adobe 
Systems Incorporated in the United States, other countries, or both.

AMD, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

Snapshot, and the NetApp logo are trademarks or registered trademarks of NetApp, Inc. in the U.S. and 
other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation 
and/or its affiliates.

EJB, J2EE, Java, JavaScript, JavaServer, JDBC, JDK, JMX, JNI, JRE, JSP, JVM, Solaris, Sun, Sun Java, 
and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other 
countries, or both.

Excel, Internet Explorer, Microsoft, Windows, and the Windows logo are trademarks of Microsoft 
Corporation in the United States, other countries, or both.

Intel, Itanium-based, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered 
trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others. 

 

 

 

 

xiv WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/legal/copytrade.shtml


Preface

Building a high performance and high availability Commerce site is not a trivial 
task, from having the correct capacity hardware to handle the workload to 
properly test the code change before deploying in production site. This IBM® 
Redbooks® publication covers several major areas that need to be considered 
when using WebSphere® Commerce and provide solutions for how to address 
them. Here are some of the topics discussed:

� How to build a Commerce site to deal with various kinds of unplanned outage. 
This include utilizing IBM WebSphere Application Server Network 
Deployment 6.0 and IBM DB2® High Availability Disaster Recovery (HADR) 
in the Commerce environment.

� How to build a Commerce site to deal with planned outages such as software 
fixes and operation updates. This includes use of the WebSphere Application 
Server Rollout Update feature and the use of Commerce Staging Server and 
Content Management.

� How to proactively monitor the Commerce site and prevent potential 
problems from occurring. Various tools are discussed, such as WebSphere 
Application Server build-in tools and Tivoli®'s Performance Viewer.

� How to utilize Dynacache to future enhance your Commerce site's 
performance. This includes additional Commerce command caching 
introduced in Commerce fix pack and e-spot caching. 

� The methodology of doing performance and scalability testing on a 
Commerce site.

The team that wrote this book

This book was produced by a team of specialists from around the world working 
at the International Technical Support Organization, Raleigh Center.

Rufus Credle is a Certified Consulting IT Specialist at the ITSO, Raleigh Center. 
In his role as Project Leader, he conducts residencies and develops IBM 
Redbooks about network operating systems, ERP solutions, voice technology, 
high availability and clustering solutions, Web application servers, pervasive 
computing, IBM and OEM e-business applications, IBM System x™, System x, 
and IBM BladeCenter®. Rufus’ various positions during his IBM career have 
included assignments in administration and asset management, systems 
engineering, sales and marketing, and IT services. He holds a BS degree in 

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. xv



business management from Saint Augustine's College. Rufus has been 
employed at IBM for 28 years.

Aileen Guan is a Software Services Specialist based in Toronto, Canada. She is 
a part of WebSphere Commerce Advanced Technical Services affiliated with 
IBM Software Group, Application and Integration Middleware Software division. 
She is her team subject matter expert on high availability and also a subject 
matter expert on Commerce migration. Aileen co-authored a whitepaper on 
Migrating WebSphere Commerce in a clustered environment. Furthermore, she 
specializes in performance tuning in a large-scale Commerce environment, 
having done numerous performance tuning engagements for Commerce 
customers.

Martin Gerlach is a Software Engineer working for the IBM Centers for Solution 
Innovation in Hamburg, Germany (CSI::Hamburg), which is part of IBM Global 
Business Services. He has seven years of experience in developing end-to-end 
Internet applications and business integration software in research as well as in 
service delivery teams, using WebSphere Application Server, WebSphere 
Commerce, WebSphere Portal, IBM DB2, Oracle®, and various open source 
software. He holds an MSc degree in Computer Science/Distributed Systems 
from the Hamburg University of Applied Sciences. His areas of expertise include 
WebSphere Commerce high availability, J(2)EE and WebSphere Commerce 
application development, WebSphere Portal application development, Web 
services, and SOA concepts.

Sanjeev Sharma is a Team Lead of the WebSphere Commerce development 
organization in IBM Canada’s software development lab in Toronto. He has nine 
years of experience in the WebSphere Commerce and database administration 
fields. He holds a computer engineering degree from McGill University in 
Canada. His areas of expertise include solution design, development, 
installation, performance, integration, and testing. He has written extensively 
about WebSphere Commerce best practices, WebSphere Commerce migration, 
and test methodologies.

Xiao Qing Wang joined IBM in 2005 and now works in the WebSphere 
Commerce System Verification Test team in IBM China Software Development 
Lab. He holds a master’s degree in software engineering from BeiJing JiaoTong 
University in China. His areas of interest include automation test, test tools, 
unified development process, and performance analysis. He has written 
extensively on the WebSphere Commerce database high availability solution. In 
his spare time, he enjoys sports, collects stamps, and travels.

Thanks to the following people for their contributions to this project:

Tamikia Barrow, Margaret Ticknor
International Technical Support Organization, Raleigh Center

 

 

 

 

xvi WebSphere Commerce High Availability and Performance Solutions



Thanks to the authors of the previous editions of this book and other contributing 
specialists.

The WebSphere CommerceWebSphere Commerce V5.5 Capacity Planning, 
ZG24-6733, Redbooks team of experts from the IBM Software (SWG) and 
Systems and Technology (STG) groups: Zamil Janmohamed, Chris Moss, Jose 
Antonio Roa, Sean Holden, Leny Veliyathuparambil, Charek Chen, and Joseph 
Fung.

The WebSphere Application ServerWebSphere Application Server V6 Scalability 
and Performance Handbook, SG24-6392, Redbooks team: Gang Chen, Andre 
de Oliveira Fernandes, Cristiane Ferreira, Rodney Krick, Denis Ley, and Robert 
Peterson 

The Clustering WebSphere Commerce V6.0 with WebSphere Application Server 
V6.0 whitepaper team: Jennifer Allan, Sidy Doumbia, Meng Fu, Polina 
Gohshtein, Aileen Guan, and Mark Kershaw 

Experts from the IBM Software (SWG) and Systems and Technology (STG) 
groups: Michael Smith, Andrew Jones, and Sandra K Johnson.

Venkat Venkataraman, Program Director, IBM Power Systems
IBM Austin

Vickie Hessenius, SWG WW Midmarket Program Manager
IBM Rochester

Thomas Pack, Executive IT Architect, SMB Solutions, IBM Solution Builder 
Express Portfolio™ Development
IBM Research Triangle Park

Ingrid Moulckers, STSM, CTO ISV and Developer Relations Technical 
Enablement, Master Inventor
IBM Austin

Marcela Adan, IBM STG Small and Medium Enterprise (SME) programs, 
Certified Executive IT Specialist, iTC
IBM Rochester

Kelly Schmotzer, Senior Marketing Manager, GB MM High Volume Program 
Manager
IBM Cleveland

Steffen Eckardt, Advisory IT Architect (WebSphere Commerce, RFID)
IBM Germany

 

 

 

 

 Preface xvii

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


Jennifer Allan, Sidy Doumbia, Meng Fu, Polina Gohshtein, Mark Kershaw, John 
Hasty, and Sammy Chow, WebSphere Commerce Support and Services
IBM Canada

Daniel Owusu-Afari, Anson Y. Chan, WebSphere Advanced Technical Services
IBM Canada

Andres Voldman, Ali Asghar, WebSphere Commerce Advanced Technical 
Services
IBM Canada

Tatiana Jimenez, SWG Services WebSphere Consultant
IBM Boca Raton

Joseph Spano, Consulting Architect - ISSW Performance Practice
IBM Poughkeepsie

Mark Ho, Keri-Anne Lounsbury, James Tang, Kevin Yu, Software Services for 
WebSphere
IBM Canada

Stacy Joines, Distinguished Engineer, ISSW Performance and Enablement
IBM Research Triangle Park

Darl Crick, STSM, ISSW Performance
IBM Canada

John Hasty, WebSphere Services
IBM Austin

Scott Guminy, WebSphere Commerce Architect
IBM Canada

Robert Dunn, WebSphere Commerce Performance
IBM Canada

Jacob Vandergoot, Kevin Kam, David Yuan, WebSphere Commerce 
Development
IBM Canada

Rohit D Kelapure, Andy Chow, WebSphere Application Server Development
IBM Research Triangle Park

Nadir Anwer, Integrated Technology Delivery, Server Systems Operations
IBM Canada

 

 

 

 

xviii WebSphere Commerce High Availability and Performance Solutions



Merla Black, DB2 Data Management
IBM Lexington

Robert Wilson, DB2 Development
IBM San Jose

Steve Rosengren, Performance Technology Practice 
IBM Austin

Non-IBMers: Yung Wu, former WebSphere Commerce Support and Services 
and Bryan Einwalter, Sears Performance Team Manager

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with 
specific products or solutions, while getting hands-on experience with 
leading-edge technologies. You will have the opportunity to team with IBM 
technical professionals, Business Partners, and Clients. 

Your efforts will help increase product acceptance and customer satisfaction. As 
a bonus, you will develop a network of contacts in IBM development labs, and 
increase your productivity and marketability. 

Learn more about the residency program, browse the residency index, and apply 
online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about 
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

 

 

 

 

 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 

 

 

 

xx WebSphere Commerce High Availability and Performance Solutions



Part 1 Getting started

High Availability of eCommerce sites and of performance are closely related. In 
the case of eCommerce sites, High Availability must be spoken of in terms of the 
performance of the site.

A site that is online but not performing to give any indication of it being available 
can, of course, not be considered available. Thus, the performance metrics such 
as response time and throughput of the site have to be factored into the very 
definition of High Availability.

In this part of the book, we discuss the definition of High Availability and 
introduce a number of performance terms and other WebSphere Commerce 
terms that are used throughout the reminder of this book.

Part 1
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 1



 

 

 

 

2 WebSphere Commerce High Availability and Performance Solutions



Chapter 1. Introduction

As the reliance of businesses on eCommerce increases so does the need for an 
eCommerce site to provide uninterrupted and steady services. High Availability 
sites are able to withstand faults by either detecting them or by tolerating any 
failures caused by them.

1
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 3



1.1  Introduction to some key High Availability terms

As mentioned above, High Availability, in the context of eCommerce sites, has 
additional requirements above and beyond the site being merely online. In this 
section, we define High Availability and some terms associated with it. 

1.1.1  High Availability

High Availability refers to reliably providing services to all the users of the system 
within a reasonable response time for a long duration of time. 

Let us expand on the key, underlined attributes that define High Availability. 

A system that is operational but not reliable, or a system that is operational but 
not acceptably responsive, is not considered to be available. The response times 
are defined by the business requirements for the site.

The number of users refers to the peak number of users, again, as defined by the 
business requirements. 

Two implementations of High Availability can be distinguished from one another 
by the duration for which they remain available. Obviously, a system that is 
unavailable for few minutes a year is better than a system that is unavailable for 
a few minutes every month. Systems implemented for High Availability are 
usually assigned a certain percentage number indicating the level of their High 
Availability. For example, a 99.999% availability refers to unavailability (or 
outage) of a system for only up to 5.26 minutes per year, whereas 99.9% 
availability refers to unavailability of system for up to 526 minutes (7 hours 46 
minutes) per year. A 100% availability is also called continuous availability. 
Such a solution is virtually impossible, but still a valid ideal goal to aspire to. Any 
solution that attempts to have continuous availability tends to be very expensive 
and very complex to implement as well as manage.

Generally, High Availability refers to 99.9% or higher availability. Also, many 
products and businesses do not count any planned outage towards High 
Availability calculation, as any planned outage may be managed in such a way 
that it does impact the business operations.

It is not always an easy task to assign a specific availability number to a given 
system. The complexity of this task increases as the number of components of a 
system and dependencies amongst them increase. Furthermore, each 
component or sub-system may have different availabilities under different states. 
And, even if a High Availability number can be assigned, it is very difficult to 
validate it since such a system should rarely fail.

 

 

 

 

4 WebSphere Commerce High Availability and Performance Solutions



A WebSphere Commerce site may be an aggregation of many components such 
as database servers, LDAP servers, IBM WebSphere MQ servers, WebSphere 
Application Servers, Web servers, Load Balancers, fire walls, and so on. It is a 
very complex task to ascribe a High Availability number to such a site. Instead of 
focusing on a specific availability number, our focus in this book is to have the 
ideal goal of ensuring continuous availability. To reach this ideal goal, we need to 
constantly watch the performance and workload of the site, and we need to keep 
reinforcing the components according to their strengths and weaknesses to 
ensure that no unplanned outage may occur. The reinforcement can be 
managing redundancy of the component, their configuration, or their 
performance.

1.1.2  Failover and mutual failover

Failover refers to the process of diverting services to a secondary system when 
the primary system fails. If the two systems are mutually secondary systems for 
one another, then such a process is called a mutual failover.

1.1.3  Switchover

A switchover can be considered as a safe, deliberate failover.

1.1.4  Fail back of fallback

Fail back or fallback refers to bringing the failed system back to handle services.

1.1.5  Nodes, cells, and clusters

WebSphere Commerce is an WebSphere Application Server application. 
WebSphere Application Server provides clustering capability that is exploited 
fully in this book. 

Node
Node has two different meanings in this book, depending on the context in which 
it is used. 

A node is a single machine or machine partition with a unique IP host address on 
which you install one or more WebSphere Commerce components.

When discussing federation, however, a node is a single occurrence of 
WebSphere Application Server and the applications that run inside the 
occurrence of WebSphere Application Server. 

 

 

 

 

 Chapter 1. Introduction 5



Cell
A node in a cell might or might not be running the same enterprise application as 
other nodes in the same cell. Cells are arbitrary, logical groupings of one or more 
nodes in a WebSphere Application Server distributed network that are managed 
together. In this definition, a node is a single WebSphere Application Server 
profile. One or more cells managed by a single occurrence of IBM WebSphere 
Application Server Network Deployment deployment manager are called a 
deployment manager cell. 

Cluster
Clusters are groups of servers that are managed together and participate in 
workload management. Clusters are responsible for balancing workload among 
servers. Servers that are a part of a cluster are called cluster members. When 
you install an application on a cluster, the application is automatically installed on 
each cluster member.

Clusters were known in previous releases as server groups or clones. The act of 
creating clusters is called clustering. Clustering was known as cloning in 
previous releases.

Profile
A profile is a runtime environment for J2EE™ applications. Each profile is made 
up of configuration settings that are customized and specific to the profile itself. 
All profiles also share the same JAR files and runtime code from the WebSphere 
Application Server installation.

A WebSphere Commerce instance is a J2EE application that is run by a server in 
an WebSphere Application Server profile.

Federated or managed environment
If you have several environments with several applications on several machines, 
you will by default have several administrative consoles. To simplify 
management, you may want to use a single administrative console. To do this 
you federate to a deployment manager. The federation process aggregates the 
configuration from all of the nodes to a single point of management at the 
deployment manager. The deployment manager provides the ability to manage 
multiple servers from a single point. The deployment manager is responsible for 
distributing the configuration across all of the machines that it manages. To do 
this there is a network of servers that communicate with each other. They share 
information about the state of the configuration on each node. This grouping of 
servers is called a cell. The cell encompasses the DMGR and all of the nodes 
and processes that it is managing.

 

 

 

 

6 WebSphere Commerce High Availability and Performance Solutions



The DMGR contains the master configuration. You must make changes in the 
master configuration by connecting to the deployment manager.

Clustering
Clustering is where you run a single application on many servers. This allows 
you to take advantage of extra hardware to get better performance. It also gives 
you the ability to have failover support. If one server goes down, there is another 
one that will handle the processing. Think of a cluster as a group of servers that 
all act together as one. A cell can have any number of clusters within its 
configuration. You must be federated to create and manage clusters because 
they span multiple nodes.

Vertical - all members of the cluster on the same machine
You would do this if your Java™ Virtual Machine (JVM™) cannot use all of the 
memory on the machine. For example, the max heap size for a 32-bit JVM is 
4 GB, while in practice you would want to stay less than 1.5 GB. If your machine 
has 8 GB, one JVM cannot use all of the memory. In this scenario you could 
create a vertical cluster member so that you can make effective use of all of the 
memory on that machine. Of course, you need to ensure that your system has 
enough processing power for the two JVMs. 

Horizontal - cluster members on several different machines
This gives you hardware failover and allows you to spread the workload over 
many machines to increase throughput by using more CPUs and memory. 

1.2  Introduction to different performance metrics and 
terminology

An eCommerce site's performance is defined in terms of its ability to handle 
workload, which is defined in terms of throughput, response time, capacity, and 
reliability.

Performance testing, also known as load testing, is used to validate these 
various performance metrics.

1.2.1  Workload

Workload is the amount of work that a site either handles or needs to handle. For 
example, this work can be due to shoppers browsing or placing orders, or 
business analysts administering the content offered by the site.

 

 

 

 

 Chapter 1. Introduction 7



In performance testing or load testing, this refers to the simulated workload that 
mimics the anticipated production load. That is, it is supposed to mimic both the 
actions of multiple shoppers or the type of incoming user traffic accessing the 
site, as well as a distribution of various operations possible. Inherently, 
performance testing implies testing concurrency of all these operations being 
done by various shoppers or users.

The workload defines how the performance of a system is evaluated. A workload 
should have the following characteristics:

� Measurable: A metric that can be quantified, such as throughput and 
response time.

� Reproducible: The same results can be reproduced when the same test is 
executed multiple times.

� Static: The same results can be achieved no matter for how long you execute 
the run.

� Representative: The workload realistically represents the stress to the system 
under normal operating considerations.

1.2.2  Transaction

In the context of eCommerce, we define a transaction as a request-response pair 
from the context of user. For example, an HTTP transaction is the occurrence of 
the following sequence of events:

1. An HTTP request sent by a browser to the eCommerce server

2. An HTTP response, for the request sent in step1, from the server to the 
browser

A response may be a simple HTML response or it may be a composite response 
in which the content is aggregated from various components, such as JSPs, 
images, Java Scripts, and so on, and sources, which may be local or remote.

1.2.3  Scenario

A scenario is a sequence of interactions that are logically grouped together 
because they represent a user task. This scenario includes the series of actions 
that virtual users execute while interacting with the WebSphere Commerce site. 
Inherently, this also includes different interfaces or utilities that might be used to 
interact with the WebSphere Commerce site. This scenario is decided by the 
usecases for your site design. Usecases should be available in your site design 
documents.

 

 

 

 

8 WebSphere Commerce High Availability and Performance Solutions



1.2.4  Throughput

Throughput means number of customer requests relative to some unit of time. 
For example, if a Commerce server can handle 10 customer requests 
simultaneously and each request takes one second to process, this site can have 
a potential throughput of 10 requests per second. Let us say that each customer 
on average submits 60 requests per visit. Then we can also represent throughput 
by estimating six visits/minute or 360 visits/hour.

Two common units for throughput are page hits/second and scenarios/hour:

� Page hits/second can have different meanings. For example, a page hit could 
refer to the single click that a customer does to download a composite Web 
page made up of many fragments. Alternatively, it could mean the total 
number of pages that actually get downloaded as result of that single click. 
Both of these interpretations have their significance. 

However, most of the time we are interested in the first interpretation. That is, 
each page hit is a Web page from a shopper or user’s point of view. So, for 
example, if the page that a customer requested was redirected to another 
page then the page hit would still be counted as one page. Similarly, if a 
JSP™ aggregates static and dynamic content from many other files the page 
hit would still be considered for a single page.

� Scenarios/hour is another very useful unit of throughput. A scenario is your 
test scenario approved by your test plan approvers (including your business 
analysts) to mimic your real business scenarios. In our testing we prefer this 
unit, as page hits/second can be misleading since it changes for each 
scenario, whereas scenario/hour is inherently relative to a scenario. 

1.2.5  Response time

Keeping in mind the discussion we had for the throughput, the page hit response 
time is different from the http interaction response time, as one page hit may 
result in multiple http interactions.

1.2.6  Capacity

Capacity of a site is the maximum throughput that can be provided within 
required response time with high reliability. In this book, we call this the 
maximum business capacity available.

The maximum business capacity available is to be distinguished from the peak 
capacity expected and the maximum system capacity.

 

 

 

 

 Chapter 1. Introduction 9



The peak capacity expected is the system capacity at the peak expected 
workload. This should always be lower than the maximum business capacity 
available.

1.2.7  Failover 

Failover is a concept that can be used to evaluate how fast can a site be 
recovered from any planned or unplanned outage, which has a closed 
relationship with the High Availability site. Recovery can be achieved by 
automation management tools or manually, which is up to which High Availability 
strategy you are applying in your site.

Generally, the measurement to failover can be classified by two aspects:

� System’s point of view

The system view is much narrower than the customers’ view, so we should 
only concentrate on one specific tier. That is, if it is a database outage, from 
the system’s point of view, how long can a database successfully restore from 
disaster should be a key measurement for failover from the system’s point of 
view.

� Customers’ point of view

This is much more complex than evaluating failover time from the system’s 
view, since WebSphere Commerce builds above a complex infrastructure, 
where the application server, Web server, database, and WebSphere 
Commerce should work together to deliver sufficient utilities. So that the 
information that the users (customers) can see should be the data that have 
been processed by the Web server, application server, and database. If there 
is an outage in one tier, it should impact tiers in the entire environment, while 
the major impact should be to customers. From the beginning of system 
failure untill the functionality becomes workable again to customers is the 
measurement with which to evaluate the failover capability from the 
customers’ point of view.

1.3  Introduction to different WebSphere Commerce 
environments

Different WebSphere Commerce (customer) sites use a variety of names when 
referring to various WebSphere Commerce environments within their site.

 

 

 

 

10 WebSphere Commerce High Availability and Performance Solutions



1.3.1  Development environment

A setup of WebSphere Commerce Developer, based on the IBM Rational 
Application Developer, is the WebSphere Commerce development environment. 

1.3.2  Runtime environment

Runtime environment refers to any setup that has any edition of WebSphere 
Commerce set up other than the WebSphere Commerce Developer. This 
includes WebSphere Commerce Express, WebSphere Commerce Professionall, 
and WebSphere Commerce Enterprise Edition. Any of these setups can be for 
the production environment or for an environment that is used for testing or 
aggregating the assets before they are pushed or published on the production 
environment.

Development environment
The development environment refers to the machines that you use to develop 
custom code. For development environment migration, use the in-place 
migration approach, where all the migration steps are done on your existing 
machine. We recommend that you have a second development machine 
available, to maintain your existing WebSphere Commerce site.

Lightweight test environment
WebSphere Commerce Developer has a fully functional lightweight test 
environment that emulates the WebSphere Commerce production environment 
but with a greatly reduced memory footprint and startup time. 

Also available is the full WebSphere Commerce test environment, which 
provides support for more advanced development tasks, additional configuration 
options, and end-to-end testing on a local WebSphere Commerce Server.

Runtime environment
The runtime environment refers to your test environment as well as your 
production environment where you deploy your custom code and serve your site.

Production environment
A production environment refers to your production site that is open to your 
customer, shoppers, or user access. If you have a for-profit business then this is 
your revenue-generating site.

Staging and authoring environments
A staging environment allows the site administrators to update the data and test 
the changes, and then propagate the change to the production server. This is 

 

 

 

 

 Chapter 1. Introduction 11



useful for testing updates to the product catalog, but it is also important for 
testing new shopping process commands.

Test and stress environments
In addition to the staging environment, as discussed above, many sites, 
especially large sites, may have decided to have one or more test environments 
to test or experiment a variety of updates or scenarios. 

An environment for stress testing your system should mimic your production 
environment closely. If the stress environment does not mimic your production 
environment closely then you need to figure a correlation between the results of 
your performance test cases and how those results translate to the impact on the 
performance of your production site, as discussed in Chapter 6, “WebSphere 
Application Server High Availability” on page 55. 

1.4  Considerations for implementing High Availability 
solution

The level of High Availability that a business requires is dictated by the business 
requirements. So, in this sense the level of High Availability is a relative term. 
High Availability for eCommerce sites has some specific requirements above and 
beyond the site simply being online. Here we define what High Availability entails 
in context of eCommerce sites.

Many High Availability implementations focus on failover and disaster recovery. 
However, a system must also ensure continuous capacity and performance as 
defined by its business requirements. This is especially true for eCommerce 
sites.

You also need to monitor your system proactively so that any change in 
workload, say due to aging data or a change in the distribution and type of 
incoming user traffic, and so on, does not lead to degradation in performance or 
risk to High Availability. Monitoring capability and performance tuning is thus an 
integral part of implementing a High Availability solution.

Important: High Availability of eCommerce sites does not simply mean that 
they remain online, but that they must continue to provide a high level of 
performance.

 

 

 

 

12 WebSphere Commerce High Availability and Performance Solutions



1.4.1  Continuous business capacity and performance

Ensuring that a system is able to handle a certain peak capacity and 
performance, as required by its business, requires eliminating single points of 
failure and building redundant capacity above and beyond the peak capacity. If 
part of the system goes out then the redundancy in the system ensures that 
100% of the business capacity requirements can still be met by the system 
without any impact to the business functionality or performance.

Redundancy may need to be implemented at various levels, including:

� Hardware redundancy: In a clustered environment, such as the one 
employing WebSphere Application Server, this may refer to setting up 
horizontal cluster members, which are set up on different physical machines.

� Software redundancy: In a clustered environment, such as the one employing 
WebSphere Application Server, this may refer to setting up vertical cluster 
members, which are set up on same physical machine.

� Data redundancy: In a system that relies on a source of data, this refers to 
having more than one identical source of data. If one source of data goes 
down, the other sources of data continue to handle service requests. For 
example, DB2 HADR can provide one such solution (see Chapter 5, 
“Database tier High Availability” on page 39).

� Communications redundancy: This refers to the retry logic within an 
application whereby if the application is not successful in an operation that 
required communication outside of the application, then it retries the 
operation a certain number of times before signaling a failure. Retry logic may 
be implemented to identify faults in a certain hardware, software, or data 
source and to try the alternate, redundant, or standby hardware, software, or 
data source.

� Network redundancy: This refers to the hardware, such as bridges, access 
points, transmission cables, and so on (and the associated software), 
redundancy to ensure that the any network failures do not adversely impact a 
site’s performance.

1.4.2  Failover support and disaster recovery

Faults are distinguished from failures by the fact that the faults of the system may 
or may not cause failures. If faults exist in a system and, in a given scenario, no 
action is performed with the faulty component that may expose the fault, then the 
failure will not happen.

Failures are distinguished from disasters by the fact that failures may or may not 
cause disasters. While failures tend to be specific and localized, the disasters 

 

 

 

 

 Chapter 1. Introduction 13



tend to be widespread in their scope, usually sudden and highly disruptive. 
Disasters can be natural, man-made, or a combination of the two. Disasters can 
be earthquakes, volcanic eruptions, fire, power failure, theft, terrorist attack, and 
so on.

In failover solutions the tasks of failed components are assumed by the 
operational components. Disaster recovery solutions are implemented to localize 
the scope of the failures and to minimize or eliminate any disruptions that the 
disaster might otherwise have caused.

Active-passive failover support
This is a system that includes one or more redundant components passively 
waiting, in a stand-by mode, for failures to occur, and then they become active by 
assuming the role of the failed components. The active-passive failover support 
of a system is frequently defined as an m:n ratio of m active components (which 
are actively processing workload) to n passive components (which are passively 
waiting in stand-by mode). 

Thus, a 1:1 active-passive system has 100% redundancy with one passive 
component per active component, whereas an n:1 system has one passive 
component for n active components.

Active-manual failover support
The failed component or system is manually swapped for the passive 
component. For example, in case of fire, when one system is fully destroyed, its 
backup image can be restored onto another system and it could replace the 
damaged system. Usually, an active-manual failover support cannot provide high 
availability, especially if the failover detection is also manual.

Active-active failover support
A system with active-active failover support has duplicate components that are 
all simultaneously active and processing workload. In case of a failure, the 
overall capacity of the system is lowered until the failure is corrected and the 
failed component is active once again. Depending on the business capacity 
requirements, this failover support may also require building redundant capacity 
in the system.

1.4.3  System monitoring and performance tuning

To ensure that your system or site is highly available you must monitor it not only 
for the failover support but also for the acceptable performance as the workload 
or site traffic changes with time. Refer to Part 5, “Monitoring and performance 
tuning” on page 321.

 

 

 

 

14 WebSphere Commerce High Availability and Performance Solutions



1.4.4  Performance testing

Performance tuning and performance testing go together. You must not adjust or 
experiment with performance tuning on your production environment directly. 
Any changes to the workload distribution on your production environment should 
be mimicked on your test or staging environments, and performance tuning 
should be tested or validated on them first.

1.5  Types of system outages

System outages can be due to different causes and can have varied 
manifestations and extent.

1.5.1  Different scopes of system outage

System outage can be complete or partial outage.

Complete outage
This is when the outage is complete the system has 0% capacity to respond 
within a required response time.

Partial outage
A partially unavailable system has reduced capacity to respond or process its 
workload within a required response time. The required response time is defined 
by the business requirements. 

1.5.2  Different causes of system outage

Ideally, system outage should occur only in a planned way during a service 
window in which you will not impact your users or your revenue generation. 
However, it is possible that an outage may happen when it is not expected. You 
should have a High Availability solution that can tolerate system outages, but, at 
the same time, you should ensure that you have an established process, as a 
last resort, for when that is not possible. For example, who will handle what 
aspect of the system outage and how the communications will be sent and so 
on?

Planned outage
A planned outage can be either a complete or a partial outage. It is possible that 
some businesses may accept lower capacity and performance of their systems 

 

 

 

 

 Chapter 1. Introduction 15



during planned outage, say, during off-peak seasons, days, or hours. In such 
cases the planned, partial outages are much more palatable even though they 
may last longer than complete planned outage. Such planned, partial outages 
may not drop the service availability by deploying switchover of services from 
one component (for example, one server) to another. A switchover can be 
considered as a safe, deliberate failover. WebSphere Application Server 
provides rolling upgrade functionality that employs this scheme. For more 
information about rollout upgrades refer to Part 7, “Maintenance” on page 561.

Unplanned outage
Unplanned outage is an unscheduled outage that happens if the system was not 
set up to handle it by implementing redundancy or failover support, and so on.

Hardware 
Unplanned outages can happen due to hardware failures resulting from 
hardware faults, power failure, natural disaster, and so on.

Software product
Software crashes can lead to unplanned outages as well. Although such a crash 
should be investigated so that the associated outage can be avoided in the 
future, most outages can be recovered by just restarting the software application. 
As such, setting up an automated recovery approach or just restarting the 
application can be your first line of defense.

Capacity
Even though all the system components may be active and operational it is 
possible that the system is not operating at the capacity required by your 
business specifications. For example, the response time has increased past your 
acceptable time. This could happen due to an increase in workload, but the 
possibility increases significantly if some of the redundant components fail.

1.6  High Availability solution for WebSphere Commerce

This book is divided into eight parts along the life cycle events of a site 
development, for example, install, development, testing, performance tuning, 
maintenance, and so on.

The central theme of High Availability and performance permeates throughout 
the book. 

 

 

 

 

16 WebSphere Commerce High Availability and Performance Solutions



In Table 1-1, we list some of the potential single points of failure in a WebSphere 
Commercesite and links to some of the key, relevant sections that contain the 
High Availability and performance considerations.

Table 1-1   Single points of failure in a WebSphere Commerce site

Points of failure References

Load Balancer Refer to 7.2, “Introduction to Load Balancer High Availability” on 
page 85.

Web server Refer to 7.1, “Introduction to Web server High Availability” on 
page 81.

WebSphere Application Server Refer to Chapter 6, “WebSphere Application Server High Availability” 
on page 55.

WebSphere Application Server 
node agent

Visit http://www.redbooks.ibm.com/abstracts/SG246451.html?Open 
and http://www.redbooks.ibm.com/abstracts/SG247304.html?Open.

WebSphere Application Server 
ND

Visit 
http://www-306.ibm.com/software/webservers/appserv/was/netwo
rk/features/?S_CMP=rnav.

Database Refer to Chapter 5, “Database tier High Availability” on page 39.

 

 

 

 

 Chapter 1. Introduction 17

http://www.redbooks.ibm.com/abstracts/SG246451.html?Open
http://www.redbooks.ibm.com/abstracts/SG247304.html?Open
http://www-306.ibm.com/software/webservers/appserv/was/network/features/?S_CMP=rnav
http://www-306.ibm.com/software/webservers/appserv/was/network/features/?S_CMP=rnav


 

 

 

 

18 WebSphere Commerce High Availability and Performance Solutions



Chapter 2. Project planning for High 
Availability and performance

In addition to ensuring the High Availability of system resources, it is also 
imperative to manage the human resources to support the High Availability of the 
system. Project management, skill availability, and accountability of site assets 
are a few of the key aspects.

Although project management and the associated activities are beyond the 
scope of this text, we would like to provide a checklist that can help project 
managers better manage their team that supports High Availability systems.

2
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 19



2.1  Identify your scenario

If you are planning on implementing a High Availability solution then there are 
two possible scenarios that have different project requirements and milestones. 
In one scenario, you may be an existing customer who wants to convert your 
existing single point of failure to a High Availability component. In the other 
scenario, you may be a new customer building a new High Availability site. The 
two scenarios require different implementation steps.

It is usually easiest to build a site with High Availability. If, however, you are 
converting your existing single point of failure to a High Availability component 
then you must transition the architecture in such a fashion such that there is 
minimum impact to the site’s operation. For example, converting a standalone 
Web server to a cluster of Web servers and a Load Balancer would require you 
to set up the Load Balancer with the same virtual IP that the standalone Web 
server used to have. The site operation would be impacted for the duration of the 
switchover of the virtual IP address.

2.2  Identify your resources and skills requirements

It is also imperative to be able to account for all the assets had by your site. For 
example, you should have all the source code for your custom code in a code 
repository. Building an inventory of assets would enable you to track (or identify 
the need for) High Availability implementations for the various components, as 
well as, and perhaps more importantly, High Availability processes. For example, 
do you have enough build, test, or staging environments between your 
development machines and production environment? You must test the assets 
that you develop before you deploy them on to your production environment. 
Insufficient testing prior to deployment puts your production environment at risk 
and may impact its availability.

2.2.1  Inventory of site assets

Take an inventory of your existing WebSphere Commerce site assets, which 
include: 

� Topology information

Topology information is required to figure out any single points of failure, as 
well as any performance bottlenecks that might be there. For example, after 
you have ensured that you do not have a single point in failure, then what 
level of redundancy do you have in your site? How many cluster members are 
allowed to go offline before it impacts your site’s performance or availability? 

 

 

 

 

20 WebSphere Commerce High Availability and Performance Solutions



Is the number acceptable? Along the same lines, is the failover strategy or 
detection time, such as in case of IBM DB2 HADR, acceptable to your 
business? Gathering information such as the following is required to build a 
site’s topology:

– Machines
– Instances
– WebSphere Application Server Cluster members
– Web servers
– Databases
– High-level architecture of the site

• Development environments
• Build environment
• Test environment
• Staging/Authoring environment
• Production environment

� Custom code developed

Ensure that you have all your custom source code available in a code 
repository. There may be situations when you need to diagnose or recompile 
the code and having the binary will not be sufficient. Also, use the following 
list to identify whether you have appropriate test environments to properly test 
for any changes in the following that may be required:

– Enterprise Java Beans and commands
– Custom Java code
– Java Server Pages
– Database schema customizations
– Code deployment scripts
– Data loading scripts
– WebSphere Commerce tools, and so on

� Existing business processes

To ensure that existing processes continue to work flawlessly, you first need 
to identify them. You also need to identify the priority and best times of 
execution of various maintenance or repetitive tasks. For example, what is 
the best time to mass load data or publish catalog content into your 
database? Or, when should the scheduled jobs run and with what priority, and 
so on? The priority and schedule of the jobs have significant impact on a 
site’s performance.

 

 

 

 

 Chapter 2. Project planning for High Availability and performance 21



� Integration points

Integration points require the same considerations as the core WebSphere 
Commerce assets that you may have. These include:

– WebSphere family of products, for example, MQ, LDAP, messaging, and 
so on

– Third-party software, for example, payments, taxation, and so on

– Back-end integration

2.2.2  Inventory skilled resources required

Inventory the skills of the people who will be involved in implementing, 
maintaining, and supporting your site. Consider whether you have the 
appropriate database, Java, coding, testing, and IT systems administration skills 
on your team:

� Database administration skills to help set up a High Availability database 
system, to performance tune, and to help troubleshoot any database 
performance issues, such as poorly performing SQL queries. Database 
performance is one of the most significant, if not the most significant, 
contributors to your site’s performance and availability.

� WebSphere Commerce development skills to write any custom Java code. The 
developers should understand the basic concepts of how Java constructs and 
structures use JVM heap and how they may impact the performance.

� Administration skills, to minimize the impact to your production site’s 
availability and performance during installation, upgrade, and configuration 
operations involving WebSphere Commerce and co-required software 
products, for example:

– The operating system

– WebSphere Application Server administration

– IBM HTTP Server administration

– Understanding of TCP/IP, HTTP, and Secure Sockets Layer (SSL) 
protocols

 

 

 

 

22 WebSphere Commerce High Availability and Performance Solutions



2.3  Plan your activities

Keeping with the theme of this chapter, here we provide a high level sample 
project plan, without delving deep into the details. The diagram in Figure 2-1 
should be self-explanatory, but we review some of the key aspects of project 
planning below.

Figure 2-1   Planning your site development with High Availability and performance considerations

2.3.1  Education and training

Consider training your team in performance aspects administration and 
development. For example, in addition to being familiar with WebSphere 

Attention: Performance and High Availability considerations must be an 
integral part of all design, development, test, maintenance, and even business 
discussions. 

Putting performance considerations off until later in the project (until the 
performance test phase and, even at that stage, compromising the scope of 
performance testing) is a common, dangerous, and very expensive mistake.

1 2 3 4 5 6 7 8

Planning

Education & Training

Installation

Site Development

Functional Testing

Performance/HA Testing

Production
upgrade

Monitor/tune

Go 
Live

Time units

Performance 
testing starts, 

before 
development 

& function 
testing exit

 

 

 

 

 Chapter 2. Project planning for High Availability and performance 23



Commerce features, your developers should be familiar with the performance 
considerations of development and code profiling techniques. For more 
information refer to Part 4, “Design with performance in mind” on page 247.

2.3.2  Getting skilled help

Depending on the complexity of your site, your schedule, the skilled resources 
available on your team, and the critical nature of your business, you may 
consider getting help from an IBM services team or an IBM Business Partner. 

You can outsource your complete project. Alternately, you can seek assistance 
from one or more experts to help with your project while you provide the rest of 
the resources for the project. The latter approach may be useful if you have 
skilled resources to assist the external experts. This approach has the benefit of 
having skilled resources helping you with the actual implementation tasks. It also 
helps the rest of your team in answering their questions and assisting with 
problem determination, if required. Either way, in your plan, ensure that you 
account for skills transfer from the experts to your team so that your team can 
function efficiently on the site when the expert leaves.

You may also consider outsourcing performance testing to an IBM services 
team, as they have the automated tools and processes to provide assistance 
with quick turn-around, and as performance testing is non-trivial in nature. We 
discuss this further in 20.1, “Why is it complex” on page 455.

Finally, if you identify skill shortfalls in your team and you require external 
assistance then bring help in sooner rather than later.

2.3.3  Site development life cycle

Figure 2-1 on page 23 is useful from a scheduling perspective, as you can see 
how some aspects of the site development life cycle can be executed in parallel 
to one another. 

Figure 20-1 on page 457 goes into further details of the processes involved in the 
site development life cycle.

2.3.4  Scaling hardware versus performance tuning

Scaling hardware may be an easier solution from an implementation perspective 
than performance tuning, but it may not be easy to translate that into a business 
case for it.

 

 

 

 

24 WebSphere Commerce High Availability and Performance Solutions



Sometimes, however, the opposite is also true. Instead of a person spending 
months investigating how the performance of a well-tuned system can be 
improved further, it may be cheaper to add more hardware to your site.

Thus, you should consider the pros and cons of each approach.

2.3.5  Performance testing is critical

In many projects testing is left for the end of the project and performance testing 
is usually last. As such, any delay in project execution impacts performance 
testing significantly. Any problems (such as performance issues) that happen 
during runtime usually have a much serious impact than any roadblocks you may 
encounter prior to going live. Also, many times performance issues are not trivial 
to address, so you do not want to discover them at runtime. So, it is imperative to 
plan for performance testing and tuning of your system sooner in your project, as 
well as allocating sufficient time to it.

2.3.6  Failover support for launch 

You must also plan some sort of failover plan or roll-back plan should you 
encounter any catastrophic problem during the site launch or go-live. 

Recall the two scenarios discussed in the beginning of this chapter. If you are 
building a new site then any catastrophe will delay your site launch. However, if 
you are upgrading your site (for High Availability or performance reasons) then 
this would have a significantly larger impact to your on-going business.

Throughout this book we discuss various techniques to address the latter. One 
common theme is to decide on a service window of your site that will least impact 
your user base, and then partially upgrade your site. If your upgrade is not 
successful for any reason then one alternative is to bring your site up with the 
remaining capacity and then work in parallel to either troubleshoot the problem or 
to revert the upgraded capacity back to the previous version or topology of your 
site.

Important: Start performance testing as early as possible. The later you do 
performance testing the more expensive performance defects become.

 

 

 

 

 Chapter 2. Project planning for High Availability and performance 25



 

 

 

 

26 WebSphere Commerce High Availability and Performance Solutions



Chapter 3. Scenario for this book

In this chapter, we describe the scenario that is used throughout this book to 
demonstrate and test the discussed High Availability and high performance 
concepts. We also give an overview of the following parts:

� Setting up High Availability for WebSphere Commerce
� Developing high-performance WebSphere Commerce custom applications
� Monitoring and tuning WebSphere Commerce components
� Conducting performance tests for WebSphere Commerce
� Maintaining WebSphere Commerce components
� Migrating WebSphere Commerce

3
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 27



3.1  Topology

Figure 3-1 shows the basic topology of our WebSphere Commerce test 
environment. The diagram reflects the typical three-tier architecture of a J2EE 
application. 

Figure 3-1   Topology diagram of our scenario

3.2  Chapters overview

The rest of the book is structured as described in the following sections.

Internet

IBM HTTP
Server 2

IBM HTTP 
Server 1

WebSphere 
Commerce
Server 2

WebSphere 
Commerce
Server 1

DB2
Server 1

IBM Load Balancer
(Dispatcher)

DB2
Server 2

Tivoli System
Automation 
Resource Groups

Standby Load
Balancer

Standby Network
Deployment
Manager

Active Nodes

Standby Nodes

Tivoli System Automation Cluster

IBM HTTP
Server 3

Domain Firewall

Protocol Firewall

App
Server
Cluster

Web
Server
Cluster

HTTP/HTTPS

BrowserXXX X
XXX XX
XXX
XXX XX

XXX X
XXX XX
XXX
XXX XX

Network 
Deployment
Manager

 

 

 

 

28 WebSphere Commerce High Availability and Performance Solutions



3.2.1  High Availability

Part 3, “Install and configure a High Availability WebSphere Commerce system” 
on page 87, describes how to set up the WebSphere Commerce topology with 
High Availability.

As a special case, some of the nodes shown in Figure 3-1 on page 28 could 
actually be in different networks. We experimented with putting the following 
nodes into remote networks: 

� HTTP Server 3: See 7.1.2, “IBM WebSphere Edge Components Load 
Balancer” on page 82 (NAT forwarding).

� 11.2.2, “NAT forwarding” on page 210.

The following Web site discusses frequently asked questions about WebSphere 
Application Server, including how to run it over multiple data centers:

http://www-128.ibm.com/developerworks/websphere/techjournal/0606_col_
alcott/0606_col_alcott.html

Without the HA Deployment Manager capability of WebSphere Application 
Server XD, the most practical way to replace a failed DMgr is the cold/warm 
standby server, as shown in Figure 3-1 on page 28. For additional information 
about an alternative HA solution, go to the following link:

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_
alcott/alcott.html

3.2.2  Application development

Part 4, “Design with performance in mind” on page 247, describes how to 
develop your custom WebSphere Commerce application (for example, a 
shopping site) such that your site can be tuned to yield optimal performance. 

3.2.3  Performance monitoring and tuning

Part 5, “Monitoring and performance tuning” on page 321, describes how to 
monitor the application at different tiers. We also provide hints on tuning 
parameters for each software component used in our test environment.

3.2.4  Performance test

Part 6, “Performance test” on page 451, describes test methodologies and tools 
for performance testing WebSphere Commerce sites.

 

 

 

 

 Chapter 3. Scenario for this book 29

http://www-128.ibm.com/developerworks/websphere/techjournal/0606_col_alcott/0606_col_alcott.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html


3.2.5  Maintenance

Part 7, “Maintenance” on page 561, describes how to maintain and update all the 
different hardware and software in way that minimizes the impact of the 
maintenance and update operations on site High Availability and performance.

 

 

 

 

30 WebSphere Commerce High Availability and Performance Solutions



Part 2 High Availability 
solutions for 
unplanned and 
planned outages

Multiple High Availability solutions are introduced in this part, which mainly 
focuses on four areas:

� External clustering software
� High Availability solution in database tier
� High Availability solution in WebSphere Application Server node
� High Availability solution in Web server node

Part 2
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 31



 

 

 

 

32 WebSphere Commerce High Availability and Performance Solutions



Chapter 4. External clustering software

A typical WebSphere Commerce system spans across various tiers: Web server, 
application server, database server. 

Each tier of product has its own specific solution to achieve High Availability. For 
example, at the Web server tier, Load Balancer is commonly used to distribute 
traffic across a Web server cluster. At the application server tier, WebSphere 
Application Server federation and clustering can be managed by the Network 
Deployment Manager.

In addition to these product-specific High Availability solutions, IBM supports 
several external clustering solutions. Using this external clustering software on 
its own, one may achieve High Availability for all servers in a WebSphere 
Commerce environment. This external clustering software can also be used to 
integrate with existing product-based High Availability solutions.

In this chapter, we introduce you to some external clustering software, such as: 

� Reliability Scalable Cluster Technology (RSCT)
� Tivoli System Automation (TSA)
� HACMP™

Later in the book, we show you how to achieve High Availability with DB2 using 
RSCT and TSA.

4
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 33



4.1  Reliability Scalable Cluster Technology

Reliable Scalable Cluster Technology (RSCT) is a product that is fully integrated 
into TSA. RSCT is a set of software products that provides a comprehensive 
clustering environment for AIX® and Linux®. RSCT provides clusters with 
improved system availability, scalability, and ease of use. RSCT provides several 
basic components, or layers, of functionality:

� Resource Monitoring and Control (RMC) 

Resource Monitoring and Control provides global access for configuring, 
monitoring, and controlling resources in a peer domain.

RMC is the scalable, reliable backbone of RSCT. It runs on a single system or 
on each node of a cluster, providing a common abstraction for the resources 
of the cluster. In a cluster, the RMC framework allows a process on any node 
to perform an operation on one or more resources on any other node inside 
the cluster.

As the name implies, RMC monitors resources (disk space, CPU usage, 
processor status, application processes, and so on) and controls the system 
by performing actions in response to defined conditions. 

� Resource Management (RM)

There is a core set of resource managers provided by RSCT, and additional 
resource managers are provided by CSM for AIX and CSM for Linux. 
Resource managers provide low-level instrumentation and control, or act as a 
foundation for management applications. The following are the core resource 
managers of RSCT: 

– Audit Log resource manager 
– Configuration resource manager 
– Event resource manager 
– File System resource manager 
– Host resource manager 
– Sensor resource manager

� Cluster Security Services (CtSec)

Cluster Security Services is a new security infrastructure that is used by RMC 
to authenticate a node within the cluster, verifying that the node is who it says 
it is. This is not to be confused with authorization (granting or denying access 
to resources), which is handled by RMC. 

CtSec uses credential-based authentication that enables: 

– A client process to present information to the server that owns the 
resource to be accessed in a way that cannot be imitated. 

 

 

 

 

34 WebSphere Commerce High Availability and Performance Solutions



– A server process to clearly identify the client and the validity of the 
information. 

– Credential-based authentication uses a third party that both the client and 
the server trust. In this release, only UNIX® host-based authentication is 
supported.

� High Availability Group Services (HAGS) is a distributed coordination, 
messaging, and synchronization service.

� High Availability Topology Services (HATS) provides a scalable heartbeat for 
adapter and node failure detection, and a reliable messaging service in a peer 
domain.

For more information about RSCT, see the IBM Cluster Information Center:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=
/com.ibm.cluster.rsct.doc/rsctbooks.html

4.2  Tivoli System Automation

IBM Tivoli System Automation for Multiplatforms plays an important role in 
improving the availability and resilience of critical business processes delivered 
to users through self-managing and self-healing autonomic computing 
capabilities. 

4.2.1  Introduction

IBM Tivoli System Automation manages the availability of applications running in 
Linux systems or clusters on System x, zSeries®, iSeries®, pSeries®, and AIX 
systems or clusters. It consists of the following features:

� High Availability and resource monitoring 

TSA provides a High Availability environment. It offers mainframe-like High 
Availability by using fast detection of outages and sophisticated knowledge 
about application components and their relationships. 

� Policy-based automation

TSA configures High Availability systems through the use of policies that 
define the relationships among the various components.

� Automatic recovery

TSA quickly and consistently performs an automatic restart of failed 
resources or entire applications either in place or on another system of a 
Linux or AIX cluster. This greatly reduces system outages.

 

 

 

 

 Chapter 4. External clustering software 35

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.rsct.doc/rsctbooks.html


� Automatic movement of applications

TSA manages the cluster-wide relationships among resources for which it is 
responsible.

� Resource grouping

You can group resources together in TSA. Once grouped, all relationships 
among the members of the group are established, such as location 
relationships, start and stop relationships, and so on.

Figure 4-1 is the architecture of Tivoli System Automation.

Figure 4-1   Architecture of Tivoli System Automation

TSA provides High Availability by automating resources, such as processes, 
applications, IP addresses, and others in Linux-based clusters. To automate an 
IT resource (for example, a DB2 database instance), you define the resource to 
TSA. Furthermore, these resources must all be contained in at least one 
resource group. If these resources are always required to be hosted on the same 
machine, they are placed in the same resource group. For more information 
about TSA, see the Tivoli Software Information Center at the following link:

http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationfor
Multiplatforms2.1.html

Recovery
RM

HAGS

HATS

Res 
RM

Other 
RMS

Config
RM

RMC

Node1

Recovery RM
Master

HATS

HAGS

Res
RM

Other
RMs

Config
RM

RMC

Resources

Node2

Recovery 
RM

HATS

HAGS

Res
RM

Other 
RMs

Config
RM

RMC

Node3

Resource

 

 

 

 

36 WebSphere Commerce High Availability and Performance Solutions

http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationforMultiplatforms2.1.html
http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationforMultiplatforms2.1.html


4.2.2  Terms in Tivoli System Automation

There are many terms that we need to use when we use Tivoli System 
Automation as our automation tooling:

� Cluster

A cluster is a group of host systems under IBM Tivoli System Automation 
management.

� Resource

A resource is any piece of hardware or software that can be defined to IBM 
Tivoli System Automation. These resources can be either defined manually 
by the administrator using the mkrsrc (make resource) command or through 
the harvesting functionality of the cluster infrastructure, whereby resources 
are automatically detected and prepared for use.

– Fixed resource 

A fixed resource is a resource that has only a single instance within the 
cluster. It represents one entity that is defined for a single node, and this is 
the only node on which it runs. 

– Floating resource 

A floating resource is a resource that can run on several nodes in the 
cluster.

� Attribute

A resource attribute describes some characteristics of a resource. There are 
two types of resource attributes: persistent attributes and dynamic attributes.

� Resource group

Resource groups are the primary mechanism for automatic operations within 
TSA. A collection of resources can be included in a resource group, which 
can be called as a logical container. This container can help you control 
multiple resources as a single logical entity.

� Equivalency

An equivalency is a collection of resources that provides the same 
functionality. For example, equivalencies are used for selecting network 
adapters that should host a same IP address.

� Relationship

IBM Tivoli System Automation allows the definition of relationships between 
resources in a cluster. There are two different relationship types:

– Start/stop relationships
– Location relationships

 

 

 

 

 Chapter 4. External clustering software 37



� Tie breaker

The tie breaker is used to determine which subcluster will have an operational 
quorum.

4.2.3  Start with Tivoli System Automation

The general steps to start Tivoli System Automation are:

1. Create and administer a cluster.
2. Define resources for the RSCT cluster defined previously.
3. Define or customize the automation policy.
4. Register the automation policy with resources.
5. Go online and validate the entire cluster.

In 9.1.3, “Installing Tivoli System Automation” on page 155, we give a detailed 
installation and configuration introduction about how to use TSA to manage and 
monitor DB2 HADR, which is strictly following the steps listed above.

4.2.4  Relationship with RSCT

Reliable Scalable Cluster Technology (RSCT) is a product fully integrated into 
IBM Tivoli System Automation. Since RSCT is a set of software products that 
together provide a comprehensive clustering environment for AIX and Linux, it is 
the infrastructure to provide clusters with improved system availability, 
scalability, and ease of use. You should make sure that the RSCT infrastructure 
is working before you install TSA.

4.3  HACMP

In general, High Availability is achieved by making systems redundant. The more 
system redundancy, the higher the level of availability that can be achieved. IBM 
HACMP for AIX provides a highly available computing environment by adding 
software and redundant hardware components. It automatically switches 
applications and data from one system to another in an HACMP cluster after a 
hardware or software failure. 

In a WebSphere Commerce environment, HACMP is most commonly used for 
the database tier. For more detailed information about HACMP setup, refer to the 
HACMP documentation available at:

http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html

 

 

 

 

38 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html


Chapter 5. Database tier High 
Availability

Currently, most of the transaction processing systems are driven by database 
management systems, so that more and more e-businesses are looking for an 
uninterrupted and highly available infrastructure in their transaction processing 
systems. This chapter focuses on IBM DB2, and introduces some existing 
solutions to help DB2 achieve 24x7 High Availability:

� DB2 HADR
� HACMP
� DB2 SQL replication

5
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 39



5.1  High Availability Disaster Recovery

DB2 Universal Database™ (DB2 UDB) High Availability Disaster Recovery 
(HADR) is a database replication feature that provides a High Availability solution 
for both partial and complete site failures. In this solution, data can be protected 
from being lost by replicating from the source database (called primary 
database) to the target database (called the standby database) without 
significant performance impact to the normal transactions.

5.1.1  Introduction

High Availability (HA) strategies enable database solutions to remain available to 
process client application requests despite hardware or software failure, which 
can ensure that:

� Transactions are processed efficiently, without appreciable performance 
degradation.

� Systems recover quickly when hardware or software failures occur, or when 
disaster strikes.

� Software that powers the enterprise databases is continuously running and 
available for transaction processing.

 

 

 

 

40 WebSphere Commerce High Availability and Performance Solutions



5.1.2  Architecture of HADR

Figure 5-1 illustrates the architecture of HADR.

Figure 5-1   DB2 HADR architecture

Figure 5-1 illustrates the following key aspects of a HADR environment:

� Enabling HADR on a primary server starts up a process called db2hadrp that 
communicates with the standby server. At the same time, on the standby 
server, a process called db2hadrs is started, which receives log records from 
the primary server, writes them to the log file on the standby server, and 
applies those transactions to the data and index pages.

� When an application is running on the primary server, normal 
insert/update/delete activity results in log records being written to the log 
buffer. When the log buffer is full, or whenever a transaction commits, the log 
buffer is flushed to disk (to the log files) prior to the application receiving a 
successful return code to its commit request.

� When the primary database is in peer state, log pages are shipped to the 
standby database whenever the primary database flushes a log page to disk. 
The log pages are written to the local log files on the standby database to 
ensure that the primary and standby databases have identical log file 

DB2 Engine

Log Reader

Tables
Index

DB2 HADR Agent

Primary Server

Log Writer

Client Application

TCP/IP

DB2 Engine

Tables
Index

Reply 
Master

Standby Server

* Copied data is 
continuously applied using 
forward recovery

Recovery LogsRecovery Logs

DB2 HADR Agent

 

 

 

 

 Chapter 5. Database tier High Availability 41



sequences. The log pages can then be replayed on the standby database to 
keep the standby database synchronized with the primary database.

Since HADR ensures that the primary and standby databases have identical log 
file sequences. If a disaster happens at the primary site, the standby database 
server can take over as the new primary database server to handle client 
application requests.

5.1.3  How HADR works

As described in the previous section, HADR uses the DB2 replication 
infrastructure to achieve data consistency and synchronization between the 
primary database and the standby database. Basically, we can separate the 
process into five steps. Figure 5-2 depicts these steps.

Figure 5-2   How HADR works

The steps are:

1. With the High Availability disaster recovery (HADR) feature, when the 
standby database is started, it enters local catchup state and attempts to read 
the log files in its local log path. If it does not find a log file in the local log path 
and a log archiving method has been specified, the log file is retrieved using 
the specified method. After the log files are read, they are replayed on the 
standby database.

Standby Database Startup

Peer state

Remote catch

Remote catch pending

Local catchup

ConnectedLost
Connection

Lost
Connection

1

2

3

4

5

 

 

 

 

42 WebSphere Commerce High Availability and Performance Solutions



2. When the end of local log files is reached, the standby database enters 
remote catchup pending state.

3. The standby database remains in remote catchup pending state until a 
connection to the primary database is established, at which time the standby 
database enters remote catchup state. During this time, the primary database 
reads log data from its log path or by way of a log archiving method and 
sends the log files to the standby database.

4. The standby database receives and replays the log data. When all of the log 
files on disk have been replayed by the standby database, the primary and 
standby systems enter peer state.

5. When in peer state, log pages are shipped to the standby database whenever 
the primary database flushes a log page to disk. The log pages are written to 
the local log files on the standby database to ensure that the primary and 
standby databases have identical log file sequences. If for any reason the 
standby cannot keep the data consistency, the standby database will change 
to remote catch pending status again.

5.1.4  Synchronization modes for HADR

With HADR, you can choose the level of protection that you want from a potential 
loss of data by specifying one of three synchronization modes: synchronous, 
near synchronous, or asynchronous. The synchronization mode indicates how 
log writing is managed between the primary and standby databases. These 
modes apply only when the primary and standby databases are in peer state.

� SYNC (synchronous) 

This mode provides the greatest protection against transaction loss, and 
using it results in the longest transaction response time amongst the three 
modes. In this mode, log writes are considered successful only when logs 
have been written to log files on the primary database and when the primary 
database has received acknowledgement from the standby database that the 
logs have also been written to log files on the standby database. The log data 
is guaranteed to be stored at both sites.

� NEARSYNC (near synchronous)

While this mode has a shorter transaction response time than synchronous 
mode, it also provides slightly less protection against transaction loss. In this 
mode, log writes are considered successful only when the log records have 
been written to the log files on the primary database and when the primary 
database has received acknowledgement from the standby system that the 
logs have also been written to main memory on the standby system. Loss of 
data occurs only if both sites fail simultaneously and if the target site has not 
transferred to nonvolatile storage all of the log data that it has received.

 

 

 

 

 Chapter 5. Database tier High Availability 43



� ASYNC (asynchronous) 

This mode has the highest chance of transaction loss if the primary system 
fails. It also has the shortest transaction response time among the three 
modes. In this mode, log writes are considered successful only when the log 
records have been written to the log files on the primary database and have 
been delivered to the TCP layer of the primary system’s host machine. 
Because the primary system does not wait for acknowledgement from the 
standby system, transactions might be considered committed when they are 
still on their way to the standby.

Automatic Client Reroute (ACR) is another feature that was first introduced in 
DB2 UDB v8.2. If a database application loses communication with a DB2 
database server, ACR reroutes that client application to an alternate database 
server so that the application can continue its work with minimal interruption. 
Rerouting is only possible when an alternate database location has been 
specified at the primary database server. ACR is only supported with the TCP/IP 
protocol. 

5.1.5  Automatic Client Reroute 

ACR is not tied to HADR. You can use it with HADR, clustering software, in a 
partitioned database environment, replication, and so on. ACR automatically and 
transparently reconnects DB2 database client applications to an alternate server 
without the application or user being exposed to a communications error. The 
alternate server information is stored on the primary database server, and loaded 
into the client's cache upon a successful connection to the primary database 
server. This means that for a client application to know the alternate database 
server, it must first successfully connect to the primary database server.

When ACR is configured, the built-in retry logic alternates between the original 
primary server and the alternate server for 10 minutes, or until a database 
connection is re-established to the primary database server. 

Acquiescently, the retry logic built into ACR will:

� Try to re-establish a connection to the original primary server to ensure that 
there is no accidental failure.

� Alternate connection attempts between both the original primary database 
server and the alternate database server every 2 seconds for 30–60 seconds. 

� Alternate connection attempts between both the original primary database 
server and the alternate database server every 5 seconds for 1–2 minutes. 

� Alternate connection attempts between both the original primary database 
server and the alternate database server every 10 seconds for 2–5 minutes. 

 

 

 

 

44 WebSphere Commerce High Availability and Performance Solutions



� Alternate connection attempts between both the original primary database 
server and the alternate database server every 30 seconds for 5–10 minutes. 

� If no connection to the original primary database server is made after all of 
these attempts, the SQL30081N error code is returned to the client 
application.

At the same time, there are two DB2 database registry variables called 
DB2_MAX_CLIENT_CONNRETRIES and DB2_CONNRETRIES_INTERVAL 
that help to accurately configure the retry logic of ACR:

� DB2_MAX_CLIENT_CONNRETRIES defines the maximum number for a 
DB2 client retry to connect to the database server.

� DB2_CONNRETRIES_INTERVAL defines the interval between two different 
reconnection attempts.

For more information about ACR, see The IBM DB2 Version 8.2 Automatic Client 
Reroute Facility at:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0512zikopo
ulos/#main

5.2  HACMP

A brief introduction to HACMP was presented in 4.3, “HACMP” on page 38. Also, 
configuration and implementation information about how to make IBM DB2 
Universal Database highly available using HACMP is provided in the IBM DB2 
Universal Database Enterprise Edition for AIX and HACMP/ES guide, which is 
available at:

ftp://ftp.software.ibm.com/software/data/pubs/papers/db2ee-aixhacmp.pdf

Also refer to the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

Note: The tests in this book do not cover these two DB2 database registry 
variables.

 

 

 

 

 Chapter 5. Database tier High Availability 45

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0512zikopoulos/#main
ftp://ftp.software.ibm.com/software/data/pubs/papers/db2ee-aixhacmp.pdf
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp


5.3  SQL replication

Replication is the copying of data from one place to another. From a business's 
point of view, replication plays a critical role in business transactions. The general 
considerations are:

� Distribution of data to other locations
� Consolidation of data from other locations
� Bidirectional exchange of data with other locations
� Some variation or combination of the above

Data can be extracted by specific programs, transported to some predefined 
location, and then loaded to the target location. A more efficient alternative is to 
extract only the changes since the last processing cycle and transport/apply 
those to the receiving location. From the other hand, data may be filtered and 
transformed during replication. At the same time, there may be other 
requirements for replication, such as time constraints. Replication processes 
need to be monitored, since replication must have minimal impact on production 
systems, which bring significant benefit to the software system.

5.3.1  Introduction

SQL replication allows you to replicate data from DB2 sources to targets by using 
two programs: Capture and Apply. The Capture program runs on the source 
system. The Capture program reads DB2 recovery logs for changed source data 
and saves the committed changed data to staging tables. The Apply program 
typically runs on the target system. The Apply program retrieves captured data 
from staging tables and delivers the data to targets. Both programs use a set of 
DB2 tables to track the information that they require to do their tasks and to store 
information that they generate themselves, such as information that you can use 
to see how well they are performing. You create these tables before you tell SQL 
replication what are your replication sources and targets. Figure 5-3 on page 47 
shows the infrastructure for a simple configuration of DB2 SQL replication.

 

 

 

 

46 WebSphere Commerce High Availability and Performance Solutions



Figure 5-3   Infrastructure for a simple configuration of DB2 SQL replication

The infrastructure is:

� The Capture program uses a set of DB2 tables called capture control tables. 
These tables contain information about replication sources and the current 
position of the Capture program in the DB2 recovery log. In most cases, the 
control tables for a Capture program need to be on the same DB2 server as 
the sources associated with the program.

� The Apply program uses a set of DB2 tables called apply control tables. 
These tables contain information about your targets and where their 
corresponding sources are located. The control tables for the Apply program 
usually reside on the system where the Apply program runs. Unlike with the 
Capture program, you can create multiple Apply programs that use the same 
set of control tables. Each Apply program is identified in these control tables 
by a name called an apply qualifier.

Log

Source Server Target Server

Capture
Control Tables

Apply
Control Tables

Subscription-set member

Source Table
CD Table Target Table

DB2 
Process

Apply 
Program

Capture
Program

 

 

 

 

 Chapter 5. Database tier High Availability 47



5.3.2  How SQL replication works

The general approach of DB2 SQL replicati.on is:

1. Register the source in SQL replication.
2. Subscribe sets in SQL replication.
3. Capture data from DB2 sources.
4. Apply data in DB2 targets.

Register source in SQL replication
First of all, you should know what you want to replicate to the target from the 
source database. So you should tell SQL replication about them by registering 
them. You can register sources that are DB2 tables and views, or tables on 
non-DB2 relational databases.

The replication control tables are playing as the core of replication, where the 
components of replication communicate by creating, reading, and updating the 
control tables’ data. The control tables are viewable and manually able to be 
updated. The design divides the control tables into three sets based on the 
functionality they are related to: capture, apply, and monitoring. Each set of 
control tables is independent. The sets can be stored in separate databases, in 
separate instances, and on separate servers.

Replication sources are selected from the objects of the capture control server 
and registered to the capture control server, which implies that your capture 
control server must be the one where your source data for replication resides. 
Remote journaled tables on DB2 UDB for iSeries is the only exception to this 
rule. The capture control tables should already be created for that server, and the 
capture control server should already be added to the replication center.

Subscribe sets in SQL replication
After you register your sources, you create subscription sets, in which you pair 
your sources with targets. Each source-target pair is referred to as a member of 
the subscription set in which it is created. You can use subscription sets to 
schedule the replication of data in one or more source-target pairs from one 
source server to one target server. 

The subscribe sets define the rules about how to keep the consistency between 
source and target objects, so that the SQL replication engine can follow these 

Note: When you register source tables on non-DB2 relational databases, you 
use SQL replication together with DB2 Relational Connect. You map your 
source database to a federated database and you create nicknames for each 
source table.

 

 

 

 

48 WebSphere Commerce High Availability and Performance Solutions



rules to do SQL replication. Generally, we need to give SQL replication the 
following details:

� Which Apply program to sue for processing the subscription set

� Where the source tables or views are stored

� Where is the location of target tables

� The frequency to replicate data from sources to targets

– Interval timing

– Continuous replication

– Event timing

� Whether to use data blocking

� Whether to issue one COMMIT for all applied data or to issue interim commits 

� Whether to transform data in the subscription set with SQL scripts or stored 
procedures 

So, when you create a subscription set, the following are some of the major 
attributes defined:

� A name for the subscription set

� The source and target server name

� The apply qualifier

� When to start replication, how often to replicate, and whether to use interval 
timing, event timing, or both

� Data blocking, if you expect large volumes of changes

Note: If the subscription set is for replication from or to a non-DB2 server, 
such as Informix®, the source or target server name will be the name of the 
DB2 ESE or DB2 Connect™ EE database containing the server definition for 
the non-DB2 source/target server.

 

 

 

 

 Chapter 5. Database tier High Availability 49



When you create a subscription set, you map sources to targets as part of 
creating subscription sets. A subscription set groups together one or more 
source-target pairs, also called subscription-set members. Figure 5-4 depicts a 
simple subscription-set member, where a source table named catalog is mapped 
to a target table named catalog. The data replicated to the target is first staged in 
the CD table for the source.

Figure 5-4   Subscription-set sample in SQL replication

Capture data from DB2 sources
After you register your DB2 replication sources and create subscription sets for 
the source and target, you can start capturing the changes made to your 
sources. Here you can use a program called the Capture program to do this. The 
basic operations on Capture are starting, stopping, and querying the Capture 
programs.

After you start the Capture program and that program receives signals from the 
Apply program to indicate that the sources and targets are synchronized, the 
Capture program reads the DB2 log sequentially for changes to the source tables 
in which you are interested. If it reads a change to one of your source tables, the 
Capture program adds the change to the corresponding database transaction 
that it is retaining in memory. Transactions in memory are potentially subsets of 
the corresponding transactions in the log. They contain only changes to your 
source tables. The Capture program collects changes in memory until it reads 
either a ROLLBACK or a COMMIT statement for the transaction in which those 
changes are made, and it only stores the changes associated with the committed 
transaction.

Subscription-set member

Catalog Table in source CD Table Catalog Table in target

 

 

 

 

50 WebSphere Commerce High Availability and Performance Solutions



For example, if you registered the table catalog as replication sources, SQL 
replication created a CD table as part of the registration process. After you start 
the Capture program, you can go through the steps (Figure 5-5) to complete 
capture progress:

1. Capture program receives signals from the Apply program to indicate that the 
target tables are synchronized with the source tables.

2. Application A makes a series of changes to the table catalog.

3. The Capture program reads the DB2 logs for changes to those source tables.

4. The Capture program collects these changes in memory.

5. Application A issues a COMMIT statement.

6. When the Capture program reads this statement, it appends a copy of each 
change to the CD table for the table catalog.

Figure 5-5   Capture data from source table

Log

DB2 
Process

Capture
Control Tables

Catalog

CD Table

Read Update Insert

Application A

Capture
Program

 

 

 

 

 Chapter 5. Database tier High Availability 51



Apply data in DB2 targets
Apply program in SQL replication can help you to start replicating data from 
sources to targets. To start replicating data from sources to targets, start the 
Apply program. After you do so, the Apply program begins processing the 
subscription sets that you assigned to it. The Apply program processes any 
active subscription sets one at a time, according to the scheduling or event 
criteria that you specified when you created the subscription sets. 

There are two approaches by which the Apply program can process each 
member of a subscription set:

� For sources that you registered for change-capture replication

– The first time that the Apply program processes the corresponding 
subscription set, the Apply program can populate the targets with the 
content of the sources. You can tell the Apply program to call one or more 
utilities, such as the EXPORT and LOAD utilities, to populate the targets. 
The utilities that the Apply program chooses depends on the platform on 
which the Apply program is running. 

– Then, at the time intervals that you specified when you created your 
subscription sets or whenever an event occurs, the Apply program reads 
the CD tables of your sources for rows that were inserted into the CD table 
since the Apply program last looked. The rows in the CD tables indicate 
whether they are records of deletes, updates, or inserts to the 
corresponding sources.

– The Apply program uses the data from the CD table to insert, update, and 
delete rows in the target. Predicates are used to identify the rows to be 
updated or deleted.

� For sources that you registered for full-refresh replication

At intervals that you specify, the Apply program populates the targets with the 
content of the sources. You can tell the Apply program to call one or more 
utilities, such as the EXPORT and LOAD utilities, to refresh your target tables. 

 

 

 

 

52 WebSphere Commerce High Availability and Performance Solutions



Figure 5-6 shows how the Apply program applies staging data to the target 
objects.

Figure 5-6   Apply data to target table

For more details about SQL replication, refer to the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com
.ibm.websphere.ii.db2udb.replication.intro.doc/prod_overview/iiyrcintrs
bdd.html

Capture
Control Tables

CD table

Target Catalog

Apply
Program

 

 

 

 

 Chapter 5. Database tier High Availability 53

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.db2udb.replication.intro.doc/prod_overview/iiyrcintrsbdd.html


 

 

 

 

54 WebSphere Commerce High Availability and Performance Solutions



Chapter 6. WebSphere Application 
Server High Availability

WebSphere Commerce utilizes the underlying WebSphere Application Server 
failover and recovery features to achieve High Availability at the application 
server level.

This is done through the workload management (WLM) mechanism that is 
provided by IBM WebSphere Application Server Network Deployment. If you do 
not use WLM with your application servers (and you do not use any other 
clustering software), your system cannot provide failover support. In this case, 
your Web or Java clients will fail if your application server fails.

This chapter gives an introduction to the WLM and failover capabilities of IBM 
WebSphere Application Server Network Deployment. For more details on this 
topic, refer to WebSphere Application Server V6 Scalability and Performance 
Handbook, SG24-6392. 

Topics discussed in this chapter include:

� Introduction to availability

� Session management using WebSphere Commerce and WebSphere 
Application Server

� WebSphere workload management defined

6
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 55



� WebSphere Application Server clustering

� WebSphere Commerce clustering
 

 

 

 

56 WebSphere Commerce High Availability and Performance Solutions



6.1  Introduction to availability
Also known as resiliency, availability is the description of the system’s ability to 
respond to requests no matter the circumstances. Availability requires that the 
topology provide some degree of process redundancy in order to eliminate single 
points of failure. Whereas vertical scalability (multiple application servers on one 
system) can provide this by creating multiple processes, the physical machine 
then becomes a single point of failure. For this reason, a High Availability 
topology typically involves horizontal scaling across multiple machines or 
LPARs. 

For more information see IBM Redbook, IBM WebSphere Application Server 
Network DeploymentWebSphere Application Server Network Deployment V6: 
High Availability Solutions, SG24-6688, for running DMgr and node agents as 
OS services (Windows®, UNIX). 

6.1.1  Hardware-based High Availability
Using multiple machines for WebSphere Application Server eliminates a given 
application server process as a single point of failure. 

Typically, the only single point of failure in a WebSphere cell is the Deployment 
Manager, where all central administration is performed. However, a failure of the 
Deployment Manager only impacts the ability to change the cell configuration to 
run the Tivoli Performance Viewer (which is included in the administrative 
console in WebSphere V6). 

A number of alternatives exist to provide High Availability for the Deployment 
Manager, including the possible use of an external High Availability solution. 
However, the minimal impact of a Deployment Manager outage typically does 
not require the use of such a solution. Some customers even choose to run their 
production environment without an active Deployment Manager. For this reason, 
this book does not discuss any detailed setup to configure Network Deployment 
High Availability using external clustering software. If you are interested in 
learning how this can be done, refer to IBM Redbook, WebSphere Application 
ServerWebSphere Application Server V6 Scalability and Performance 
Handbook, SG24-6392.

6.1.2  Workload management
IBM WebSphere Application Server Network Deployment workload management 
optimizes the distribution of incoming requests between application servers that 
are able to handle a client request. WebSphere workload management is based 
on application server clusters containing multiple application servers, so-called 

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 57

http://www.redbooks.ibm.com/abstracts/sg246688.html?Open
http://www.redbooks.ibm.com/abstracts/sg246688.html?Open
http://www.redbooks.ibm.com/abstracts/sg246688.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


cluster members. An application deployed to a cluster runs on all cluster 
members concurrently. The workload is distributed based on weights that are 
assigned to each cluster member. Thus, more powerful machines can be 
configured to receive more requests than smaller systems. 

Should an application server fail in the cluster, workload management (WLM) 
can also manage to failover existing client requests to another available cluster 
member. 

In addition, WLM enables servers to be transparently maintained and upgraded 
while applications remain available for users. You can add additional cluster 
members to a cluster at any point, providing scalability and performance if an 
existing environment is not able to handle the workload any more. For more 
details, see 6.2, “WebSphere workload management defined” on page 64.

6.1.3  Failover
The proposition to have multiple servers (potentially on multiple independent 
machines) naturally leads to the potential for the system to provide failover. That 
is, if any one machine or server in the system were to fail for any reason, the 
system should continue to operate with the remaining servers. The load 
balancing property should ensure that the client load gets redistributed to the 
remaining servers, each of which will take on a proportionally higher percentage 
of the total load. Of course, such an arrangement assumes that the system is 
designed with some degree of overcapacity, so that the remaining servers are 
indeed sufficient to process the total expected client load.

Ideally, the failover aspect should be totally transparent to clients of the system. 
When a server fails, any client that is currently interacting with that server should 
be automatically redirected to one of the remaining servers, without any 
interruption of service and without requiring any special action on the part of that 
client. In practice, however, most failover solutions might not be completely 
transparent. For example, a client that is currently in the middle of an operation 
when a server fails might receive an error from that operation, and might be 
required a retry (at which point the client would be connected to another, still 
available server). Or the client might observe a pause or delay in processing, 
before the processing of its requests resumes automatically with a different 
server. The important point in failover is that each client, and the set of clients as 
a whole, is able to eventually continue to take advantage of the system and 
receive service, even if some of the servers fail and become unavailable. 
Conversely, when a previously failed server becomes available again, the 
system might transparently start using that server again to process a portion of 
the total client load.

 

 

 

 

58 WebSphere Commerce High Availability and Performance Solutions



The failover aspect is also sometimes called fault tolerance, in that it allows the 
system to survive a variety of failures or faults. It should be noted, however, that 
failover is only one technique in the much broader field of fault tolerance, and 
that no such technique can make a system 100% safe against every possible 
failure. The goal is to greatly minimize the probability of system failure, but keep 
in mind that the possibility of system failure cannot be completely eliminated.

Note that in the context of discussions on failover, the term server often refers to 
a physical machine. However, WebSphere vertical scaling also allows for one 
server process on a given machine to fail independently, while other processes 
on that same machine continue to operate normally.

6.1.4  HAManager
WebSphere Application Server V6 introduces a new concept for advanced 
failover and thus higher availability, called the High Availability Manager 
(HAManager). The HAManager enhances the availability of WebSphere 
singleton services such as transaction services or message services. It runs as a 
service within each application server process that monitors the health of 
WebSphere clusters. In the event of a server failure, the HAManager will failover 
the singleton service and recover any in-flight transactions. See WebSphere 
Application Server V6 Scalability and Performance Handbook, SG24-6392.

6.1.5  Session management
Web browsers and e-commerce sites use HTTP to communicate. In the case of 
an HTTP client interacting with a servlet, the state information associated with a 
series of client requests is represented as an HTTP session, and identified by a 
session ID. The Servlet 2.3 specification defines that, after a session has been 
created, all following requests need to go to the same application server that 
created the session. 

However, in a clustered environment, there is more than one application server 
that can serve the client request. Therefore, the Web server plug-in needs to 
read a request and be able to identify which cluster member should handle it. 
Session identifiers are used to do this. They allow the plug-in to pick the correct 
cluster member and Web container to retrieve the current session object. 

The session manager module that is part of each Web container is responsible 
for managing HTTP sessions, providing storage for session data, allocating 
session IDs, and tracking the session ID associated with each client request.

WebSphere Commerce supports two types of session management: 
cookie-based and URL rewriting.

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 59

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


Cookie-based session management 
When cookie-based session management is used, a message (cookie) 
containing a user's information is sent to the browser by the Web server. This 
cookie is sent back to the server when the user tries to access certain pages. By 
sending back the cookie, the server is able to identify the user and retrieves the 
user's session from the session database, thus maintaining the user's session. A 
cookie-based session ends when the user logs off or closes the browser. 
Cookie-based session management is secure and has performance benefits. 
Cookie-based session management is secure because it uses an identification 
tag that only flows over SSL. Cookie-based session management offers 
significant performance benefits because the WebSphere Commerce caching 
mechanism only supports cookie-based sessions, and not URL rewriting. We 
recommend cookie-based session management for customer sessions.

If you are not using URL rewriting and you want to ensure that users have 
cookies enabled on their browsers, check Cookie acceptance test on the 
Session Management page of Configuration Manager. This informs the customer 
that if their browser does not support cookies, or if they have turned off cookies, 
they need a browser that supports cookies to browse the WebSphere Commerce 
site.

For security reasons, cookie-based session management uses two types of 
cookies, as discussed in the following sections.

Non-secure session cookie 
This is used to manage session data. This contains an activity identifier that 
points to attributes such as the negotiated language, current store, and 
customer's preferred currency at the time that the cookie is constructed. This 
cookie can flow between the browser and server under either a SSL or a 
non-SSL connection. There are two types of non-secure session cookies:

� A WebSphere Application Server session cookie is based on the servlet 
HTTP session standard. WebSphere Application Server cookies persist to 
memory or to the database in a multinode deployment. 

� A WebSphere Commerce session cookie is internal to WebSphere 
Commerce and does not persist to the database. 

To select which type of cookie to use, select WebSphere Commerce or 
WebSphere Application Server for the Cookie session manager parameter on 
the Session Management page of Configuration Manager. 

By default, a WebSphere Commerce instance is configured to use WebSphere 
Commerce session management. However, some custom applications may 
need to store more session data than the Internet Explorer®’s browser limit. In 

 

 

 

 

60 WebSphere Commerce High Availability and Performance Solutions



this case, you may wish to switch to WebSphere Application Server’s cookie 
management mechanism.

WebSphere Application Server session manager provides for the storage of 
session-related information either in-memory within the application server, in 
which case it cannot be shared with other application servers; in a back-end 
database, shared by all application servers; or by using memory-to-memory 
replication.

Database persistence using WebSphere Application Server 
session management
Storing session information in a database, sometimes referred to as persistent 
sessions or session clustering, is one method to share distributed session 
information among cluster members. With this option, whenever an application 
server receives a request associated with a session ID, which is not in memory, it 
can obtain it by accessing the back-end database, and can then serve the 
request. When this option is not enabled, and another clustering mechanism is 
not used, if any load distribution mechanism happens to route an HTTP request 
to an application server other than the one where the session was originally 
created, that server would be unable to access the session, and would thus not 
produce correct results in response to that request. One drawback to the 
database solution, just as with application data, is that it provides a single point of 
failure, so it should be implemented in conjunction with hardware clustering 
products such as IBM HACMP, TSA, or solutions such as database replication. 
Another drawback is the performance hit, caused by database disk I/O 
operations and network communications. 

Memory-to-memory session replication using WebSphere 
Application Server session management
Memory-to-memory replication enables the sharing of sessions between 
application servers without using a database. It uses the built-in Data Replication 
Service (DRS) of WebSphere to replicate session information stored in memory 
to other members of the cluster. 

Using this functionality removes the single point of failure that is present in 
persistent sessions through a database solution that has not been made highly 
available using clustering software. The sharing of session state is handled by 
creating a replication domain and then configuring the Web container to use that 
replication domain to replicate session state information to the specified number 
of application servers. The administrator can define how many replicas should 
exist in the domain (either a single replica, a defined number, or the entire 
domain). 

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 61



Memory-to-memory replication also incurs a performance hit, primarily because 
of the overhead of network communications. Additionally, because copies of the 
session object reside in application server memory, this reduces the available 
heap for application requests and usually results in more frequent garbage 
collection cycles by the application server JVM. 

Conclusion
Storing session state in a persistent database or using memory-to-memory 
replication provides a degree of fault tolerance to the system. If an application 
server crashes or stops, any session state that it might have been working on 
would normally still be available either in the back-end database or in another 
still-running application server’s memory, so that other application servers can 
take over and continue processing subsequent client requests associated with 
that session.

You can find more information about this topic, including traces and logs, in 6.3, 
“Web container clustering and failover (Web server plugin)” on page 66, and 
Chapter 6 of WebSphere Application Server V6 Scalability and Performance 
Handbook, SG24-6392

Secure authentication cookie 
This is used to manage authentication data. An authentication cookie flows over 
SSL and is timestamped for maximum security. This is the cookie used to 
authenticate the user whenever a sensitive command is executed, for example, 
the DoPaymentCmd, which asks for a user's credit card number. There is 
minimal risk that this cookie could be stolen and used by an unauthorized user. 
Authentication code cookies are always generated by WebSphere Commerce 
whenever cookie-based session management is in use.

Both the session and authentication code cookies are required to view secure 
pages.

Note: Depending on your application (for example, the session size) and on 
your hardware resources, memory-to-memory replication or database 
persistence might be the better solution for your environment. Refer to 
WebSphere Application Server V6 Scalability and Performance Handbook, 
SG24-6392, for additional information about resource requirements and 
performance for either option.

 

 

 

 

62 WebSphere Commerce High Availability and Performance Solutions

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


For cookie errors, the CookieErrorView is called under the following 
circumstances:

� The user has logged in from another location with the same logon ID. 

� The cookie became corrupted or was tampered with, or both. 

� If cookie acceptance is set to true and the user's browser does not support 
cookies. 

URL rewriting 
With URL rewriting, all links that are returned to the browser or that get redirected 
have the session ID appended to them. When the user clicks these links, the 
rewritten form of the URL is sent to the server as part of the client's request. The 
servlet engine recognizes the session ID in the URL and saves it for obtaining 
the proper object for this user. To use URL rewriting, HTML files (files with .html 
or .htm extensions) cannot be used for links. To use URL rewriting, JSP pages 
must be used for display purposes. A session with URL rewriting expires when 
the customer logs off.

Because URLs returned to the browser contain session IDs, another user with 
access to the browser history (for example, on a shared computer) could 
potentially gain access to sensitive information exchanged during a session—if 
the session has been left active. To prevent such unauthorized access, site 
developers should consider adding a notice to their site urging customers to 
always log off at the end of their visit, thereby ending (expiring) their session, 
particularly on a shared computer. 

WebSphere Commerce dynamic caching and URL rewriting cannot interoperate. 
With URL rewriting turned on, you need to disable WebSphere Commerce 
dynamic caching. 

The administrator can choose to support either only cookie-based session 
management or both cookie-based and URL-rewriting session management. If 
WebSphere Commerce only supports cookie-based session management, 
customers’ browsers must be able to accept cookies. If both cookie-based and 
URL rewriting are selected, WebSphere Commerce first attempts to use cookies 
to manage sessions. If the customer's browser is set to not accept cookies then 
URL rewriting is used.

For more information about WebSphere Commerce session management see:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm
.commerce.admin.doc/concepts/csesmsession_mgmt.htm

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 63

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.admin.doc/concepts/csesmsession_mgmt.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.admin.doc/concepts/csesmsession_mgmt.htm


6.2  WebSphere workload management defined
Workload management is implemented in IBM WebSphere Application Server 
Network Deployment V6 by using application server clusters and cluster 
members. These cluster members can all reside on a single node (system) or 
can be distributed across multiple nodes (or LPARs).

You might have Web clients or thick Java/C++ clients. When using clustered 
WebSphere Application Servers, your clients can be redirected either 
automatically or manually (depending on the nature of the failure) to another 
healthy server in the case of a failure of a clustered application server. 

Workload management (WLM) is the WebSphere facility to provide load 
balancing and affinity between application servers in a WebSphere clustered 
environment. It optimizes the distribution of processing tasks in the WebSphere 
Application Server environment. Incoming work requests are distributed to the 
application servers that can most effectively process the requests. 

Workload management is also a procedure for improving performance, 
scalability, and reliability of an application. It provides failover when servers are 
not available. WebSphere uses workload management to send requests to 
alternate members of the cluster. WebSphere also routes concurrent requests 
from a user to the application server that serviced the first request, as EJB™ 
calls, and session state will be in memory of this application server.

WLM is most effective when the deployment topology comprises application 
servers on multiple machines, because such a topology provides both failover 
and improved scalability. It can also be used to improve scalability in topologies 
where a system comprises multiple servers on a single, high-capacity machine. 
In either case, it enables the system to make the most effective use of the 
available computing resources.

Two types of requests can be workload managed in IBM WebSphere Application 
Server Network Deployment V6:

� HTTP requests can be distributed across multiple Web containers. When an 
HTTP request reaches the HTTP server, a decision must be made. Some 
requests for static content might be handled by the HTTP server. Requests 
for dynamic content or some static content will be passed to a Web container 
running in an application server. Whether the request should be handled or 
passed to WebSphere is decided by the IBM HTTP Server Plug-in, which 
runs in-process with the HTTP server. We refer to this as Plug-in WLM. For 
these WebSphere requests, High Availability for the Web container becomes 
an important piece of the failover solution. See 6.3, “Web container clustering 
and failover (Web server plugin)” on page 66, for more information.

 

 

 

 

64 WebSphere Commerce High Availability and Performance Solutions



� EJB requests can be distributed across multiple EJB containers. When an 
EJB client makes calls from the Web container or client container or from 
outside, the request is handled by the EJB container in one of the clustered 
application servers. If that server fails, the client request is redirected to 
another available server. We refer to this as EJS WLM. 

6.2.1  Distributing workloads 
The ability to route a request to any server in a group of clustered application 
servers allows the servers to share work and improve throughput of client 
requests. Requests can be evenly distributed to servers to prevent workload 
imbalances in which one or more servers has idle or low activity while others are 
overburdened. This load balancing activity is a benefit of workload management. 

Thus, the proposed configuration should ensure that each machine or server in 
the configuration processes a fair share of the overall client load that is being 
processed by the system as a whole. In other words, it is not efficient to have one 
machine overloaded while another machine is mostly idle. If all machines have 
roughly the same capacity (for example, CPU power), each should process a 
roughly equal share of the load. Otherwise, there likely needs to be a provision 
for workload to be distributed in proportion to the processing power available on 
each machine. 

Using weighted definitions of cluster members allows nodes to have different 
hardware resources and still participate in a cluster. The weight specifies that the 
application server with a higher weight will be more likely to serve the request 
faster, and workload management will consequently send more requests to that 
node.

With several cluster members available to handle requests, it is more likely that 
failures will not negatively affect throughput and reliability. With cluster members 
distributed to various nodes, an entire machine can fail without any application 
downtime. Requests can be routed to other nodes if one node fails. Clustering 
also allows for maintenance of nodes without stopping application functionality.

This section only gives you an introduction into WebSphere WLM. The available 
WLM policies and how requests are distributed among available servers are 
described in great detail in Chapter 6 and Chapter 7 of WebSphere Application 
Server V6 Scalability and Performance Handbook, SG24-6392.

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 65

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


6.2.2  Benefits
Workload management provides the following benefits to WebSphere 
applications:

� It balances client processing requests, allowing incoming work requests to be 
distributed according to a configured WLM selection policy.

� It provides failover capability by redirecting client requests to a running server 
when one or more servers are unavailable. This improves the availability of 
applications and administrative services.

� It enables systems to be scaled up to serve a higher client load than provided 
by the basic configuration. With clusters and cluster members, additional 
instances of servers can easily be added to the configuration. See 6.4, 
“WebSphere Application Server clustering” on page 72, for details.

� It enables servers to be transparently maintained and upgraded while 
applications remain available for users.

� It centralizes administration of application servers and other objects.

6.3  Web container clustering and failover (Web server 
plugin)

Each HTTP server is configured to run the IBM HTTP Server Plug-in. The cluster 
members can all reside on a single node or can be distributed across multiple 
nodes in the WebSphere cell (vertical or horizontal scaling).

 

 

 

 

66 WebSphere Commerce High Availability and Performance Solutions



Each request coming into the Web server is passed through the plug-in, which 
uses its configuration information to determine whether the request should be 
routed to WebSphere, and if so, to which application server (that is, to which 
Web container) the request should be routed to (Figure 6-1). The communication 
between the plug-in and the application servers can be either HTTP or HTTPS. 
The Web server plug-in distributes requests around cluster members that are not 
available.

Figure 6-1   Plug-in (Web container) workload management

The plug-in is a module, which is loaded by the Web server when it initializes, 
and that it bypasses Web containers that are not available. It uses the following 
mechanisms for WLM and failover:

� Application server clustering, which creates server process redundancy for 
failover support. All application servers in a cluster host the same 
applications.

� The workload management routing technique built into the IBM HTTP Server 
Plug-in. It controls the routing of client requests among redundant server 
processes. This routing is based purely on the weights associated with the 
cluster members. If all cluster members have identical weights, the plug-in 
sends an equal number of requests to all members of the cluster, when 
assuming no session affinity. If the weights are different, the plug-in routes 
requests to those cluster members with the higher weight value more often. 

� Session management and failover mechanism, which provides HTTP session 
data for redundant server processes.

Servlet
Requests

Application Server1

Application Server2

Web
Container

Web
Container

Plugin

HTTP Server

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 67



Thus, satisfactory failover support for Web clients can only be achieved by the 
use of all three mechanisms.

6.3.1  Session management and failover inside the plug-in
As you know, the plug-in always attempts to route a request that contains 
session information to the application server that processed the previous 
requests. However, if the server that contains the session is not available to the 
plug-in when it forwards the request, then the plug-in can route the request to an 
alternate server. The alternate server can then retrieve the distributed session 
information according to the chosen distribution method (database or 
memory-to-memory replication).

There are three methods of identifying a user’s session to the application server: 
Cookies, URL rewriting, and SSL ID. Example 6-1 shows a JSESSIONID cookie, 
which consists of four parts: 

� Cache ID (0000)
� Session ID (A2MB4IJozU_VM8IffsMNfdR)
� Separator (:)
� Clone ID (v544d0o0 = application server ID) 

Example 6-1   Example of a session identifier - JSESSIONID cookie

JSESSIONID=0000A2MB4IJozU_VM8IffsMNfdR:v544d0o0

In case of a failover, the clone ID of the failover server is appended at the end, 
also separated by a colon. When the original server becomes available again, 
the request falls back and is handled by the original server.

 

 

 

 

68 WebSphere Commerce High Availability and Performance Solutions



Figure 6-2 and the subsequent step-by-step explanation explain how the plug-in 
performs the failover.

Figure 6-2   Session management example

Using Figure 6-2, the steps involved to find a failover application server are:

1. The plug-in processes a request from user A to http://http1/snoop. The 
request also contains a JSESSION cookie with a session ID and clone ID of 
v544d031. 

2. The plug-in matches the virtual host and URI to the cluster wascluster01 
(composed by servers wasmember01 and wasmember03, each one located 
in a different machine).

3. The plug-in checks for session affinity and finds the clone ID of v544d031 in 
the request’s JSESSIONID cookie.

4. The plug-in searches for the clone ID of v544d031 in the plug-cfg.xml’s list of 
primary servers and matches the clone ID to the wasmember01 application 
server.

w a s n a 0 1

w a s m e m b e r0 1

C lo n e  ID  v 5 4 4 d 0 3 1

U s e r  A
U s e r  B
U s e r  C

S e s s io n  C a c h e

U s e r  A

A ff in ity
R o u t in g

S e s s io n
S to re

U s e r  A

F a ilo v e rR o u te d
R e q u e s t

S e s s io n  
re tr ie v e d  

w a s n a 0 1

w a s m e m b e r0 1

C lo n e  ID  v 5 4 4 d 0 3 1

U s e r  A
U s e r  B
U s e r  C

S e s s io n  C a c h e

w a s n a 0 2

w a s m e m b e r0 3

C lo n e  ID  v 5 4 4 d 0 o 0

U s e r  D
U s e r  E

S e s s io n  C a c h e

w a s n a 0 2

w a s m e m b e r0 3

C lo n e  ID  v 5 4 4 d 0 o 0

U s e r  D
U s e r  E
U s e r  A

S e s s io n  C a c h e

S e s s io n
S to re

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 69



5. The plug-in checks to see whether wasmember01 has been marked down. In 
our case, it has not been marked down yet.

6. The plug-in attempts to get a stream to wasmember01. Finding the server is 
not responding, Web1 is marked as down and the retry timer is started.

7. The plug-in checks the session identifier again.

8. The plug-in checks the servers. When it reaches wasmember01, it finds that it 
is marked down and the retry timer is not 0, so it skips wasmember01 and 
checks the next cluster member in the primary server list.

9. The plug-in selects wasmember03 (clone ID v544d0o0) and attempts to get a 
stream to it. The plug-in either opens a stream or gets an existing one from 
the queue. 

10.The request is sent and received successfully to wasmember03 (which 
retrieves the session information from the persistent session database or has 
it in-memory because of a previous replication) and sent back to user A.

For additional information about plug-in failover behavior, read WebSphere 
plug-in behavior in Chapter 6 of WebSphere Application Server V6 Scalability 
and Performance Handbook, SG24-6392. This section discusses many failure 
situations in detail and includes information about logs and traces.

6.3.2  Web container failures
In a clustered environment with several cluster members, an unavailable 
application server does not mean an interruption of the service. When the plug-in 
has selected a cluster member to handle a request it will attempt to communicate 
with the cluster member. There are, however, a number of situations in which the 
plug-in might not be able to complete a request to a specific application server. If 
this communication is unsuccessful or breaks, then the plug-in marks the cluster 
member as down and attempts to find another cluster member to handle the 
request. Web container failures are detected based on TCP response values or 
lack of response to a plug-in request. 

The marking of the cluster member as down means that, should that cluster 
member be chosen as part of a workload management policy or in session 
affinity, the plug-in will not try to connect to it. The plug-in knows that it is marked 
as down and ignores it.

 

 

 

 

70 WebSphere Commerce High Availability and Performance Solutions

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


Some example scenarios when the plug-in cannot connect to a cluster member 
are:

� Expected application server failures (The cluster member has been brought 
down intentionally for maintenance, for example.)

� Unexpected server process failures (The application server JVM has 
crashed, for example.)

� Server network problems between the plug-in and the cluster member (A 
router is broken, for example.) 

� System problems (whether expected), such as system shutdown or power 
failures

� The cluster member is overloaded and cannot process the request (For 
example, because the system is too small to handle a large number of clients, 
or because the server weight is inappropriate.)

In the first two failure cases described, the physical machine where the Web 
container is supposed to be running is still available, although the WebContainer 
Inbound Chain is not available. When the plug-in attempts to connect to the 
WebContainer Inbound Chain to process a request for a Web resource, the 
machine will refuse the connection, causing the plug-in to mark the application 
server as down.

In the third and fourth events, however, the physical machine is no longer 
available to provide any kind of response. In these events, if non-blocking 
connection is not enabled, the plug-in waits for the local operating system to time 
out the request before marking the application server unavailable. While the 
plug-in is waiting for this connection to time out, requests routed to the failed 
application server appear to hang. The default value for the TCP timeout varies 
based on the operating system. While these values can be modified at the 
operating system level, adjustments should be made with great care. 
Modifications might result in unintended consequences in both WebSphere and 
other network dependent applications running on the machine. This problem can 
be eliminated by enabling non-blocking connection. Refer to “Connection 
timeout” on page 408 for more information.

In the fifth case, overloading can make a healthy server unavailable. To avoid 
overloading of servers, you can define the maximum number of connections that 
are allowed from HTTP servers to the application server. This is explained in 
“Maximum number of connections” on page 412.

6.3.3  Web server plug-in failover tuning
IBM HTTP Server Plug-in uses an XML configuration file called plugin-cfg.xml to 
determine information about the WebSphere cell it is serving. There are some 

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 71



settings in the plug-in file that directly affect how the plug-in works in a workload 
management environment. In WebSphere V6, all of these settings can be 
modified using the administrative console. Plug-in file tags related to workload 
management and failover are:

� You can change the workload distribution policy in the configuration file. 

� You can change the retry interval for connecting to a cluster member marked 
as down. 

� You can change connection timeout settings to bypass the operating system 
timeout. 

� You can divide the servers into a primary server list and a backup server list. 
This is a feature available since WebSphere Application Server V5, also 
called two-level failover support.

� You can change the maximum number of connections that will be allowed to 
a server from a given plug-in. If this attribute is set to either zero or -1, there is 
no limit to the number of pending connections to the application servers. The 
default value is -1.

� You can change the refresh interval for the reloading of the plug-in 
configuration file.

For details on these performance tuning options, see 18.1.4, “IBM HTTP Server 
Plug-in” on page 395.

6.4  WebSphere Application Server clustering
A cluster is a set of application servers that are managed together and 
participate in workload management. Application servers participating in a 
cluster can be on the same node or on different nodes. A network deployment 
cell can contain no clusters, or have many clusters depending on the need of the 
administration of the cell. The cluster is a logical representation of the application 
servers. It is not necessarily associated with any node, and does not correspond 
to any real server process running on any node. A cluster contains only 
application servers, and the weighted workload capacity associated with those 
servers.

The cluster member template is created when the first member is added to the 
cluster. Subsequent configuration changes to the first member will not affect the 
template, which will be used when creating more members. When creating a 
cluster, it is possible to select an existing application server as the template for 
the cluster without adding that application server into the new cluster (the chosen 
application server is used only as a template, and is not affected in any way by 
the cluster creation). 

 

 

 

 

72 WebSphere Commerce High Availability and Performance Solutions



Cluster members can be added to a cluster in various ways, during cluster 
creation and afterwards. During cluster creation, one existing application server 
can be added to the cluster or one or more new application servers can be 
created and added to the cluster. There is also the possibility of adding additional 
members to an existing cluster later on. Depending on the capacity of your 
systems, you can define different weights for the various cluster members.

Cluster members are required to have identical application components, but they 
can be sized differently in terms of weight, heap size, and other environmental 
factors. You must be careful though not to change anything that might result in 
different application behavior on each cluster member. This concept allows large 
enterprise machines to belong to a cluster that also contains smaller machines, 
albeit of different weights.

Starting or stopping the cluster starts or stops all cluster members automatically 
and changes to the application are propagated to all application servers in the 
cluster.

Figure 6-3 shows an example of a possible configuration that includes server 
clusters. Server cluster 1 has two cluster members on node B only. Server 
cluster 2, which is completely independent of server cluster 1, has two cluster 
members on node A and three cluster members on node B. Finally, node A also 
contains a free-standing application server that is not a member of any cluster.

Figure 6-3   Server clusters and cluster members

Clustering for scalability and failover
Clustering is an effective way to perform vertical and horizontal scaling of 
application servers.

Cluster 
Members in 
Server 
Cluster 1

Cluster 
Members in 
Server 
Cluster 2

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member EJBServlet

Application Server/Cluster Member

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member

Node A

EJBServlet

Application Server

Node B

EJBServlet

EJBServlet

EJBServlet

Server Cluster 2

Server Cluster 1

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 73



Vertical scaling
In vertical scaling, shown in Figure 6-4, multiple cluster members for an 
application server are defined on the same physical machine, or node, which 
might allow the machine’s processing power to be more efficiently allocated.

Even if a single JVM can fully utilize the processing power of the machine, you 
might still want to have more than one cluster member on the machine for other 
reasons, such as using vertical clustering for process availability. If a JVM 
reaches a table/memory limit (or if there is some similar problem), then the 
presence of another process provides for failover.

Figure 6-4   Vertical scaling

We recommend that you avoid using rules of thumb when determining the 
number of cluster members for a given machine. The only way to determine what 
is correct for your environment and application is to tune a single instance of an 
application server for throughput and performance, then add it to a cluster, and 
incrementally add additional cluster members. Test performance and throughput 
as each member is added to the cluster. Always monitor memory usage when 
you are configuring a vertical scaling topology and do not exceed the available 
physical memory on a machine.

In general, 85% (or more) utilization of the CPU on a large server shows that 
there is little, if any, performance benefit to be realized from adding additional 
cluster members. In conjunction with 6.2.1, “Distributing workloads” on page 65, 
you should ensure that the required business capacity is maintained even in 
failure scenarios. For example, in the basic three node cluster (the so-called rule 
of three, which maintains system redundancy even while a single node is offline) 

EJB
Container

Web
Container

Cluster 1, Member 1

Node A

EJB
Container

Web
Container

Cluster 1, Member 2

Cluster 1

 

 

 

 

74 WebSphere Commerce High Availability and Performance Solutions



this would mean that no node exceeds 66% utilization at peak load, so that with 
the loss of one node, the surviving two nodes will not be overwhelmed.

Horizontal scaling
In horizontal scaling, shown in Figure 6-5, cluster members are created on 
multiple physical machines (or LPARs). This allows a single WebSphere 
application to run on several machines while still presenting a single system 
image, making the most effective use of the resources of a distributed computing 
environment. Horizontal scaling is especially effective in environments that 
contain many smaller, less powerful machines. Client requests that overwhelm a 
single machine can be distributed over several machines in the system. 

Failover is another important benefit of horizontal scaling. If a machine becomes 
unavailable, its workload can be routed to other machines containing cluster 
members.

Figure 6-5   Horizontal scaling

Horizontal scaling can handle application server process failures and hardware 
failures (or maintenance) without significant interruption to client service.

E JB
C onta iner

W eb
C onta iner

C luste r 1 , M em ber 1

N ode A

E JB
C onta ine r

W eb
C onta iner

C luste r 1 , M em ber 2

N ode B

C luste r 1

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 75



Combining vertical and horizontal scaling
WebSphere applications can combine horizontal and vertical scaling to reap the 
benefits of both scaling techniques, as shown in Figure 6-6.

Figure 6-6   Vertical and horizontal scaling

Secure application cluster members
The workload management service has its own built-in security, which works with 
the WebSphere Application Server security service to protect cluster member 
resources. If security is needed for your production environment, enable security 
before you create a cluster for the application server. This enables security for all 
of the members in that cluster.

The EJB method permissions, Web resource security constraints, and security 
roles defined in an enterprise application are used to protect EJBs and servlets in 
the application server cluster. Refer to IBM WebSphere Application Server V6.1 
Security Handbook, SG24-6316, for more information.

6.5  WebSphere Commerce cell and cluster setup
In this book, we show you how to configure a complete WebSphere Commerce 
cell and cluster. 

At the high level, the steps to set up a WebSphere Commerce cluster at the 
WebSphere Application Server tier are:

1. Configure a IBM WebSphere Application Server Network Deployment 
deployment manager.

2. Federate the first WebSphere Application Server node.

EJB
Container

Web
Container

Cluster 1, Member 1

Node A

EJB
Container

Web
Container

Cluster 1, Member 2

EJB
Container

Web
Container

Cluster 1, Member 3

Node B

EJB
Container

Web
Container

Cluster 1, Member 4

Cluster 1

 

 

 

 

76 WebSphere Commerce High Availability and Performance Solutions

http://www.redbooks.ibm.com/abstracts/sg246316.html?Open
http://www.redbooks.ibm.com/abstracts/sg246316.html?Open


3. Federate an additional WebSphere Application Server node.

4. Create a WebSphere Application Server cluster.

For detailed implementation steps refer to:

https://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1
/0804_clustering1.html

 

 

 

 

 Chapter 6. WebSphere Application Server High Availability 77

https://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


 

 

 

 

78 WebSphere Commerce High Availability and Performance Solutions



Chapter 7. Web tier High Availability

In this chapter, we describe how High Availability can be achieved for the Web 
server tier in WebSphere Commerce architectures. As described in Chapter 3, 
“Scenario for this book” on page 27, the Web tier typically consists of multiple 
Web servers and a Load Balancer, or IP sprayer, which distributes requests to 
the Web servers. As we will see, a Load Balancer will increase both availability 
and performance of a site if correctly set up. 

To avoid having just another single point of failure, the Load Balancer itself 
needs to be made highly available, too. 

7
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 79



Figure 7-1 shows the Web server tier as the highlighted portion of our sample 
topology (see Chapter 3, “Scenario for this book” on page 27).

Figure 7-1   Web server tier

Protocol Firewall HTTP/HTTPS

IBM HTTP
Server 2

IBM HTTP 
Server 1

IBM Load Balancer
(Dispatcher)

Standby Load
BalancerActive Nodes

Standby Nodes
IBM HTTP
Server 3

Domain Firewall

Web
Server
Cluster

 

 

 

 

80 WebSphere Commerce High Availability and Performance Solutions



7.1  Introduction to Web server High Availability

A mechanism of providing request distribution and failover for incoming HTTP 
requests is required. Without this mechanism, the Web server becomes a single 
point of failure. Also, scalability is limited to the size of the hardware used to host 
the Web server. 

7.1.1  Available solutions

A likely solution is to employ an IP sprayer to distribute HTTP requests to any 
number of active Web servers. 

We prefer such a solution over active/passive clustering solutions where each 
Web server would have a passive standby node, monitoring the active one and 
taking over from it in case it experiences an outage. The reason for this is that an 
IP sprayer is very likely to be utilized for highly frequented sites, providing both 
High Availability and better performance, and saving hardware costs for passive 
standby nodes.

IBM WebSphere Edge Components provide a software-based Load Balancer as 
part of IBM WebSphere Application Server Network Deployment V6. There are a 
number of software or hardware-based solutions available from other vendors, 
too, for example:

� Astaro
� Barracuda Networks
� CAI Networks
� Cisco
� Citrix
� Coyote Point Systems
� Crescendo Networks
� DBAM Systems
� Elfiq Networks
� FatPipe Networks
� F5 Networks
� Foundry Networks
� jetNEXUS
� Juniper® Networks
� KEMP Technologies
� Nortel
� Radware
� Zeus Technology
� Sentral Systems Ltd

 

 

 

 

 Chapter 7. Web tier High Availability 81



In this book, we describe how to use IBM WebSphere Edge Components Load 
Balancer for WebSphere Commerce. As IBM WebSphere Edge Components are 
bundled with IBM WebSphere Application Server Network Deployment, many of 
our customers use them rather than buying an extra third-party solution.

7.1.2  IBM WebSphere Edge Components Load Balancer

IBM WebSphere Edge Components Load Balancer consists of multiple 
components that can be used separately or together.

For IP spraying, we only need to use the Dispatcher component. See Chapter 4, 
“Introduction to IBM WebSphere Edge Components,” in WebSphere Application 
Server V6 Scalability and Performance Handbook, SG24-6392, for a detailed 
introduction to Load Balancer as part of IBM WebSphere Edge Components.

Dispatcher has internal components that are responsible for various load 
balancing tasks. The components and tasks are:

� Executor is the core component of Dispatcher, and is responsible for the load 
distribution.

� Manager is the component responsible for providing weight values of each 
balanced server to Executor, so it can make its load balancing decision.

� Advisors are lightweight clients that run on the Dispatcher server, and they 
are aware of the protocol used by the back-end servers. Load Balancer 

Note: We only describe the features that are essentially necessary for our 
scenarios. We do not cover optional features that are deprecated when using 
IBM WebSphere Application Server Network Deployment V6.1. Most of the 
features of IBM WebSphere Edge Components V6.0 are deprecated in V6.1, 
where they are provided by the IBM WebSphere Application Server Network 
Deployment proxy server and the IBM HTTP Server Plug-in.

Deprecated features include all components except Dispatcher, and all 
Dispatcher forwarding methods except MAC. As at the time of writing this 
book, WebSphere Commerce does not support IBM WebSphere Application 
Server Network Deployment V6.1, though we still describe some features that 
are deprecated with V6.1.

For a complete list of deprecated features in IBM WebSphere Application 
Server Network Deployment V6.1, visit the following URL of the V6.1 Info 
Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic
=/com.ibm.websphere.nd.doc/info/ae/ae/rmig_deprecationlist.html

 

 

 

 

82 WebSphere Commerce High Availability and Performance Solutions

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rmig_deprecationlist.html
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


provides advisors for HTTP, HTTPS, FTP, and LDAP, among others. 
Advisors periodically measure the response time for each server and provide 
the results to the manager as input for calculating server weights.

� Metric Server is a component that is installed and runs in each back-end 
server (for example, Web server) and that provides values for the server 
where it is running (for example, memory and CPU usage), which are then 
also sent to the manager.

� Dispatcher can be administered through a command-line interface 
(dscontrol) and through a GUI (lbadmin).

Figure 7-2 shows the Dispatcher components and their interactions. 

Figure 7-2   Dispatcher components interaction (from WebSphere Application Server V6 Scalability and 
Performance Handbook, SG24-6392)

All requests are routed to Dispatcher, which in turn sprays them among the 
members of the Web server cluster (IP spraying). The Web server cluster 
consists of identical Web servers running on different physical machines (or in 
different LPARs). All Web servers need to be set up in the same way to serve 
static content and route requests to the application server tier for WebSphere 
Commerce. See 11.1, “Add additional Web servers” on page 186. In the event of 
a failure of one of the Web servers, Dispatcher discontinues directing work to the 
failed server. Dispatcher provides two IP spraying methods:

1. MAC forwarding is the fastest forwarding method because Dispatcher 
receives only the incoming traffic. All outbound traffic is sent directly from the 
balanced server to the client. Each Web server in the topology is configured 
with at least one physical IP address and a loopback alias configured with a 
shared virtual IP address, also called the cluster address. The cluster address 
is configured as an alias of the Load Balancer’s network interface. HTTP 

HTTP Server 3

HTTP Server 1

Web
Client

HTTP Server 2

dscontrol

Executor

lbadmin

Manager

Dispatcher

dsserver
advisorsadvisorsAdvisors

Metric ServerMetric ServerMetric Server

Metric Server

Metric Server

 

 

 

 

 Chapter 7. Web tier High Availability 83



clients make HTTP requests to this virtual IP address, and Dispatcher 
forwards the requests to the Web servers by changing the source and 
destination MAC address of the packet. The IP addresses remain the same. 
Because the IP header is not changed, the Web servers send their responses 
directly to the client, as shown in Figure 7-3.

Figure 7-3   MAC forwarding - network flow (from WebSphere Application Server V6 
Scalability and Performance Handbook, SG24-6392)

However, the Load Balancer and the Web servers must all be on the same IP 
subnet. Also, for server affinity, which is a useful feature in performance 
tuning (see Chapter 19, “Monitor and tune Load Balancer” on page 417), 
source IP affinity (across multiple ports) is the only available option.

2. Network Address Translation (NAT) and Content Based Routing (CBR) allow 
the Load Balancer and the Web servers to be on different IP subnets. Cookie 
and SSL session ID based server affinity are also possible. 

Client

Load Balancer

Backend server

Incoming traffic

Incoming traffic

Outgoing
traffic

 

 

 

 

84 WebSphere Commerce High Availability and Performance Solutions



This method does not use loopback aliases. Instead, a return address is 
configured as an additional alias of the Load Balancer’s network interface. 
The requests made to the cluster address are changed at the IP layer, such 
that the Web server’s IP address is put into the request as the destination and 
the return address as the source for each packet. The packets can then be 
routed to the Web server, and the Web server will send the response back to 
the Load Balancer, which needs to change the IP headers of the response 
packets so that they can be routed back to the client, as shown in Figure 7-4.

Figure 7-4   NAT forwarding - network flow (from WebSphere Application Server V6 
Scalability and Performance Handbook, SG24-6392)

We describe how to set up Load Balancer for our scenario in 8.6, “Install Load 
Balancer” on page 140. For detailed instructions on how to set up the two 
different forwarding methods, refer to 11.2.1, “MAC forwarding” on page 193, and 
11.2.2, “NAT forwarding” on page 210.

7.2  Introduction to Load Balancer High Availability

Being the entry point into your WebSphere system, it is extremely important that 
your Load Balancer is highly available. Otherwise, it would be a single point of 
failure.

While it is possible to use external clustering software (see Chapter 4, “External 
clustering software” on page 33) to monitor the Load Balancer node and provide 
failover to a backup node, IBM WebSphere Edge Components Load Balancer 

Client

Load Balancer

Backend server

Incoming traffic

Incoming trafficOutgoing
traffic

Outgoing
traffic

 

 

 

 

 Chapter 7. Web tier High Availability 85



provides a built-in High Availability solution, which allows you to configure a 
backup Load Balancer server with exactly the same configuration. If the primary 
Load Balancer server fails, the backup server will take over the load balancing 
for all clusters. 

The two Load Balancer servers need connectivity to the same clients and to the 
same cluster of servers, as well as connectivity between themselves. Both Load 
Balancer servers must be running the same operating systems, and they must 
be connected to the same network. 

The two Load Balancer servers are referred to as the primary server and the 
backup (or standby) server. These are the roles that are associated with each 
server during the configuration. 

Load Balancer servers run in a specific state: one server is active and the other 
server is in standby state. This means that the Load Balancer server that is in 
active state is the one that is distributing the workload. 

The Load Balancer server that is in the standby state monitors the active one. If 
the active server fails, the standby server performs a failover. It switches to the 
active state, takes over the cluster IP alias, and starts load balancing the cluster. 
So the state of a server changes when a failure occurs, but the roles do not 
change during a failure.

A Load Balancer server can be the primary server for one Web server cluster 
while acting as standby for another cluster. If the primary Load Balancer of that 
other cluster is also the standby for the first cluster, the resulting configuration is 
called mutual High Availability. 

However, it is not possible to have two primary servers for one cluster, both 
doing active load balancing at the same time (for example, an active/active 
configuration), as the virtual IP alias for the cluster can only be configured on one 
server in the network.

We describe how to set up High Availability for IBM WebSphere Edge 
Components Load Balancer in 11.3, “Configure Load Balancer High Availability” 
on page 226.

 

 

 

 

86 WebSphere Commerce High Availability and Performance Solutions



Part 3 Install and configure 
a High Availability 
WebSphere 
Commerce system

In our example of setting up a highly available and multi-tier WebSphere 
Commerce environment, we take the following steps:

1. Configuration of a Multi-tier WebSphere Commerce environment

a. Configuring the database server

b. Configuring the Web server

c. Configuring the application server

d. Creating a WebSphere Commerce Instance

e. Publishing a consumer direct sample store

Part 3
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 87



2. Configuration of High Available Database (HADB) servers

a. Configuring the HADR on a primary/standby database

b. Enabling client reroute in a HADR environment

c. Installing Tivoli System Automation

d. Defining and administering a TSA cluster

e. Enabling instance and HADR with TSA

3. Configuration of a WebSphere Application Server cluster

a. Configuring an IBM WebSphere Application Server Network Deployment 
Manager

b. Federating the first WebSphere Application Server Node

c. Federating an additional WebSphere Application Server Node

d. Creating a WebSphere Application Server Cluster

4. Configuration of an IBM HTTP Server cluster

a. Installing an additional IBM HTTP Server

b. Configuring an additional IBM HTTP Server

c. Introduction to the WebSphere Load Balancer

d. Installing the WebSphere Load Balancer Dispatcher Component

e. Configuring the WebSphere Dispatcher Component

f. Reconfiguring the IBM HTTP Servers and the Plug-in

g. Verifying the IBM HTTP Server Cluster

The detailed implementation steps of configurations of HADB are found in 9.1, 
“HADR” on page 146.

The detailed implementation steps of configurations of IBM HTTP Server Cluster 
are found in 8.5, “Install IBM HTTP Server” on page 127.

Implementation details of all other sections are found in the whitepaper 
Clustering WebSphere Commerce V6.0 with WebSphere Application Server 
V6.0 at:

http://www.ibm.com/developerworks/websphere/library/tutorials/0804_
clustering1/0804_clustering1.html

 

 

 

 

88 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


Chapter 8. Base product and fix pack 
installations for all tiers

In this chapter, we describe how to install the products needed for a highly 
available and highly performing WebSphere Commerce environment. We:

� Explain how to install IBM DB2 Universal Database on the database nodes.

� Explain how to install the primary WebSphere Commerce node and additional 
WebSphere Commerce nodes. While the base installation on the other tiers is 
identical for all nodes in the tier, the installation of the additional WebSphere 
Commerce nodes differs from the primary node.

� Show you how to install and configure an IBM WebSphere Application Server 
Network Deployment Deployment Manager node.

� Describe the installation of the Web server nodes, using IBM HTTP Server.

� Describe the installation of the primary Load Balancer and Standby Load 
Balancer node, using IBM WebSphere Edge Components Load Balancer.

8
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 89



Figure 8-1 highlights the primary nodes. The primary database, Commerce, and 
Web server nodes are necessary to run a basic WebSphere Commerce 
environment. The primary Network Deployment Manager and Load Balancer 
nodes will then be needed for basic High Availability of Web and application 
servers, while the standby nodes will later enable High Availability of the Network 
Deployment Manager, Load Balancer, and database nodes.

Figure 8-1   Primary nodes

      Internet

IBM HTTP
Server 2

IBM HTTP 
Server 1

WebSphere 
Commerce
Server 2

Network 
Deployment
Manager

WebSphere 
Commerce
Server 1

DB2
Server 1

IBM Load Balancer
(Dispatcher)

DB2
Server 2

Tivoli System
Automation 
Resource Groups

Standby Load
Balancer

Standby Network
Deployment
Manager

Active Nodes

Standby Nodes

Tivoli System Automation Cluster

IBM HTTP
Server 3

Domain Firewall

Protocol Firewall

App
Server
Cluster

Web
Server
Cluster

HTTP/HTTPS

Browser

 

 

 

 

90 WebSphere Commerce High Availability and Performance Solutions



8.1  Database nodes

DB2 products are available for the following platforms: AIX, HP-UX Version 11i 
v2 (B.11.23) for Itanium-based™ systems, Linux (Intel®), Linux (iSeries and 
pSeries), Linux (S/390®, zSeries), Linux (AMD™), and the Solaris™ Operating 
Environment. In this chapter, we only discuss the installation and configuration 
steps for DB2 in AIX operating system.

8.1.1  DB2 installation prerequisites

Generally, before we start to install DB2 UDB in AIX operating system, there are 
some pre-install requirements, some of which are WebSphere Commerce 
specific and the others that are DB2 required.

WebSphere Commerce prerequisites checking
First of all, we have to make sure that the operating system meets the following 
prerequisites:

� For AIX 5.3, check your operating system level by issuing the following 
command:

oslevel -r

This command might return the following value:

5300-04

If the output from the command does not end in -01 or higher, it means you 
are not at the correct AIX maintenance level for WebSphere Commerce. 
Obtain the correct maintenance level from IBM@ eServer™ pSeries@ 
Support Web site:

http://www-912.ibm.com/eserver/support/fixes/fixcentral/main/pseries
/aix

� The following AIX APARs are installed:

– IY67744 (DB2 users only)
– IY68989 (Oracle users only)
– IY58143

� You can query your system to see if a particular APAR is installed with the 
following command:

instfix -v -i -k APAR_number

For example:

instfix -v -i -k IY67744

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 91

http://www-912.ibm.com/eserver/support/fixes/fixcentral/main/pseries/aix


You will be able to get a output as in Figure 8-2.

Figure 8-2   instfix result

� Ensure that the stack quota limit is at least 32768. To check the current limit, 
type the following command in a command window:

ulimit -a

If the value returned for the stack is less than 32768, increase it to this level 
by running the following command: 

ulimit -s 32768

� Ensure that asynchronous I/O is enabled. This is especially important for 
logically partitioned (LPAR) systems where asynchronous I/O is enabled on 
the first LPAR but not on subsequent LPAR.

� If the database server and WebSphere Commerce server are on different 
machines, you have to take care of the time stamp. The time stamp for both 
database server and WebSphere Commerce should be same. The server 
times that are synchronized with each other will avoid the available order 
items being treated as future orders. On the other hand, in a High Availability 
environment, it is essential to keep the synchronization between the primary 
and standby servers, so it is necessary to keep the time stamp synchronized.

If the time stamps on your servers are different, run the following commands:

a. Define a local standard time server:

startsrc -s xntpd

b. Synchronize the client server with the time server:

setclock TimeServerName

c. Stop the daemon in time server:

stopsrc -s xntpd

 

 

 

 

92 WebSphere Commerce High Availability and Performance Solutions



DB2 prerequisites checking
The recommended approach to do DB2 installation prerequisites checking 
includes two steps:

1. Verify that your environment meets the disk, memory, and installation 
requirements for the operating system and DB2 product that you are planning 
to install.

2. Review the DB2 Release Notes for information about the functionalities of this 
release and how to perform the installation in a different platform.

Generally, we have to consider the following items before installing DB2:

� Disk requirements

The disk space required for your product depends on the type of installation 
that you choose and the type of file system that you have. Remember to 
include disk space for required software, communication products, and 
documentation.

� Memory requirements

The basic memory requirement for a system running just DB2 UDB and the 
DB2 GUI tools is 512 MB, but we recommend 1 GB of RAM memory for 
improved performance. These requirements do not include any additional 
memory requirements for other software that is running on your system.

� The appropriate IBM Software Development Kit for Java level for DB2 UDB

The SDK is installed whenever a component that requires Java is being 
installed. However, if the installer detects that SDK is already installed, it will 
not install it again. The SDK is installed in its own directory and does not 
overwrite any previous levels of the SDK. In cases where 64-bit Java is 
required, a message appears telling you that Java 64-bit is required.

You can issue the version of JDK™ by issuing the following command, to 
make sure that the JDK level is aligned with the requirement of a specific DB2 
UDB version:

java -version

The sample output is displayed as shown in Figure 8-3.

Figure 8-3   Java version display

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 93



For the most up-to-date SDK for Java information, see the Java support for DB2 
UDB Web page at:

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21251460

8.1.2  Base product installation

After downloading the DB2 Enterprise Server Edition v8.2 with the latest fix pack 
installation package or using the installation CD, follow the steps listed below to 
install the base product installation:

1. Log into AIX as root. From the command line, run the db2 install:

root> ./db2setup

2. From the Setup Launchpad, choose Installation Prerequisites from the 
panel on the left, read through the installation prerequisites and confirm that 
they are all satisfied. If so, close Installation Prerequisites.

3. From the Setup Launchpad, choose Install Products from the left panel, 
select the DB2 UDB Enterprise Server Edition, and click Next.

4. From the DB2 Setup Wizard, choose Accept from the software license 
agreement, and click Next.

 

 

 

 

94 WebSphere Commerce High Availability and Performance Solutions

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21251460


5. As in Figure 8-4, choose Typical from the Select the installation type panel, 
and choose the desired capabilities from the Additional Functions section. 
Click Next.

Figure 8-4   Select the installation type

6. Choose Install DB2 UDB Enterprise Server Edition on this computer from 
the Select the installation action panel, and click Next.

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 95



7. In Figure 8-5, select New User from the Set user information for the DB2 
Administration Server panel. Leave the defaults and enter your password. 
Click Next.

Figure 8-5   Add user information for DB2 installation

8. Select Create a DB2 instance - 64 bit from the Set up a DB2 instance panel.

9. Select Single-partition instance from the Select how the instance will be 
used panel. Click Next.

 

 

 

 

96 WebSphere Commerce High Availability and Performance Solutions



10.In Figure 8-6, select New User from the Set user information for the DB2 
instance owner panel. Leave the defaults and enter your password. Click 
Next.

Figure 8-6   Set information for DB2 instance user

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 97



11.As in Figure 8-7, select New User from the Set user information for the 
fenced user panel. Leave the defaults and enter your password. Click Next.

Figure 8-7   Set information for DB2 fenced user

12.Select Use a local database from the Prepare the DB2 tools catalog panel.

13.Keep the defaults on the Specify a local database to store the DB2 tools 
catalog panel and click Next.

14.Select Local - Create a contract list on this system from the Set up the 
Administration contact list panel. Click Next.

 

 

 

 

98 WebSphere Commerce High Availability and Performance Solutions



15.As in Figure 8-8, review your information for corrections on the Start copying 
files panel. Click Finish.

Figure 8-8   Review information before copying files

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 99



16.Wait for the installation and instance creation to complete (Figure 8-9).

Figure 8-9   DB2 installation status

 

 

 

 

100 WebSphere Commerce High Availability and Performance Solutions



8.1.3  Manually create DB2 64-bit instance 

After installation, a Setup Complete panel will be displayed, as in Figure 8-10.

Figure 8-10   Setup Complete

Also, you might get some indication from the Status report tab, as in 
Example 8-1.

Example 8-1   Status report for DB2 installation

Enabling Asynchronous I/O:.......Success
Checking license agreement acceptance:.......Success
Installing DB2 file sets:.......Success
Registering DB2 licenses:.......Success
Setting default global profile registry variables:.......Success
Creating the DB2 Administration Server:.......Success
Initializing instance list:.......Success
Creating DB2 instances:.......Failure
Building list of databases to create:.......Success
Creating DB2 databases:.......Failure
Configuring the DB2 Administration Server:.......Success
Updating global profile registry:.......Success
Creating DB2 tools catalog:.......Failure

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 101



Troubleshooting
In some cases, the DB2 installer may fail to create the 64-bit instance during the 
installation process. The workaround is to apply the latest DB2 fix pack, then 
manually create the 64-bit instance again. However, since the installer created 
the db2 instance, fence user, and group, if you would like to use the same 
names, you must manually remove them first before creating the instance again.

In our test, the installer failed to create a DB2 64-bit instance during the DB2 
installation process, so we took the manual steps to create the instance using the 
instance creation wizard. Follow steps below:

1. Initiate the DB2 Instance Setup wizard. During the Instance-Owning step, 
select Existing user db2inst1 and click Next.

2. For the Fenced user step, select Existing user dbfenc1 and click Next.

3. For the instance TCP/IP step, as shown in Figure 8-11, enter the Service 
name as db2c_db2inst1, while the port number is 50000. Click Next.

Figure 8-11   DB2 instance TCP/IP communication configuration

 

 

 

 

102 WebSphere Commerce High Availability and Performance Solutions



4. After the instance creation process finished, check the Status report tab to 
make sure that instance is successfully created.

5. If you get a status report like Figure 8-12, you have to analyze the root cause 
of the failure.

Figure 8-12   Failed status report

6. Check the db2setup.log and db2icrt.log. You could get some indication of the 
problem, as in Example 8-2 and Example 8-3.

Example 8-2   db2setup.log

Command to be run: "/usr/opt/db2_08_01/instance/db2icrt -a SERVER -s ese -u 
db2fenc1 -w 64 -p db2c_db2inst1 db2inst1".
ERROR:An error occurred while creating the instance "db2inst1". The return 
codeis "1". Create the instance manually using the command "db2icrt"

Example 8-3   db2icrt.log

Could not load program db2:
Could not load module /usr/opt/db2_08_01/lib/libdb2.a(shr_64.o).
        Dependent module /usr/opt/db2_08_01/lib/libdb2trcapi.a(shr_64.o) could 
not be loaded.
        Member shr_64.o is not found in archive
Could not load module db2.

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 103



        Dependent module /usr/opt/db2_08_01/lib/libdb2.a(shr_64.o) could not be 
loaded.
Could not load module .
Update DBM cfg SYSADM_GROUP errcode = 255
DBI1281E The database manager configuration file could not be initialized

7. In that case, an explanation according to the symptom is that an error 
occurred when attempting to initialize the database manager configuration 
file. So that a DB2 instance cannot be created or migrated. We can compare 
the problematic module on a working DB2 machine (A) with the broken DB2 
machine (B). We find that the size and time stamp are different. Example 8-4 
and Example 8-5 are the sample comparison results for machine A and B.

Example 8-4   Comparison for libdb2trcapi.a module

Database node 1:/usr/opt/db2_08_01/lib>ls -atl |grep libdb2trcapi.a
-r--r--r--   1 bin      bin           56372 Nov 13 21:56 libdb2trcapi.a

Database node 2:/usr/opt/db2_08_01/lib>ls -alt |grep libdb2trcapi.a
-r--r--r--   1 bin      bin           54678 Aug 15 2004  libdb2trcapi.a

Example 8-5   Comparison for libdb2.a module

Database node 1:/usr/opt/db2_08_01/lib>ls -atl |grep libdb2.a
lrwxrwxrwx   1 root     system           27 Feb 19 20:33 libdb2dasflist.a -> 
../                                                  das/lib/libdb2dasflist.a
lrwxrwxrwx   1 root     system           25 Feb 19 20:33 libdb2dasgcf.a -> 
../da                                                  s/lib/libdb2dasgcf.a
lrwxrwxrwx   1 root     system           17 Feb 16 20:30 libdb2.a -> 
../lib64/li                                                  bdb2.a
-r--r--r--   1 bin      bin            2028 Nov 13 21:56 libdb2lai.a
-r--r--r--   1 bin      bin          674799 Nov 13 21:56 libdb2dasapi.a
-r--r--r--   1 bin      bin          177530 Nov 13 21:56 libdb2dascmn.a
-r--r--r--   1 bin      bin            3352 Nov 13 21:56 libdb2daswrap.a
-r--r--r--   1 bin      bin           94306 Nov 13 21:55 libdb2dasjutil.a

Database node 2:/usr/opt/db2_08_01/lib>ls -atl |grep libdb2.a
lrwxrwxrwx   1 root     system           27 Mar 14 14:03 libdb2dasflist.a -> 
../das/lib/libdb2dasflist.a
lrwxrwxrwx   1 root     system           25 Mar 14 14:03 libdb2dasgcf.a -> 
../das/lib/libdb2dasgcf.a
lrwxrwxrwx   1 root     system           17 Mar 14 13:59 libdb2.a -> 
../lib64/libdb2.a
-r--r--r--   1 bin      bin            2013 Aug 15 2004  libdb2lai.a
-r--r--r--   1 bin      bin          650631 Aug 15 2004  libdb2dasapi.a
-r--r--r--   1 bin      bin          160125 Aug 15 2004  libdb2dascmn.a
-r--r--r--   1 bin      bin            3336 Aug 15 2004  libdb2daswrap.a
-r--r--r--   1 bin      bin           93525 Aug 15 2004  libdb2dasjutil.a

 

 

 

 

104 WebSphere Commerce High Availability and Performance Solutions



A potential solution for this symptom is to install the latest DB2 fix pack.

8.1.4  Installation of DB2 fix pack

After you download the latest DB2 fix pack (such as fix pack 14), as root user, we 
can issue the following command to start the fix pack installation:

rayden2:/usr/XiaoQing/DB2_Fixpack10/fixpak.s050811 # ./installFixPak

After fix pack installation, we can get the installation summary, as in 
Example 8-6.

Example 8-6   Fix pack installation summary

+-----------------------------------------------------------------------------+
                                Summaries:
+-----------------------------------------------------------------------------+

Installation Summary
--------------------
Name                        Level           Part        Event       Result
-------------------------------------------------------------------------------
db2_08_01.ch.en_US.iso88591 8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.cc                8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.sqlproc           8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.repl              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.pext              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.msg.en_US.iso8859 8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.ldap              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.jhlp.en_US.iso885 8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.jdbc              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.inst              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.icut              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.icuc              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.fs                8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.essg              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.dj                8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.db2.samples       8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.db2.rte           8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.das               8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.cs.rte            8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.conv              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.conn              8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.cnvucs            8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.client            8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.cj                8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.ca                8.1.1.128       USR         APPLY       SUCCESS
db2_08_01.db2.engn          8.1.1.128       USR         APPLY       SUCCESS

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 105



db2_08_01.ca                8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.cc                8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.ch.en_US.iso88591 8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.db2.samples       8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.fs                8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.icuc              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.icut              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.jhlp.en_US.iso885 8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.msg.en_US.iso8859 8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.pext              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.client            8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.cj                8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.cnvucs            8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.conv              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.db2.rte           8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.jdbc              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.ldap              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.repl              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.sqlproc           8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.conn              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.cs.rte            8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.das               8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.db2.engn          8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.dj                8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.essg              8.1.1.128       USR         COMMIT      SUCCESS
db2_08_01.inst              8.1.1.128       USR         COMMIT      SUCCESS

Log saved in /tmp/installFixPak.log.8.1.1.128

Make sure that DB2 fix pack 14 is installed successfully, then apply the same 
approach to create the DB2 instance manually as described in 8.1.3, “Manually 
create DB2 64-bit instance” on page 101.

8.2  WebSphere Commerce node 1

We use AIX as the operating system for the Web servers. All instructions, paths, 
and commands therefore apply to AIX.

Installation prerequisites
Follow the prerequisites section of the WebSphere Commerce Installation Guide.

You must first create your WebSphere Application Server/WebSphere 
Commerce non-root_user before starting the installation:

1. Create the non-root_user, for example, “wasuser”.

 

 

 

 

106 WebSphere Commerce High Availability and Performance Solutions



2. Create the non-root_group, for example, “wasgroup”, and assign the 
non-root_user to non-root_group.

The installation must be done as root.

Install WebSphere Commerce using the installation wizard
Perform the following instructions to install Commerce using the install wizard:

1. Run the installer from your Installation_Source_Directory using the setup 
command:

Hostname:/<Installation_Source_Directory>./setup

The relevant images of the installation follow.

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 107



You are introduced to the WCS software stack (Figure 8-13).

Figure 8-13   WebSphere Commerce Software Stack

 

 

 

 

108 WebSphere Commerce High Availability and Performance Solutions



2. Select Custom install (Figure 8-14).

Figure 8-14   WebSphere Commerce installation type selection

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 109



3. Select the components to install (Figure 8-15).

Figure 8-15   WebSphere Commerce component selection

For a WebSphere Commerce node, select WebSphere Application Server 
(WCS), the DB2 Administration Client (to connect to a remote database).

Since the database and the WebServer are remote, do not select:

– The IBM DB2 Universal Database
– The IBM HTTP Server
– The Web server plug-ins

 

 

 

 

110 WebSphere Commerce High Availability and Performance Solutions



4. Specify the WebSphere Application Server and WCS installation directories 
WAS_Install_Dir and WC_Install_Dir. We use the default directories 
(Figure 8-16).

Figure 8-16   WebSphere Commerce component installation directory

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 111



5. Specify the database user information (Figure 8-17).

This step creates a DB2 user on the WebSphere Commerce node. You must 
ensure that this user, group, and directory do not pre-exist on the WebSphere 
Commerce node. This user is used to connect to the remote database. This 
user should either be the DB2 instance or schema owner, as defined on the 
remote database server.

Figure 8-17   Input db2 user information

 

 

 

 

112 WebSphere Commerce High Availability and Performance Solutions



6. Specify the ConfigManager password (Figure 8-18).

Figure 8-18   Input WebSphere Commerce configuration manager information

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 113



7. Specify non-root_user information (Figure 8-19). This must be an existing 
user/group/directory on the WebSphere Commerce node.

Figure 8-19   Input non-root_user information

 

 

 

 

114 WebSphere Commerce High Availability and Performance Solutions



8. You may wish to save the configurations in a response file (Figure 8-20) so 
you can use it to install WebSphere Commerce with the exact same settings 
on another machine. Click Next.

This may come in handy also if you need to re-install WebSphere Commerce 
on the same machine.

Figure 8-20   Option to create a response file for the WC installation

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 115



9. Check your settings with the installation summary. See Figure 8-21.

Figure 8-21   WebSphere Commerce installation summary

 

 

 

 

116 WebSphere Commerce High Availability and Performance Solutions



10.Upon successful installation you should get to the window shown in 
Figure 8-22.

Figure 8-22   WC installation confirmation

11.Once the installation is complete, update the WebSphere Application Server 
to the latest fix pack.

8.3  Additional WebSphere Commerce nodes

On any additional WebSphere Commerce node, the following must be done 
before you can federate the additional node and create a new cluster member on 
it:

� Install the basic WebSphere Commerce product, WebSphere Commerce fix 
pack, WebSphere Application Server fix pack, and additional APARs. Follow 
the same steps in “WebSphere Commerce node 1” on page 106.

� You do not need to create a WebSphere Commerce instance on the 
additional nodes using the WebSphere Commerce configuration manager, 
but you will need to create a WebSphere Application Server profile.

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 117



8.4  Configure a WebSphere Network Deployment 
Manager

To set up a WebSphere Network Deployment Manager:

1. Install IBM WebSphere Application Server Network Deployment.
2. Create a new Network Deployment Manager profile.

8.4.1  Install IBM WebSphere Application Server Network Deployment

IBM WebSphere Application Server Network Deployment must be installed using 
the WebSphere Commerce installer. Note that you can also install the 
WebSphere Commerce product at the same time if the Deployment Manager 
shares the same physical machine with a WebSphere Commerce node.

Follow the same steps as in 8.2, “WebSphere Commerce node 1” on page 106.

8.4.2  Create the WebSphere Network Deployment Manager Profile

Perform the following steps to create the Deployment Manager profile:

1. Launch the profile creation wizard.

There are several ways to launch the wizard. From First steps, select Profile 
creation wizards or launch the profile creation wizard directly.

Detailed instructions are documented at the WebSphere Application Server 
information center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic
=/com.ibm.websphere.base.doc/info/aes/ae/tpro_instances.html

In our example, we launched the profile creation wizard directly. As root, from 
WAS_Install_Dir/bin/ProfileCreator, issue the following command:

./pctAIX.bin

 

 

 

 

118 WebSphere Commerce High Availability and Performance Solutions

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tpro_instances.html


The Profile creation wizard launches (Figure 8-23). Click Next.

Figure 8-23   WebSphere Application Server profile creation wizard

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 119



2. Select Create a deployment manager profile. See Figure 8-24.

Figure 8-24   Select Create a deployment manager profile

 

 

 

 

120 WebSphere Commerce High Availability and Performance Solutions



3. Provide the profile name. See Figure 8-25.

Figure 8-25   Profile creation wizard - enter profile name for deployment manager profile

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 121



4. Provide the profile directory ND_Profile_Dir. You may leave the default value, 
as shown in Figure 8-26.

Figure 8-26   Input the directory for the new profile

 

 

 

 

122 WebSphere Commerce High Availability and Performance Solutions



5. Provide the node name, the host name, and the cell name. See Figure 8-27.

Figure 8-27   Profile creation wizard - node, host, and cell names

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 123



6. Specify the ports to use. Use default ports unless you have a business reason 
for not doing so. See Figure 8-28.

Figure 8-28   Port assignment

Note that the administrative console port here is 9075. By default it is 9060.

To access the administrative console, use:

http://Deployment_Manager_Hostname:9075/ibm/console

 

 

 

 

124 WebSphere Commerce High Availability and Performance Solutions



7. Verify your profile information on the summary window (Figure 8-29).

Figure 8-29   Profile creation summary

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 125



8. Create the profile. You should see the following window (Figure 8-30) once 
the profile creation process completes.

Figure 8-30   Profile creation completes

 

 

 

 

126 WebSphere Commerce High Availability and Performance Solutions



10. Verify the profile.

Back to the first steps launch pad, you may select to verify. See Figure 8-31.

Figure 8-31   Verify the new profile

11. The URL to access the profile should be:

http://<deployment_manager_hostname>:9075/ibm/console

8.5  Install IBM HTTP Server

Although other Web server software like IBM HTTP Server 2.0.47.1, Microsoft® 
Internet Information Services 5.0/6.0 (for Windows), or Sun™ Java™ System 
Web server 6.1.1 (for AIX, Solaris, Windows) is supported by WebSphere 
Commerce V6, we recommend using IBM HTTP Server V6.0.x (matching the 
Version of IBM WebSphere Application Server Network Deployment being used. 

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 127



In our scenario the version number is 6.0.2.19.). On iSeries, you need IBM HTTP 
Server for iSeries.

As we recommend separating the Web server and Application Server tiers, we 
describe in this chapter how to install only the IBM HTTP Server V6 and the IBM 
HTTP Server Plug-in for WebSphere Application Server V6.

To ensure High Availability, you should set up multiple Web server nodes as 
described in 7.1, “Introduction to Web server High Availability” on page 81. The 
installation procedure is the same for all Web server nodes, as we are using only 
active Web server nodes, rather than active/passive pairs.

We use AIX as the operating system for the Web servers. All instructions, paths, 
and commands therefore apply to AIX. 

8.5.1  Base installation

For the base installation you need the WebSphere Commerce V6 installation 
package (which consists of five CDs: WebSphere Commerce disk 1 and 2, IBM 
WebSphere Application Server Network Deployment disk 1 and 2, and IBM DB2 
Database and Administration Client).

Perform the following steps to install the 6.0.0.0 versions of IBM HTTP Server 
and IBM HTTP Server Plug-in for WebSphere Application Server, using the 
graphical installer that is included in the WebSphere Commerce V6 package:

1. Make sure that the root user on your Web server nodes has its umask set to 
022. Log on as root, and at the prompt, type umask to check the umask. If it 
the result is not 022, change root’s default umask accordingly, for example, 
by using smitty.

 

 

 

 

128 WebSphere Commerce High Availability and Performance Solutions



2. As root, run the WebSphere Commerce installation wizard on WebSphere 
Commerce disk 1 from a directory different from any of the CDs or CD 
images:

/tmp/WC60/disk1/setup.sh

A language dialog is displayed, as shown in Figure 8-32.

Figure 8-32   Language selection

We choose English and click OK. The WebSphere Commerce Launchpad is 
displayed, as shown in Figure 8-33.

Figure 8-33   Launchpad

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 129



3. Click Install Product. Another language dialog is shown for the installation, 
where we select English and click OK. This brings up the WebSphere 
Commerce installation wizard.

4. On the welcome panel, click Next.

5. In the license agreement window, choose I accept both the IBM and 
non-IBM terms and click Next. The wizard checks the system prerequisites 
and asks for the setup type. 

6. In the setup type window, choose Custom and click Next.

 

 

 

 

130 WebSphere Commerce High Availability and Performance Solutions



7. In the component selection window, select IBM HTTP Server under 
Supporting IBM software. This automatically also selects WebSphere 
Application Server Web server plug-ins. See Figure 8-34.

Figure 8-34   Component selection window

8. Click Next. The destination paths window is displayed.

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 131



9. You may choose to accept the default installation paths referred to as 
IHS_Install_Dir and Plugin_Install_Dir in the /usr/IBMIHS for IBM HTTP 
Server or /usr/IBM/WebSphere/Plugins for IBM HTTP Server Plug-in, or 
choose your own paths. We kept the defaults, as shown in Figure 8-35.

Figure 8-35   Destination paths window

 

 

 

 

132 WebSphere Commerce High Availability and Performance Solutions



10.Click Next. The installation is performed. It should end with a success 
message, as shown in Figure 8-36.

Figure 8-36   Installation complete message

11.Click Finish.

8.5.2  Install fixes

You should upgrade all products to the latest fix levels. We describe how to 
upgrade both IBM HTTP Server and IBM HTTP Server Plug-in to version 
6.0.2.19. In order to do this, you need the following packages:

� Refresh pack 6.0.2 for IBM HTTP Server.

� Refresh pack 6.0.2 for IBM HTTP Server Plug-in.

� Fix pack 6.0.2.19 for IBM HTTP Server.

� Fix pack 6.0.2.19 for IBM HTTP Server Plug-in.

� Fix pack 6.0.2.19 for Java SDK (to be applied to both IBM HTTP Server and 
IBM HTTP Server Plug-in).

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 133



The latest refresh pack and fix pack are available from:

http://www-1.ibm.com/support/docview.wss?uid=swg27004980#ver60

We need to apply the refresh pack first and then the fix pack to all applicable 
components. While we show how to use the graphical update installer, you may 
also use the console or silent versions according to the installation instructions 
included in each package, for example, in case you do not have an X-Windows 
environment.

Again, the installation is the same on all Web server nodes:

1. Log on as root.

2. Make sure that IBM HTTP Server is not running.

The following steps need to be performed for all the packages listed above, in 
the same order as above. As the Java SDK fix needs to be applied to both 
IBM HTTP Server and IBM HTTP Server Plug-in, the sequence of steps 
needs to be gone through six times altogether. The examples and graphics 
are for refresh pack 6.0.2 for IBM HTTP Server. 

3. Change to the product installation directory (AIX: IHS_Install_Dir for IBM 
HTTP Server, Plugin_Install_Dir for IBM HTTP Server Plug-in) and unpack 
the package into that directory. For example, for IBM HTTP Server:

cd IHS_Install_Dir
tar -xf /tmp/6.0-WS-WASIHS-AixPPC32-RP0000002.tar

4. Start the update installer GUI from the updateinstaller directory under the 
product installation directory:

# cd updateinstaller
# ./update

Attention: The requirement to use a single Update Installer for V6.0.2 release 
and V6.1 releases was introduced with Fix Pack 21 (6.0.2.21). Starting with 
Fix Pack 6.0.2.21, the Update Installer is no longer packaged with the Fix 
Pack itself. You must use Updated Installer V6.1.0.9 (or later) to install Fix 
Pack 21(6.0.2.21) and later releases. The Update Installer can be downloaded 
from:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24012718

Note: Run update -console to run the update installer in console mode. 
You will see the same screens and be given the same options as in the 
GUI. 

 

 

 

 

134 WebSphere Commerce High Availability and Performance Solutions

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24012718
http://www-1.ibm.com/support/docview.wss?uid=swg27004980#ver60


3. When using the GUI installer, the installer window is displayed, as shown in 
Figure 8-37.

Figure 8-37   Update installer window

Note: For a silent install, perform the following steps:

1. Edit the response file (updateinstaller/responsefiles/install.txt). Follow 
the instructions in the file. You can find the package to be installed in 
the updateinstaller/maintenance directory. In the response file, this 
package needs to be specified using -W maintenance.package=”...” 
using an absolute path and file name in double quotation marks, for 
example:

-W 
maintenance.package=”IHS_Install_Dir/updateinstaller/maintenanc
e /6.0-WS-WASIHS-AixPPC32-RP0000002.pak”

2. Run:

./update -options responsefiles/install.txt -silent

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 135



4. Click Next. On the next panel, the installation location of the product to be 
fixed can be entered. When started from the updateinstaller directory inside 
the product directory, the correct directory is already displayed as the default 
value (for example, IHS_Install_Dir for IBM HTTP Server and 
Plugin_Install_Dir for IBM HTTP Server Plug-in), as shown in Figure 8-38.

Figure 8-38   Product installation directory

5. Click Next. In the next window, you are asked whether you would like to 
install or uninstall a maintenance package. Choose Install maintenance 
package (this is the default).

6. Click Next. In the next window, you need to select the package to install. 
Although the correct package should be preselected by default, we 
recommend checking the filename.

 

 

 

 

136 WebSphere Commerce High Availability and Performance Solutions



7. Click Browse and select the correct package file (ending in .pak) from the 
maintenance directory, which is opened by default. The package has the 
same name as the .tar archive. Figure 8-39 shows the file selection window.

Figure 8-39   Maintenance package file selection window

8. Select the correct package and click Open. This will take you back to the 
installation package window, as shown in Figure 8-40.

Figure 8-40   Installation package window showing the correct installation package

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 137



9. Click Next. The upgrade summary window is displayed. See Figure 8-41. 

Figure 8-41   Upgrade summary window

10.Click Next to begin the installation. Upon successful installation, a success 
message is displayed, as shown in Figure 8-42.

Figure 8-42   Upgrade summary window

 

 

 

 

138 WebSphere Commerce High Availability and Performance Solutions



11.Repeat steps 3 on page 134 to 10 on page 138 for all packages. Make sure to 
use the correct installation directories and package names for IBM HTTP 
Server and IBM HTTP Server Plug-in in step 3 on page 134.

The installation of IBM HTTP Server is now complete. Make sure that you install 
all your Web server nodes identically.

Figure 8-43   Update installer information about updating the currently used JDK

Note: In some cases, the Java Runtime Environment (JRE™), which is used 
by update installer itself, needs to be updated as part of the refresh pack or fix 
pack installation. In this case, update installer displays a message saying that 
it will copy the JRE and then relaunch itself, as shown in Figure 8-43, to 
update the IBM HTTP Server Plug-in with refresh pack 6.0.2. After the 
relaunch you need to select the .pak file again to apply the fix.

Note: The update installer of the latest fix pack can be used to install interim 
fixes, too. These come as .pak files, which can be copied into the 
updateinstaller/maintenance directory in the installation directory of the 
product to be updated. When running update installer, specify a .pak file, as 
described in step 7 above, to install an interim fix.

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 139



8.6  Install Load Balancer

In this section we describe how to install IBM WebSphere Edge Components 
Load Balancer V6.0.2 on AIX and Solaris, which are the two operating systems 
that we used for our tests. For the installation you need both the 6.0 and 6.0.2 
versions of Load Balancer. 

Load Balancer V6.0 ships as part of the IBM WebSphere Edge Components 
V6.0. Refer to Concepts, Planning, and Installation for Edge Components 
Version 6.0, GC31-6855, for detailed information about installation, supported 
platforms, and product requirements. 

Load Balancer refresh packs (6.0.x) are available separately from: 

http://www-1.ibm.com/support/docview.wss?uid=swg27004980#ver60

From there, follow the links to the current WebSphere Application Server V6.0 
refresh pack for your operating system. There you should find a link to Updates 
for Edge Components, GI10-3353, which contains detailed prerequisite 
information and installation instructions for IBM WebSphere Edge Components 
updates on all supported operating systems.

The installation procedure is the same for both MAC and NAT forwarding 
methods (see 7.1, “Introduction to Web server High Availability” on page 81). In 
both cases, Load Balancer can either be installed on a dedicated machine, or it 
can be installed collocated with a Web server, on a Web server machine. Load 
Balancer topologies are explained in detail in section 4.5, “Load Balancer 
topologies,” in WebSphere Application Server V6 Scalability and Performance 
Handbook, SG24-6392.

However, we recommend installing Load Balancer on a dedicated machine.

From the IBM WebSphere Edge Components V6.0 package, only the license file 
needs to be installed. Then Load Balancer 6.0.2 is installed directly.

Important: Before starting the installation, you should have Java Runtime 
V1.4.2 or later installed on your system.

 

 

 

 

140 WebSphere Commerce High Availability and Performance Solutions

http://www-1.ibm.com/support/docview.wss?uid=swg27004980#ver60


8.6.1  Install the license

We install the Load Balancer license and other basic files using the graphical 
installer that is included in the IBM WebSphere Edge Components V6.0.

1. Mount the installation media and start the Edge Components installer by 
running install.

The installer window opens, as shown in Figure 8-44.

Figure 8-44   Installer window

2. Click Next and select I accept the terms in this license agreement in the 
Software License Agreement window.

3. Click Next. The installer now checks your system. This takes a few minutes.

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 141



4. Click Next when the installer is done with checking. On the language support 
window, do not select anything except English, as shown in Figure 8-45.

Figure 8-45   Language selection window

5. Click Next. In the setup type window, choose Custom.

 

 

 

 

142 WebSphere Commerce High Availability and Performance Solutions



6. Click Next. In the features selection window, only select License, as shown 
in Figure 8-46.

Figure 8-46   Features selection window

7. Click Next. Verify the installation options in the summary. Only Load Balancer 
License should be listed as a feature to install.

8. Click Next. The installer installs the Load Balancer license in /opt/ibm/edge/lb 
on UNIX systems. The installation path cannot be changed.

8.6.2  Install Load Balancer refresh pack

Refresh packs for Load Balancer are downloaded as .tar archives. There is no 
graphical installer for the refresh packs. Components must be installed using an 
operating system specific command. The following steps describe the installation 
for refresh pack 6.0.2 on AIX and Solaris:

1. Switch to root and extract the archive to a temporary directory.

 

 

 

 

 Chapter 8. Base product and fix pack installations for all tiers 143



2. From the temporary directory, issue the following commands in order to install 
Load Balancer and its Dispatcher component:

– On AIX

inutoc .
installp -acXd . ibmlb.base.rte
installp -acXd . ibmlb.admin.rte
installp -acXd . ibmlb.lb.driver
installp -acXd . ibmlb.disp.rte
installp -acXd . ibmlb.doc.rte
installp -acXd . ibmlb.msg.en_US.*

– On Solaris

pkgadd -d . ibmlbbase
pkgadd -d . ibmlbadm
pkgadd -d . ibmlbdisp
pkgadd -d . ibmlbdoc

Each command should output a success message, as shown in Example 8-7, 
for the installation of the ibmlb.admin.rte module on AIX.

Example 8-7   Installation success message on AIX

+-----------------------------------------------------------------------------+
                                Summaries:
+-----------------------------------------------------------------------------+

Installation Summary
--------------------
Name                        Level           Part        Event       Result
-------------------------------------------------------------------------------
ibmlb.admin.rte             6.0.2.0         USR         APPLY       SUCCESS

Example 8-8 shows the message on Solaris for the ibmlbbase module.

Example 8-8   Installation success message on Solaris

[ verifying class <ibmlbbase> ]

Installation of <ibmlbbase> was successful.

The installation of Load Balancer is now complete.

 

 

 

 

144 WebSphere Commerce High Availability and Performance Solutions



Chapter 9. High Availability solution for 
IBM DB2 Universal Database

In Chapter 5, “Database tier High Availability” on page 39, we introduced the 
High Availability solution for the DB2 tier, which includes DB2 HADR, SQL 
Replication, and HACMP. After we understand the theory of these solutions, we 
give general instructions for setting up your DB2 HA clustering environment by 
using the DB2 HADR feature.

9
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 145



9.1  HADR

The first solution for database High Availability that we tested is High Availability 
Disaster Recovery (HADR). Refer to the scenario diagram 
E:\Stage\7512ch003.fm. This is a DB2-specific solution to achieve the High 
Availability in the databaset tier in Commerce topology.

9.1.1  Configuring HADR on a primary/standby database

You can configure HADR using the command-line processor (CLP), the Set Up 
High Availability disaster recovery (HADR) wizard in Control Center, or by the 
corresponding application programming interfaces (APIs). Use the following 
procedure to configure primary and standby databases for High Availability 
disaster recovery using the CLP:

1. Enable log archiving. Configure other DB2 parameters on the primary 
database:

(P) $ db2 update db configuration for rmall using LOGRETAIN RECOVERY
(P) $ db2 update db configuration for rmall using LOGINDEXBUILD ON
(P) $ db2 update db configuration for rmall using INDEXREC RESTART
(P) $ db2 update db configuration for rmall using NEWLOGPATH 
"/db2log/"

2. Perform the command in Example 9-1 to restore the database in standby.

Example 9-1   Restore database in standby

(S) $ db2 restore db rmall replace history file

3. Configure HADR and client reroute on the primary database. As primary 
instance owner, set HADR-related parameters for the primary database, as 
shown in Example 9-2.

Example 9-2   primary database parameter configuration

(P) $ db2 update db configuration for rmall using HADR_LOCAL_HOST 
rayden2 
(P) $ db2 update db configuration for rmall using HADR_LOCAL_SVC 18819 

Note: We highly recommended that you use the NEWLOGPATH 
configuration parameter to put database logs on a separate device from 
the database once the database is created. This protects your database 
from media failure where the logs are stored, and improves the overall 
performance of database system.

 

 

 

 

146 WebSphere Commerce High Availability and Performance Solutions



(P) $ db2 update db configuration for rmall using HADR_REMOTE_HOST 
salmon
(P) $ db2 update db configuration for rmall using HADR_REMOTE_SVC 18820
(P) $ db2 update db configuration for rmall using HADR_REMOTE_INST 
db2inst1
(P) $ db2 update db configuration for rmall using HADR_SYNCMODE 
NEARSYNC

4. Configure HADR and client reroute on the standby database. As the standby 
instance owner, set HADR-related parameters for the standby database as 
shown in Example 9-3.

Example 9-3   standby database parameter configuration

(S) $ db2 update db configuration for rmall using HADR_LOCAL_HOST 
salmonsalmon 
(S) $ db2 update db configuration for rmall using HADR_LOCAL_SVC 18820 
(S) $ db2 update db configuration for rmall using HADR_REMOTE_HOST 
rayden2
(S) $ db2 update db configuration for rmall using HADR_REMOTE_SVC 18819
(S) $ db2 update db configuration for rmall using HADR_REMOTE_INST 
db2inst1
(S) $ db2 update db configuration for rmall using HADR_SYNCMODE 
NEARSYNC

5. Start HADR. You can use the commands shown in Example 9-4

Example 9-4   Start HADR

(S) $ db2 start hadr on db rmall as standby
(P) $ db2 start hadr on db rmall as primary

Note: The configuration for this article uses the NEARSYNC 
synchronization mode. Transaction response time is shorter with 
NEARSYNC than with the other synchronous modes. However, protection 
against data loss is greater with other synchronization modes.

Note: We recommend starting HADR on the standby server before you 
start HADR on a primary database server. When you start HADR on a 
primary database server, the database server waits up to 
HADR_TIMEOUT seconds for a standby database server to connect to it. 
If there is still no standby database server connected after 
HADR_TIMEOUT seconds have passed, the HADR start on the primary 
database server fails.

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 147



6. Verify that HADR has been successfully configured:

– Review the db2diag.log on both the primary and the standby database 
server to see whether HADR is configured correctly.

– Examine the HADR status from a snapshot of both the primary database 
and the standby database. Figure 9-1 and E:\Stage\7512ch009.fm show 
the HADR section returned by the GET SNAPSHOT command.

Figure 9-1   HADR standby server status

Figure 9-2   HADR primary server status

 

 

 

 

148 WebSphere Commerce High Availability and Performance Solutions



– Check the DB2 log to see whether you can see the records shown in 
Example 9-5 (for the primary database) and Example 9-6 on page 151 (for 
the standby database).

Example 9-5   DB2 log from the primary database

2007-07-03-21.26.46.707671-240 I61036A394         LEVEL: Warning
PID     : 565478               TID  : 1           PROC : db2agent 
(RMALL) 0
INSTANCE: db2inst1 NODE : 000         DB   : RMALL
APPHDL  : 0-28                 APPID: *LOCAL.db2inst1.070704012646
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEduStartup, 
probe:21151
MESSAGE : Info: HADR Startup has begun.

2007-07-03-21.26.46.789144-240 E61431A333         LEVEL: Event
PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to None (was None)

2007-07-03-21.26.46.825540-240 E61765A335         LEVEL: Event
PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to P-Boot (was None)

2007-07-03-21.26.46.848887-240 I62101A317         LEVEL: Warning
PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEduP, 
probe:20301
MESSAGE : Info: Primary Started.

2007-07-03-21.26.47.452229-240 E62419A353         LEVEL: Event
PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 149



CHANGE  : HADR state set to P-RemoteCatchupPending (was P-Boot)

2007-07-03-21.26.47.462966-240 I62773A398         LEVEL: Warning
PID     : 565478               TID  : 1           PROC : db2agent 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-28                 APPID: *LOCAL.db2inst1.070704012646
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEduStartup, 
probe:21152
MESSAGE : Info: HADR Startup has completed.

2007-07-03-21.26.47.664441-240 E63172A362         LEVEL: Event
PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to P-RemoteCatchup (was 
P-RemoteCatchupPending)

2007-07-03-21.26.47.671841-240 I63535A336         LEVEL: Warning
PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEduP, 
probe:20445
MESSAGE : remote catchup starts at 000000002A89500C

2007-07-03-21.26.47.769458-240 I63872A353         LEVEL: Warning
PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, 
hdrTransitionPtoNPeer, probe:10645
MESSAGE : near peer catchup starts at 000000002B751D8B

2007-07-03-21.26.48.379809-240 E64226A352         LEVEL: Event
PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to P-NearlyPeer (was P-RemoteCatchup)

2007-07-03-21.26.48.389134-240 E64579A343         LEVEL: Event

 

 

 

 

150 WebSphere Commerce High Availability and Performance Solutions



PID     : 618662               TID  : 1           PROC : db2hadrp 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to P-Peer (was P-NearlyPeer)

Example 9-6   DB2 log from the standby database

2007-07-03-21.17.04.600117-240 I568803A394        LEVEL: Warning
PID     : 24210                TID  : 1           PROC : db2agent 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-120                APPID: *LOCAL.db2inst1.070704011702
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEduStartup, 
probe:21151
MESSAGE : Info: HADR Startup has begun.

2007-07-03-21.17.04.615717-240 E569198A333        LEVEL: Event
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to None (was None)

2007-07-03-21.17.04.629921-240 E569532A335        LEVEL: Event
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to S-Boot (was None)

2007-07-03-21.17.04.630221-240 I569868A338        LEVEL: Warning
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, 
hdrStartReplayMaster, probe:21251
MESSAGE : Info: Replaymaster Starting...

2007-07-03-21.17.04.637393-240 I570207A343        LEVEL: Warning
PID     : 30050                TID  : 1           PROC : db2agnti 
(RMALL) 0

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 151



INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-121
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEduStartup, 
probe:21151
MESSAGE : Info: HADR Startup has begun.

2007-07-03-21.17.04.715572-240 I570551A330        LEVEL: Warning
PID     : 30050                TID  : 1           PROC : db2agnti 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-121
FUNCTION: DB2 UDB, recovery manager, sqlpReplayMaster, probe:300
MESSAGE : Starting Replay Master on standby.

2007-07-03-21.17.04.715934-240 I570882A340        LEVEL: Warning
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, 
hdrStartReplayMaster, probe:21252
MESSAGE : Info: Replaymaster request done.

2007-07-03-21.17.04.716189-240 E571223A345        LEVEL: Event
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to S-LocalCatchup (was S-Boot)

2007-07-03-21.17.04.716451-240 I571569A317        LEVEL: Warning
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEduS, 
probe:20341
MESSAGE : Info: Standby Started.

2007-07-03-21.17.04.719812-240 E571887A346        LEVEL: Warning
PID     : 30050                TID  : 1           PROC : db2agnti 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-121
FUNCTION: DB2 UDB, recovery manager, sqlpReplayMaster, probe:920
MESSAGE : ADM1602W  Rollforward recovery has been initiated.

 

 

 

 

152 WebSphere Commerce High Availability and Performance Solutions



2007-07-03-21.17.04.721055-240 E572234A389        LEVEL: Warning
PID     : 30050                TID  : 1           PROC : db2agnti 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-121
FUNCTION: DB2 UDB, recovery manager, sqlpReplayMaster, probe:1740
MESSAGE : ADM1603I  DB2 is invoking the forward phase of the database 
          rollforward recovery.

2007-07-03-21.17.04.721383-240 I572624A420        LEVEL: Warning
PID     : 30050                TID  : 1           PROC : db2agnti 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-121
FUNCTION: DB2 UDB, recovery manager, sqlpForwardRecovery, probe:720
DATA #1 : String, 103 bytes
Invoking database rollforward forward recovery,
lowtranlsn 000000002A89529F minbufflsn 000000002A0F44C0

2007-07-03-21.17.04.725989-240 I573045A358        LEVEL: Warning
PID     : 30050                TID  : 1           PROC : db2agnti 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-121
FUNCTION: DB2 UDB, recovery manager, sqlprecm, probe:2000
MESSAGE : Using parallel recovery with 3 agents 9 QSets 27 queues and 
16 chunks

2007-07-03-21.17.04.716208-240 I573404A398        LEVEL: Warning
PID     : 24210                TID  : 1           PROC : db2agent 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-120                APPID: *LOCAL.db2inst1.070704011702
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEduStartup, 
probe:21152
MESSAGE : Info: HADR Startup has completed.

2007-07-03-21.17.05.775420-240 I573803A320        LEVEL: Warning
PID     : 41284                TID  : 1           PROC : db2shred 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL
APPHDL  : 0-121
FUNCTION: DB2 UDB, recovery manager, sqlpshrEdu, probe:18300
MESSAGE : Maxing hdrLCUEndLsnRequested

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 153



2007-07-03-21.17.05.819612-240 E574124A361        LEVEL: Event
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to S-RemoteCatchupPending (was S-LocalCatchup)

2007-07-03-21.17.22.845448-240 E574486A369        LEVEL: Event
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to S-RemoteCatchupPending (was 
S-RemoteCatchupPending)

2007-07-03-21.17.22.872810-240 E574856A362        LEVEL: Event
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to S-RemoteCatchup (was 
S-RemoteCatchupPending)

2007-07-03-21.17.22.873088-240 I575219A335        LEVEL: Warning
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, 
hdrSPrepareLogWrite, probe:10260
MESSAGE : RCUStartLsn 000000002A89539A

2007-07-03-21.17.23.712898-240 E575555A352        LEVEL: Event
PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to S-NearlyPeer (was S-RemoteCatchup)

2007-07-03-21.17.23.782792-240 E575908A343        LEVEL: Event

 

 

 

 

154 WebSphere Commerce High Availability and Performance Solutions



PID     : 15422                TID  : 1           PROC : db2hadrs 
(RMALL) 0
INSTANCE: db2inst1             NODE : 000         DB   : RMALL   
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, 
probe:10000
CHANGE  : HADR state set to S-Peer (was S-NearlyPeer)

9.1.2  Enabling client reroute in a HADR environment

For a client application to be transparently redirected to an alternate standby 
database server when there is a loss of communication with the primary 
database server, specify that alternate server's location on the primary database 
server. To do this, use the UPDATE ALTERNATE SERVER FOR DATABASE 
command in the primary database server. Example 9-7 is an example of the 
steps to specify an alternate database server.

Example 9-7   Enable ACR in DB2 HADR environment

(P) $ db2 update alternate server for database rmall using hostname 
salmon port 50000
(S) $ db2 update alternate server for database rmall using hostname 
rayden2 port 50000

The alternate database server information is stored on the primary database 
server, and loaded into the client's cache upon a successful connection to the 
primary database server. This means that for a client application to know the 
standby server, it must first successfully connect to the primary server.

9.1.3  Installing Tivoli System Automation

The following steps give you a brief introduction to implementing the Tivoli 
System Automation for Multiplatforms policy-based, self-healing capability 
running on AIX:

1. After you have purchased Tivoli System Automation v2.1, you can download 
a tar file for the AIX operating system. The name of the archive for AIX 
platforms is C85W5ML.tar.

2. Download the installation archive into your local directory, and use the tar xvf 
command to extract the archive. When you have extracted the files, you find 
the installation wizard in the SAM2100Base/installSAM directory.

3. TSA is contained in several packages that must be installed on every node in 
the cluster to be automated. TSA for Multiplatforms requires a certain RSCT 
level to be installed on that system prior to the installation. RSCT is part of 

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 155



AIX, although not all of the RSCT-related filesets are installed by default 
within the operating system. For TSA pre-installation checking, a more recent 
level of RSCT may be required. In this case, for TSA v2.1 installation on AIX 
v5.2, the required RSCT version is 2.3.7.1. After you install the base filesets, 
you can download the specific updated filesets from IBM Support Fix Central:

http://www-912.ibm.com/eserver/support/fixes/fixcentral/main/pseries
/aix

4. Install the product including the automation adapter with the installSAM script. 
The installation process is finished automatically.

5. Copy the automatic scripts shipped by DB2 v9 from the DB2 installation 
package to the local directory in all of the cluster nodes. In this case, they are 
copied into /software/TSA_Auto_Script.

Note: IBM has created scripts that enable TSA to work seamlessly with the 
DB2 database. You can download the latest TSA automatic scripts from 
the DB2 for Linux site. 

 

 

 

 

156 WebSphere Commerce High Availability and Performance Solutions

http://www-912.ibm.com/eserver/support/fixes/fixcentral/main/pseries/aix


6. Change the environment variable. You can use the commands shown in 
Example 9-8.

Example 9-8   Set environment variables

export CT_MANAGEMENT_SCOPE=2
export PATH = $PATH:/usr/sbin/rsct/bin:/usr/opt/IBM/db2_08_01/instance/ 
:/software/TSA_Auto_Script/

7. Confirm that TSA has been installed successfully. 

If TSA has been installed, and if the level of RSCT is correct, then you can 
start a TSA domain. Use the commands given in Example 9-9 to verify that 
TSA has been installed successfully and that the level of RSCT is correct. You 
may get the output shown in Figure 9-3.

Example 9-9   TSA post-installation check

lsrpdomain - should show the domain as Online with RSCT level of 
2.3.7.1.
lsrpnode - should show all nodes in that domain with RSCT level 
2.3.7.1.
lssrc -ls IBM.RecoveryRM - should show an IVN and AVN of 2.1.0.0

Figure 9-3   TSA post installation check

9.1.4  Defining and administering a TSA cluster

Before configuring your TSA cluster, verify that all of the installations of TSA in 
your topology know about one another and can communicate with one another in 

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 157



what is referred to as a TSA cluster domain, then do the following configuration 
steps:

1. Run the following command as root in each host to prepare the proper 
security environment between the TSA node so that it is allowed to 
communicate between the cluster nodes:

(P)(S)(H) # preprpnode rayden2 salmon 

2. Issue the following commands to create a RSCT cluster domain:

(P) # mkrpdomain HADR_domain rayden2 salmon

3. Issue the following command to bring the cluster online:

(P) # startrpdomain HADR_domain

4. In seconds, the cluster starts and you can look up the status of 
HADR_domain. you can get output, as in Figure 9-4.

(P) # lsrpdomain

Figure 9-4   TSA cluster domain status

5. Ensure that all nodes are online in the active domain. You can get an output 
as shown in Figure 9-5.

(P) # lsrpnode

Figure 9-5   TSA cluster nodes status

9.1.5  Enabling instance and HADR with TSA

As the base for automation, the components involved must first be described in a 
set of RSCT-defined resources. Due to diverse characteristics of resources, 
there are various RSCT resource classes to accommodate the differences. In a 
TSA cluster, a resource is any piece of hardware or software that has been 

Note: All future TSA-related commands will run relative to this active 
domain.

 

 

 

 

158 WebSphere Commerce High Availability and Performance Solutions



defined to IBM Resource Monitoring and Control (RMC). So in this case, the DB2 
database instance and the HADR pair of database are both resources in the 
cluster, which are configured and registered with TSA for automation 
management. As explained above, every application needs to be defined as a 
resource to be managed and automated with TSA. Application resources are 
usually defined in the generic resource class IBM.Application. In this resource 
class, there are several attributes that define a resource, but at least three of 
them are application-specific:

� StartCommand
� StopCommand
� MonitorCommand

These commands may be scripts or binary executables. You must ensure that 
the scripts are well tested and produce the desired effects within a reasonable 
period of time. This is necessary because these commands are the only interface 
between TSA and the application.

The automatic package shipped with DB2 v9 includes several scripts that can 
control the behavior of the DB2 resources defined in a TSA cluster environment. 
Here is a description of the scripts.

� For the DB2 database instance: 

– regdb2salin: This script registers the DB2 instance into the TSA cluster 
environment as a resource.

– db2_start.ksh, db2_stop.ksh, db2_monitor: These three scripts are 
registered as part of the TSA resource automation policy. TSA refers to 
this policy when monitoring DB2 database instances and when 
responding to predefined events, such as restarting a DB2 database 
instance when TSA detects that the DB2 database instance has 
terminated. Example 9-10 is a piece of sample TSA script for the DB2 
instance.

Example 9-10   db2_start.ksh

......
function activateDatabase
{
   Resource=db2hadr_${db?}-rs
   hn=$(hostname)
   NodeRG1=$(lsrsrc-api -s IBM.Application::'Name="'${Resource?}'" 
'::NodeNameList | grep -v $hn | tr "{" " " | tr "}" " " | tr "." " " | 
awk '{print $1}' | tail -1)
   if [[ ! -z "$NodeRG1" ]]; then
      # HADR database ...

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 159



      OpState=$(lsrsrc-api -s IBM.Application::'Name="'${Resource?}'"&& 
NodeNameList={"'${NodeRG1}'"} '::OpState 2> /dev/null)
      if [[ $OpState == 1 ]]; then
         # HADR is Primary on the other side, start as standby here
         su - ${DB2INSTANCE?} -c "db2 start hadr on db ${db?} as 
standby"
      else
         su - ${DB2INSTANCE?} -c "db2 activate database ${db?}"
      fi
   else
      # Not HADR database
      su - ${DB2INSTANCE?} -c "db2 restart database ${db?}" &
      sleep 1
   fi
}
......

� For the HADR database pair: 

– reghadrsalin: This script registers the DB2 HADR pair with the TSA 
environment.

– hadr_start.ksh, hadr_stop.ksh, hadr_monitor.ksh: These three scripts are 
registered as part of the TSA automation policy for TSA to monitor and 
control the behavior of the HADR database pair. Example 9-11 is the 
script for hadr_start.ksh:

Example 9-11   hadr_start.ksh

......
###########################################################
# starthadr()
###########################################################
starthadr()
{
   set_candidate_P_instance
   instance_to_start=${candidate_P_instance}
   HADR_partner_node_state

   $SVC_PROBE ${DB2HADRINSTANCE1?} ${DB2HADRINSTANCE2?} 
${DB2HADRDBNAME?} ${VERBOSE?} S
   rc=$?

   if [[ $remote_node_alive == "Online" ]]; then
      # Bring up HADR as Primary on this node
      if [ $rc -eq 1 ]; then
         # already primary

 

 

 

 

160 WebSphere Commerce High Availability and Performance Solutions



         rc=0
      elif [ $rc -eq 2 ]; then
         # currently standby,peer
         # takeover (no force)
         logger -i  -p notice -t $0 "su - ${instance_to_start?} -c db2 
takeover hadr on db ${DB2HADRDBNAME?}"
         su - ${instance_to_start?} -c "db2 takeover hadr on db 
${DB2HADRDBNAME?}" 
         $SVC_PROBE ${DB2HADRINSTANCE1?} ${DB2HADRINSTANCE2?} 
${DB2HADRDBNAME?} ${VERBOSE?}
         rc1=$?
         if [ $rc1 -ne 1 ]; then
            :
            logger -i  -p err -t $0 "*** Database ${DB2HADRDBNAME} is 
in Peer State, TAKEOVER FAILED"
            # Old primary node is still online, offline instance to 
prevent split-brain
            # Uncomment following 3 lines to allow takeover by force
            #chrg -o Offline -s "Name = 
'${forceRGOfflineInCaseOfByForce?}'"
            #su - ${instance_to_start?} -c "db2 takeover hadr on db 
${DB2HADRDBNAME?} by force"
            #logger -i  -p notice -t $0 "NOTICE: Takeover by force 
issued, old primary instance offlined to prevent split brain"
         fi

      elif [ $rc -eq 40 ]; then
         :
         logger -i  -p err -t $0 "*** Database ${DB2HADRDBNAME} is not 
in Peer State, old Primary machine still Online"
         //–•?ƒ°£°£°£°£°£°£
         # Uncomment following 3 lines to allow takeover even in case 
of non Peer Standby w/ old Primary machine Online
         #chrg -o Offline -s "Name = 
'${forceRGOfflineInCaseOfByForce?}'"
         #su - ${instance_to_start?} -c "db2 takeover hadr on db 
${DB2HADRDBNAME?} by force "
         #logger -i  -p notice -t $0 "NOTICE: Takeover by force issued, 
old primary instance offlined to prevent split brain"
      else
         # current state of HADR is unknown
         # eg. If instance has just gone down, wait until it's 
2*monitor period 
         # so that instance can be restarted and db ACTIVATEd
         sleep 20

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 161



      fi # Bring up HADR as Primary on this machine

   else
      # Old primary machine is offline
      if [ $rc -eq 2 ]; then
         # Standby is currently in Peer State
         #
         # To bring up standby, will now do a TAKEOVER BY FORCE
         # No need to block until resource group is offline, we have 
verified
         # that the node is down already
         # To bring up standby, will now do a TAKEOVER BY FORCE
         :
         logger -i  -p notice -t $0 "su - ${instance_to_start?} -c db2 
takeover hadr on db ${DB2HADRDBNAME?} by force"
         su - ${instance_to_start?} -c "db2 takeover hadr on db 
${DB2HADRDBNAME?} by force "
         logger -i  -p notice -t $0 "NOTICE: Takeover by force issued"
      elif [ $rc -eq 40 ]; then
         # Standby is currently not in Peer State
         :
         logger -i  -p err -t $0 "*** Database ${DB2HADRDBNAME} is not 
in Peer State, old Primary machine Offline"
         
         # Uncomment following 3 lines to allow takeover even in case 
of non Peer Standby w/ old Primary machine Online
         //–•?ƒ°£°£°£°£°£°£
         #logger -i  -p notice -t $0 "su - ${instance_to_start?} -c db2 
takeover hadr on db ${DB2HADRDBNAME?} by force"
         #su - ${instance_to_start?} -c "db2 takeover hadr on db 
${DB2HADRDBNAME?} by force "
         #logger -i  -p notice -t $0 "NOTICE: Takeover by force issued"
      fi
   fi # Bring up HADR on this machine

   # Return state 
   $SVC_PROBE ${DB2HADRINSTANCE1?} ${DB2HADRINSTANCE2?} 
${DB2HADRDBNAME?} ${VERBOSE?} S
   rcs=$?

   # Online succesful must return 0 whilst monitor returns 1 
   # for Primary in Peer State and 3 for Primary not Peer
   if [ $rcs -eq 1 ]; then
      rc=0
   elif [ $rcs -eq 3 ]; then

 

 

 

 

162 WebSphere Commerce High Availability and Performance Solutions



      rc=0
      # Anything else, map directly from monitor
   else
      rc=$rcs
   fi

   return $rc
}
......

Take the following steps:

1. Register the DB2 instance as a resource that can be managed by the TSA 
cluster:

(P)# regdb2salin -a db2inst1 -r -l rayden2
(S)# regdb2salin -a db2inst1 -r -l salmon

2. Check the status of the resource group for the db2 instance. You can get an 
output like Figure 9-6.

Figure 9-6   Resource group for DB2 instance in TSA cluster domain

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 163



3. Register the DB2 HADR pair into the TSA cluster as a specific resource:

(P) reghadrsalin -a db2inst1 -b db2inst1 -d rmall

4. Check the status of the resource group of HADR. You can get an output like 
Figure 9-7.

Figure 9-7   Resource group for HADR in TSA cluster domain

 

 

 

 

164 WebSphere Commerce High Availability and Performance Solutions



5. Check the status of the entire HADR cluster. Figure 9-8 shows the status of 
the cluster.

Figure 9-8   Status of the entire cluster

 

 

 

 

 Chapter 9. High Availability solution for IBM DB2 Universal Database 165



 

 

 

 

166 WebSphere Commerce High Availability and Performance Solutions



Chapter 10. WebSphere Application 
Server and WebSphere 
Commerce federation and 
clustering

In this chapter, we describe how a WebSphere Commerce instance is created. 
We also show how to federate the instance to an IBM WebSphere Application 
Server Network Deployment cell and how to set up the instance to be distributed 
across multiple nodes of a WebSphere Application Server cluster.

Most of the information needed to perform these actions can be found in the 
whitepaper Clustering WebSphere Commerce V6.0 with WebSphere Application 
Server V6.0:

http://www.ibm.com/developerworks/websphere/library/tutorials/0804_
clustering1/0804_clustering1.html

10
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 167

http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


10.1  Scenario setup as described in the clustering 
whitepaper

We used the whitepaper Clustering WebSphere Commerce V6.0 with 
WebSphere Application Server V6.0 to set up a scenario with one Web server 
serving an application server cluster with two cluster members, as shown in 
Figure 10-1.

Figure 10-1   Scenario set up by following the Clustering WebSphere Commerce V6.0 with WebSphere 
Application Server V6.0 whitepaper

Internet

IBM HTTP
Server 2

IBM HTTP 
Server 1

WebSphere
Commerce
Server 2

Network 
Deployment
Manager

WebSphere
Commerce
Server 1

DB2
Server 1

IBM Load Balancer
(Dispatcher)

DB2
Server 2

Tivoli System
Automation 
Resource Groups

Standby Load
Balancer

Standby Network
Deployment
Manager

Active Nodes

Standby Nodes

Tivoli System Automation Cluster

IBM HTTP
Server 3

Domain Firewall

Protocol Firewall

App
Server
Cluster

Web
Server
Cluster

HTTP/HTTPS

Browser

 

 

 

 

168 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


For the nodes that are greyed out in Figure 10-1 on page 168, refer to the 
following chapters:

� Chapter 9, “High Availability solution for IBM DB2 Universal Database” on 
page 145, for the database tier

� Chapter 11, “Web server clustering” on page 185, for the Web tier

� 6.1.1, “Hardware-based High Availability” on page 57, for basic information 
about High Availability for the Network Deployment Manager

Table 10-1 lists the host names and IP addresses for the nodes used in our 
scenario.

Table 10-1   Host names and IP addresses for instance clustering

After the BASE product and fix packs are installed on all the servers, the 
following tasks need to be performed to create a WebSphere Commerce cluster:

� Create a WebSphere Commerce instance.

� Configure a IBM WebSphere Application Server Network Deployment 
Manager.

� Federate the First WebSphere Application Server Node.

� Federate an Additional WebSphere Application Server Node.

� Create a WebSphere Application Server Cluster.

Detailed instructions for these tasks are found in sections 2.4, 2.5, 3.1, 3.2, 3.3, 
and 3.4, respectively, in the whitepaper Clustering WebSphere Commerce V6.0 
with WebSphere Application Server V6.0.

Although the whitepaper describes the main steps for setting up Web server High 
Availability using IBM WebSphere Edge Components Load Balancer and 
additional Web servers, we experimented with additional scenarios (for example, 
NAT forwarding, High Availability for Load Balancer itself) and decided to give 

Node Host name IP address

Web server node 1 srvb501.torolab.ibm.com 9.26.126.120

WebSphere Commerce 
Server 1

goro.torolab.ibm.com 9.26.126.90

WebSphere Commerce 
Server 2

goro2.torolab.ibm.com 9.26.127.133

Network Deployment 
Manager

evergreen.torolab.ibm.com 9.26.30.222

 

 

 

 

 Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering 169

http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


the Web tier a special chapter on its own that contains more details than the 
paper (see Chapter 11, “Web server clustering” on page 185). 

For this reason we also provide relevant information about the initial Web server 
configuration, as taking place during instance creation, in the following section.

10.2  Details on configuring Web server node 1

After installing a Web server node, it needs to be configured for routing requests 
to the WebSphere Commerce application and for serving WebSphere 
Commerce specific static content.

Assuming that IBM HTTP Server has been installed on Web server node 1 as 
described in 8.5, “Install IBM HTTP Server” on page 127, the following sections 
point out some important configuration details with regard to serving a clustered 
WebSphere Commerce instance.

When a WebSphere Commerce instance is created (see the whitepaper 
Clustering WebSphere Commerce V6.0 with WebSphere Application Server 
V6.0), only one remote Web server can be automatically configured. We refer to 
it as Web server node 1, avoiding the term primary, as after the instance 
configuration is complete, it will not be different from any further Web servers 
serving the instance. For further Web server nodes, Web server definitions have 
to be added to the WebSphere Application Server configuration, and 
configuration files and static content have to be copied from Web server node 1 
manually, as described in Chapter 11, “Web server clustering” on page 185. Web 
server node 1 serves as a model or template for setting up additional Web 
servers.

Important: Before starting to set up your environment using the Clustering 
WebSphere Commerce V6.0 with WebSphere Application Server V6.0 
whitepaper, browse through the following section 10.2, “Details on configuring 
Web server node 1” on page 170, as it contains important information about 
the Web server setup. Read:

� 10.2.1, “Pre-instance creation tasks” on page 171, before creating the 
WebSphere Commerce instance

� 10.2.2, “Post instance creation tasks” on page 173, after creating the 
instance, but before federating it to the Deployment Manager cell

� 10.2.3, “Post federation tasks” on page 176, after federating the instance

 

 

 

 

170 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


10.2.1  Pre-instance creation tasks

This section describes configuration steps to perform before creating the 
WebSphere Commerce instance.

Configure directories, non-root_user, and permissions
As part of WebSphere Commerce instance creation, the instance creation scripts 
running on the application server attempt to upload Web server configuration 
files to Web server node 1. This directory can be freely chosen at instance 
creation time. We choose to store the Web server configuration in the same 
directory as on WebSphere Commerce node 1. The directory is:

WC_Install_Dir/instances/Instance_Name

The instance creation scripts also create the Web server configuration such that 
the static content for the WebSphere Commerce instance is expected to be in the 
same directory on the Web server as on the application servers, which is:

WAS_Install_Dir/profiles/Profile_Name/installedApps/Cell_Name/Applicati
on_Name

The instance that we use for our scenarios is called demo, so the variables in the 
directory names would have the values listed in Table 10-2.

Table 10-2   Directory variables for the Web servers

To configure the directories and permissions:

1. We create the two directories mentioned above, as follows (as root):

mkdir -p WC_Install_Dir/instances/Profile_Name
mkdir -p WAS_Install_Dir/profiles/Profile_Name/installedApps

/Cell_Name/Application_Name

WebSphere Commerce attempts to write configuration files to the Web server 
node 1 as non-root_user when creating instances (either using FTP or a 
mounted directory). For this reason, as well as for security reasons, we 
recommend that the IBM HTTP Server and IBM HTTP Server Plug-in 

Variable Value

Instance_Name demo

Profile_Name demo

Cell_Name WC_demo_cell

Application_Name WC_demo.ear

 

 

 

 

 Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering 171



installation directories, as well as any WebSphere Commerce specific content 
directories on the Web server, are owned by a non-root_user. 

2. As root, create a non-root group (non-root_group) and a non-root_user 
(non-root_user) with home directory /home/non-root_user, for which the 
non-root group is the default group. We recommend assigning the same 
group ID and user ID as for the non-root_user on WebSphere Commerce 
node 1 (see “Installation prerequisites” on page 106). You may use any tool 
available to you to create the user and the group. In AIX, this task can be 
performed by using the smitty tool. After creating the group and the user, you 
might still need to create the user’s home directory /home/non-root_user, if 
this has not been done by the tools.

3. The user’s umask should be 0022. Log in as the new user and at the prompt, 
type umask to check the umask. If it the result is not 022, change the user’s 
default umask accordingly, for example, by using smitty or adding the 
command umask 0022 to the user’s profile ~non-root_user/.profile.

4. As root, modify ownership and permissions for the IBM HTTP Server and IBM 
HTTP Server Plug-in installation directories, as well as for the directories 
created in step 1 on page 171 above:

chown -R non-root_user:non-root_group IHS_Install_Dir
chown -R non-root_user:non-root_group WAS_Install_Dir
chown -R non-root_user:non-root_group WC_Install_Dir
chown -R non-root_user:non-root_group Plugin_Install_Dir

Enable remote configuration
The application server node that is used to create WebSphere Commerce 
instances—WebSphere Commerce node 1—needs remote access to Web 
server node 1 for configuration. 

Remote configuration of Web server node 1 can be done using FTP or a 
mounted directory as part of WebSphere Commerce instance creation. We 
recommend FTP, as this method is more flexible, for example, if WebSphere 
Commerce node 1 and Web server nodes use incompatible file systems.

You need to enable an FTP server on Web server node 1. Ensure that the user 
non-root_user can log in from WebSphere Commerce node 1 (which is used to 
create the instance). The user non-root_user also needs the permissions to 
create directories as well as files in the WebSphere Commerce instance 
configuration directory (WC_Install_Dir/instances/Instance_Name) and the IBM 
HTTP Server Plug-in installation directory (Plugin_Install_Dir). 

 

 

 

 

172 WebSphere Commerce High Availability and Performance Solutions



To test FTP access, log in to your WebSphere Commerce node 1, create a 
temporary file, and try to upload it, as shown in Example 10-1, for our Web server 
node 1, srvb501.torolab.ibm.com.

Example 10-1   Testing the FTP connection and permissions for the non-root_user 
(wasuser in our example)

[root:/tmp/ftptest] > touch test.file
[root:/tmp/ftptest] > ftp srvb501.torolab.ibm.com
Connected to srvb501.torolab.ibm.com.
220 srvb501 FTP server (Version 4.2 Fri Oct 7 19:22:01 CDT 2005) ready.
Name (srvb501.torolab.ibm.com:root): wasuser
331 Password required for wasuser.
Password:
230-Last login: Wed Jul  4 19:47:13 EDT 2007 on /dev/pts/2 from 
dev01931.de.ibm.com
230 User wasuser logged in.
ftp> cd /usr/IBM/WebSphere/CommerceServer60/instances/demo
250 CWD command successful.
ftp> put test.file
200 PORT command successful.
150 Opening data connection for test.file.
226 Transfer complete.
1 bytes sent in 0.001459 seconds (0.669 Kbytes/s)
local: test.file remote: test.file
ftp> cd /opt/IBM/WebSphere/Plugins
250 CWD command successful.
ftp> put test.file
200 PORT command successful.
150 Opening data connection for test.vi.
226 Transfer complete.
1 bytes sent in 0.001459 seconds (0.669 Kbytes/s)
local: test.file remote: test.file
ftp> quit
221 Goodbye

10.2.2  Post instance creation tasks

You need to perform several tasks on Web server node 1 after the WebSphere 
Commerce has been created.

 

 

 

 

 Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering 173



Check the configuration directory
Check the configuration directory on Web server node 1. Three subdirectories 
should have been created, as shown in Example 10-2.

Example 10-2   Instance configuration directory (with non-root_user name wasuser)

# cd WC_Install_Dir/instances/Profile_Name
# ls -la
total 40
drwxr-xr-x   5 wasuser wasgroup 512 Jul 07 15:15 .
drwxr-xr-x   3 wasuser wasgroup 512 Jul 07 15:04 ..
drwxr-xr-x   2 wasuser wasgroup 512 Jul 07 15:15 httpconf
drwxr-xr-x   2 wasuser wasgroup 512 Jul 07 15:15 httplogs
drwxr-xr-x   2 wasuser wasgroup 512 Jul 07 15:15 web

If these subdirectories do not exist, the FTP configuration failed when the 
instance was created. In that case, you need to copy the three subdirectories 
from WC_Install_Dir/instances/Instance_Name on WebSphere Commerce node 
1.

Verify the Web server configuration file
During instance creation, the Web server configuration file, httpd.conf, is placed 
in WC_Install_Dir/instances/Instance_Name/httpconf. To verify it, open the file 
using a text editor (for example, vi). 

Then verify the locations of the document root directory, the process ID and log 
files, the SSL key files, and the IBM HTTP Server Plug-in files. The relevant lines 
are shown in Example 10-3 (indentation indicates that the line should be on one 
line with the previous line).

Example 10-3   Relevant directives in httpd.conf (not necessarily appearing in this order inside the file)

DocumentRoot "WC_Install_Dir/instances/Instance_Name/web"
CustomLog "WC_Install_Dir/instances/Instance_Name/httplogs/access_log"

common
ErrorLog "WC_Install_Dir/instances/Instance_Name/httplogs/error_log"
PidFile "WC_Install_Dir/instances/Instance_Name/httplogs/httpd.pid"
KeyFile "WC_Install_Dir/instances/Instance_Name/httpconf/keyfile.kdb"
LoadModule was_ap20_module Plugin_Install_Dir/bin/mod_was_ap20_http.so
LoadModule ibm_ssl_module modules/mod_ibm_ssl.so
WebSpherePluginConfig "WC_Install_Dir/instances/Instance_Name/httpconf/

plugin-cfg.xml"

 

 

 

 

174 WebSphere Commerce High Availability and Performance Solutions



Copy static content
The Web server configuration is now almost complete. You only need to copy the 
static content to be served by the Web server from WebSphere Commerce node 
1. Perform the following steps:

1. As the non-root_user, on WebSphere Commerce node 1, tar up the 
WebSphere Commerce instance application with the full path:

tar -cvf instance.ear.tar 
WAS_Install_Dir/profiles/Profile_Name/installedApps/Cell_Name/WC_<In
stance_Name>.ear

2. Then FTP (or SCP) this tar file to a temporary directory on Web server node 
1, logging in as the <non-root_user>.

3. As non-root_user, on Web server node 1, untar the tar file:

tar -xvf /tmp/instance.ear.tar

4. On Web server node 1, remove any JSP (*.jsp) and JAR (*.jar) files in 
WAS_Install_Dir/profiles/Profile_Name/installedApps/Cell_Name/WC_<Insta
nce_Name>.ear and all subdirectories.

Activate remote Web server management (optional)
You may configure WebSphere Application Server to manage your Web server 
using the administrative console. However, we recommend doing so after 
federating your WebSphere Commerce instance, as the remote management 
configuration is removed during federation. See “Activate remote Web server 
management” on page 179 for instructions on how to configure remote Web 
server management.

Start the Web server
On Web server node 1, as root, start IBM HTTP Server for the new WebSphere 
Commerce instance, as shown in Example 10-4. The command needs to be on 
one line.

Example 10-4   Starting the Web server process

IHS_Install_Dir/bin/apachectl -k start -f 
WC_Install_Dir/instances/Instance_Name/httpconf/httpd.conf

Important: IBM HTTP Server must be stopped and restarted by the root user.

 

 

 

 

 Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering 175



10.2.3  Post federation tasks

A new Web server configuration for Web server node 1 is created as part of the 
reconfiguration of the cell level documents after federating WebSphere 
Commerce node 1 to the IBM WebSphere Application Server Network 
Deployment cell used for clustering, as described in the whitepaper Clustering 
WebSphere Commerce V6.0 with WebSphere Application Server V6.0. We need 
to verify and update the new Web server definition for using it properly with 
WebSphere Commerce.

Update the Web server configuration
We use the Network Deployment Manager administration console to verify and to 
update the Web server configuration.

1. Open the Network Deployment Manager administration console in your 
browser and navigate to Servers → Web servers → webserver1 to display 
the Web server configuration panel, as shown in Figure 10-2. 

Figure 10-2   Web server configuration panel

 

 

 

 

176 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


2. On the Web server configuration panel for webserver1, make sure that the 
configuration file name contains the httpd.conf file under a directory named 
httpconf, which is again under the configuration directory that was specified 
during instance creation:

WC_Install_Dir/instances/Instance_Name/httpconf/httpd.conf

If you need to change the path and file name, make sure to click Apply after 
making your changes.

3. Click Plug-in properties on the right to show the configuration part for the 
IBM HTTP Server Plug-in for webserver1, as shown in Figure 10-3.

Figure 10-3   IBM HTTP Server Plug-in properties panel 

 

 

 

 

 Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering 177



4. The field label Plug-in installation location is misleading. The field does not 
need to point to the actual installation directory for the IBM HTTP Server 
Plug-in (Plugin_Install_Dir), but can point to any existing directory on the Web 
server. We recommend again using the httpconf directory under the directory 
specified during instance creation. The directory is used for two purposes:

– If Plug-in configuration file name does not contain an absolute path (for 
example, not starting with /), the actual location for the configuration file, 
plugin-cfg.xml (which is generated by Network Deployment Manager) is 
assembled as follows:

<Plug-in install location>/config/<Web server name>/<Plug-in 
configuration file name>

For example, in our case, if we used the plug-in installation location as 
shown in Figure 10-3 on page 177, and put just plugin-cfg.xml as plug-in 
configuration file name, the resulting path would be:

WC_Install_Dir/instances/demo/httpconf/config/webserver1/plugin-c
fg.xml

– In the IBM HTTP Server Plug-in configuration file, two files used for SSL 
connections, plugin-key.kdb and plugin-key.sth, are referenced using the 
following paths:

<Plug-in install location>/etc/plugin-key.kdb
<Plug-in install location>/etc/plugin-key.sth

WebSphere Commerce puts the file plugin-cfg.xml into the httpconf 
subdirectory of the configuration directory specified on the Web server panel 
of the instance creation wizard.

As we recommend using WC_Install_Dir/instances/Instance_Name as the 
configuration directory, we also recommend using the following field values 
on the Plug-in properties panel:

– Plug-in installation location

WC_Install_Dir/instances/Instance_Name/httpconf

– Plug-in configuration file name

WC_Install_Dir/instances/Instance_Name/httpconf/plugin-cfg.xml

Note: If you use an absolute path, clicking the View button (on the right 
side of the Plug-in configuration file name field) displays an empty 
configuration file. If you want to use this feature, you need to specify a 
relative name and create the corresponding directory structure on your 
Web server. In the latter case, we recommend using just plugin-cfg.xml 
as the file name and creating the config/webserver1 directory under the 
directory specified in the Plug-in installation location field.

 

 

 

 

178 WebSphere Commerce High Availability and Performance Solutions



WebSphere Commerce also creates the httplogs directory under the 
configuration directory on the Web server for IBM HTTP Server and IBM 
HTTP Server Plug-in logs, so we recommend as field value for the Plug-in log 
file:

Plug-in logging > Log file name: 
WC_Install_Dir/instances/Instance_Name/httplogs/http_plugin.log

Again, if you needed to make any changes on the Plug-in properties panel, 
click Apply after making your changes.

5. You can save your changes now, or continue following the instructions. In the 
next section, “Activate remote Web server management” on page 179, further 
changes are made using the Network Deployment Manager administration 
console before configuration is saved. If you decide to save now, follow steps 
4 on page 182 and 5 on page 182 to save the configuration. 

6. Log on to Web server node 1 as wasuser.

7. On the Web server, go to the directory that you specified as the plug-in 
installation location in step 4 on page 178 above and make sure that there is 
an etc subdirectory, for example:

WC_Install_Dir/instances/Instance_Name/httpconf/etc

Create the directory if necessary.

8. Copy all plugin-key.* files from their original location, which is the etc directory 
under the actual IBM HTTP Server Plug-in installation directory 
(Plugin_Install_Dir/etc), to the new etc directory just created.

Activate remote Web server management
Once the WebSphere Commerce instance is federated to a Network Deployment 
cell, the Web server is configured as an unmanaged Web server node. As we 
use IBM HTTP Server, IBM WebSphere Application Server Network Deployment 
can still manage the Web server, for example, starting and stopping it and 
propagating the IBM HTTP Server Plug-in configuration file to the Web server 
after generating that file. (See 3.4, “Web server topology in a Network 
Deployment cell,” in the WebSphere Application Server V6 Scalability and 

Note: If you choose to use the actual IBM HTTP Server Plug-in installation 
directory as the plug-in installation location in step 4 above, you do not 
need to copy the files. However, we recommend using a dedicated 
configuration directory for the WebSphere Commerce instance. In a 
production environment you should then replace the default self-signed 
SSL certificates by production certificates. This applies both to the Web 
server certificates (keyfile.*) and to the plug-in certificates (plugin-key.*)

 

 

 

 

 Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering 179

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


Performance Handbook, SG24-6392, for more information about managing Web 
servers.)

Network Deployment Manager needs remote access to the Web server node for 
administrating it. For remote administration to work, you need to create an 
administrative user for IBM HTTP Server and start the administrative server as 
follows:

1. As wasuser, on Web server node 1, create the administrative user ID:

# IHS_Install_Dir/bin/htpasswd -cb IHS_Install_Dir/conf/admin.passwd 
ihsadmin ihsadmin_passwd

2. Modify IHS_Install_Dir/conf/admin.conf, and change the run user and group 
settings from nobody to wasuser, as shown in Example 10-5. 

Example 10-5   Setting the run user and group for IBM HTTP Server administrative server

# Default user and group settings for the server
User wasuser
Group wasgroup

3. As root, start the administrative server:

# IHS_Install_Dir/bin/adminctl start

To be able to use Network Deployment Manager to start and stop your Web 
server and to update the IBM HTTP Server Plug-in configuration, you also need 
to configure remote Web server management in the Network Deployment 
Manager administrative console as follows:

1. Navigate to Servers → Web servers → webserver1 → Remote Web 
server management.

Note: The administrative server is not needed at runtime, so we 
recommend not adding this command to any system startup scripts. If you 
still want to run the administrative server automatically, you may do so, but 
you need to be aware of the security implications of running the 
administrative server and configure your firewalls to restrict access to the 
administrative server.

 

 

 

 

180 WebSphere Commerce High Availability and Performance Solutions



2. Enter the user name and password for the IBM HTTP Server administrative 
server, which we configured and started in “Activate remote Web server 
management (optional)” on page 175, as shown in Figure 10-4. The default 
port is 8008. This can be changed in IHS_Install_Dir/conf/admin.conf on Web 
server node 1, where the port is specified as the parameter of the listen 
directive.

Figure 10-4   Configuring remote Web server management

 

 

 

 

 Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering 181



3. Click OK. A message will be displayed about changes having been made to 
the configuration, as shown in Figure 10-5.

Figure 10-5   Going to the Save workspace changes dialog

4. Click the hyperlinked word Save. The configuration saving dialog is displayed 
(Figure 10-6).

Figure 10-6   Save workspace changes dialog

5. Check Synchronize changes with Nodes, then click Save.

 

 

 

 

182 WebSphere Commerce High Availability and Performance Solutions



The Web server can now be started and stopped, and the IBM HTTP Server 
Plug-in configuration can be propagated to it through the Server → Web servers 
panel in the administrative console.

Propagate IBM HTTP Server Plug-in configuration
If automatic generation and propagation of IBM HTTP Server Plug-in 
configuration and remote Web server management are activated (see above), 
the plug-in configuration is automatically updated on all Web servers. If 
automatic propagation is not activated for the Web server, the plug-in has to be 
manually propagated to the Web server by performing the following steps:

1. Navigate to Servers → Web servers (Figure 10-7).

Figure 10-7   Web servers page

2. Under Select, check all webserver1 for which automatic propagation is not 
activated.

3. Click Generate Plug-in, then Propagate Plug-in.

This still requires that remote management is set up for the Web server and 
that the IBM HTTP Server administrative server is running on the Web server 
(see Figure 10-7). 

 

 

 

 

 Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering 183



If remote management is disabled, the plug-in configuration file can still be 
automatically generated, but it needs then to be copied manually to the Web 
server. The path to the generated configuration file on the Network 
Deployment Manager is displayed after clicking Generate Plug-in, as shown 
in Figure 10-8.

Figure 10-8   Plug-in generation message

From there, you need to copy the plugin-cfg.xml file to your Web server. On 
the Web server, update the WebSpherePluginConfig directive in the 
httpd.conf file to point to the copied file. 

The Web server configuration is now complete.

Restart the Web server
To apply the configuration changes, restart the Web server. If remote 
management is enabled, you may do so by selecting webserver1 on the Web 
servers page (Servers → Web servers, as shown in Figure 10-7 on page 183), 
then clicking Stop and then Start.

If you do not use remote management, log on to Web server node 1as root and 
issue the two commands given in Example 10-6, where each command needs to 
be on one line.

Example 10-6   Restarting IBM HTTP Server manually

IHS_Install_Dir/bin/apachectl -k stop -f 
WC_Install_Dir/instances/demo/httpconf/httpd.conf
IHS_Install_Dir/bin/apachectl -k start -f 
WC_Install_Dir/instances/demo/httpconf/httpd.conf

 

 

 

 

184 WebSphere Commerce High Availability and Performance Solutions



Chapter 11. Web server clustering

In this chapter, we describe how to add additional Web servers for our 
WebSphere Commerce instance. We also show how to configure IBM 
WebSphere Edge Components Load Balancer to distribute HTTP requests 
between the Web servers and monitor the Web servers to be able to detect 
outages and automatically stop routing traffic to failed Web servers.

We also show how Load Balancer can be made highly available using a primary 
and a backup server that are able to monitor each other by exchanging heartbeat 
messages.

Figure 11-1 highlights the nodes that we configure in this chapter.

Figure 11-1   Web tier additional configuration in this chapter

11
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 185



11.1  Add additional Web servers

As we only use active Web server nodes managed by Load Balancer, rather than 
having active/standby pairs of machines (see 7.1, “Introduction to Web server 
High Availability” on page 81), the configuration is identical on all Web server 
machines. All necessary files can be copied from Web server node 1, which was 
configured as part of WebSphere Commerce instance creation.

We recommend adding additional Web servers only after federation (see 
Clustering WebSphere Commerce V6.0 with WebSphere Application Server 
V6.0), as the Web server configurations are removed from the WebSphere 
Application Server cell during federation.

We describe how to add one Web server node to the cell configuration of a 
federated WebSphere Commerce instance. We refer to it as Web server node 2. 
In our scenario, its host name is srvb504.torolab.ibm.com and the IP address is 
9.26.127.157.

11.1.1  Preparation

Before we configure Web server node 2 to serve content and route requests for 
our WebSphere Commerce instance, it needs to prepared as follows:

1. Create directories and a non-root_user, and set permissions for your new 
Web server exactly as described for Web server node 1 in “Configure 
directories, non-root_user, and permissions” on page 171.

2. Make sure that the Web server’s host name is resolvable to its IP address on 
your Network Deployment Manager node and all application server nodes, 
either by using DNS or by adding a line to your hosts file (/etc/hosts on AIX, 
Linux, and other UNIX-like operating systems).

3. If you have an inbound firewall, configure it so that Web server node 2, like 
Web server node 1, is able to initiate TCP connections to the application 
server nodes and to accept TCP connections from Network Deployment 
Manager.

11.1.2  Copy files from Web server node 1

We need to copy the WebSphere Commerce configuration and static content to 
Web server node 2:

1. On Web server node 1, as wasuser, create tar files for the configuration and 
the static content:

tar -cvf instanceconfig.tar WC_Install_Dir/instances/Instance_Name

 

 

 

 

186 WebSphere Commerce High Availability and Performance Solutions

https://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


tar -cvf instance.ear.tar WAS_Install_Dir/profiles/Profile_Name/
installedApps/Cell_Name/WC_<Instance_Name>.ear

2. Copy the files to /tmp on Web server node 2, for example, using FTP or SCP, 
and make sure that wasuser can read the copies.

3. As wasuser, untar the files to the same directories:

tar -xvf /tmp/instanceconfig.tar
tar -xvf /tmp/instance.ear.tar

4. Verify that all copied directories and files are owned by wasuser.

11.1.3  Modify the Web server configuration

The Web server configuration file, httpd.conf, is copied from Web server node 1 
to WC_Install_Dir/instances/Instance_Name/httpconf/httpd.conf. After copying, it 
still contains the host name of Web server node 1 in Listen, VirtualHost, and 
ServerName statements. 

Open the WC_Install_Dir/instances/Instance_Name/httpconf/httpd.conf file in a 
text editor and replace all occurrences of the host name of Web server node 1 by 
the host name of Web server node 2.

11.1.4  Add the new Web server to the cell configuration

Perform the following steps to add the new Web server to your Network 
Deployment Manager cell configuration:

1. Log on to your Network Deployment Manager as non-root_user.

2. Change to the WebSphere Application Server installation directory 
(ND_Install_Dir, the default is /usr/IBM/WebSphere/AppServer on AIX, 
/opt/IBM/WebSphere/AppServer on Linux).

3. Execute the following command on one line:

./wsadmin.sh -profileName DmgrProfileName -f 
configureWebServerDefinition.jacl WebServerName IHS 
’IHS_Install_Dir’ 
’WC_Install_Dir/instances/Instance_Name/httpconf/httpd.conf’ 80 
MAP_ALL ’WC_Install_Dir/instances/Instance_Name/httpconf/’ unmanaged 
WebServerNodeName WebServerHostName WebServerOS

 

 

 

 

 Chapter 11. Web server clustering 187



For example, our Web server node 2 (srvb504.torolab.ibm.com, running on 
AIX) is added as webserver2 by the command shown in Example 11-1.

Example 11-1   Adding a Web server definition to the cell configuration

./wsadmin.sh -profileName Dmgr01 -f configureWebserverDefinition.jacl webserver2 IHS 
'/usr/IBMIHS' 
'/usr/IBM/WebSphere/CommerceServer60/instances/demo/httpconf/httpd.conf' 80 MAP_ALL 
'/usr/IBM/WebSphere/CommerceServer60/instances/demo/httpconf/' unmanaged 
srvb504.torolab.ibm.com srvb504.torolab.ibm.com aix

In the Network Deployment Manager administrative console, you should now 
see two Web servers when navigating to Servers → Web servers, as shown 
in Figure 11-2.

Figure 11-2   Web servers page

4. For the new Web server, verify and change the configuration, and activate 
remote Web server management as described for the first Web server in 
“Update the Web server configuration” on page 176 and “Activate remote 
Web server management (optional)” on page 175. Do not propagate the 
plug-in configuration at this point.

 

 

 

 

188 WebSphere Commerce High Availability and Performance Solutions



5. Verify the application mapping by navigating to Applications → Enterprise 
Applications → WC_<Instance_Name> > Map modules to servers. The 
modules of the WebSphere Commerce instance application (WC_demo in 
our case) should be mapped to all Web servers and to the application server 
cluster. This is shown for each module in the Server column, as shown in 
Figure 11-3.

Figure 11-3   Map modules to server panel - Server column

If this is not the case, perform the following steps:

a. Select the cluster and all Web servers in the Clusters and Servers combo 
box, as shown in Figure 11-4.

Figure 11-4   Selecting the servers for mapping

b. Then click the Select all icon, as shown in Figure 11-5.

Figure 11-5   Selecting all application modules

 

 

 

 

 Chapter 11. Web server clustering 189



c. Click Apply (Figure 11-4 on page 189) and verify the mappings in the 
Server column.

d. Click OK below the list of application modules.

6. To add virtual host aliases for the new Web server, navigate to 
Environments → Virtual Hosts. 

7. For each WebSphere Commerce virtual host (VH_<Instance_Name>...), click 
the virtual host name, then click Host Aliases. Add host aliases for the new 
Web server for each port of the virtual host by clicking New and adding the 
Web server and port information, as shown in Figure 11-6.

Figure 11-6   Adding a host alias to the VH_<Instance_Name> virtual host

 

 

 

 

190 WebSphere Commerce High Availability and Performance Solutions



Click OK and repeat this for each port of the virtual host. Also, add host 
aliases for the short name of the Web servers. Figure 11-7 shows the 
complete host alias list for the VH_<Instance_Name> virtual host for our two 
Web servers (our instance name is demo).

Figure 11-7   Complete host alias list for VH_<Instance_Name>

Add host aliases for the Web server’s short and full qualified host names to all 
VH_<Instance_Name>... virtual hosts for the relevant ports. For example, for 
the VH_<Instance_Name>_tools virtual host, add aliases for port 8000. For 
VH_<Instance_Name>_admin, add aliases for port 8002, and so on.

Total 8

 

 

 

 

 Chapter 11. Web server clustering 191



8. To save the configuration changes, click Save, as shown in Figure 11-8.

Figure 11-8   Saving the configuration - step 1

9. On the save page, check Synchronize changes with Nodes and click the 
Save button, as shown in Figure 11-9.

Figure 11-9   Virtual Hosts

The new Web server configuration is now complete and saved.

10.Propagate the IBM HTTP Server Plug-in configuration to the new Web server 
as explained for Web server node 1 in ““Propagate IBM HTTP Server Plug-in 
configuration” on page 183.

11.Start (or restart) the new Web server as explained for Web server node 1 in 
“Restart the Web server” on page 184.

 

 

 

 

192 WebSphere Commerce High Availability and Performance Solutions



The store and administration pages of your WebSphere Commerce application 
should now be accessible through the new Web server node. Refer to the 
following sections for instructions on how to configure load balancing for all your 
Web servers using IBM WebSphere Edge Components Load Balancer.

11.2  Configure Load Balancer 

We describe how you can configure Load Balancer and your Web servers to set 
up a Web server cluster for Load Balancer to balance and monitor. 

11.2.1  MAC forwarding

We set up MAC forwarding as described in 5.2, “Load Balancer configuration: 
basic scenario,” in the WebSphere Application Server V6 Scalability and 
Performance Handbook, SG24-6392, and add configuration steps specific to 
WebSphere Commerce.

Table 11-1 lists the host names and IP addresses of our nodes.

Table 11-1   Host names and IP addresses for MAC forwarding

For the following setup, we assume that Load Balancer is installed on Web 
server 2 (collocation). 

Configure the Load Balancer cluster using the GUI
The configuration can be done using the Load Balancer graphical user interface 
(lbadmin) or using the command-line interface (dscontrol). We first explain how 
to do it using the GUI, and later we show the commands (which give you the 
same result). 

In order to send commands through the GUI or through the command line 
interface to Load Balancer, you need to start the component element that 
receives those commands and executes them.

1. Start the Dispatcher server in order to start configuring it. To do so, run the 
following command:

Node/cluster Host name IP address

Web server node 1 srvb501.torolab.ibm.com 9.26.126.120

Web server node 2 srvb504.torolab.ibm.com 9.26.127.157

Load Balancer cluster wcha.torolab.ibm.com 9.26.126.103

 

 

 

 

 Chapter 11. Web server clustering 193



dsserver

2. Open the Load Balancer GUI by running the following command:

lbadmin

The Load Balancer GUI is a Java client that can also be installed on a client 
machine, so the administrator can work remotely.

3. When the Load Balancer administration tool comes up, right-click Dispatcher 
in the left pane and select Connect to Host, as shown in Figure 11-10.

Figure 11-10   Load Balancer administration console

 

 

 

 

194 WebSphere Commerce High Availability and Performance Solutions



4. A pop-up window is displayed, prompting you for the Load Balancerserver 
that you want to connect to. Select the host name of the Load Balancer 
server, as shown in Figure 11-11.

Figure 11-11   Selecting the Load Balancer server

After connecting to the Load Balancer server, a new entry is added to the GUI 
window in the left pane, containing the host name of the selected server. All 
the configuration we perform from now on is added to this element in a tree 
structure. 

 

 

 

 

 Chapter 11. Web server clustering 195



5. Now we need to start the Executor component, which is the component that 
actually distributes the load to the servers. Right-click 
Host:srvb504.torolab.ibm.com and select Start Executor, as shown in 
Figure 11-12.

Figure 11-12   Starting the Executor

If Executor is started successfully, a new item named Executor is added to 
the left pane. In our scenario, the Load Balancer IP address is 9.26.126.103, 
so this IP address is shown in this new item as well. 

6. The next thing that we need to do is to add our cluster. In our scenario, we 
have a cluster called wcha.torolab.ibm.com (9.26.126.103),and this cluster 
contains two Web servers, srvb501.torolab.ibm.com (9.26.126.120) and 
srvb504.torolab.ibm.com (9.26.127.157).

Tip: For every action that you perform, you can see a message in the 
bottom pane of the GUI window that confirms whether the action was 
performed successfully.

 

 

 

 

196 WebSphere Commerce High Availability and Performance Solutions



Right-click Executor: 9.26.127.157 and select Add Cluster, as shown in 
Figure 11-13.

Figure 11-13   Adding a cluster

7. A new window is displayed, prompting for the necessary information to add 
the new cluster. Type the name of the cluster in the Cluster field (we 
recommend using the host name). Then type the cluster IP address in the 
Cluster address field, and make sure that the Load Balancer’s IP address 
(which in our scenario is the same address as that of Web server node 2) is 
selected in the Primary host for the cluster field. 

 

 

 

 

 Chapter 11. Web server clustering 197



Check the option Configure this cluster?, as shown in Figure 11-14. This 
option is used to create an IP alias in the operating system for the cluster IP 
address. You can also uncheck this option and add the IP alias manually 
using operating system tools or commands.

Figure 11-14   Filling in the information for adding a cluster

8. If you checked the Configure this cluster? check box, another window is 
displayed. Enter the interface identification in the Interface name field (in our 
server the interface that is associated with the IP address 9.26.126.103 is 
en0) and the network mask in the Netmask field, as shown in Figure 11-15.

Figure 11-15   Configuring the interface

A new item that identifies your cluster is added to the left pane of the GUI.

 

 

 

 

198 WebSphere Commerce High Availability and Performance Solutions



9. Add each port that will be load balanced by Dispatcher. Right-click Cluster: 
wcha.torolab.ibm.com and select Add Port, as shown in Figure 11-16 on 
page 199.

Figure 11-16   Adding a port

The port that we are adding refers to the port that the clients will access. For 
WebSphere Commerce, clients typically use ports 80 (HTTP) and 443 
(HTTPS) to access the stores. You may also want to add the ports for the 
administrative consoles (8000, 8002, and so on) if you want console access 
to be load balanced. In our scenario, we use ports 80 and 443.

 

 

 

 

 Chapter 11. Web server clustering 199



10.Fill in the number of the port in the Port number field and select MAC Based 
Forwarding in the Forwarding method field, as shown in Figure 11-17.

Figure 11-17   Entering port information

11.Add the servers that will receive the load for port 80 of cluster 
cluster.itso.ibm.com. Right-click Port:80 and select Add Server, as shown in 
Figure 11-18.

Figure 11-18   Adding a server to a port

 

 

 

 

200 WebSphere Commerce High Availability and Performance Solutions



The next window prompts you for the information of the first server. Fill in the 
host name of your Web server in the Server field and enter its IP address in 
the Server address field, as shown in Figure 11-19 on page 201, for Web 
server node 1 of our scenario.

Figure 11-19   Entering balanced server information

Note that the Network router address check box is disabled because we 
selected MAC forwarding and this forwarding method does not allow load 
balancing to remote servers.

Repeat step 11 on page 200 for all servers in the cluster.

Repeat step 10 on page 200, including step 11 on page 200, for all load 
balanced ports.

 

 

 

 

 Chapter 11. Web server clustering 201



After adding all ports and adding all servers to each port, the tree view for our 
scenario is displayed, as shown in Figure 11-20.

Figure 11-20   Configuration tree view after adding all ports and servers

The load balancing part of the configuration is done. All the information that 
Dispatcher needs to provide load balancing for our cluster is now configured. 
But we also need the Manager component because we want to work with 
dynamic weight values and failure detection.

 

 

 

 

202 WebSphere Commerce High Availability and Performance Solutions



12.Therefore, we now need to start the Manager component. Right-click Host: 
srvb504.torolab.ibm.com and select Start Manager, as shown in 
Figure 11-21.

Figure 11-21   Starting the Manager

A window is displayed in which you can select the name of the Manager log 
file and the metric port, as shown in Figure 11-22 on page 203. We choose 
the default options.

Figure 11-22   Manager options

 

 

 

 

 Chapter 11. Web server clustering 203



The Manager needs advisors in order to generate a weight value based on 
the response time from each server in the cluster. The advisor is also needed 
in order to detect a failure in the service of any balanced server.

Due to the importance of the advisor, when you start Manager, the Load 
Balancer GUI automatically displays a pop-up window prompting you to start 
an advisor. 

In our scenario, we are load balancing Web servers using the HTTP and 
HTTPS protocols. Therefore, we first use the default values, as shown in 
Figure 11-23, which are HTTP in the Advisor name field and 80 the Port 
number field. 

Figure 11-23   Starting the HTTP advisor

You can also choose a specific cluster with which to associate this advisor. 
By leaving the optional Cluster to advise on field blank, this advisor is 
automatically associated with all clusters that are load balancing port 80. 

If you want to specify a log filename for this advisor, type in the desired name 
in the Log filename field. The default filename for the HTTP advisor is 
Http_80.log.

 

 

 

 

204 WebSphere Commerce High Availability and Performance Solutions



13.As we are also balancing the HTTPS port 443, we start an advisor for SSL by 
right-clicking Manager and selecting Start advisor, as shown in 
Figure 11-24. 

Figure 11-24   Starting an additional advisor

 

 

 

 

 Chapter 11. Web server clustering 205



The pop-up window for specifying the advisor information is displayed again 
an we choose the SSL advisor, as shown in Figure 11-25.

Figure 11-25   Starting the SSL advisor

Again, leaving the Cluster to advise on field blank, the advisor is associated 
with all clusters load balancing port 443. The default log file name for the SSL 
advisor is Ssl_443.log.

14.If Load Balancer is collocated with one of the Web servers, we need to 
change the server configuration. This is the case in our scenario where Load 
Balancer is collocated with Web server node 2, srvb504.torolab.ibm.com.

Note: The SSL advisor is a lightweight advisor for SSL connections. It 
does not establish a full SSL socket connection with the server. The SSL 
advisor opens a connection, sends an SSL CLIENT_HELLO request, waits 
for a response, closes the connection, and returns the elapsed time as a 
load. There is also an HTTPS advisor. It is a heavyweight advisor for SSL 
connections. It performs a full SSL socket connection with the server. The 
HTTPS advisor opens an SSL connection, sends an HTTPS request, waits 
for a response, closes the connection, and returns the elapsed time as a 
load. For more information about advisors, refer to Load Balancer 
Administration Guide, GC31-6858.

 

 

 

 

206 WebSphere Commerce High Availability and Performance Solutions



Select Server: srvb504.torolab.ibm.com under Port: 80. On the right pane, 
select the Configuration settings tab and select yes in the 
Collocated drop-down box, as shown in Figure 11-26.

Figure 11-26   Configuring collocation

After making the change, do not forget to click the Update 
Configuration button at the bottom. (If you do not click the button and 
navigate away from the view, your changes are not saved.)

Repeat step Figure 14 on page 206 for all occurrences of the collocated 
server under all ports.

We have concluded the basic load balancing configuration, so we should 
save the configuration performed so far.

 

 

 

 

 Chapter 11. Web server clustering 207



15.Right-click Host: srvb504.torolab.ibm.com and select Save Configuration 
File As, as shown in Figure 11-27.

Figure 11-27   Saving the Load Balancer configuration

A pop-up window is displayed (Figure 11-28). In the Filename field, you can 
either select an existing configuration file (which will be overwritten) or you 
can enter a new filename.

The filename default.cfg is the default name for Load Balancer. This means 
that when you start the Dispatcher server (dsserver), it will look for the file 
default.cfg and, if it exists, it will load it. default.cfg is stored in 
<LB_Install_Dir>/servers/configurations/dispatcher.

Figure 11-28   Choosing the configuration filename

 

 

 

 

208 WebSphere Commerce High Availability and Performance Solutions



Command-line configuration
The configuration file, which has been saved after configuring the cluster using 
the administration GUI, is shown in Example 11-2. It contains the commands for 
configuring the same cluster as described above. Note that each individual 
command has to be on one line in the configuration file. However, because of 
size limitations, some lines might be printed on two lines in our examples.

Example 11-2   Cluster configuration commands

dscontrol set loglevel 1
dscontrol executor start

dscontrol cluster add wcha.torolab.ibm.com address 9.26.126.103 
primaryhost 9.26.127.157

dscontrol executor configure 9.26.126.103 en0 255.255.254.0

dscontrol port add wcha.torolab.ibm.com:80 reset no

dscontrol server add wcha.torolab.ibm.com:80:srvb504.torolab.ibm.com 
address 9.26.127.157
dscontrol server set wcha.torolab.ibm.com:80:srvb504.torolab.ibm.com 
collocated y

dscontrol server add wcha.torolab.ibm.com:80:srvb501.torolab.ibm.com 
address 9.26.126.120

dscontrol port add wcha.torolab.ibm.com:443 reset no

dscontrol server add wcha.torolab.ibm.com:443:srvb504.torolab.ibm.com 
address 9.26.127.157
dscontrol server set wcha.torolab.ibm.com:443:srvb504.torolab.ibm.com 
collocated y

dscontrol server add wcha.torolab.ibm.com:443:srvb501.torolab.ibm.com 
address 9.26.126.120

dscontrol manager start manager.log 10004
dscontrol advisor start Http 80 Http_80.log
dscontrol advisor start Ssl 443 Ssl_443.log

Configure Web servers for MAC forwarding
When using MAC forwarding with Load Balancer, traffic for all ports is routed 
through the primary Load Balancer. Requests will therefore carry the Load 

 

 

 

 

 Chapter 11. Web server clustering 209



Balancer cluster IP address as destination. To be able to handle these requests, 
the Web servers need to be configured as follows.

� Add the Load Balancer cluster IP address as non-advertising alias address to 
the loopback interface.

� Modify the configuration for WebSphere Commerce instances in httpd.conf.

On AIX, the loopback interface is aliased using the ifconfig command. For Web 
server node 1 in our scenario, the command is issued as follows:

# ifconfig lo0 alias 9.26.126.103 netmask 255.255.255.255

Add this command to the end of the /etc/rc.net file so that it will be run every time 
the networking configuration is run (for example, after a system reboot).

For examples of how to set up the loopback alias on other operating systems, 
refer to the Load Balancer Administration Guide, GC31-6858. In any case, after 
adding the alias, check for extra routes that may have been created, and remove 
them according to the correct procedure for each operating system.

11.2.2  NAT forwarding

In this scenario, we use the same two Web servers that we worked with in 11.2.1, 
“MAC forwarding” on page 193. However, we use a Load Balancer in a different 
network, which is installed on a Solaris system. We also add a third Web server, 
which is in a geographically remote network and in a different domain. 

We now use Network Address Translation (NAT) as the forwarding method 
instead of MAC forwarding. We assume an unconfigured Load Balancer for this 
scenario. So if you have set up MAC forwarding and plan to use the same 
machine, then you need to delete the existing configuration. You also need an 
additional IP address in the same subnet as your cluster address, which is used 
as the return address.

Important: Make sure you use the netmask option with the netmask 
255.255.255.255 when you are adding an IP alias to the loopback device in 
AIX. If you use an incorrect netmask, or do not use this option at all. A new 
route will be added to your routing table using the loopback as the gateway, 
which causes routing problems.

 

 

 

 

210 WebSphere Commerce High Availability and Performance Solutions



Table 11-2 lists the host names and IP addresses of our nodes.

Table 11-2   Host names and IP addresses for NAT forwarding

When using Solaris on the Load Balancer machine, install Load Balancer as 
described in 8.6, “Install Load Balancer” on page 140.

Configure the Load Balancer cluster using the GUI 
To configure NAT forwarding:

1. Start dsserver, connect to the Dispatcher server, and start Executor, as 
explained in steps 1 on page 193 through 5 on page 196.

Node/cluster Host name IP address

Web server node 1 srvb501.torolab.ibm.com 9.26.126.120

Web server node 2 srvb504.torolab.ibm.com 9.26.127.157

Web server node 3 m106958f.itso.ral.ibm.com 9.42.171.83

Load Balancer pistons.torolab.ibm.com 9.26.52.215

Load Balancer cluster nat1.torolab.ibm.com 9.26.52.154

Load Balancer return addr. (nat2.torolab.ibm.com) 9.26.52.156

Important: On Solaris 9, we had to install Version 6.0.2.58 of Load Balancer 
to prevent the machine from crashing when accessing it from a remote 
browser after completing the configuration. Version 6.0.2.58 can be directly 
installed on top of the 6.0 license file as described for Version 6.0.2 in 8.6, 
“Install Load Balancer” on page 140. If you plan to install it on top of an 
existing installation, you need to remove all packages of the existing 
installation except the license first.

 

 

 

 

 Chapter 11. Web server clustering 211



2. After starting Executor, click Executor: 9.26.52.215 in the left pane of the 
GUI window, and locate the Client gateway address field in the right pane 
(see Figure 11-29). This field needs to be filled in order to enable NAT/NAPT 
and CBR forwarding methods. This is the IP address of the gateway router 
that handles traffic from the cluster back to the client browser. 

In our scenario, we used the default gateway IP address in our configuration, 
which is 9.26.52.1. 

Enter the correct IP address and click Update Configuration.

Figure 11-29   Configuring the client gateway address

3. After configuring the client gateway address, we need to configure the cluster. 
Right-click Executor: 9.26.52.215 in the left pane of the GUI and select Add 
Cluster, as shown in Figure 11-30 on page 213.

Important: We are using 9.26.52.1 because we use the same IP address 
for inbound and outbound traffic. In case you are not using a common IP 
address, you need to specify the IP address of the router that serves as the 
first hop on the way from the Load Balancer to the client.

 

 

 

 

212 WebSphere Commerce High Availability and Performance Solutions



Figure 11-30   Add a cluster - NAT configuration

The information provided for the cluster creation is similar to what we used in 
the MAC scenario (see steps 6 on page 196 through 8 on page 198). Details 
are shown in Figure 11-31.

Figure 11-31   Cluster information

 

 

 

 

 Chapter 11. Web server clustering 213



If you selected the Configure this cluster? check box, you need to also 
provide the information to add the IP alias, as shown in Figure 11-32. Note 
that on Solaris 9, the Ethernet network interface is called hme0.

Figure 11-32   Configuring the interface

4. Right-click Cluster: nat1.torolab.ibm.com in the left pane and select Add 
Port, as shown in Figure 11-33.

Figure 11-33   Add a port

 

 

 

 

214 WebSphere Commerce High Availability and Performance Solutions



A pop-up window is displayed similar to the one that we had in the NAT 
scenario. Type 80 into the Port number field, select NAT / NAPT as the 
Forwarding method, and click OK. See Figure 11-34.

Figure 11-34   Adding a port - NAT forwarding method

5. Right-click Port: 80 in the left pane and select Add Server, as shown in 
Figure 11-35.

Figure 11-35   Add a server

A pop-up window is displayed, but it contains more fields compared to the 
one we got when configuring MAC forwarding.

The two extra fields are the return address and the network router address. 

 

 

 

 

 Chapter 11. Web server clustering 215



The return address is an extra IP address that is used by Dispatcher as the 
source IP address of the packets that are sent to the Web servers. You 
cannot use neither the cluster address or the non-forwarding address (NFA) 
as the return address, so you need one additional IP address for this 
configuration.

The network router address is the router that serves as the first hop on the 
way from the Load Balancer to the load balanced server. With our single 
subnet scenario, it is the same address as the client gateway. This field is 
provided in the server configuration in case you have several balanced 
servers spread in different remote networks, and you need a different router 
IP address to reach each server.

We added our first Web server, as shown in Figure 11-36. We used the same 
values that we used for MAC forwarding (see Figure 11-19 on page 201) and 
we also provided the IP address we selected as our return address and our 
default gateway IP address as our network router address.

Figure 11-36   Adding the first balanced server

Note: When you configure NAT/NAPT on a collocated server, you need to 
use the local IP address as the network router address. This tells 
Dispatcher that the desired server is collocated on the local machine.

 

 

 

 

216 WebSphere Commerce High Availability and Performance Solutions



6. Add the second Web server. We used the same values for our second Web 
server as the ones we used for MAC forwarding, and we also used the same 
return address and the same network router address, as shown in 
Figure 11-37.

Figure 11-37   Adding the second balanced server

7. We also add a third server in a remote network, as shown in Figure 11-38.

Figure 11-38   Adding the third balanced server

 

 

 

 

 Chapter 11. Web server clustering 217



8. Repeat steps 4 on page 214 through 7 on page 217 for any other port for 
which you want to provide load balancing. We want to balance our store front 
(ports 80 and 443), but not the administration consoles (ports 8000, 8002, 
and so on), so we only add port 443 and add the three Web servers to it. Our 
final configuration is shown in Figure 11-40 on page 219.

9. Follow steps 12 on page 203 and 13 on page 205 to start the manager and 
advisors.

10.The last thing that you need to configure is to add the return address to the 
operating system, so it is able to handle the responses from the balanced 
servers.

In the GUI, right-click Executor and select Configure Interface Address. 
Enter the return address into the Interface address field (in our example this is 
9.26.52.156), type the interface name into the optional Interface name field (in 
our example this is hme0), and enter the netmask into the Netmask field (in 
our example this is 255.255.254.0). See Figure 11-39.

Figure 11-39   Configure the return address

11.Do not forget to save your configuration file as described in step 15 on 
page 208.

Important: It is sufficient to configure the return address if you are not in a 
collocated environment. If, however, your Load Balancer server is 
collocated, you need to perform additional steps. These differ for each 
operating system, so refer to Chapter 21, Section “Using collocated 
servers - Configuring server collocation with Dispatcher’s NAT forwarding,” 
in the Load Balancer Administration Guide, GC31-6858, for complete 
instructions for your operating system.

 

 

 

 

218 WebSphere Commerce High Availability and Performance Solutions



When the configuration is complete, the tree view in the left pane of the GUI 
should look as shown in Figure 11-40.

Figure 11-40   Complete NAT configuration

Command-line configuration
Example 11-3 shows the configuration file for this scenario. (Remember that 
each command must be on one line.)

Example 11-3   Configuration file for NAT forwarding

dscontrol set loglevel 1
dscontrol executor start
dscontrol executor set clientgateway 9.26.52.1

dscontrol cluster add nat1.torolab.ibm.com address 9.26.52.154 primaryhost 
9.26.52.215
dscontrol executor configure 9.26.52.154 hme0 255.255.254.0

dscontrol port add nat1.torolab.ibm.com:80 method nat reset no
dscontrol port set nat1.torolab.ibm.com:80 porttype tcp

 

 

 

 

 Chapter 11. Web server clustering 219



dscontrol server add nat1.torolab.ibm.com:80:srvb501.torolab.ibm.com address 
9.26.126.120 router 9.26.52.1 returnaddress 9.26.52.156
dscontrol executor configure 9.26.52.156 hme0 255.255.254.0

dscontrol server add nat1.torolab.ibm.com:80:srvb504.torolab.ibm.com address 
9.26.127.157 router 9.26.52.1 returnaddress 9.26.52.156
dscontrol executor configure 9.26.52.156 hme0 255.255.254.0

dscontrol server add nat1.torolab.ibm.com:80:m106958f.itso.ral.ibm.com address 
9.42.171.83 router 9.26.52.1 returnaddress 9.26.52.156
dscontrol executor configure 9.26.52.156 hme0 255.255.254.0

dscontrol port add nat1.torolab.ibm.com:443 method nat reset no
dscontrol port set nat1.torolab.ibm.com:443 porttype tcp

dscontrol server add nat1.torolab.ibm.com:443:srvb501.torolab.ibm.com address 
9.26.126.120 router 9.26.52.1 returnaddress 9.26.52.156
dscontrol executor configure 9.26.52.156 hme0 255.255.254.0

dscontrol server add nat1.torolab.ibm.com:443:srvb504.torolab.ibm.com address 
9.26.127.157 router 9.26.52.1 returnaddress 9.26.52.156
dscontrol executor configure 9.26.52.156 hme0 255.255.254.0

dscontrol server add nat1.torolab.ibm.com:443:m106958f.itso.ral.ibm.com address 
9.42.171.83 router 9.26.52.1 returnaddress 9.26.52.156
dscontrol executor configure 9.26.52.156 hme0 255.255.254.0

dscontrol manager start manager.log 10004
dscontrol advisor start Http 80 Http_80.log
dscontrol advisor start Ssl 443 Ssl_443.log

11.2.3  Configure the Web servers for WebSphere Commerce

Having set up Load Balancer to route requests to the Web servers, and, in case 
of MAC forwarding, having enabled the Web servers’ network interfaces to 
accept packets on the Load Balancer cluster IP address (by adding the loopback 
alias as described in “Configure Web servers for MAC forwarding” on page 209), 
we now need to configure the Web servers to listen to the cluster IP address.

Note: You do not need to configure the balanced Web servers as described in 
“Configure Web servers for MAC forwarding” on page 209 when using the 
NAT/NAPT forwarding method. This step is only necessary when using the 
MAC forwarding method.

 

 

 

 

220 WebSphere Commerce High Availability and Performance Solutions



After creating a WebSphere Commerce instance, the IBM HTTP Server 
configuration file, httpd.conf, typically contains Listen and VirtualHost statements 
(as shown in Example 11-4) for Web server node 1 before configuring load 
balancing.

Example 11-4   httpd.conf for Web server node 1 before load balancing 

...

Listen srvb501.torolab.ibm.com:80
Listen srvb501.torolab.ibm.com:443
...

########## IBM WebSphere Commerce (Do not edit this section) ...
#Instance name : demo
<VirtualHost srvb501.torolab.ibm.com:80>
ServerName srvb501.torolab.ibm.com
Alias   /wcsstore "/usr/.../Stores.war"
Alias   /wcs "/usr/.../CommerceAccelerator.war"
</VirtualHost>
<VirtualHost srvb501.torolab.ibm.com:443>
SSLEnable
SSLClientAuth 0
ServerName srvb501.torolab.ibm.com
Alias   /wcsstore "/usr/.../Stores.war"
Alias   /wcs "/usr/.../CommerceAccelerator.war"
</VirtualHost>
...

We need to change the listen statements and the VirtualHost elements. To till be 
able to access the store directly through the Web servers, we used an asterisk (*) 
as the host name rather than duplicating the listen statements and VirtualHost 
elements. Example 11-5 shows the relevant lines of the resulting configuration, 
which can be used for all Web server nodes.

Example 11-5   httpd.conf for Web server node 1 with load balancing

...

Listen *:80
Listen *:443
...

########## IBM WebSphere Commerce (Do not edit this section) ...
#Instance name : demo
<VirtualHost *:80>

 

 

 

 

 Chapter 11. Web server clustering 221



ServerName srvb501.torolab.ibm.com
Alias   /wcsstore "/usr/.../Stores.war"
Alias   /wcs "/usr/.../CommerceAccelerator.war"
</VirtualHost>
<VirtualHost *:443>
SSLEnable
SSLClientAuth 0
ServerName srvb501.torolab.ibm.com
Alias   /wcsstore "/usr/.../Stores.war"
Alias   /wcs "/usr/.../CommerceAccelerator.war"
</VirtualHost>
...

After changing httpd.conf on all load-balanced Web servers, the Web servers 
have to be restarted (see “Restart the Web server” on page 184).

11.2.4  Configure the IBM HTTP Server Plug-in

In order for WebSphere Application Server to handle requests to the Load 
Balancer cluster, the IBM HTTP Server Plug-in has to be configured on all Web 
servers such that it accepts the Load Balancer cluster host name on the 
load-balanced ports.

All we have to do to change the plug-in configuration on all Web servers is to add 
the virtual host aliases to the relevant virtual hosts. In our scenario, only store 
access is load balanced, so the only virtual host that needs new aliases for the 
Load Balancer cluster is VH_<Instance_Name>.

We use the Network Deployment Manager administrative console to add the 
following host aliases to VH_<Instance_Name>:

� *:80
� *:443

Again, we use * as a shortcut. When using *, all other host aliases for the actual 
port may be removed. Of course, you may also add the two new host aliases 
using the your explicit Load Balancer cluster host name, without removing the 
existing ones.

To add the host names, use your browser and go to the Network Deployment 
Manager administrative console to perform the following steps:

1. In the main navigation on the left, select Environment → Virtual Hosts.

2. Click the VH_<Instance_Name> virtual host.

3. Click Host Aliases to show all aliases for VH_<Instance_Name>.

 

 

 

 

222 WebSphere Commerce High Availability and Performance Solutions



4. Click New and enter the new host alias for port 80, using * or the Load 
Balancer cluster host name, as shown in Figure 11-41, for instance name 
demo.

Figure 11-41   Adding a virtual host alias in Network Deployment Manager administrative console

 

 

 

 

 Chapter 11. Web server clustering 223



5. Click Save (Figure 11-42).

Figure 11-42   Going to the Save workspace changes dialog

6. In the Save workspace changes dialog, check Synchronize changes with 
Nodes and click Save (Figure 11-43).

Figure 11-43   Save workspace changes dialog

7. If automatic generation and propagation of the IBM HTTP Server Plug-in 
configuration, as well as remote Web server management, are enabled (see 

 

 

 

 

224 WebSphere Commerce High Availability and Performance Solutions



Figure 10-3 on page 177 and “Activate remote Web server management 
(optional)” on page 175), the plug-in configuration is automatically updated on 
all Web servers. If automatic propagation is not activated for a Web server, 
the plug-in has to be manually propagated to that Web server by performing 
the following steps:

a. Navigate to Servers → Web servers (Figure 11-44).

Figure 11-44   Propagating the Plug-in configuration

b. Under Select, check all Web servers for which automatic propagation is 
not activated.

c. Click Generate Plug-in, then Propagate Plug-in.

This still requires that remote management is set up for the Web server and 
that the IBM HTTP Server administrative server is running on the Web server 
(see above). 

If remote management is disabled, the plug-in configuration file can still be 
automatically generated, but it needs then to be copied manually to the Web 
server. See “Propagate IBM HTTP Server Plug-in configuration” on page 183 
for information about manual propagation.

The Load Balancer configuration is now complete and you should be able to 
access your store on ports 80 and 443 using the host name that resolves to your 
cluster IP address.

 

 

 

 

 Chapter 11. Web server clustering 225



11.3  Configure Load Balancer High Availability

In this section we explain how to configure High Availability for the MAC 
forwarding scenario, but we also point out which settings are different for NAT 
forwarding. 

We assume that one of the scenarios is already set up, and that the backup Load 
Balancer is installed identically to the primary server, as described in 8.6, “Install 
Load Balancer” on page 140, in the base installation chapter.

The step-by-step configuration instructions are based on the instructions in 5.3, 
“Load Balancer: High Availability scenario,” in WebSphere Application Server V6 
Scalability and Performance Handbook, SG24-6392, which we adapted for load 
balancing a WebSphere Commerce instance.

11.3.1  Configure basic High Availability

When you are using the High Availability feature of Load Balancer, you do not 
use the dscontrol executor configure command in the Dispatcher 
configuration file. Leaving the command in the configuration would break the 
High Availability configuration because it adds the IP aliases to the network 
interface no matter what the state of the Load Balancer server is (active or 
standby). We need to make sure that the IP aliases are only added to the 
network interface when a server changes to the active state. For a High 
Availability configuration, we create scripts that control all IP aliases that need to 
be added or removed from the network interfaces and the loopback interface, as 
described in 11.3.4, “Configuring the High Availability scripts” on page 239.

First, we have to remove the cluster IP alias from the existing configuration 
before proceeding:

1. Open the Load Balancer GUI and connect to the primary server as described 
in steps 1 on page 193 through 4 on page 195. Make sure that the correct 
configuration is loaded by checking that the cluster, port, and servers are 
already configured.

 

 

 

 

226 WebSphere Commerce High Availability and Performance Solutions



2. Right-click Executor and select Unconfigure Interface Address, as shown 
in Figure 11-45, for the MAC configuration. For NAT, you need to unconfigure 
both the cluster address and the return address.

Figure 11-45   Unconfiguring the cluster address

 

 

 

 

 Chapter 11. Web server clustering 227



A pop-up window is displayed. Enter the IP address of the cluster in the 
Interface address field. In our scenario, we want to remove the IP alias for the 
cluster address 9.26.126.103, as shown in Figure 11-46.

Figure 11-46   Specifying the IP address to unconfigure 

3. Save the current configuration, then copy it to the Standby Load Balancer so 
that you do not need to set up the basic load balancing configuration there 
again.

Note: The menu choice Host:... > Save Configuration File As... prompts 
you for a filename, but with Load Balancer V6.0.2 on AIX it seems that the 
currently used configuration file is always overwritten, no matter which 
filename is specified. Therefore, we recommend making a backup of the 
file and then having it overwritten with the new configuration. The 
configuration files are stored in 
LoadBalancer_Install_Dir/servers/configurations/dispatcher on AIX and 
Solaris.

 

 

 

 

228 WebSphere Commerce High Availability and Performance Solutions



4. Now we need to add the High Availability configuration. Right-click High 
Availability in the left pane of the GUI window and select Add High 
Availability Backup, as shown in Figure 11-47.

Figure 11-47   Starting the High Availability configuration

 

 

 

 

 Chapter 11. Web server clustering 229



A new pop-up window is displayed, as shown in Figure 11-48.

Figure 11-48   Configuring High Availability options

In order to monitor the health of the active server, heartbeats are sent every 
half second. The failover occurs when the standby server receives no 
response from the active server within two seconds.

a. Choose a port number that will be used by both Load Balancer servers to 
exchange the information needed to keep them synchronized and put it in 
the Port number field. You can choose any port—you just need to make 
sure that the port number matches on both servers. 

b. In the Role field, select the role that this machine will have in the High 
Availability scenario (Primary, Backup, or Both). In our scenario, this 
machine is our primary machine, so we select Primary.

c. In the Recovery strategy field, choose how your primary machine is going 
to behave in case the backup machine has taken over. Select Auto for 
automatic takeover as soon as it is up and responding to the network. 
Select Manual for manual takeover (either by selecting High 
Availability → Takeover in the tree view of the Load Balancer GUI, or by 
running the command dscontrol high takeover).

d. The last thing that you need to add in this window is the heartbeat source 
address and the heartbeat destination address. The heartbeat is a 
Generic Route Encapsulation (GRE) packet that is sent from the local 
machine to the other server in the same High Availability cluster to make 
sure that it is responding. Enter the IP address of the local machine into 

 

 

 

 

230 WebSphere Commerce High Availability and Performance Solutions



the Heartbeat source address field, and the IP address of the standby 
machine into the Heartbeat destination address field.

e. When you are finished, click OK.

f. For now, the configuration is done on the primary server. Click High 
Availability in the left pane, and you can see the High Availability status 
information in the right pane, as shown in Figure 11-49.

Figure 11-49   High Availability status

The next steps must be performed on the standby Standby Load Balancer 
server, which in our scenario is the server srvb501.torolab.ibm.com.

 

 

 

 

 Chapter 11. Web server clustering 231



5. Open the Load Balancer GUI and connect to the backup server as described 
in steps 1 on page 193 through 4 on page 195. Select your backup server in 
the Dispatcher Login pop-up, as shown in Figure 11-50.

Figure 11-50   Connecting the GUI to a host

6. Load the configuration file that you copied from the primary server in step 3 
on page 228. Right-click Host: srvb501.torolab.ibm.com and select Load 
New Configuration, as shown in Figure 11-51.

Figure 11-51   Loading a new configuration

 

 

 

 

232 WebSphere Commerce High Availability and Performance Solutions



Select the filename in the pop-up window and click OK. See Figure 11-52.

Figure 11-52   Selecting a configuration file

7. We now need to configure the balanced servers’ collocation settings. For our 
scenario, we installed the primary Load Balancer on Web server node 2 and 
set the collocation flag to yes in step Figure 14 on page 206. On the Standby 
Load Balancer machine, we need to change this setting back to no.

Similarly, if the Standby Load Balancer is installed on the same machine as 
one of the load-balanced Web servers, we need to set that server’s 
collocation flag to yes. This is the case in our scenario where the Standby 
Load Balancer is installed on Web server node 1.

The flag has to be changed for all occurrences of the respective balanced 
server under the balanced ports.

Again, when changing a server’s configuration, do not forget to click the 
Update Configuration button.

8. Add the High Availability information for the backup server. Right-click High 
Availability in the left pane of the GUI window and select Add High 
Availability Backup (this is the same procedure that we performed for the 
primary server in step 4 on page 229).

You need to use the same parameters for Port number and Recovery strategy 
that you used in the configuration of the primary server (see Figure 11-27 on 
page 208).

Select Backup in the Role field.

 

 

 

 

 Chapter 11. Web server clustering 233



For the backup server, the heartbeat source address is the standby server 
itself, and the heartbeat destination address is the primary server, as shown 
in Figure 11-53.

Figure 11-53   Configure High Availability 

9. Save the configuration of the primary and backup servers.

Refer to 11.3.3, “Command-line configuration” on page 236, for the complete 
configuration files of both Load Balancer servers.

For both servers, when selecting High Availability in the tree view on the left side 
of the GUI, the High Availability status window should now show the correct 
states (active or standby) and sub-state (synchronized), as shown in 
Figure 11-54 and Figure 11-55 on page 235.

Figure 11-54   Primary Load Balancer status after High Availability configuration

 

 

 

 

234 WebSphere Commerce High Availability and Performance Solutions



Figure 11-55   Standby Load Balancer status after High Availability configuration

11.3.2  Adding reach targets

A reach target is like a heartbeat, but another machine is used as the destination 
for the ping packet. The same reach targets are added to the configuration of 
both primary and backup servers.

If the active Load Balancer cannot reach this target (it does not receive a 
response from the ping packet), but the standby server still receives responses 
from it, the standby server will force a failover. Therefore, it is very important that 
you choose a stable server or network appliance as the reach target. We usually 
recommend using the default router of the local network (use the IP of the 
interface that is directly connected to the local network).

If you configure more than one reach target, the Standby Load Balancer will fail 
over if it receives responses from more reach targets than the active Load 
Balancer.

In our MAC scenario, we used the IP address of our local router, which is 
9.26.126.2. For our NAT scenario we used 9.26.52.1.

 

 

 

 

 Chapter 11. Web server clustering 235



To add this IP address as a reach target IP address, right-click High Availability 
in the left pane of the window and select Add Reach Target. A pop-up window is 
displayed, as shown in Figure 11-56.

Figure 11-56   Adding a reach target

Save the configurations on both Load Balancer machines after adding the reach 
targets.

11.3.3  Command-line configuration

The High Availability configuration can be performed from the command line 
using the statements saved in the configuration file by the GUI. 

Note: Make sure to add the reach targets to the active Load Balancer first, 
and then to the one in standby state. Otherwise, the standby machine could 
force a failover during the process of setting up the reach targets, because it 
detects that it can reach more targets than the active machine.

We also recommend that you add the reach target after you have already 
tested the High Availability configuration (including takeover and failover) and 
the load balancing. The reason for this is that you could experience unwanted 
failovers during your initial High Availability tests if the reach target system is 
unstable.

 

 

 

 

236 WebSphere Commerce High Availability and Performance Solutions



Example 11-6 shows the commands for the primary Load Balancer in the MAC 
forwarding scenario.

Note that each individual command has to be on one line in the configuration file. 
However, because of size limitations, some lines might be printed on two lines in 
our examples.

Example 11-6   Primary Load Balancer configuration file for MAC forwarding

dscontrol set loglevel 1
dscontrol executor start

dscontrol highavailability heartbeat add 9.26.127.157 9.26.126.120
dscontrol highavailability backup add primary=9.26.127.157 auto 12345
dscontrol highavailability reach add 9.26.126.2 

dscontrol cluster add wcha.torolab.ibm.com address 9.26.126.103 
primaryhost 9.26.127.157

dscontrol port add wcha.torolab.ibm.com:80 reset no

dscontrol server add wcha.torolab.ibm.com:80:srvb504.torolab.ibm.com 
address 9.26.127.157
dscontrol server set wcha.torolab.ibm.com:80:srvb504.torolab.ibm.com 
collocated y

dscontrol server add wcha.torolab.ibm.com:80:srvb501.torolab.ibm.com 
address 9.26.126.120

dscontrol port add wcha.torolab.ibm.com:443 reset no

dscontrol server add wcha.torolab.ibm.com:443:srvb504.torolab.ibm.com 
address 9.26.127.157
dscontrol server set wcha.torolab.ibm.com:443:srvb504.torolab.ibm.com 
collocated y

dscontrol server add wcha.torolab.ibm.com:443:srvb501.torolab.ibm.com 
address 9.26.126.120

dscontrol manager start manager.log 10004
dscontrol advisor start Http 80 Http_80.log
dscontrol advisor start Ssl 443 Ssl_443.log

 

 

 

 

 Chapter 11. Web server clustering 237



Example 11-7 shows the commands for the Standby Load Balancer in the MAC 
forwarding scenario.

Example 11-7   Standby Load Balancer configuration file for MAC forwarding

dscontrol set loglevel 1
dscontrol executor start

dscontrol highavailability heartbeat add 9.26.126.120 9.26.127.157
dscontrol highavailability backup add backup auto 12345
dscontrol highavailability reach add 9.26.126.2

dscontrol cluster add wcha.torolab.ibm.com address 9.26.126.103 
primaryhost 9.26.127.157

dscontrol port add wcha.torolab.ibm.com:80 reset no

dscontrol server add wcha.torolab.ibm.com:80:srvb504.torolab.ibm.com 
address 9.26.127.157

dscontrol server add wcha.torolab.ibm.com:80:srvb501.torolab.ibm.com 
address 9.26.126.120
dscontrol server set wcha.torolab.ibm.com:80:srvb501.torolab.ibm.com 
collocated y

dscontrol port add wcha.torolab.ibm.com:443 reset no

dscontrol server add wcha.torolab.ibm.com:443:srvb504.torolab.ibm.com 
address 9.26.127.157

dscontrol server add wcha.torolab.ibm.com:443:srvb501.torolab.ibm.com 
address 9.26.126.120
dscontrol server set wcha.torolab.ibm.com:443:srvb501.torolab.ibm.com 
collocated y

dscontrol manager start manager.log 10004
dscontrol advisor start Http 80 Http_80.log
dscontrol advisor start Ssl 443 Ssl_443.log

For NAT forwarding without collocation, the configuration files are changed 
similarly. The three dscontrol highavailability lines are added with the 
respective parameters for primary and backup machine, and all dscontrol 
executor configure lines are removed. 

 

 

 

 

238 WebSphere Commerce High Availability and Performance Solutions



For NAT forwarding with collocation, refer to the Load Balancer Administration 
Guide, GC31-6858.

11.3.4  Configuring the High Availability scripts

We now need to create the High Availability scripts. 

You need to configure at least the goActive, goStandby, and goInOp scripts, but 
we also show how to use the serverUp, serverDown, and highavailChange 
scripts.

You can start working with the samples available in the 
LoadBalancer_Install_Dir/servers/samples directory and customize them for your 
environment, or you can write them from scratch.

All scripts are created in the LoadBalancer_Install_Dir/servers/bin directory, and 
you need to name them exactly as indicated (Load Balancer is case sensitive). 

We used two AIX servers for the MAC forwarding configuration, so we wrote the 
scripts using ksh syntax. 

For NAT forwarding, we did not configure High Availability completely on our 
Solaris system, but we point out the main differences here. Again, this applies 
only if you do not use collocation with NAT forwarding. If you want to use 
collocated servers with NAT forwarding, refer to the Load Balancer 
Administration Guide, GC31-6858.

Variables
First, we set up a script for initializing some common variables, which is then 
included by the other scripts. This script is shown in Example 11-8.

Example 11-8   LoadBalancer_Install_Dir/bin/variables script for MAC forwarding

#!/bin/ksh
ND_LOGDIR=LoadBalancer_Install_Dir/servers/logs/dispatcher
CLUSTER=9.26.126.103
INTERFACE=en0
NETMASK=255.255.254.0

Note: The scripts are identical for the primary and the backup servers, unless 
there is some particular command that you need to run on each machine. This 
might be the case, for example, if your backup server collocated while your 
primary server did not. 

 

 

 

 

 Chapter 11. Web server clustering 239



For NAT, you need to provide a variable for the return address, as shown in 
Example 11-9. We are using bash syntax for Solaris 9.

Example 11-9   LoadBalancer_Install_Dir/bin/variables script for NAT forwarding

#!/bin/sh
ND_LOGDIR=LoadBalancer_Install_Dir/servers/logs/dispatcher
CLUSTER=9.26.52.154
INTERFACE=hme0:1
RETURNADDRESS=9.26.52.156
RETURNINTERFACE=hme0:2
NETMASK=255.255.254.0

goActive
Executor runs this script when Load Balancer switches to active state. This could 
be when a failover occurs and the standby server switches to active, or when 
Load Balancer is started on the primary machine and the recovery strategy is set 
to automatic.

The script adds the cluster IP alias (9.26.126.103) to the network interface 
(defined in the INTERFACE variable). As our Load Balancer servers are collated 
with balanced Web servers, we also need to remove the cluster IP alias from the 
loopback interface (lo0 on AIX). See Example 11-10.

Example 11-10   goActive script for MAC forwarding (AIX)

#!/bin/ksh
. LoadBalancer_Install_Dir/servers/bin/variables
date >> $ND_LOGDIR/ha.log
print "This machine is Active. Aliasing cluster address to NIC. \n" >>

$ND_LOGDIR/ha.log
ifconfig lo0 delete $CLUSTER 
ifconfig $INTERFACE alias $CLUSTER netmask $NETMASK

For NAT forwarding, you need to add an alias for the return address. See 
Example 11-11.

Example 11-11   goActive script for NAT forwarding (Solaris 9, no collocation)

#!/bin/sh
. LoadBalancer_Install_Dir/servers/bin/variables
date >> $ND_LOGDIR/ha.log

Note: Only delete the loopback alias (“ifconfig lo0 delete $CLUSTER”) if Load 
Balancer is collocated with a balanced Web server.

 

 

 

 

240 WebSphere Commerce High Availability and Performance Solutions



echo "This machine is Active. Aliasing cluster address to NIC. \n" >>
$ND_LOGDIR/ha.log

ifconfig $INTERFACE plumb $CLUSTER netmask $NETMASK up
ifconfig $RETURNINTERFACE plumb $RETURNADDRESS netmask $NETMASK up

goStandby
Executor runs this script when Load Balancer switches to standby state. This 
could be when Load Balancer is started on the standby server and the primary 
server is active.

The script removes the cluster IP alias (9.26.126.103) to the network interface 
(defined in the INTERFACE variable). Because in our scenario Load Balancer is 
collocated with balanced Web servers, the cluster IP alias is added to the 
loopback interface (lo0 on AIX). See Example 11-12.

Example 11-12   goStandby script for MAC forwarding (AIX)

#!/bin/ksh
. LoadBalancer_Install_Dir/servers/bin/variables
date >> $ND_LOGDIR/ha.log
print "Going into Standby mode. Deleting the device alias and adding

the loopback alias.\n" >> $ND_LOGDIR/ha.log
ifconfig $INTERFACE delete $CLUSTER
ifconfig lo0 alias $CLUSTER netmask 255.255.255.255

For NAT forwarding, you need to remove the alias for both the cluster and the 
return address, as shown in Example 11-13.

Example 11-13   goStandby script for NAT forwarding (Solaris 9, no collocation)

#!/bin/sh
. LoadBalancer_Install_Dir/servers/bin/variables
date >> $ND_LOGDIR/ha.log
echo "Going into Standby mode. Deleting the device alias and adding

the loopback alias.\n" >> $ND_LOGDIR/ha.log
ifconfig $INTERFACE $CLUSTER netmask $NETMASK down unplumb
ifconfig $RETURNINTERFACE $RETURNADDRESS netmask $NETMASK down unplumb

Note: Only add the loopback alias (“ifconfig lo0 alias $CLUSTER netmask 
255.255.255.255“) if Load Balancer is collocated with a balanced Web server.

 

 

 

 

 Chapter 11. Web server clustering 241



goInOp
Executor runs this script whenever Executor is stopped or it is first started. We 
want to set the network interfaces to an initial state here, so the cluster IP alias 
(9.26.126.103) is removed from the network interface. However, because our 
Load Balancer servers are collated with balanced Web servers in our MAC 
forwarding scenario, we need to add the cluster IP alias to the loopback interface 
(lo0 on AIX) or keep it there. See Example 11-14.

When Executor is started and a configuration is loaded, goActive or goStandby 
will be called after this script, and the settings for the interfaces are corrected.

Example 11-14   goInOp script for MAC forwarding (AIX)

#!/bin/ksh
. LoadBalancer_Install_Dir/servers/bin/variables
date >> $ND_LOGDIR/ha.log
print "Executor has stopped. Removing device alias.\n" >>

$ND_LOGDIR/ha.log
ifconfig lo0 delete $CLUSTER
ifconfig lo0 alias $CLUSTER netmask 255.255.255.255
ifconfig $INTERFACE delete $CLUSTER

For NAT forwarding on Solaris (without collocation), the script is shown in 
Example 11-15.

Example 11-15   goInOp script for NAT forwarding (Solaris 9, no collocation)

#!/bin/sh
. LoadBalancer_Install_Dir/servers/bin/variables
date >> $ND_LOGDIR/ha.log
echo "Executor has stopped. Removing device alias.\n" >>

$ND_LOGDIR/ha.log
ifconfig $INTERFACE $CLUSTER netmask $NETMASK down unplumb
ifconfig $RETURNINTERFACE $RETURNADDRESS netmask $NETMASK down unplumb

serverDown
Executor runs this script whenever a balanced server is marked down by 
Manager. It passes the name of the balanced server as the first parameter to the 
script. With ksh on AIX, the variable $1 contains the server name in the format 
<cluster>:<port>:<server>. For example, for Web server node 1 in our scenario:

wcha.torolab.ibm.com:80:srvb501.torolab.ibm.com

Note: Only add the loopback alias (“ifconfig lo0 alias $CLUSTER netmask 
255.255.255.255“) if Load Balancer is collocated with a balanced Web server.

 

 

 

 

242 WebSphere Commerce High Availability and Performance Solutions



We use this script to record an entry in a log file saying that one of the Web 
servers was marked down by manager. See Example 11-16.

Example 11-16   serverDown script

#!/bin/ksh
DATE=`date`
OUTPUT="$DATE $1 has been marked down."
echo $OUTPUT >> /opt/ibm/edge/lb/servers/logs/lb.log

For NAT on Solaris, we use the same script except that we use #!/bin/sh as the 
execution shell.

serverUp
Executor runs this script whenever a balanced server is marked up by Manager. 
It passes the name of the balanced server as the first parameter to the script. 
With ksh on AIX, the variable $1 contains the server name in the format 
<cluster>:<port>:<server>. For example, for Web server node 1 in our scenario:

wcha.torolab.ibm.com:80:srvb501.torolab.ibm.com

We use this script to record an entry in a log file saying that one of the Web 
servers was marked up by Manager. See Example 11-17.

Example 11-17   serverUP script

#!/bin/ksh
DATE=`date`
OUTPUT="$DATE $1 has been marked back up."
echo $OUTPUT >> /opt/ibm/edge/lb/servers/logs/lb.log

For NAT on Solaris, we use the same script except that we use #!/bin/sh as the 
execution shell.

highavailChange
Executor runs this script whenever the state of the Load Balancer server 
changes (from active to standby or from standby to active). It passes the name of 
the High Availability script that was run as the first parameter to the script. With 
ksh on AIX, the script name can be used by referencing the variable $1.

 

 

 

 

 Chapter 11. Web server clustering 243



We use this script to record an entry in a log file saying that the state of the local 
server has changed. See Example 11-18.

Example 11-18   highavailChange script

#!/bin/ksh
DATE=`date`
OUTPUT="$DATE LB just ran $1."
echo $OUTPUT >> /opt/ibm/edge/lb/servers/logs/lb.log

For NAT on Solaris, we use the same script except that we use #!/bin/sh as the 
execution shell.

11.3.5  Test Load Balancer High Availability

The High Availability configuration is now complete. 

You may test the failover by issuing the command dscontrol executor stop on 
the command line of your primary server. 

You should still be able to access your store through the host name that resolves 
to the cluster IP address. The High Availability status for your standby server, 
when selecting High Availability in the left pane of the Load Balancer GUI, should 
now be active while the role is still backup.

Note that dsserver stop is not sufficient to stop load balancing. The executor will 
continue running. To completely stop load balancing, first stop executor, then 
dsserver.

11.3.6  Starting Dispatcher automatically after a reboot
If you are running Dispatcher on a UNIX system, you must configure the system 
to run the dsserver command after each reboot. Make sure that your 
configuration filename is default.cfg, because when dsserver is run it 
automatically loads the default.cfg configuration file. 

In our AIX environment, we enabled the automatic startup of dsserver. We added 
it to the inittab by running the following command:

mkitab “ds:2:wait:/usr/bin/dsserver > /dev/console 2>&1”

Tip: You can also use other scripts that are run during the server start up 
process, for example, /etc/rc.tcpip (in AIX systems) or /etc/rc.local (in Linux 
systems). Make sure that you consult the system administrator to find the 
most suitable option for your environment.

 

 

 

 

244 WebSphere Commerce High Availability and Performance Solutions



 

 

 

 

 Chapter 11. Web server clustering 245



 

 

 

 

246 WebSphere Commerce High Availability and Performance Solutions



Part 4 Design with 
performance in mind

In the previous chapters we talked about High Availability architecture and 
installation instructions. In this part of the book we talk about developing your 
custom code with performance in mind. Both these activities can go in parallel, 
depending on your resource availability.

Performance of an application must be a focus area throughout the project cycle. 
Traditionally, performance testing has occurred late in the cycle, towards the end 
of the testing phase, or as part of the deployment process. This does not leave 
much time to identify and fix any performance issues, particularly if significant 
architecture changes are required. It is much more difficult and time consuming 
to improve performance in the later phases of the project cycle than to ensure 
that the application performs adequately from the beginning. 

This section demonstrates the importance of performance testing early in a 
project, with focus on profiling. 

This part of the book include: 

� Development performance considerations
� Caching

Part 4
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 247



 

 

 

 

248 WebSphere Commerce High Availability and Performance Solutions



Chapter 12. Development performance 
considerations

All the performance best practices remain the same as the basic performance 
practices for developing Java code or SQL queries, and so on. However, here 
we highlight a few specific performance coding practices that will benefit you 
during your WebSphere Commerce site development.

12

Tip: You will find a large number of useful best practices available at:

http://www.ibm.com/developerWorks

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 249

http://www.ibm.com/developerWorks


12.1  Development best practices for performance

Depending on your custom scenario you may need to focus on improving, for 
example, catalog browse, search, or shopping cart processing performance. 
There is a lot of information in the WebSphere Commerce InfoCenter to guide 
you through those. In this section we discuss some of the more general 
performance development techniques and strategies.

12.1.1  Access Bean usage

EJB access beans can greatly simplify client access to enterprise beans and 
alleviate the performance problems associated with remote calls for multiple 
enterprise bean attributes.

Below we discuss a couple of considerations when working with access beans.

Well formed constructor
Non-default AccessBean constructors are usually mapped to the corresponding 
EJB create() method, which in turns will trigger database INSERT. For example, 
XYZAccessBean(int p1, String p2) is mapped to the corresponding create(int p1, 
String p2) in the EJB Home interface.

Consider the case where a table having three columns is represented by a single 
EJB entity Bean (XYZBean), where the first two columns are non-nullable. 
Assume that we have two create() methods:

� create(int p1, string p2) represents the minimum number of non-nullable 
columns.

� create(int p1, string p2, int p3) represents the full well formed.

Within a single transaction, the following code snippet will cause 2 SQL calls 
in the database as marked:

XYZBean aBean = new XYZBean(3, “testing”);  // INSERT call to 
database

aBean.setP3(4); // UPDATE call to database

While the following will only trigger one SQL call:

XYZBean aBean = new XYZBean(3, “testing”, 4);  // INSERT call to 
database

Unless it is required by the logic, the second code snippet using the 
well-formed constructor is preferable over the first one.

 

 

 

 

250 WebSphere Commerce High Availability and Performance Solutions



Lazy instantiation
All EJB multi-object finders return enum (EJB 1.1) or Collection (EJB 2.0). The 
actual object is not instantiated until the object is needed. This pattern should be 
preserved in our EJB and AccessBean when returning relationship objects, for 
example:

AssociatedAccessBean[] getAssociatedBean() should be changed to 
Enumeration getAssociatedBean() or Collection getAssociatedBean()

A similar pattern should be used in DataBean as well.

Re-use finder results
Finder methods go back to the database to obtain their results. Avoid calling the 
same finder to find the same results more than once in a transaction by saving 
the resulting access bean objects and re-using them until the transaction ends.

12.1.2  Java classes and keywords

There are number of performance considerations for writing code in Java. Here 
we provide a few key ones only.

Tracing
Avoid using System.out.println in the final code. This is a serialized resource that 
requires file I/O on every call and will impact performance. 

When adding WC trace in the code, it should be enclosed in a if-then block if the 
trace parameters have side effects (for example, creating new objects, 
expensive operations). For example:

if (ECTrace.traceEnabled(ECTrace.Identifiers.COMPONENT_XYZ) {
.......

}

Synchronization
If you do not require synchronized access to resources, avoid using the 
synchronized keyword in method or block. If there is such a need, try to minimize 
the code block.

Similarly, if you do not require protecting any shared resources, use:

� java.util.ArrayList instead of java.util.Vector
� java.util.HashMap instead of java.util.Hashtable

 

 

 

 

 Chapter 12. Development performance considerations 251



Avoid instanceof
Avoid using the instanceof keyword in the code whenever possible, as this is a 
relatively expensive operation. Try to refactor your code.

Initial capacity and load factor
Specify reasonable initial capacities when creating container objects such as 
StringBuffers, Lists, Sets, Maps, Vectors, and Hashtables, to avoid unnecessary 
re-allocation when the initial capacity is exceeded, and to avoid allocating more 
memory than required. 

The capacity for a StringBuffer created using the StringBuffer(String aString) 
constructor is 16+aString.length(). If you know that the StringBuffer will 
eventually be longer than that, you will be better off specifying an initial capacity 
for the StringBuffer and then appending aString. 

For HashMaps and Hashtables, take the load factor into account when 
specifying initial capacities. For example, to allocate a HashMap with sufficient 
capacity for n entries (using the default load factor of .75), specify an initial 
capacity of 1+n*100/75. 

We do not recommend increasing the default load factor (for example, to 1), 
since each hash bucket will end up holding more entries, thus slowing down the 
lookup operation.

Throwing and catching exceptions
Throwing and catching an exception is relatively costly. Use exceptions in 
exceptional situations, but avoid using them in normal (frequently executed) 
processing. 

Reduce unnecessary memory usage
Avoid allocating memory unnecessarily, to reduce the frequency of garbage 
collection cycles. This can occur, for example, when A calls B, which calls C, and 
A has an integer, converts it to a string so it can be passed to B, and B converts 
it back to an integer so that it can be passed to C. It may be that the string and 
the second integer object need not have been allocated if the method signature 
to b accepted an Integer rather than a String.

Use local variables, avoid inappropriate use of non-final getter 
methods

Accessing member data is slower than accessing a local variable, and calling a 
non-final or non-private getter method is even slower. There are sometimes good 
reasons to call non-final or non-private getter methods (it allows subclasses to 

 

 

 

 

252 WebSphere Commerce High Availability and Performance Solutions



override the getter behavior). Be sure that you use them with that in mind. 
However, calling the same non-final or non-private getter method twice in the 
same method is slower than necessary (and may have unintentional side effects 
since you cannot control the behavior of a subclass). Use a local variable to 
avoid calling the getter more than once per method call. For example, do this: 

int total = 0; 
int amt = getAmount();
if (amt>0) {
total += amt;
}

Not this:

int total = 0;
if (getAmount()>0) {
total += getAmount();
}

12.1.3  JSPs 

Here are a couple of considerations when writing JSPs.

Session-aware JSP
By default, all JSPs are session aware, meaning that they can participate in 
HTTP session-related operations. If your JSP does not need such participation, 
disable it by using the JSP page directive (for example, <%@  page 
session=”false” >). Otherwise, this will cause the HTTP session to be created if it 
does not exist. 

DataBean activation
When composing a JSP page using multiple JSP fragments, care should be 
taken if the same databean is used on these fragments to avoid unneccessary 
activation and instantiation overhead. In these cases, use the the same id 
attribute value and set the scope attribute value to request. 

If databeans are not used, do not declare them with the useBean tag, as that 
incurs some overhead cost.

12.1.4  Registry objects

The Commerce server runtime includes several objects that implement the 
registry interface, which includes initialize and refresh methods. Some registries 
(for example, the StoreRegistry) are implemented using the 

 

 

 

 

 Chapter 12. Development performance considerations 253



AbstractManagedDynamicCacheRegistry abstract class, which provides a LRU 
lazy cache based on a Hashtable and a LinkedList of most recently used 
elements. The initial capacity and maximum size of the cache is configurable in 
the <instance>.xml file via the “initialCapacity” and “regMaxSize” attributes of the 
“<registry>” element of the “<Registries>” instance property. The default value 
for “regMaxSize” is 500. 

StoreRegistry
The StoreRegistry is a lazy initialization in memory cache of StoreCopy objects. 
StoreCopy is a class that inherits from StoreAccessBean. Use the StoreRegistry 
“find” method (for example, StoreRegistry.find(Integer storeId) ) to obtain 
StoreCopy objects when you need read only store access beans. Otherwise, If 
you need to update a Store EJB, then you should instantiate a normal 
StoreAccessBean (not a StoreCopy) and use the setter methods and the 
commitCopyHelper method to update the Store object.

The StoreCopy object caches information about a store and its related 
information:

� Filenames of resource bundles files and the actual resource bundles
� List of supported language IDs
� Member ID of the owning organization of the store
� Access beans for the store default information
� Store description
� Default contract for the store
� Master catalog and other catalogs for the store
� Tax categories for the store
� Store directory tree under the Stores WebApp 

If any of the cached information is changed, the StoreRegistry must be updated 
to invalidate the information cached in the StoreCopy object for that Store. The 
StoreRegistry is also responsible for invalidating cached store relationship 
information, cached for each Commerce server in the StoreRelationshipCache 
object.

RefreshRegistry and UpdateRegistry controller commands
To invalidate information in the StoreRegistry, or in other Registry objects, use 
either the RefreshRegistry or UpdateRegistry controller commands. These 
commands schedule a scheduler job for immediate execution, which causes 
commands to be executed in each Commerce server. The commands end up 
calling the refresh methods, or the update methods, of the specified registries, in 
each Commerce server. 

When your code calls these controller commands, it should be careful to call the 
setAccCheck(false) method, to prevent that command from performing access 

 

 

 

 

254 WebSphere Commerce High Availability and Performance Solutions



control checks. That is because, for example, a user who has the authority to add 
a catalog to a store may not have the authority to execute the UpdateRegistry 
command directly. However, when a catalog is added to a store, the 
StoreRegistry must nonetheless be updated for that store.

12.1.5  Database operations

One common coding practice than can lead to deadlocks is to avoid deleting 
rows and inserting rows within a single transaction. Deleting a row and inserting 
a row in the same transaction will potentially cause the database to lock the 
table, reducing concurrency and introducing the potential for more deadlocks. 

We recommend restructuring the code to avoid such a situation. One technique 
that can sometimes be used, depending on the data involved and how it is used 
by the business logic, is to define a recycler class that can delay deletion of 
operational data until the end of the transaction, in case the object can be 
re-used simply by changing some of its attribute values, thus avoiding a delete 
operation followed by an insert operation. 

12.1.6  Command execution

Some common coding practices for when working with WebSphere Commerce 
commands are:

� Batch price retrieval calls.

Looking up a price via one of the contract price retrieval task commands 
travels a lengthy code path. If your code has to look up several prices, it is 
faster to specify all of them in a single call rather than make a separate call for 
each price retrieval.

� Re-use command instances.

Task and controller command instances are retrieved from the 
CommandFactory. They can be executed more than once in the same 
transaction. Call the reset method to re-initialize a command for re-execution. 

12.1.7  Web 2.0 considerations

When you are designing a Web 2.0 store all the Web 1.0 performance 
considerations apply. In addition, there are a number of additional considerations 
of which you have to be careful. The store flow and the page design will have a 
direct impact on both your WebSphere Commerce server capacity utilization and 
the response time of the page. 

 

 

 

 

 Chapter 12. Development performance considerations 255



The reason that you may need additional server capacity to support the same 
site traffic is due to the fact that you may design your page such that the sum 
total of all the new (asynchronous) calls to WebSphere Commerce may far 
exceed workload generated by your Web 1.0 site. The key point here is that in 
this case the additional capacity requirement will purely be client (JSP) driven. 
The WebSphere Commerce server will still perform as well as it would had the 
request come from the Web 1.0 client.

The reason response will likely increase is due to JavaScript™ parsing of the 
Dojo widgets. The more the widgets, the more the parsing. Again, the key point 
here is that WebSphere will still respond in about the same time. However, most 
of the additional response time delays will be due to the parsing of Web pages on 
the client computer running a Web browser. Thus, the more widgets that you 
have on your page the more response time a client will experience.

12.2  Performance best practices for database 
customizations

Your site design requirement may require you to customize the schema. The 
base out-of-box WebSphere Commerce schema should only be modified in such 
a way that your customizations do not impact the functioning and maintenance of 
WebSphere Commerce. Otherwise, the cost of your customizations could 
snowball. For example, you might customize your schema in such a way that 
certain aspects of administration tools may stop functioning properly or, perhaps, 
fix packs may not be installed successfully, or the WebSphere Commerce 
migration program may not support your schema customization and thus fail to 
function.

Generally, you would want to add new indices and tables. In some rare 
circumstances you may want to add some columns to a table. In such a situation 
you should first consider using the extra customizable fields available in the 
table.

In this section we do not go into detail about the pros and cons of database 
customization, or the detailed methodology. In this section, we discuss the 

Note: For more information about performance consideration when 
developing Web 2.0 store, refer to:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=
/com.ibm.commerce.web20storesolution.refapp.doc/tasks/tsm_web20_extend.
html

 

 

 

 

256 WebSphere Commerce High Availability and Performance Solutions

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.web20storesolution.refapp.doc/tasks/tsm_web20_extend.html


performance considerations to keep in mind while you design your database 
customizations.

12.2.1  Table design

When defining a new table, you will need to decide what type of information will 
be stored in the table, the data types of the attributes, and whether an attribute 
can have a null value, and determine which attributes require a default value, 
define the primary key, define additional unique indexes or indexes required for 
performance reasons, and determine any relationships with other tables.

Design your table with application access in mind (that is, pay attention to the 
way that the application accesses data). This will help you place the columns in 
the correct order and decide on what indexes you may need.

� If you need to repeat the same data many times in the table, then consider 
creating a separate lookup table with the repeated data with a primary key. 
Then you can reference the new table in your master table (for example, 
normalize your data).

� Place columns in the order that makes sense upon retrieving. For example, if 
you always select col1, col2, and col3 in your where clause, then order the 
columns the same way in the table. This will make it easier when creating 
indexes on them.

� Order the column with the primary key in mind. The order of the columns in 
the table must match the order of the columns in the primary key.

� Place variable length columns (Varchar, CLOBS) at end of your tables to 
avoid fragmentation.

12.2.2  Index design

Having an efficient set of indexes defined for a table will improve performance on 
queries that access and update information for that table. For practical reasons, 
you cannot have indexes on every column. This would result in extremely poor 
performance when rows are inserted or updated in a table. The more indexes 
you have, the higher the additional overhead to insert, delete, and potentially 
update. A good start is to define indexes on these columns:

� Columns involved in the WHERE clause of an SQL statement, especially if it 
is part of a join with another table.

� Columns involved in the ORDER BY or GROUP BY clause. If you have a 
two-column order by clause, you may want to have a compound index that 
includes those two columns. The leading index columns would have to 
exactly match the ordering in the ORDER BY or GROUP BY clause.

 

 

 

 

 Chapter 12. Development performance considerations 257



� Columns included in the result set. This is an added bonus because it may 
result in no data pages being accessed to process the query. 

� The order of columns in a compound index (an index that involves more than 
one column) is extremely important. If the leading column of the index is not 
used in the WHERE clause of an SQL statement, then that index will not be 
selected by the optimizer to improve performance. For example, suppose the 
EMPLOYEE table has an index on LASTNAME + FIRSTNAME. The following 
query will not be able to use that index. Instead, a table scan will be 
performed:

SELECT lastname, firstname, salary FROM employee WHERE FIRSTNAME = 
‘John’

� When creating a compound index, consider placing the column with the most 
values first and the column with the fewest values last. 

Remember that WC queries are dynamic. The access path that you see could 
easily change, and usually will in a real-world application. Foresight may be more 
important than DB2 Explain!

12.2.3  Avoiding deadlocks

Good initial design of commands to break down business logic into short 
transactions, using efficient queries to access information, and defining useful 
indexes will all help to minimize deadlock.

However, the most important design consideration to avoid deadlock is to 
perform database access on tables in the same order across all areas of an 
application. If all processes access table A, B, and C in that order each and every 
time, it is not possible to create a deadlock condition. Deadlocks occur because 
another process accesses the tables in the order C, B, A. This requires an 
understanding of the SQL that is being invoked within your transaction, as well 
as SQL invoked by other transactions or processes.

The following tips that can help in avoiding deadlocks:

� Avoid using Select for update.

� Make your transactions short and issue the update or delete statements at 
the end of your EJB transactions.

� Index the columns that appear in the Where clauses in your SQL queries, 
especially if the tables you are selecting from are large tables by nature.

 

 

 

 

258 WebSphere Commerce High Availability and Performance Solutions



12.3  Performance best practices for SQL queries

Optimizing SQL is an extensive, multidimensional topic and requires careful 
analysis of not only the SQL but also the data and the scenarios using that data.

Here we list some of the key aspects of SQL optimization only that we found 
beneficial when writing code for WebSphere Commerce. 

12.3.1  Reduce the result set as early as possible 

Assume the following expressions in a Where clause:

1. Table1.column1 = Table2.column3 (joins all rows of both tables) 
2. Table1.Column5 > value1 (returns 60% of table1’s rows) 
3. Table2.Column3 = value2 (returns 30% of table’s rows) 
4. Table1.column2 = value3 (returns 2% of table2’s rows)

Following the above order will be expensive, especially if table1 and table2 are 
large tables. A more efficient order is 4, 3, 2, 1. 

12.3.2  Avoid using sub-selects and redundant expressions

Let us look at the following real example on subselects:. 

SELECT distinct(CATENTRY_ID)
from CATENTRY 
where MARKFORDELETE=0 
AND 
1) (CATENTRY_ID

 in (SELECT CATENTRY_ID 
      FROM CATGPENREL 
     WHERE CATGROUP_ID = 10000000)
     or CATENTRY_ID 

2) in (SELECT CATENTRY_ID_CHILD 
     from CATENTREL, CATGPENREL
    where CATENTRY_ID_PARENT=CATENTRY_ID 
     and CATGROUP_ID = 10000000))

The above SQL has two levels of subselect. This makes the SQL statement very 
expensive. Optimization is required for such statements. If there are common 
tables in the From clause between the sub-selects, then it is a good hint that the 
sub-selects can be converted easily to joins. 

 

 

 

 

 Chapter 12. Development performance considerations 259



A better and more efficient version of the SQL is:

SELECT distinct (c.CATENTRY_ID)
From CATENTRY c , catgpenrel b ,catentrel d
Where 

MARKFORDELETE=0
AND
b.CATGROUP_ID = 10000000
and
(

1) (c.catentry_id=b.catentry_id)
    or

2) (c.CATENTRY_ID=d.CATENTRY_ID_PARENT
 and b.catentry_id=d.CATENTRY_ID_CHILD))

Note that:

� The underlined clause (CATGROUP_ID = 100000000) was repeated and 
evaluated multiple times in the original statement. In the new tuned SQL, the 
clause was taken to be outside the scope of the original sub-selects.

� The original subselect #1 was rewritten by moving the table “CATGPENREL” 
in the “FROM” section to the main SQL. The new form of the subselect is 
shown as # 1 above. It is a simple join expression.

� For sub-select #2 in the original SQL, the table “CATENTREL” was moved to 
the main. The other table “CATGPENREL” was moved to the main part of 
tuning sub-select #1.

12.3.3  IN versus Exists

To quote the Oracle Tuning Reference, “In certain circumstances, it is better to 
use IN rather than EXISTS. In general, if the selective predicate is in the 
subquery, then use IN. If the selective predicate is in the parent query, then use 
EXISTS.”

IN and EXISTS work very differently. In case of IN, the subquery is executed first 
and then the result is compared with the outer table. The EXISTS clause, 
however, is evaluated for every value in the outer table. Here is an example for 
WebSphere Commerce that shows that EXISTS performs much better than IN 
when the selective predicate is the parent query. The query below was written 
using IN, and it was running for a long time. According the above role, the query 
is a good candidate to use EXISTS instead of IN. The selective predicates 
(T2.REGISTERTYPE IN ('R') AND mr1.ROLE_ID = -29) are in the parent query.

SELECT DISTINCT t1.state, t1.member_id, t1.optcounter, t1.type, 
t2.field2, t2.registrationupdate, t2.field3, t2.lastorder, 

 

 

 

 

260 WebSphere Commerce High Availability and Performance Solutions



t2.language_id, t2.prevlastsession, t2.setccurr, t2.dn, 
t2.registrationcancel, t2.lastsession, t2.registration, t2.field1, 
t2.registertype, t2.profiletype 
FROM userreg, mbrrole mr1 , users t2, member t1
WHERE             
        t2.registertype IN ('R') 
        AND mr1.role_id = -29 
        AND (EXISTS
              ( SELECT 1 
                FROM mbrrel mr, mbrrole ml 
                WHERE (
                         (mr.descendant_id = -1000 
                             AND mr.sequence=1 
                             AND mr1.orgentity_id = mr.ancestor_id) 
                         OR 
                         (ml.role_id IN (-1,-20,-27) 
                             AND ml.member_id = -1000 
                             AND mr1.orgentity_id = ml.orgentity_id) 

         OR 
         ( 

                             (ml.role_id IN (-1,-20,-27) 
                                 AND ml.member_id = -1000 
                                 AND mr.ancestor_id = 
ml.orgentity_id ) 
                             AND mr1.orgentity_id = 
mr.descendant_id)
                         )
                ) 
                OR mr1.orgentity_id IN
                   (SELECT ancestor_id 
                    FROM mbrrel mrl, mbrrole mble 
                    WHERE mble.member_id=-1000
                          AND mble.role_id IN  (-1,-20,-27) 
                          AND mrl.descendant_id = mble.orgentity_id
                   ) 
        )
        AND t2.users_id = mr1.member_id 
        AND userreg.users_id = t2.users_id 
        AND t1.member_id = t2.users_id 
        AND t1.type = 'u'

 

 

 

 

 Chapter 12. Development performance considerations 261



12.3.4  Other important SQL tuning hints 

Add the ‘FOR READ ONLY’ clause on selects that are retrieving data that will not 
be updated. Determine whether additional indexes can help performance.

Retrieve only the information that is needed
Note the following:

� Select only the columns that you need, not all the columns in a table.

� Never use the SELECT * FROM table. If the column order changes or 
columns are removed or added to a table, then your results will be 
unpredictable.

� If a large result set is expected, restrict the number of rows returned with the 
FETCH FIRST n ROWS clause.

� If a small result set is the expectation, use OPTIMIZE FOR n ROWS to help 
optimization.

� If the FETCH FIRST n ROWS clause is used, consider also using the 
OPTIMIZE FOR statement.

� In GUIs that allow search criteria to be entered by the user, consider forcing a 
minimal number of characters to be entered for pattern matching. (This will 
avoid problems where a user requests product information for all items that 
contain the letter a in the description.)

� Avoid the use of a leading wildcard in predicates, since this will require a table 
scan.

Practices to be avoided
Avoid the following practices:

� Avoid using “Distinct” in comparison clauses (that is, where column a in 
(select distinct b from z)). The “Distinct” is nothing but an overhead.

� Avoid the use of functions or operators on indexed columns in a predicate. 
For example, the following query will not be able to take advantage of an 
index on the LASTNAME column:

SELECT lastname, firstname FROM employee WHERE UPPER(LASTNAME) = 
‘BROWN’

� Avoid using FOR UPDATE, as it can lock the rows for longer times and may 
cause waits and deadlocks.

� Avoid constructs that require extra table scanning, index scanning, or locking 
(for example, DISTINCT, ORDER BY, GROUP BY, and so on).

� Avoid scalar functions (for example, Count(*), max(), avg()).

 

 

 

 

262 WebSphere Commerce High Availability and Performance Solutions



� Avoid INNER and OUTER joins unless they are warranted. Too many times 
these are not required and result in the optimizer choosing the wrong path. 

 

 

 

 Chapter 12. Development performance considerations 263



 

 

 

 

264 WebSphere Commerce High Availability and Performance Solutions



Chapter 13. Caching

In general, caching improves response time and reduces system load. Caching 
techniques have long been used to improve the performance of World Wide Web 
Internet applications. Most techniques cache static content (content that rarely 
changes) such as graphic and text files. However, many Web sites serve 
dynamic content, containing personalized information or data that changes more 
frequently. Caching dynamic content requires more sophisticated caching 
techniques, such as those provided by the WebSphere Application Server 6.0 
dynamic cache, a built-in service for caching and serving dynamic content.

When designing your application, it is critical to keep caching considerations in 
mind.

This chapter discusses the benefit of caching on a WebSphere Commerce site.

We discuss:

� Types of caching 

– Dynamic Cache Service (DynaCache)

– Edge Side Includes (ESI)

� Caching enhancements in WebSphere Commerce 6.0.0.1 and later

� Cache replication strategy for a large scale, highly available WebSphere 
Commerce system

� Monitoring DynaCache and ESI

13
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 265



13.1  Types of caching

WebSphere Commerce performance can be greatly enhanced by using two 
types of caching available to WebSphere Application Server and IBM HTTP 
Server Plug-in:

� Dynamic caching
� Edge Side Includes (ESI) caching

The following sections explain the two mechanisms and direct you to valuable 
resources for further reading.

13.1.1  Dynamic caching

The dynamic cache service includes:

� Servlet or JSP result cache, to cache entire pages or fragments generated by 
a Servlet or a JSP page. 

� Command cache, to cache command objects. 

� Edge Side Includes (ESI) caching, to cache, assemble, and deliver dynamic 
Web pages at the edge of an enterprise network. 

� Invalidation support, to ensure that the content of the cache is correct. 
Invalidation can be rule based, time based, group based, and programmatic. 

� Replication support, to enable cache sharing and replication among multiple 
servers. 

� Disk offload capability, to enable caching large amounts of data, and to 
preserve cache content while the application server is stopped and restarted. 
Note that after the application server is restarted and the database restored, 
we recommend that you clear the disk cache using the cache monitor. This 
will ensure that information that has become invalid for the new database is 
removed. Use the cache monitor to clear the cache or, alternatively, use the 
following URL: 

http:// host_name/path/DynaCacheInvalidation?clear=true

The caching behavior of the WebSphere Application Server dynamic cache 
service is specified by cache policies defined by <cache-entry> elements in 
cache specification configuration XML (cachespec.xml) files.

As the dynamic cache service places objects in the cache, it labels them with 
unique identifying strings (cache IDs) constructed according to <cache-id> rules 
specified in the <cache-entry> elements. Once an object with a particular 
cache-id is in the cache, a subsequent request for an object with the same 
cache-id is served from the cache (a cache hit). The <cache-id> rules define how 

 

 

 

 

266 WebSphere Commerce High Availability and Performance Solutions



to construct cache-ids from information associated with an application server 
request (to execute a Servlet, JSP, or command), including how information may 
be obtained programmatically from CacheableCommand objects.

Cached objects are removed from the cache according to information provided in 
their <cache-entry> elements, such as the <timeout>, <priority>, and 
<invalidation> elements.

The <timeout> and <priority> elements configure expiry and eviction policies. 
When the available cache memory is full, a least recently used (LRU) caching 
algorithm removes cached objects with lower priority, or offloads them to disk if 
the disk offload capability is enabled, before those with higher priority.

The <dependency-id> and <invalidation> elements define rules that generate 
dependency IDs and invalidation IDs, which together specify that certain objects 
should be removed from the cache when certain requests (such as those that 
update cached information) are processed. When an object is cached, its 
generated dependency IDs are associated with it in the cache. When a request 
causes invalidation IDs to be generated, all objects associated with those 
invalidation IDs are removed from the cache.

The <inactivity> element is used to specify a time-to-live (TTL) value for the 
cache entry based on the last time that the cache entry was accessed. The value 
is the amount of time, in seconds, to keep the cache entry in the cache after the 
last cache hit. 

The dynamic cache service responds to changes in the cachespec.xml file. 
When the file is updated, the old policies are replaced. Objects cached through 
the old policy file are not automatically invalidated from the cache. They are 
either reused with the new policy or eliminated from the cache through its 
replacement algorithm.

WebSphere Commerce uses WebSphere command caching internally, such as 
with MemberGroupsCacheCmdImpl in the preceding cache filter. However, 
WebSphere Commerce does not support caching of commands that contain 
non-serializable objects.

WebSphere Application Server dynamic cache
WebSphere Commerce uses the WebSphere Application Server dynamic cache 
service for caching servlets or JSP files and commands that extend from the 
WebSphere Application Server CacheableCommand interface. The dynamic 
cache service, servlet caching, and disk offload are enabled by default during the 
creation of a WebSphere Commerce instance.

 

 

 

 

 Chapter 13. Caching 267



For more details on dynamic caching for WebSphere Commerce, refer to 
Mastering DynaCache in WebSphere Commerce, SG24-7393-00. 

13.1.2  Edge Side Includes (ESI) caching

WebSphere Application Server leverages the Edge Side Includes specification to 
enable caching and assembly of distributed fragments. Edge Side Includes is a 
simple mark-up language used to define Web page fragments for dynamic 
assembly of a Web page at the edge of network. 

With the Distributed Fragment Caching and Assembly Support, WebSphere 
Application Server customers can defer page assembly to any ESI-compliant 
surrogate server, such as Akamai EdgeSuite service. This may result in a 
significant performance advantage if fragments can be cached and reused at the 
surrogate.

You can find detailed information about the ESI specification at the following 
sources:

� Edge Side Includes W3C Submission

http://www.w3.org/Submission/2001/09/

� EdgeComputing.org

http://www.edgecomputing.org/

� ESI.org

http://www.esi.org/

WebSphere Application Server provides distributed fragment caching and 
assembly support through the Web server plug-in. WebSphere Application 
Server uses IBM HTTP Server Plug-in to communicate with the HTTP Server. 
This plug-in has the ability to cache entire pages or fragments.

With dynamic cache service’s external cache control, distributed fragment 
caching, and assembly support, dynamic content can be exported, cached, and 
assembled at the most optimal location, closer to the user. More important, 
WebSphere Application Server can maintain control of the external cache 
through its invalidation support to ensure the freshness of cached content. As 
WebSphere Commerce is an application based on WebSphere Application 
Server, WebSphere Commerce customers can make use of the ESI caching 
feature to create and serve highly dynamic Web pages without jeopardizing page 
performance and user experiences.

 

 

 

 

268 WebSphere Commerce High Availability and Performance Solutions

http://www.w3.org/Submission/2001/09/
http://www.edgecomputing.org/
http://www.esi.org/
http://www.redbooks.ibm.com/abstracts/sg247393.html?Open
http://www.edgecomputing.org/
http://www.w3.org/Submission/2001/09/


ESI Processor
The cache implemented by the ESI processor is an in-memory cache, not a disk 
cache. Therefore, the cache entries are not saved when the Web server is 
restarted.

The basic operation of the ESI processor is as follows: When a request is 
received by the Web server plug-in, it is sent to the ESI processor, unless the 
ESI processor is disabled. It is enabled by default. If a cache miss occurs, a 
surrogate-capabilities header is added to the request by the plug-in and the 
request is forwarded to the WebSphere Application Server. If the dynamic servlet 
cache is enabled in the application server, and the response is edge cacheable, 
the application server returns a surrogate-control header in response to the IBM 
HTTP Server Plug-in.

The value of the surrogate-control response header contains the list of rules that 
are used by the ESI processor in order to generate the cache ID. The response 
is then stored in the ESI cache, using the cache ID as the key. For each ESI 
include tag in the body of the response, a new request is processed such that 
each nested include results in either a cache hit or another request forwarded to 
the application server. When all nested includes have been processed, the page 
is assembled and returned to the client.

Best practices 
Review the best practice item listed here:

� Fragment pages when necessary to efficiently edge cache parts of pages that 
are dependent on different subsets of parameters and attributes (where 
attributes have to be replaced by cookies).

� Unlike the dynamic cache service that runs within the WebSphere Application 
Server, the ESI processor does not have access to user HTTP session data 
to uniquely identify page fragments. The application must be designed such 
that page fragments can be uniquely identified using request parameters on 
the URL, HTTP form data, or HTTP cookies in the request. In a JSP include, 
parameters should be included in the URL as query parameters instead of as 
JSP parameter tags. Since Version 6.0, WebSphere Commerce provides 
some cookies that can be used to access session data. See “Cookie support” 
on page 287.

� The parameter needs to be on the parent URL or the child URL. The child 
URL is created from the parameter passed into the JSP. Using WCParam 
within the JSP means that we cannot use it as a cache key, thus allowing the 
ESI processor visibility to these values as query parameters. 

� Consideration should be given as to how expensive a given fragment is to 
compute. Fragments that are expensive to compute provide the best 
candidates for edge caching and can provide significant performance 

 

 

 

 

 Chapter 13. Caching 269



benefits. The cache entry sizes for the ESI processor should be large enough 
to accommodate these expensive fragments. Also, the priority (or the 
time-to-live value) of these fragments should be raised to ensure that less 
expensive fragments are removed from the cache first. With ESI configured 
for the IBM HTTP Server Plug-in, we can use invalidation from Dynacache, so 
this is less of an issue. This can provide a huge performance boost. But you 
need to remember that the cache in the plug-in is only in memory. Also, it is 
important to note that the configuration at the servlet level does not let you 
define what is edgeable at a low enough level.

� Another important consideration for edge caching is the update rate of a 
page. Invalidation of cached fragments is a relatively expensive operation. 
Therefore, very dynamic fragments that are invalidated often may not benefit 
from caching, and may actually hurt performance.

� Web server tuning considerations when using ESI plug-in cache.

– Use a thread-based model (see “Threads” on page 397).

– Use a maximum of 1 GB for cache. (This may cause issues if you are 
using the static memory cache as well.)

See 13.2, “Set up ESI caching” on page 270, for instruction on how to set up ESI 
caching for WebSphere Commerce.

13.2  Set up ESI caching

In this section we describe how to set up and configure ESI caching for 
WebSphere Commerce. 

13.2.1  Prerequisites for ESI caching

Your system should be developed and set up according to the best practices 
above (see “Best practices” on page 269).

Your WebSphere Commerce application must be designed such that page 
fragments can be uniquely identified using request parameters on the URL, 
HTTP form data, or HTTP cookies in the request, as ESI processor has no 
access to HTTP session data.

We explain in “Cookie support” on page 287 how to convert HTTP session 
information like the attribute DC_userid (the current user) to cookies with 
WebSphere Commerce.

 

 

 

 

270 WebSphere Commerce High Availability and Performance Solutions



13.2.2  Configure ESI caching

In this section we outline the steps necessary to activate and configure ESI 
caching: 

1. Install the DynaCacheEsi application.
2. Start the DynaCacheEsi application.
3. Reconfigure and restart the Web servers.
4. Modify and distribute the DynaCache configuration file.

Install the DynaCacheEsi application
First we need to install the DynaCacheEsi application that is needed for ESI 
caching (and invalidation) in the IBM HTTP Server Plug-in. Perform the following 
steps:

1. Open the Network Deployment Manager administrative console and verify 
whether the DynaCacheEsi application is already installed. To do so, click 
Applications → Enterprise Applications. If DynaCacheEsi is not displayed 
in this list, click Install. Otherwise, proceed to “External cache group settings” 
on page 280.

 

 

 

 

 Chapter 13. Caching 271



2. On the Preparing for the application installation panel, browse to the 
WAS_Install_Dir/installableApps Server path and select the 
DynaCacheEsi.ear file, as shown in Figure 13-1.

Figure 13-1   Selecting the DynaCacheEsi installation archive

 

 

 

 

272 WebSphere Commerce High Availability and Performance Solutions



3. Click OK. This takes you back to the Preparing for the application installation 
panel, as shown in Figure 13-2. Click Next.

Figure 13-2   Prepare for the application installation panel

 

 

 

 

 Chapter 13. Caching 273



4. On the next panel, enter VH_<Instance_Name> for the Virtual Host, as shown in 
Figure 13-3 for our instance, which is named demo. (DynaCacheEsi needs to 
be installed using the same virtual host as the cached application.) 

Figure 13-3   Entering the virtual host

 

 

 

 

274 WebSphere Commerce High Availability and Performance Solutions



5. Click Next → Continue. On the Application Security Warnings pane, click 
Continue. Accept the default options on the next panel (step 1) and click 
Next once again. See Figure 13-4.

Figure 13-4   DynaCacheEsi installation - installation options

 

 

 

 

 Chapter 13. Caching 275



6. Step 2 - Map modules to application servers.

On this panel, you need to select your application server cluster and all your 
Web servers, and click the check box in the Select column for the 
DynaCacheEsi Module, as shown in Figure 13-5.

Figure 13-5   DynaCacheEsi installation - Map modules to application servers

7. Click Apply. In the server column next to the DynaCacheEsi module, your 
cluster and Web servers are now listed, as shown in Figure 13-5. Click Next.

Figure 13-6   Servers selected for mapping

 

 

 

 

276 WebSphere Commerce High Availability and Performance Solutions



8. Step 3 - Map virtual hosts for Web modules (Figure 13-7).

Check DynaCacheEsi and select the VH_<Instance_Name> virtual host 
from the pull-down menu. Then click Next.

Figure 13-7   DynaCacheEsi installation - Map virtual hosts for Web modules

 

 

 

 

 Chapter 13. Caching 277



9. Confirm the installation on the Summary window, as shown in Figure 13-8, by 
clicking Finish. 

Figure 13-8   DynaCacheEsi installation - Summary

10.Once the installation has completed successfully, click Save to Master 
Configuration, as shown in Figure 13-9.

Figure 13-9   Saving your changes after installing DynaCacheEsi

 

 

 

 

278 WebSphere Commerce High Availability and Performance Solutions



11.On the following page make sure to select Synchronize changes with 
nodes, then click Save. 

Start the DynaCacheEsi application
To start the DynaCacheEsi application through the Network Deployment 
Manager administrative console, navigate to Applications → Enterprise 
Applications, select DynaCacheEsi, and click Start, as shown in Figure 13-10.

Figure 13-10   Starting the DynaCacheEsi application

When the application has started successfully on all cluster members, a 
message box is displayed (see Figure 13-11) and the application status is 
changed to started.

Figure 13-11   DynaCacheEsi application started successfully

 

 

 

 

 Chapter 13. Caching 279



External cache group settings
You need to define an external cache group controlled by WebSphere 
Application Server. To do so:

1. Open the Network Deployment Manager administrative console and click 
Servers → Application servers.

2. Select your application server from the list.

3. Select Container Services → Dynamic Cache Service. 

4. Select External Cache Groups from the Additional Properties pane. 

This panel (shown in Figure 13-12) allows you to create, delete, or update an 
existing external cache group. 

5. The EsiInvalidator external cache group normally exists by default. If it is not 
shown, click New. This launches the Configuration window where you can 
specify the name of the external cache group. 

Figure 13-12   External cache groups

6. On the External cache group panel, click EsiInvalidator, then select External 
cache group members.

Tip: In a production environment, you need to verify, and, if necessary, 
create the external cache groups on all application servers that are serving 
the cached application.

 

 

 

 

280 WebSphere Commerce High Availability and Performance Solutions



7. For the EsiInvalidator group, there should be one member by default, as 
shown in Figure 13-13.

Figure 13-13   External cache group members

8. If you just created the cache group, or if the default external cache group 
member does not exist, click New to create it, and specify the following 
information:

– Address: 

localhost

– Adapter Bean Name:

com.ibm.websphere.servlet.cache.ESIInvalidatorServlet 

Then click OK.

9. If you have made any changes, make sure to save your changes to the 
master configuration.

Reconfigure the Web servers
For ESI caching to work properly in the IBM HTTP Server Plug-in, including 
receiving invalidations from the application servers, you need to change the 
plug-in configuration file on each Web server. Example 13-1 shows the beginning 
of the file with ESI caching and invalidations enabled for a maximum cache size 
of 512 MB.

Example 13-1   The beginning of the file 

<?xml version-"1.0"?>
<Config ...>

...
<Property Name="esiEnable" Value="true"/>
<Property Name="esiMaxCacheSize" Value="524288"/>

 

 

 

 

 Chapter 13. Caching 281



<Property Name="esiInvalidationMonitor" Value="false"/>
...

</Config>

Note the following:

esiEnable This can be used to disable the ESI processor by setting 
the value to false. ESI is enabled by default. If ESI is 
disabled, then the other ESI options are ignored.

esiMaxCacheSize This is the maximum size of the cache in 1 KB units. The 
default maximum size of the cache is 1 MB (1,024 KB). If 
the cache is full, the first entry to be evicted from the 
cache is the entry that is closest to expiration. 

esiInvalidationMonitorThis specifies whether the ESI processor should receive 
invalidations from the application server. ESI works well 
when the Web servers following a threading model are 
used, and only one process is started. When multiple 
processes are started, each process caches the 
responses independently and the cache is not shared. 
This could lead to a situation where the system's memory 
is fully used up by the ESI processor. There are three 
methods by which entries are removed from the ESI 
cache: First, an entry's expiration timeout could fire. 
Second, an entry may be purged to make room for newer 
entries. Or third, the application server could send an 
explicit invalidation for a group of entries. In order for the 
third mechanism to be enabled, the esiInvalidationMonitor 
property must be set to true and the DynaCacheEsi 
application must be installed on the application server. 
The DynaCacheEsi application is located in the 
installableApps directory and is named 
DynaCacheEsi.ear. If the ESIInvalidationMonitor property 
is set to true but the DynaCacheEsi application is not 
installed, then errors will occur in the Web server plug-in 
and the request will fail.

Follow the steps below for each of your Web servers to configure the plug-in on 
all Web servers using the Network Deployment Manager administrative console:

1. In the administrative console, navigate to Servers → Web servers → 
<WebServer_Name> → Plug-in properties → Caching.

 

 

 

 

282 WebSphere Commerce High Availability and Performance Solutions



2. Activate both Enable Edge Side Includes (ESI) processing to cache the 
responses and Enable invalidation monitor to receive navigations and 
enter your desired maximum cache size (this is per ESI processor process), 
as shown in Figure 13-14.

Figure 13-14   Configuring ESI caching 

3. Click OK.

4. Save your changes to the master configuration.

After performing the steps above for each of your Web servers, you need to 
propagate the plug-in configuration file, plugin-cfg.xml.

You do not need to explicitly propagate the plug-in configuration file if you make 
all of the following settings:

� Activate both automatic plug-in configuration generation and propagation 
(“Update the Web server configuration” on page 176).

� Enable remote Web server management for your Web servers. (Supply an 
administrative user name and password to Network Deployment Manager, 
and start IBM HTTP Server administrative server on the Web servers.) See 
“Activate remote Web server management (optional)” on page 175.

 

 

 

 

 Chapter 13. Caching 283



You may still perform the following steps if you have remote Web server 
management enabled and if the administrative server is running on your Web 
servers, for example, if you do not want to wait until the plug-in configuration is 
refreshed automatically, or if automatic generation and propagation are switched 
off.

1. Navigate to Servers → Web servers.

2. Select all of your Web servers that have remote Web server management 
enabled, as shown in Figure 13-15.

Figure 13-15   Propagating the plug-in configuration for all Web servers

3. Click Generate Plug-in, then Propagate Plug-in.

If remote Web server management is not enabled, you need to copy the plug-in 
configuration file manually to your Web servers (see “Propagate IBM HTTP 
Server Plug-in configuration” on page 183).

After propagating the plug-in configuration, stop and start your Web servers. 
According to “Testing ESI caching” on page 571, in WebSphere Application 
Server V6 Scalability and Performance Handbook, SG24-6392, simply reloading 
the plugin-cfg.xml file is not enough, and a real stop and start of the Web servers 
is necessary to activate ESI caching and invalidation handling.

Modify the DynaCache configuration file
To cache full pages and fragments on the Web server, you need to update the 
Dynamic Cache configuration file, cachespec.xml. On WebSphere Commerce 
node 1, the file can be located as follows:

WAS_Install_Dir/profiles/Profile_Name/installedApps/Cell_Name/
WC_<Instance_Name>.ear/Stores.war/WEB-INF/cachespec.xml

 

 

 

 

284 WebSphere Commerce High Availability and Performance Solutions

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


To change the file, copy the file to your local machine and make the 
modifications that you need, as described in the following two sections, “Caching 
full pages” on page 285 and “Caching fragments” on page 286. We do not 
recommend changing it directly on the server, as updates to the file are effective 
immediately.

When you are done with editing the file, you can distribute it to all the application 
servers in your cluster, as described in “Distribute cachespec.xml” on page 289.

Caching full pages 
To mark an entry to be cached using ESI, use the property EdgeCacheable. This 
property also implies the property of consume-subfragments. That is, the page 
will be cached as a full page, including all its subfragments, unless one of these 
subfragments is specified to be cacheable separately (refer to “Caching 
fragments” on page 286 for details). In order to cache pages with ESI, only the 
parameter and cookie component can be used to define the cache ID.

Example 13-2 shows our cache-entry for the ECActionServlet servlet with a 
sample cache-id entry for the TopCategoriesDisplay URL, which is used to test 
full page caching. 

Example 13-2   ECActionServlet cache-entry with sample cache-id

<?xml version="1.0" ?>
<!DOCTYPE cache SYSTEM "cachespec.dtd">
<cache>
<cache-entry>

<class>servlet</class>
<name>com.ibm.commerce.struts.ECActionServlet.class</name>
<property name="store-cookies">false</property>
<property name="save-attributes">false</property>
<property name="EdgeCacheable">true</property>

...
<cache-id>

<component id="" type="pathinfo">
<required>true</required>
<value>/TopCategoriesDisplay</value>

</component>
<component id="storeId" type="parameter">

<required>true</required>
</component>
<component id="catalogId" type="parameter">

<required>true</required>
</component>
<component id="categoryId" type="parameter">

<required>false</required>

 

 

 

 

 Chapter 13. Caching 285



</component>
</cache-id>

...
</cache>

Caching fragments
Alternate URL is a method for edge caching JavaServer™ Pages (JSP) files and 
servlet responses that you cannot request externally. Dynamic cache provides 
support to recognize the presence of an Edge Side Include (ESI) processor and 
to generate ESI include tags and appropriate cache policies for edge cacheable 
fragments. However, for a fragment to be edge cacheable, you must be able to 
externally request it from the application server. In other words, if a user types 
the URL in her browser with the appropriate parameters and cookies for the 
fragment, WebSphere Application Server must return the content for that 
fragment. 

The child JSP files are edge cacheable only if you can request these JSP files 
externally, which is not usually the case. For example, if a child JSP file uses one 
or more request attributes that are determined and set by the controller servlet, 
you cannot cache that JSP file on the edge. You can use alternate URL support 
to overcome this limitation by providing an alternate controller servlet URL used 
to invoke the JSP file.

The alternate URL for a JSP file or a servlet is set in the cachespec.xml file as a 
property with the name alternate_url. You can set the alternate URL either on a 
per cache-entry basis or on a per cache-id basis. It is valid only if the 
EdgeCacheable property is also set for that entry. If the EdgeCacheable property 
is not set, the alternate_url property is ignored. 

A good example for WebSphere Commerce is a JSP, which displays a 
personalized mini shopping cart, and that is included by fully cached pages, for 
example, TopCategoriesDisplay (see above). See Example 13-3 on page 288 for 
the cachespec.xml entry for the mini shopping cart JSP fragment.

In order to cache the TopCategoriesDisplay page and the mini shopping cart on 
the edge, we need to construct cache ID rules that only contain URL parameters 
or cookies. For the store catalog display page, it will not be a problem since all 
the information needed to cache it is on the URL. However, since the mini current 
order display is unique per user, we have to use the user’s ID as the cache ID.

Since only URL parameters and cookies can be used to define the cache ID rule, 
and the URL does not contain the user’s information, the only other way is to use 
a cookie that contains the user’s ID information as a component of the cache ID. 

 

 

 

 

286 WebSphere Commerce High Availability and Performance Solutions



Cookie support
Since Version 6.0, WebSphere Commerce provides some cookies that can be 
used as part of the cache-id. The DynaCache Event Listener listens to the 
session change events triggered by the user ID or store ID change and then 
performs the following actions: 

� Deletes all old session cookies (if they exist).

� Creates new session cookies based on the settings of the 
com.ibm.commerce.dynacache.DynaCacheCookie object and data obtained 
from the basic catalogue structure.

� Each cookie is given an expiry period of one day.

� Each cookie is hashed using a one-way hash of the value + merchant key + 
today's date (yyyymmdd).

To use cookies, perform one of the following steps:

� Single store scenario

Add the following component entry in the cachespec.xml file inside the 
<cache-id> tags of <cache-entry> elements that are dependent on session 
information. 

<component id="<Component_ID>" type="cookie">
<required>true</required>

</component>

Where <Component_ID> is one of the values listed in Table 13-1.

Table 13-1   Cookie component IDs

Component_ID Definition

WC_LANGID Language ID

WC_CURRID Currency ID

WC_PROG Parent organization

WC_CACHEID1 Contract ID

WC_CACHEID2 Member groups

WC_CACHEID3 Buyer contract ID

WC_CACHEID4 User ID

WC_CACHEID5 User type

 

 

 

 

 Chapter 13. Caching 287



Example 13-3 shows how this would look like for the mini shopping cart 
display, using WC_CACHEID4 to include the user ID in the cache-id.

Example 13-3   Using cookies in the cache-id (single store)

<cache-entry>
<class>servlet</class>
<name>/ConsumerDirect/include/MiniShopCart.jsp</name>
<property name="EdgeCacheable">true</property>
<property name="alternate_url">/servlet/ConsumerDirect/ 

include/MiniShopCart.jsp</property>
<property name="save-attributes">false</property>
<property name="do-not-consume">false</property>
<cache-id>

<component id="WC_CACHEID4" type="cookie">
<required>true</required>

</component>
</cache-id>

</cache-entry>

� Multi store scenario

Insert a <cache-id> entry for each store into the cachespec.xml with the 
structure and properties shown in Example 13-4 for the mini shopping cart 
display. 

Example 13-4   Using cookies in the cache-id (multi store)

<cache-entry>
<class>servlet</class>
<name>/ConsumerDirect/include/MiniShopCart.jsp</name>
<property name="EdgeCacheable">true</property>
<property name="alternate_url">/servlet/ConsumerDirect/ 

include/MiniShopCart.jsp</property>
<property name="save-attributes">false</property>
<property name="do-not-consume">false</property>
<cache-id>

<component id="WC_CACHEID4_10001" type="cookie">
<required>true</required>

</component>
</cache-id>
<cache-id>

<component id="WC_CACHEID4_10002" type="cookie">
<required>true</required>

 

 

 

 

288 WebSphere Commerce High Availability and Performance Solutions



</component>
</cache-id>

</cache-entry>

At runtime the cookie generator dynamically produces a cookie named based 
on the storeId. For example, given the storeId 10001 and an English store, 
the cookie WC_LANGID_10001=-1 will be generated.

Distribute cachespec.xml
Once your cachespec.xml file is complete, you need to distribute it to your 
application servers. To do this:

1. Open the Network Deployment Manager administrative console and navigate 
to Applications → Enterprise Applications.

2. Select your WebSphere Commerce application, WC_<Instance_Name>, as 
shown in Figure 13-16. In our case, the application is WC_demo.

Figure 13-16   Updating an application

3. Click Update. On the Preparing for the application installation page, select 
Single file and enter Stores.war/WEB-INF/cachespec.xml in the Relative path 
to file field. The relative path always starts at the root of the Enterprise 
Application Archive (EAR). In the Upload the new or replacement files box, 
choose Local filesystem and specify your modified cachespec.xml file using 
the full path and filename.

 

 

 

 

 Chapter 13. Caching 289



Figure 13-17 shows the settings for our scenario.

Figure 13-17   Specifying the cachespec.xml update

 

 

 

 

290 WebSphere Commerce High Availability and Performance Solutions



4. Click Next. A confirmation page is displayed stating the relative path just 
entered. See Figure 13-18.

Figure 13-18   Update confirmation

5. Click OK. The application is now patched. This step only updates the Network 
Deployment Manager configuration. The updated file is not yet distributed to 
the application servers.

6. When the installation has successfully completed, save the changes to the 
master configuration by clicking Save to master configuration.

7. On the Save page, make sure that Distribute changes to nodes is 
activated, then click Save. This distributes the updated file to all application 
servers, where the changes become effective immediately after the file has 
been copied.

The ESI caching configuration is now complete.

 

 

 

 

 Chapter 13. Caching 291



13.3  Caching enhancements in WebSphere Commerce 
6.0.0.1 and later

In WebSphere Commerce 6.0.0.1 and later, you now have the option to enable 
additional WebSphere Commerce runtime command caching to further enhance 
performance. For details on how to do this, follow this link:

http://www-1.ibm.com/support/docview.wss?uid=swg21246721

13.4  Cache replication 

A large WebSphere Commerce environment utilizes WebSphere Application 
Server clustering to achieve scalability and high availability. Dynamic cache is 
implemented to improve application response times and reduce system load. In 
a clustered environment, each JVM (cluster member) has a cache instance that 
generates its unique cache content, in memory first with the option to offload 
excessive cache content to disk. 

WebSphere Commerce runtime creates many cached objects in the background. 
Hence, data replication service is required in a clustered environment to ensure 
that these runtime cached objects are invalidated across the cluster.

When designing your cache strategy in this highly available environment, a few 
important questions must be answered:

� What options are available to ensure the consistency of cache content across 
a cluster?

� What are the pros and cons of each option?

� What does cache replication do?

� How does cache replication work?

� How much performance improvement does cache replication provide?

� What is the performance overhead of cache replication?

� How will you tune cache replication to reap the most benefit out of it and 
reduce the performance overhead?

� How will you configure cache replication?

� What does WebSphere Commerce recommend with respect to cache 
replication?

This section answers these questions.

 

 

 

 

292 WebSphere Commerce High Availability and Performance Solutions

http://www-1.ibm.com/support/docview.wss?uid=swg21246721


13.4.1  Cache replication

Cache replication is a WebSphere Application Server service that provides the 
following benefits:

� Data is generated one time and copied or replicated to other servers in the 
cluster, saving time and resources and aiding in cache consistency. 

� Cache entries that are not needed are removed or replaced on all cluster 
members, again, aiding in cache content consistency across the cluster.

The data replication configuration can exist as part of the Web container dynamic 
cache configuration accessible through the administrative console, or on a 
per-cache entry basis through the cachespec.xml file. The sharing policy set on a 
particular cache-entry overrides the default sharing policy set on the replication 
domain.

Cache replication can take on various forms: 

� PUSH - Cache entries for this object are automatically distributed to the 
dynamic caches in peer-distributed servers. 

� PUSH/PULL - Cache entries for this object are shared between application 
servers on demand. When an application server generates a cache entry, it 
broadcasts the cache ID of the created entry to all cooperating application 
servers. Each server then knows whether an entry exists for any given cache 
ID. On a given request for that entry, the application server knows whether to 
generate the entry or pull it from somewhere else. When using PUSH-PULL, 
if the WebSphere Application Server level is greater than 6.0.2.15, ensure 
that you have the following APARS: PK32424, PK27694, PK36676.

The dynamic cache service broadcasts cache replication updates 
asynchronously, based on a configurable batch update interval (on the dynamic 
cache service administrative console panel) rather than sending them 
immediately. Invalidations are sent immediately. Distribution of invalidations 
prevents stale data from residing in a cluster. 

13.4.2  In-memory cache 

A newly generated cache entry is stored in memory (JVM) until it fills up. The 
maximum number of cache entries that can be stored in the JVM is controlled by 
the Cache size parameter, configurable in the administrative console. The 
default is 2000. 

It is extremely important to monitor the heap consumed by the cache using 
verbose GC tracing or heap dump analysis. 

 

 

 

 

 Chapter 13. Caching 293



This helps in determining the size of the in-memory cache. Using the GC logs 
during performance testing, one should arrive at the appropriate size of the 
in-memory cache.

The in-memory cache size is limited by the size of the JVM. As a rule of thumb, 
we recommend leaving 40% of JVM free with caching to avoid excessive 
fragmentation and out-of-memory problems causing crashes. Gradually increase 
the cache size and fine-tune the JVM to reduce fragmentation.

13.4.3  Offload to disk

By default, the dynamic cache maintains the number of entries that are 
configured in memory. If new entries are created while the cache is full, the 
priorities that are configured for each cache entry, and a least recently used 
algorithm, are used to remove entries from the cache. In addition to having a 
cache entry removed from memory when the cache is full, you can enable disk 
offload to have a cache entry copied to the file system (the location is 
configurable). Later, if that cache entry is requested, dynamic cache first evicts a 
cache entry from JVM based on priority and LRU algorithm, and then re-inserts 
the needed cache entry into memory.

The disk cache size can be controlled in WebSphere Application Server Version 
6.0.2.17 or later. 

The disk cache size can be controlled in terms of the number of entries or size of 
disk. You can do so by setting JVM custom properties 
com.ibm.ws.cache.CacheConfig.diskCacheSizeInGB and 
com.ibm.ws.cache.CacheConfig.diskCacheSize. The technote found at 
http://www-1.ibm.com/support/docview.wss?uid=swg27007969 elaborates on all 
the disk cache enhancements. We recommend that the customer use SAN disks 
for hosting the disk cache for performance-critical real-time applications.

In theory, disk cache is only limited by file system size. However, in practice you 
must consider the performance overhead versus performance gain.

Larger disk cache size is dependent on how fast the information can be written to 
disk and retrieved from it. If you allow disk cache to grow without limit, eventually 
you will reach a point where it is faster to regenerate a cache entry from the 
database than to look it up from disk. 

The ideal disk cache size must be determined in an endurance test.

A PMI counter, HitsOnDisk, may be used to monitor the number of hits on disk 
cache.

 

 

 

 

294 WebSphere Commerce High Availability and Performance Solutions

http://www-1.ibm.com/support/docview.wss?uid=swg27007969


13.4.4  FlushToDiskOnStop

Cache entries can also be written to disk when the server is stopped. 

There are two ways to achieve this:

� Enable the Flush to disk option in the administrative console.
� Set the com.ibm.ws.cache.flushToDiskOnStop custom JVM property to true.

When this custom property is set to true, even if Flush to disk is not selected in 
the administrative console, upon a server stop, it will flush in-memory cache to 
disk and also retain the over flowed offloaded-to-disk cache.

To verify whether FlushToDiskOnStop is enabled or disabled, check the 
SystemOut.log on server startup for this message:

Cache         I   DYNA0061I: Flush to disk on stop is enabled for cache 
name "baseCache".

or

Cache         I   DYNA0061I: Flush to disk on stop is disabled for 
cache name "baseCache".

If you do not want to retain any cache entries (in-memory or on disk) when the 
server stops, you must ensure the following:

� The Flush to disk option is not selected in the Dynamic Cache Service 
Configuration page.

� The custom JVM property com.ibm.ws.cache.flushToDiskOnStop is either not 
present or is set to false in the JVM Custom Properties Configuration page.

13.4.5  Limitation on invalidation when server is stopped

When a server is stopped, it can no longer receive and process any cache 
replication requests.

There is a limitation on invalidation when a server is stopped. 

Consider this scenario. FlushToDiskOnStop is enabled, and upon a server stop, 
in-memory and disk cache are preserved on the file system.

One server in the cluster is stopped, but the other ones are running and 
processing invalidation requests. Often the invalidated cache entry also exists in 
the disk cache of the server that is stopped. It will not have the ability to remove 
this cache entry from its disk cache, and therefore when this cluster member 
starts back up, its disk cache will contain outdated cache entries.

 

 

 

 

 Chapter 13. Caching 295



Because of this limitation, in order to keep the cache content consistent, you may 
wish to disable FlushToDiskOnStop in a clustered environment. The downside to 
this is that when a server starts up, its cache content must be rebuilt. As such, 
the initial response time from this server will be slow.

13.4.6  Performance tuning

We highly recommend that you apply the latest WebSphere Commerce and 
WebSphere Application Server fix pack to take advantage of recent performance 
enhancements. In addition to applying the fix packs, you will need to consider the 
topics discussed in this section when tuning for dynamic cache in a clustered 
environment.

Control DRS message size
Cache replication distributes cache entries and invalidations in the form of DRS 
messages. 

In the past when we had no ability to control DRS message size, depending on 
the size of your cache, the DRS messages generated can be very large, often 
times hundreds of KB or several MB in some extreme cases. A busy WebSphere 
Commerce JVM is usually fragmented. Finding this much contiguous space in a 
fragmented JVM is often impossible, and when this happens, an Out Of Memory 
condition is triggered and causes the JVM to crash.

A solution is now available to address this problem. 

With two new APARs or WebSphere Application Server fix pack 6.0.2.19 or later, 
you can now control the DRS message size and replicate smaller DRS objects 
and in batches.

The two APARs are:

� PK32201: OutOfMemory DUE TO LARGE DRS MESSAGES 
� PK35824: Extending PK32201 to batching of Invalidation events

The batch size of the replication data can now be configured using the following 
custom properties:

� com.ibm.ws.cache.CacheConfig.cachePercentageWindow

This specifies a limit on the number of cache entries sent by the Data 
Replication Service in terms of the percentage of total cache in memory. 

– Default value: 2% of the number of entries in the cache 
– Scope: configurable per-cache instance

 

 

 

 

296 WebSphere Commerce High Availability and Performance Solutions



� com.ibm.ws.cache.CacheConfig.cacheEntryWindow

This specifies a limit on the total number of cache entries sent by the Data 
Replication Service in terms of number of entries.

– Default value: 50 entries
– Scope: configurable per cache instance

� com.ibm.ws.CacheConfig.batchUpdateMilliseconds

This specifies a batch update frequency in terms of milliseconds. Setting this 
property will result in Dynacache processing updates more frequently, and 
thus reducing the payload size. The default value is 1000 ms (1 s).

Tune in-memory cache size
The default cache size is 2000. This number represents the maximum number of 
cache entries that can be stored in memory. Multiplying your average page size 
with the cache size will give you the approximate heap size occupied by dynamic 
cache. 

Start with the default cache size and monitor the heap utilization by cache. 
Gradually increase this number if there is sufficiently free heap space. 

Filter out expiration and LRU-based invalidation events
The dynamic caching service sends invalidation notifications to all cluster 
members in all situations. In some cases, these invalidation events are 
unneeded and can become a performance drain.

Two custom JVM properties can be used to disable the sending of notifications in 
two situations: invalidation based on LRU eviction and invalidation based on time 
out. 

WebSphere Commerce recommends that you set these custom JVM properties 
to TRUE:

� com.ibm.ws.cache.CacheConfig.filterLRUInvalidation 
� com.ibm.ws.cache.CacheConfig.filterTimeOutInvalidation

These two new properties are available in WebSphere Application Server fix 
pack 6.0.2.13 and later. Fro more details, refer to:

http://www-1.ibm.com/support/docview.wss?rs=0&uid=swg24012317

 

 

 

 

 Chapter 13. Caching 297

http://www-1.ibm.com/support/docview.wss?rs=0&uid=swg24012317


13.4.7  Tune disk cache

When tuning and testing with disk cache, you should consider the parameters, 
disk cache size, offload to disk location, and other disk cache performance 
enhancements discussed in this section.

Control disk cache size
Do not let disk cache grow to an unlimited size. If you run out of disk space 
because the disk cache is too large, your server will become non-responsive.

Control disk cache size by setting this custom JVM property 
com.ibm.ws.cache.CacheConfig.diskCacheSizeInGB.

Start with a few GB and gradually increase that if the response time with writing 
to disk cache and retrieving from it is still within target. This needs to be 
monitored closely in your load test. 

Configure offload location
Direct the offload to disk location to a separate file system that has sufficiently 
large and preferably dedicated space.

If the disk offload location is not specified, the default location 
${WAS_TEMP_DIR}/node/server name/_dynacache/cache JNDI name is used. 

If the disk offload location is specified, the node, server name, and cache 
instance name are appended. For example, 
${USER_INSTALL_ROOT}/diskoffload generates the location as 
${USER_INSTALL_ROOT}/diskoffload/node/server name/cache JNDI name. 
This value is ignored if disk offload is not enabled.

The default value of the ${WAS_TEMP_DIR} property is 
${USER_INSTALL_ROOT}/temp. If you change the value of the 
${WAS_TEMP_DIR} property after starting WebSphere Application Server, but 
do not move the disk cache contents to the new location:

� The application server creates a new disk cache file at the new disk offload 
location.

� If the Flush to disk setting is enabled, all of the disk cache content at the old 
location is lost when you restart the application server.

When you are specifying a directory, consider the following:

� If you expect to cache a large number of objects or large objects that will be 
around for some time, consider using a separate disk drive if you are using 

 

 

 

 

298 WebSphere Commerce High Availability and Performance Solutions



Windows operating systems, or a separate file system if you are using UNIX 
platforms.

� If you use the default directory and the disk fills up, WebSphere Application 
Server could possibly stall if it needs to write messages to log files and there 
is no more space.

� If you specify a directory such as /tmp on UNIX platforms and that directory 
fills up, you may have trouble logging onto the system.

� Depending on the operating system, you may see disk full messages on the 
console.

� When specifying a non-default location on a UNIX system, ensure that proper 
read/write permission is set on the directory so the WebSphere Application 
Server instance owner (for example, wasuser) can write to/read from the 
offload to disk directory. 

Additional disk cache tuning parameters
In this section we discuss additional disk cache tuning parameters.

com.ibm.ws.cache.CacheConfig.diskCachePerformanceLevel
This property indicates the performance level to tune the performance of the disk 
cache. Valid values are 0, 1, 2, or 3: 

� 0: low performance and low memory usage 

A limited amount of metadata is kept in memory.

Set htodCleanupFrequency in minutes (1 to 1440). A value of 0 indicates that 
cleanup runs only at midnight.

� 1: balanced performance and balanced memory usage 

Some metadata is kept in memory. Use the default settings to provide an 
optimal balance of performance and memory usage for most users.

Set htodCleanupFrequency in minutes (1 to 1440). A value 0 indicates that 
cleanup runs only at midnight.

� 2: custom performance and custom memory usage 

This explicitly configures the memory that is consumed by the disk cache.

– Set htodDelayOflloadEntriesLimit (<=100).

– Set htodDelayOffloadDepIdBuckets (>= 100).

– Set htodDelayOffloadTemplateBuckets (>= 10).

– Set htodCleanupFrequency in minutes (1 to 1440). A value of 0 indicates 
that cleanup runs only at midnight.

 

 

 

 

 Chapter 13. Caching 299



� 3: High performance and high memory usage 

All of the metadata, including dependency IDs and templates, are kept in 
memory. 

There is no need to perform a disk scan for expiration, for example, no 
cleanup frequency. 

WebSphere Commerce recommends that you set it to 2 or 3.

Our studies have shown that there is minimal memory overhead using 3. It 
should definitely be experimented with during load testing. If the heap utilization 
is acceptable we recommend using 3 along with a random eviction policy.

We never recommend 0.

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit 
This property provides a way to limit the buffering of dependency and template 
information. This limit occurs by specifying an upper bound on the number of 
cache entries that any specific dependency can contain for buffering in memory. 
If there are more entries per dependency than this limit, the dependency and 
template information is written to the disk.

The default is 1000. 

WebSphere Commerce recommends that you set it to 100000.

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency
This property specifies the frequency at which the disk cache cleanup daemon 
removes expired entries from the disk cache.

The default value is zero (0), which means that cleanup is scheduled to run at 
midnight.

WebSphere Commerce recommends that you set this to 60 (1 hour).

If you have cache entries with small time-out values, you might need to reduce 
this cleanup frequency.

com.ibm.ws.cache.CacheConfig.htodDelayOffload
This property specifies whether extra memory buffers should be used for 
dependency IDs and templates to delay disk offload and to minimize input and 
output operations to the disk. This property is enabled by default. 

WebSphere Commerce recommends that you explicitly set it to true if you had 
previously set it to false.

 

 

 

 

300 WebSphere Commerce High Availability and Performance Solutions



com.ibm.ws.cache.CacheConfig.disableTemplateInvalidation 
This property disables the template-based invalidations during JSP reloads.

WebSphere Commerce recommends that you set it to true.

To configure the aforementioned custom properties:

1. In the administrative console, click Servers → Application servers → 
server_name → Java and process management → Process definition → 
Java virtual machine → Custom properties → New. 

2. Type the name of custom properties. Include the full property path. 

3. Type a valid value for the property in the Value field. 

4. Save the property and restart WebSphere Application Server.

13.4.8  Instructions to set up cache replication

Follow the instructions below to set up cache replication in a clustered 
environment.

Create a replication domain
All components that need to share information must be in the same replication 
domain. There are two ways to create a replication domain.

1. Create a replication domain when you create the WebSphere Commerce 
cluster:

a. When creating the WebSphere Commerce cluster, you can select the 
option Create a replication domain for this cluster and a replication 
domain with the same name as the cluster name will be created. This 
option is not selected by default. 

b. Finish creating the WebSphere Commerce cluster.

c. Verify that a replication domain is created. From administrative console, 
click Environment → Replication domains.

d. Select Entire Domain.

2. If you did not create a new replication domain when creating the WebSphere 
Commerce cluster, you can do so after the cluster is created. From the 
administrative console, click Environment → Replication domains → 
New → <Fill in the Name field> → Select Entire Domain.

When all the changes are made, ensure that you save the changes to the master 
configuration repository and synchronize to all nodes.

Click OK when the changes are saved and the nodes are synchronized.

 

 

 

 

 Chapter 13. Caching 301



Associate a server to replication domain
Now that the replication domain is created, you must also assign it to the 
individual servers that will participate in replication. Follow these steps:

1. From the administrative console, select the application server, click 
Container Services → Dynamic Cache Service, look under Consistency 
settings, and select Enable cache replication. 

2. In the drop-down menu under Full group replication domain, select the 
replication domain that you created in the previous step.

3. For Replication type, select Push only.

4. Leave everything else as the default.

5. Click OK.

6. Repeat steps 1–5 for all cluster members, save all changes, and synchronize 
to all nodes.

7. Restart the WebSphere Commerce cluster.

Configure sharing policy in cachespec.xml
In some instances, you may want to overwrite the replication type configured in 
the administrative console. For example, to further reduce the overhead of 
sending too many DRS messages, you can choose to let each server generate 
its own cache and not share it with other cluster members. You can do so by 
setting the sharing-policy element to not-shared for the specific cache entry in 
cachespec.xml. Note that invalidation DRS messages are still replicated to all 
cluster members so the cache content on every server is valid. If this element is 
not present, then it defaults to the replication type configured in the 
administrative console.

This property does not affect distribution to Edge Side Include processors 
through the edge fragment caching property. 

The sharing policy in the cachespec.xml maps to replication type defined in the 
administrative console as follows:

� not-shared (cachespec.xml) and Not Shared (console)

Cache entries for this object are not shared among different application 
servers. These entries can contain non-serializable data. For example, a 
cached servlet can place non-serializable objects into the request attributes, if 
the <class> type supports it. 

� shared-push (cachespec.xml) and Push only (console)

Cache entries for this object are automatically distributed to the dynamic 
caches in other application servers or cooperating Java virtual machines 

 

 

 

 

302 WebSphere Commerce High Availability and Performance Solutions



(JVMs). Each cache has a copy of the entry at the time it is created. These 
entries cannot store non-serializable data.

� shared-push-pull (cachespec.xml) and Both push and pull (console)

Cache entries for this object are shared between application servers on 
demand. When an application server generates a cache entry, it broadcasts 
the cache ID of the created entry to all cooperating application servers. Each 
server then knows whether an entry exists for any given cache ID. On a given 
request for that entry, the application server knows whether to generate the 
entry or pull it from somewhere else. These entries cannot store 
non-serializable data.

The following example shows a sharing policy of not-shared:

<sharing-policy>not-shared</sharing-policy>

13.4.9  Other options to ensure cache content consistency across 
cluster

Cache replication is the recommended way to maintain cache content 
consistency in a clustered environment. However, due to its limitation on 
invalidation when a server is stopped, some clients chose other options to 
maintain cache content consistency on invalidation without using cache 
replication. Here are two examples: using a database and using a file system.

Invalidate cache entry per JVM using database
You can uniquely identify each JVM with this custom JVM property for 
WebSphere Commerce:

com.ibm.commerce.scheduler.SchedulerHostName 

Set the value to NodeName.ServerName so that it is unique within the cell.

Next create a scheduled DynaCacheInvalidation job to run on a particular JVM. 
When calling the AddJob command to create the new schedule job, specify the 
host parameter and use the value that uniquely identifies the scheduler process. 
If you want to manually change an existing job, update the SCCHOST column in 
the SCHCONFIG table for the job that you want to run on a particular instance. 

This option would eliminate the need for a replication domain. However, for each 
invalidation request, we need to create a SCHCONFIG record per JVM, one for 
each cluster member so they each run their individual DynaCacheInvalidation 
job. This introduces overhead on the database.

 

 

 

 

 Chapter 13. Caching 303



If you do not have too many cluster members (for example, 2), and the response 
time is acceptable when each server generates its own cache content without 
sharing, then you may want to explore this option.

Invalidate cache entry per JVM using file system
If you do not want to use the database to track the invalidation requests, you can 
implement customization so each JVM keeps track of its invalidations on the file 
system.

13.4.10  Monitor runtime cache

It is vital to monitor and analyze the health of the runtime cache during 
performance tests and in production. We recommend the following tools:

� Dynamic Cache Statistics Collector and Visualizer for IBM WebSphere 
Application Server

http://www.alphaworks.ibm.com/tech/cacheviz

� IBM Extended Cache Monitor for IBM WebSphere Application Server 

An Extended Cache Monitor exists that contains the following two 
enhancements:

� Display the contents of object cache instances

� Display the Dynamic Cache mbean statistics for cache instances

Details about this Extended Cache Monitor and the download package for it can 
be found here:

http://www-128.ibm.com/developerworks/websphere/downloads/cache_monitor
.html

This is only available for WebSphere Application Server 6.0 (minimum of 
WebSphere Application Server 6.0.2.17) and WebSphere Application Server 6.1:

http://www.ibm.com/developerworks/websphere/downloads/cache_monitor.html

DRS Log Tool Analyzer:

https://cs.opensource.ibm.com/projects/welt/

13.4.11  Monitor ESI caching

The ESI processor's cache is monitored through the Dynamic Cache Monitor 
application. In order for the ESI processor's cache to be visible in the cache 

 

 

 

 

304 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/websphere/downloads/cache_monitor.html
https://cs.opensource.ibm.com/projects/welt/
http://www.alphaworks.ibm.com/tech/cacheviz
http://www-128.ibm.com/developerworks/websphere/downloads/cache_monitor.html


monitor, the DynaCacheEsi application must be installed as described in “Install 
the DynaCacheEsi application” on page 271 and the esiInvalidationMonitor 
property must be set to true in the plugin-cfg.xml file, as described in 
“Reconfigure the Web servers” on page 281.

Point your browser to the Dynamic Cache Monitor application. To get this 
statistic you need to select Edge Statistics in the Cache monitor navigation bar. 

Tip: During our tests, we found that the Edge statistics are only displayed in 
one of the Dynamic Cache Monitor applications on one of the application 
servers. So you will need to verify which one is the correct one.

 

 

 

 

 Chapter 13. Caching 305



The Edge Statistics could be confused with the Caching Proxy statistics, which is 
part of IBM WebSphere Edge Components. However, the term Edge Statistics in 
this case relates to the ESI cache statistics. The ESI cache statistics are shown 
in Figure 13-19. If you do not see Edge Statistics right away, try clicking the 
Refresh Statistics button.

Figure 13-19   ESI cache statistics

The following information is available: 

� ESI Processes: This is the number of processes configured as edge caches. 

� Number of Edge Cached Entries: This is the number of entries currently 
cached on all edge servers and processes. 

� Cache Hits: This is the number of requests that match entries on edge 
servers. 

 

 

 

 

306 WebSphere Commerce High Availability and Performance Solutions



� Cache Misses By URL: A cache policy does not exist on the edge server for 
the requested template.

Note that the initial ESI request for a template that has a cache policy on a 
WebSphere Application Server results in a miss. Every request for a template 
that does not have a cache policy on the WebSphere Application Server will 
result in a miss by the URL on the Edge server. 

� Cache Misses By Cache ID: In this case, the cache policy for the requested 
template exists on the edge server. The cache ID is created (based on the ID 
rules and the request attributes), but the cache entry for this ID does not exist.

Note that if the policy exists on the edge server for the requested template, 
but a cache ID match is not found, the request is not treated as a cache miss.

� Cache Time Outs: The number of entries removed from the edge cache, 
based on the timeout value. 

� Evictions: The number of entries removed from the edge cache, due to 
invalidations received from WebSphere Application Server. 

If you click the Contents button, you can see the edge content for all processes 
or for a selected process number. You can see an example in Figure 13-20, 
showing the TopCategoriesDisplay URL, which we made edge cacheable in 
“Caching full pages” on page 285.

Figure 13-20   ESI cache contents

13.4.12  Summary

Replication is a service that transfers data, objects, and events among 
application servers. Data replication service (DRS) is the internal WebSphere 
Application Server component that replicates data.

Dynamic cache uses the data replication service to further improve performance 
by copying cache information across application servers in the cluster, 
preventing the need to repeatedly perform the same tasks and queries in 
different application servers.

 

 

 

 

 Chapter 13. Caching 307



In a clustered WebSphere Commerce environment, we recommend that you 
enable cache replication.

This chapter explained what cache replication is, how it works, how to tune it for, 
and how to configure it.

 

 

 

 

308 WebSphere Commerce High Availability and Performance Solutions



Chapter 14. Profiling

Profiling is a technique that can be used at any phase of a project life cycle. 
During the development phase it can be used by developers to pinpoint areas in 
their code that might have performance implications. In this way performance 
issues can be addressed early on, resulting in incredible savings in time, effort, 
and money. Therefore, it is extremely important that the developers have the 
responsibility of profiling their own code in their development environment first, 
before any performance testing phases are started. Profiling can also be used 
during the performance load test phase to drill down on areas highlighted as 
having poor response times. 

When assessing the performance of a single page, developers will find the 
following four exercises incredibly rewarding in quickly identifying the 
performance bottlenecks:

� Use IBM Page Detailer to get an overall idea of how fast the page loads and 
how long it takes to render each page element to the browser.

� Conduct SQL profiling to capture expensive or excessive database queries. 
Then either eliminate the unnecessary SQLs or tune the expensive SQLs to 
improve performance.

� Conduct Java code profiling to identify bottlenecks in the code and revise to 
improve performance.

� If necessary, apply techniques to map SQL statements to Java code in 
WebSphere Commerce.

14
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 309



14.1  SQL profiling 
SQL profiling involves capturing queries made to the database from the 
application across a period of time. This measurement can be taken for a single 
request and also during load tests to determine queries that have high execution 
times, queries that are doing table scans, and queries that are executing too 
many times during the same request. 

A tutorial about conducting SQL profiling on DB2 can be found at this link:

https://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1
/0804_clustering1.html

14.2  Java code profiling 
Code profiling tools are used to capture all method invocations and their 
execution times during a request. This information can then be used to identify 
areas in the code that are causing bottlenecks and affecting performance. With 
this information a developer can then revisit a particular area of his code and 
rework it to solve the performance issue.

A tutorial on how to conduct Java code profiling with the Rational® profiling tool 
using WebSphere Commerce as an example is available at this link:

https://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1
/0804_clustering1.html

14.3  Mapping an SQL statement to Java code
In addition, to help you troubleshoot database-related problems with WebSphere 
Commerce, an article shows you how to find the Java code that executes a 
particular SQL statement. Follow this link to see how to map an SQL statement 
to Java code in WebSphere Commerce: 

http://www.ibm.com/developerworks/websphere/library/techarticles/0802_doumbia/0
802_doumbia.html

14.4  IBM Page Detailer
IBM Page Detailer is a browser-side tool to measure performance of a Web 
application. While the Profiler discussed in the previous sections supports 
analysis of the execution of the application on the server, the Page Detailer 
collects most of its useful data at the socket level to reveal the performance 

 

 

 

 

310 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/websphere/library/techarticles/0802_doumbia/0802_doumbia.html
https://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html
https://www.ibm.com/developerworks/websphere/library/tutorials/0804_clustering1/0804_clustering1.html


details of items in the Web page, from the client’s (browser’s) perspective. It is 
also useful for measuring the incremental impact of changes in a Web 
application.

Page Detailer allows you to look at how and when each item is loaded in a Web 
page. Analyzing this data allows you to identify the areas where performance 
could be improved. The user’s perception of performance is determined based 
on the time to display pages, so measuring and analyzing this data will provide 
insight into the user’s experience of your application. 

14.4.1  Overview
IBM Page Detailer is a graphical tool that enables Web site developers and 
editors to rapidly and accurately assess performance from the client's 
perspective. IBM Page Detailer provides details about the manner in which Web 
pages are delivered to Web browsers. These details include the timing, size, and 
identity of each item in a page. This information can help Web developers, 
designers, site operators, and IT specialists to isolate problems and improve 
performance and user satisfaction. Page Detailer can be used with any site that 
your browser can access. 

Page Detailer is a separately downloadable product that can be obtained from 
IBM alphaWorks® at:

http://www.alphaworks.ibm.com/tech/pagedetailer

There are two versions available:

� Evaluation version: This version is for free but does not support all features.

� Pro version: This version must be licensed for a small fee and contains the 
following additional features:

– Full support for HTTPS (SSL) traffic 
– Saving and restoration of captured data 
– Ability to add/edit one's own notes for captured pages and items 
– A find facility for working with text

The supported platforms for Page Detailer are Windows 2000 and Windows XP.

The Page Detailer can monitor all HTTP and HTTPS requests originating from 
the machine where it is running. Thus, it can be used to measure performance 
for Web applications running either locally or remotely, on WebSphere 
Application Server, IBM Rational Application Developer V6.0, or any other Web 
site or application. Hence, the Page Detailer may be used at any time during the 
project development cycle, from coding through to production support. Note that 
when analyzing the performance of non-production environments, differences in 

 

 

 

 

 Chapter 14. Profiling 311

http://www.alphaworks.ibm.com/tech/pagedetailer


the production environment topology and configuration could result in differences 
in the measured performance results.

IBM Page Detailer gathers the following information: 

� Connection time 
� Socks connection time and size 
� SSL connection time and size 
� Server response time and size 
� Content delivery time and size 
� Delays between transfers 
� Request headers 
� Post data 
� Reply headers 
� Content data 
� Page totals, averages, minimums, and maximums

For each page that is accessed, a color-coded bar chart of the time taken to load 
the page items will be generated. The length of a particular bar gives a good idea 
of the relative time spent in loading that item, as compared to the entire page. 
You will see that in some cases, items of a page may be loaded in parallel. This 
will appear in the chart with bars that overlap. The information that is captured by 
the Page Detailer includes page size as well as sizes of all other items loaded by 
the browser. 

Different colors in the bar indicate how the time was spent. 

� Page Time (Purple) 

The time taken to load all the components of a page.

� Host Name Resolution (Cyan)

The time spent to resolve the IP address of the host.

� Connection Attempt Failed (Brown)

The time taken to receive an error when a connection attempt is made.

� Connection Setup Time (Yellow)

The time taken to open a socket connection. If a SOCKS server is being 
used, this is the time to open a socket connection from the browser to the 
SOCKS server only.

 

 

 

 

312 WebSphere Commerce High Availability and Performance Solutions



� Socks Connection Time (Red)

The time taken to open a connection from a SOCKS server to the remote site. 

� SSL Connection Setup Time (Pink)

This is the time taken to negotiate an encrypted connection between the 
browser and the remote site, once a normal socket connection has been 
established.

� Server Response Time (Blue)

This is the time from the browser’s request to the receipt of the initial reply, 
after all the communications setup has been completed. Large responses are 
broken down into smaller components (packets). The server response time 
only measures the time to receive the first one.

� Delivery Time (Green)

The time taken to receive all additional data that was not included in the initial 
response.

An example of a chart produced with Page Detailer is provided in Figure 14-1. 

Figure 14-1   Page Detailer Chart view

 

 

 

 

 Chapter 14. Profiling 313



To obtain more detailed information about a particular HTTP request, 
double-click the appropriate colored bar or the icon in the chart. This will display 
a text viewer as shown in Figure 14-2. It includes information about timings, 
sizes, header, and so on. You can add your own notes and save the file for 
comparison. This feature is available only in the Pro version.

Figure 14-2   Page Detailer Events

 

 

 

 

314 WebSphere Commerce High Availability and Performance Solutions



In addition to the Chart view, it is also possible to view more details of all HTTP 
requests using the Details view. This can be seen by selecting the Details tab at 
the bottom of the window (see Figure 14-3). 

Figure 14-3   Page Detailer Details view

14.4.2  Important considerations
Some important considerations while taking measurements are:

� Impact of network delays

Many problems may not be evident when accessing a server on a local 
network, but may become apparent when accessing the site remotely, 
particularly when using a modem connection. On the other hand, you can 
minimize the effect of external network delays by directly connecting on the 
Server’s LAN. This will allow you to isolate the performance impact of a 
change made to the Web page.

� Browser cache

Disabling the browser cache helps in getting repeatable results. However you 
could also check the performance from a user’s perspective by enabling the 
browser cache and comparing both results.

� Packet loss

Packet loss can happen and get corrected in the underlying TCP/IP layers. 
This is invisible to the Page Detailer. Packet loss manifests itself as 
inconsistent time measurements in Page Detailer. You can take a series of 
measurements at different times to factor it out.

 

 

 

 

 Chapter 14. Profiling 315



14.4.3  Key factors
Some of the key factors that influence the time to load a Web page in a browser 
are:

� Page size

� Number, complexity, and size of items embedded in the page

� Number of servers that need to be accessed to retrieve all elements, and their 
location and network connectivity

� Use of SSL (This introduces an extra overhead.)

The Page Detailer will help you to identify when one of these problems is 
affecting some or all of your application. It will also help to identify problems such 
as broken links and server timeouts.

Some of the strategies that can be used to improve performance and resolve 
problems that you have identified include:

� Minimize the number of embedded objects. Avoid the excessive use of 
images in particular. In cases where there is a standard header, footer, or 
side menu on every screen, consider the use of frames so that common 
elements do not have to be downloaded every time.

� The browser will typically retrieve multiple items in parallel, in the order in 
which they appear on the HTML page that it receives. Hence, sequencing of 
the items so that downloads for larger objects are started early can reduce 
the total time required to display the page, and avoid the user having to wait 
for a long time for the last elements to be retrieved.

� Ensure that caching is being used effectively. Often the same images are 
used multiple times on the same page. If there are two references to the 
same image in close proximity to each other in the HTML source, the browser 
may encounter the second reference before the HTTP request that was 
initiated to download the first reference has been completed. In this case the 
browser may issue another request to retrieve the image again. This can be 
avoided by pre-loading frequently used images multiple times early, or by 
structuring the generated pages so that such URLs do not appear 
consecutively.

� Minimize the use of SSL where possible. For example, some content such as 
images may not need to be secured even though the application as a whole 
needs to be secure.

� Try to avoid switching the user to an alias server name during the page load. 
This will help the browser to reduce the lookup time and possibly avoid a new 
connection.

 

 

 

 

316 WebSphere Commerce High Availability and Performance Solutions



14.4.4  Tips for using Page Detailer
In this section we provide a few helpful tips to analyze the performance data 
shown by Page Detailer. A sample analysis, with comments, is shown in 
Figure 14-4. 

Figure 14-4   Page Detailer sample analysis

Page size 122.1 KB -- should 
generally be <= 64K
Consider compressing HTML 
files

53 items requested -- should 
generally be <= 20
Considerable overhead to 
request/respond/deliver
Consider consolidation of 
items where possible

Inconsistent server 
response time

   (0.2-2.0 seconds)
Objective is 

    0.5 seconds

 

 

 

 

 Chapter 14. Profiling 317



As per the analysis:

� A summary of the above information and the meaning of each icon and color 
can be obtained by using the menu View → Legend. This displays the 
window shown in Figure 14-5.

Figure 14-5   Page Detailer Legend

� Use a separate browser instance to collect data from related Web pages in 
one file. This allows for easy retrieval of performance data of related Web 
pages for comparison. Note that you can save your work only in the Pro 
version of the Page Detailer.

� You can select the columns to display in the Details view from the context 
menu (obtained by right-clicking). You can also choose to display the column 
as a graph if it contains a numerical value.

 

 

 

 

318 WebSphere Commerce High Availability and Performance Solutions



� You can move the vertical bar and make room to add new columns on the left 
hand side of the window, as shown in the Figure 14-6 and Figure 14-7.

Figure 14-6   Moving the separator and adding a new column

Figure 14-7   Column definition

 

 

 

 

 Chapter 14. Profiling 319



14.4.5  Reference
See the following references for further information:

� The article “Design for Performance: Analysis of Download Times for Page 
Elements Suggests Ways to Optimize” at:

http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/perform
.html

� The Page Detailer Web site at IBM alphaWorks:

http://www.alphaworks.ibm.com/tech/pagedetailer

Tip: If it seems that Page Detailer is not collecting your browser interactions, 
try to navigate a little bit slower (there is a delay between the browser showing 
the page and Page Detailer capturing its content). The other point that you 
must be aware of is that Page Detailer installs itself configured for Microsoft 
Internet Explorer and several versions of Netscape browsers. If you want to 
use another browser, you need to check the documentation to see how to set 
it up.

 

 

 

 

320 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/perform.html
http://www.alphaworks.ibm.com/tech/pagedetailer


Part 5 Monitoring and 
performance tuning

Monitoring and performance tuning are essential parts of any WebSphere 
Commerce site administration while in production. You must monitor the servers 
to ensure that they are running smoothly and troubleshoot problems as they 
occur. 

More importantly, before launching into production, you must tune the 
performance of servers to achieve optimal performance based on the current 
system resources and expected traffic load. 

Performance tuning is as much an art as it is a science. It is often done based on 
trial and error. You adjust the parameters on a server, monitor its performance 
over time, and measure the improvement achieved as a result of these updated 
settings. If the results are not as expected, you adjust the settings again. Avoid 
making any tuning changes directly on production servers. You should have a 
performance test environment that is similar in capacity and configuration to your 
production environment. After you test any tuning changes and are satisfied with 
the result on the performance test servers, you may make the same changes on 
the production servers.

Part 5
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 321



Performance problems can be encountered almost anywhere. The problem can 
be network and hardware related or back-end system related. The problem can 
be actual product bugs, or quite often, application design issues.

Understanding the flow used to diagnose a problem helps to establish the 
monitoring that should be in place for your site to detect and correct performance 
problems. The first dimension is the user view,—the black box view of your Web 
site. This is an external perspective of how the overall Web site is performing 
from a user’s point of view and identifies how long the response time is for an 
user. From this black box perspective, it is important to understand the load and 
response time on your site. To monitor at this level, many industry monitoring 
tools allow you to inject and monitor synthetic transactions, helping you identify 
when your Web site experiences a problem.

The second step is to understand the basic health of all the systems and 
networks that make an user request. This is the external view, which typically 
leverages tools and utilities provided with the systems and applications running. 
In this stage, it is of fundamental importance to understand the health of every 
system involved, including Web servers, application servers, databases, 
back-end systems, and so on. This dimension corresponds to the what resource 
is constrained portion of the problem diagnosis. To monitor at this level, you 
need to use product-specific tools and logs.

This section of the book covers the following:

� Various tools that are available to help you monitor servers at different tiers: 
operating system, database server, application server, Web server, and Load 
Balancer

� Key tuning parameters at various tiers

 

 

 

 

322 WebSphere Commerce High Availability and Performance Solutions



Chapter 15. Operating system 
monitoring tools

An operating system is the infrastructure of all of the other software products, so 
it is critical to gracefully use the resource of an operating system. One of the 
most important responsibilities a system administrator has is monitoring her 
operating systems. As a system administrator you need the ability to see what is 
happening on your operating system at any given time, whether it is the 
percentage of a system's resources currently used or what commands are being 
run. 

Basically, we need to pay more attention to three key resources in the operating 
system when a performance issue arises:

� CPU
� Memory
� Disk I/O

15
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 323



15.1  Operating system introduction

An operating system is a layer of software that takes care of technical aspects of 
a computer's operation. It shields the user of the machine from the low-level 
details of the machine's operation and provides frequently needed facilities.

Normally, the operating system has a number of key elements: 

� A technical layer of software for driving the hardware of the computer, like 
disk drives, the keyboard, and the display.

� A file system that provides a way of organizing files logically.

� A simple command language that enables users to run their own programs 
and to manipulate their files in a simple way. Some operating systems also 
provide text editors, compilers, debuggers, and a variety of other tools. 

� Legal entry points into its code for performing basic operations like writing to 
devices. 

15.2  General utilities related with operating system 
monitoring

There are numbers of utilities in an operating system that can help to monitor the 
status of an operating system. Some of them are platforms specific. In this 
section, some general utilities are discussed. Be aware that most of the utilities 
described in this chapter are related to the AIX or UNIX platform.

15.2.1  nmon

The nmon tool is designed for AIX and Linux performance specialists to use for 
monitoring and analyzing performance data, including: 

� CPU utilization 

� Memory use 

� Kernel statistics and run queue information 

� Disks I/O rates, transfers, and read/write ratios 

� Free space on file systems 

� Disk adapters 

� Network I/O rates, transfers, and read/write ratios 

� Paging space and paging rates 

 

 

 

 

324 WebSphere Commerce High Availability and Performance Solutions



� CPU and AIX specification 

� Top processors 

� IBM HTTP Web cache 

� User-defined disk groups 

� Machine details and resources 

� Asynchronous I/O—AIX only 

� Workload Manager (WLM)—AIX only 

� Network File System (NFS) 

� Dynamic LPAR (DLPAR) changes—only pSeries p5 and OpenPower® for 
either AIX or Linux 

Benefit of nmon
The nmon tool is helpful in presenting all the important performance tuning 
information on one screen and dynamically updating it. The tool works on any 
dumb screen, Telnet session, or even dial-up line. In addition, the tool is very 
efficient. It does not consume many CPU cycles (usually below 2%). On newer 
machines, CPU usage is well below 1%. 

Data is displayed on the screen and updated once every two seconds using a 
dumb screen. However, you can easily change this interval to a longer or shorter 
time period. If you display the data on X-Windows, VNC, putty, or similar, and 
stretch the window, nmon can output a great deal of information all in one place.

The nmon tool can also capture the same data to a text file for later analysis and 
graphing for reports. The output is in a spreadsheet format (.csv).

Installing and using the nmon tool
The tool is one stand-alone binary file (a different file for each AIX or Linux 
version) that you can install it in an easy way:

1. Copy the nmonXX.tar.Z file to the machine. If you download the file by using 
FTP, remember to use binary mode. Note that here, the XXX in this example 
will be replaced by the current version that you are using.

2. To uncompress the file run uncompress nmonXX.tar.Z.

3. To extract the files run tar xvf nmonXX.tar.

4. Read the README file.

5. Start nmon by typing the command nmon.

 

 

 

 

 Chapter 15. Operating system monitoring tools 325



6. If you are the root user you may need to type ./nmon to can get output as in 
Figure 15-1.

Figure 15-1   nmon interface

7. Press C and M to get the statistics data for CPU and memory, as shown in 
Figure 15-2.

Figure 15-2   CPU and memory statistics data in nmon

 

 

 

 

326 WebSphere Commerce High Availability and Performance Solutions



Features of nmon are listed in Table 15-1.

Table 15-1   Features of nmon

New features Description

Starting up There is also now a small shell script 
called “nmon” that starts the correct nmon 
version. Place this script and nmon 
binaries in your $PATH and type nmon. 
This version is now only compiled in 32-bit 
mode. So, it runs on 32-bit and 64-bit 
hardware. The idea is to make it easier to 
install and run. 

N = NFS NFS is completely new for nmon 10. 

p = Partitions This is for shared CPU partition 
information—the big p5/AIX5.3 feature. 

C = CPU This is for machines with 32+ CPUs—up 
to 128 logical CPUs by demand. 

c = CPU This details your physical CPU use if you 
are on a POWER5™ with AIX 5.3 and in a 
shared CPU environment. 

S = Subclass This is for WLM subclasses—by request.

a = Disk adapters This gives you details of the disk 
adapter—like its full type. 

r = Resources This includes your CPU speed in MHz. 

k = Kernel This gives some new fields. 

L = Large pages This gives you large-page stats, which are 
popular with high-performance people.

n = Network This gives you information about your 
network adapters, MTU, and errors.

D = Disk This gives you more information about 
your disks, disk type sizes, free, volume 
groups, adapter, and so forth. 

m = Memory This gives you more details on where your 
memory is going, system (kernel) and 
processes, and active virtual memory.

-B This is a start-up option to remove the 
boxes. 

 

 

 

 

 Chapter 15. Operating system monitoring tools 327



15.2.2  Top

Top is a command widely used in the Linux operating system. This command 
displays a continually updating report of system resource usage. 

The top portion of the report lists information such as the system time, uptime, 
CPU usage, physical and swap memory usage, and number of processes. Below 
that is a list of the processes sorted by CPU utilization.

You can modify the output of top while it is running. If you press an i, top will no 
longer display idle processes. Press i again to see the idle processes again. 
Pressing M will sort by memory usage, S will sort by how long the processes 
have been running, and P will sort by CPU usage again.

In addition to viewing options, you can also modify processes from within the top 
command. You can use u to view processes owned by a specific user, k to kill 
processes, and r to renice them.

For more in-depth information about processes, you can look in the /proc file 
system. In the /proc file system you will find a series of sub-directories with 
numeric names. These directories are associated with the process IDs of 
currently running processes. In each directory you will find a series of files 
containing information about the process.

 

 

 

 

328 WebSphere Commerce High Availability and Performance Solutions



Figure 15-3 is sample output for issuing the top command.

Figure 15-3   Output of command top

15.2.3  vmstat

The vmstat command reports statistics about kernel threads, virtual memory, 
disks, traps, and CPU activity. Reports generated by the vmstat command can 
be used to balance system load activity. These system-wide statistics (among all 
processors) are calculated as averages for values expressed as percentages, 
and as sums otherwise.

If the vmstat command is invoked without flags, the report contains a summary of 
the virtual memory activity since system startup. Basically, you can set the 
interval and count for this command. The Interval parameter specifies the 
amount of time in seconds between each report. If the interval parameter is not 
specified, the vmstat command generates a single report that contains statistics 
for the time since system startup and then exits. The count parameter can only 
be specified with the interval parameter.

 

 

 

 

 Chapter 15. Operating system monitoring tools 329



After using the interval and count parameters, you get a result shown in 
Figure 15-4.

Figure 15-4   Output of command vmstat

For more details about this command, go to the IBM pSeries information center 
and search vmstat:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp

15.2.4  iostat

The iostat command is used for monitoring system input/output device loading 
by observing the time the physical disks are active in relation to their average 
transfer rates. The iostat command generates reports that can be used to 
change the system configuration to better balance the input/output load between 
physical disks and adapters.

All statistics are reported each time the iostat command is run. The report 
consists of a tty and CPU header row followed by a row of tty or asynchronous 
I/O and CPU statistics. On multiprocessor systems, CPU statistics are calculated 
system-wide as averages among all processors.

The iostat command generates four types of reports: the tty and CPU Utilization 
report, the Disk Utilization report, the System throughput report, and the Adapter 
throughput report.

 

 

 

 

330 WebSphere Commerce High Availability and Performance Solutions

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp


Basically, you can set the interval and count for this command.The interval 
parameter specifies the amount of time in seconds between each report. If the 
interval parameter is not specified, the iostat command generates a single 
report containing statistics for the time since system startup (boot). The count 
parameter can be specified in conjunction with the interval parameter. 

After using the interval and count parameters, you get the results shown in 
Figure 15-5.

Figure 15-5   Output of command iostat

For more details about this command, go to the IBM pSeries information center:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/
com.ibm.aix.cmds/doc/aixcmds3/iostat.htm

15.2.5  ps

The ps (process status) command produces a list of processes on the system 
that can be used to determine how long a process has been running, how much 
CPU resource the processes are using, and whether processes are being 
penalized by the system. It also shows how much memory processes are using, 
how much I/O a process is performing, the priority and nice values for the 
process, and who created the process.

 

 

 

 

 Chapter 15. Operating system monitoring tools 331

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/iostat.htm


Figure 15-6 is sample output of the ps command.

Figure 15-6   Output of command ps

The first column shows who owns the process. The second column is the 
process ID. The third column is the parent process ID. This is the process that 
generated, or started, the process. The fourth column is the CPU usage (in 
percent). The fifth column is the start time, or date if the process has been 
running long enough. The sixth column is the tty associated with the process, if 
applicable. The seventh column is the cumulative CPU usage (total amount of 
CPU time is has used while running). The eighth column is the command itself.

For more details about this command, go to the IBM pSeries information center:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/
com.ibm.aix.cmds/doc/aixcmds3/iostat.htm

15.2.6  svmon

This command is used to capture and analyze a snapshot of virtual memory.

The svmon command displays information about the current state of memory. The 
displayed information does not constitute a true snapshot of memory, because 
the svmon command runs at the user level with interrupts enabled.

 

 

 

 

332 WebSphere Commerce High Availability and Performance Solutions

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/iostat.htm


The segment is a set of pages and is the basic object used to report the memory 
consumption, so the statistics reported by svmon are expressed in terms of 
pages.

A page is a block of virtual memory, while a frame is a block of real memory. 
Frames always have a size of 4 KB, whereas pages may have different sizes. 
The base page size is 4 KB. All pages inside a segment have the same size.

The memory consumption is reported using the inuse, free, pin, virtual, and 
paging space counters:

� The inuse counter represents the number of used frames. 

� The free counter represents the number of free frames from all memory 
pools. 

� The pin counter represents the number of pinned frames (that is, frames that 
cannot be swapped). 

� The virtual counter represents the number of pages allocated in the system 
virtual space. 

� The paging space counter represents the number of pages reserved or used 
on paging spaces.

Figure 15-7 is the sample output for this command.

Figure 15-7   Output for command svmon

 

 

 

 

 Chapter 15. Operating system monitoring tools 333



15.3  Best practices for AIX monitoring

In this section, we focus on AIX monitoring by using nmon. nmon can provide lots 
of information for testers and developers to use to analyze the status of the 
operating system. But it comes with a problem: how to use nmon and the 
information it generates efficiently.

How to get statistics data for operating system more efficiently
How do you get statistics data for the operating system? Specific to the version of 
nmon used for AIX53, we can use the data collection model to collect detailed 
status data about the operating system for further analysis. In Example 15-1, we 
collect the nmon performance results 180 times with an interval of 60 seconds. 
The nmon command exports its result to a file named hostname. Note that the t 
parameter is used to focus our attention on the status of the top processes.

nmon -f -t -r hostname -s 60 -c 180

A result file named hostname_timeSeries.nmon will be generated in the current 
directory. You might be able to get output as shown in Example 15-1.

Example 15-1   hostname_timeSeries.nmon snapshot

CPU01,T0002,62.6,5.5,15.8,16.1
CPU02,T0002,60.6,6.9,16.1,16.3
CPU_ALL,T0002,61.6,6.2,16.0,16.2,,2
CPU00,T0002,61.6,6.2,16.0,16.2
MEM,T0002,73.0,97.8,5234.5,500.5,7168.0,512.0
MEMNEW,T0002,13.3,7.3,6.4,73.0,5.9,17.0
MEMUSE,T0002,7.3,19.2,77.0,960,1088,0.0,77.0
PAGE,T0002,2369.3,80.2,72.2,0.0,0.0,0.0,0.0,0.0
PROC,T0002,2.86,1.77,2258,24013,455,108,11,10,14,59
FILE,T0002,0,937,4,1357820,246443,0,0,0
NET,T0002,342.7,0.0,472.6,0.0,
NETPACKET,T0002,887.7,0.6,852.0,0.6,
NETERROR,T0002,0.0,0.0,0.0,0.0,0.0,0.0,
IOADAPT,T0002,320.1,288.7,125.4,0.0,0.0,0.0
JFSFILE,T0002,16.4,49.9,79.9,66.8,3.7,6.1,5.5,21.6,8.5,3.7,3.8,43.9
JFSINODE,T0002,2.8,0.3,2.0,1.1,0.1,0.2,0.1,9.4,0.4,0.2,21.2,1.6
DISKBUSY,T0002,0.0,0.0,0.0,0.0,0.0
DISKREAD,T0002,320.1,0.0,0.0,0.0,0.0
DISKWRITE,T0002,288.7,0.0,0.0,0.0,0.0
DISKXFER,T0002,125.4,0.0,0.0,0.0,0.0
DISKBSIZE,T0002,4.9,0.0,0.0,0.0,0.0
TOP,0372916,T0002,19.29,19.17,0.12,1,6544,64,6480,987,0.357,7,db2sysc,Unclassif
ied
TOP,0680066,T0002,18.81,18.76,0.05,1,6532,64,6468,469,0.356,3,db2sysc,Unclassif
ied

 

 

 

 

334 WebSphere Commerce High Availability and Performance Solutions



TOP,0508142,T0002,18.15,18.09,0.06,1,10004,64,9944,1286,0.545,6,db2sysc,Unclass
ified

How to analyze the statistics data
After you collect the statistics data based on your requirement, you can use the 
tool named NMON_Analyser to analyze the result. NMON_Analyser is designed 
to complement NMON in analyzing and reporting performance problems. It is 
written in VBA for Excel® (2000 edition or later). NMON_Analyser produces 
graphs for virtually all sections of output produced using the spreadsheet output 
mode of NMON, as well as doing some additional analyses for ESS, EMC, and 
FAStT subsystems.

Based on the statistics data we get from the previous command issued, we can 
use NMON_Analyser to generate the analysis result. Generally, we can get an 
overall system status report. Besides that, it gives different views for different 
resources in this operating system, which contains:

� Whole system status
� CPU status
� Memory status
� Disk status
� Network status

In WebSphere Commerce development and test, based on previous experience, 
CPU, memory, disk I/O, and the network should potentially be the root causes of 
performance issues, so let us focus on the following five aspects.

 

 

 

 

 Chapter 15. Operating system monitoring tools 335



Figure 15-8 provides a system summary view.

Figure 15-8   System summary view

 

 

 

 

336 WebSphere Commerce High Availability and Performance Solutions



Figure 15-9 provides a CPU view.

Figure 15-9   CPU total view

Figure 15-10, Figure 15-11 on page 338, and Figure 15-12 on page 338 provide 
disk I/O views.

Figure 15-10   Disk summary view

 

 

 

 

 Chapter 15. Operating system monitoring tools 337



Figure 15-11   Disk read view

Figure 15-12   Disk write view

 

 

 

 

338 WebSphere Commerce High Availability and Performance Solutions



Figure 15-13 and Figure 15-14 provide memory views.

Figure 15-13   Memory summary view

Figure 15-14   Memory use view

 

 

 

 

 Chapter 15. Operating system monitoring tools 339



Figure 15-15 provides a network view.

Figure 15-15   Network status view

The best practice for AIX performance analysis
On an AIX operating system, do the following general performance analysis to 
identify performance issues that might occur in your environment:

1. Identify the level of your AIX operating system.

In this step, you can use the command oslevel -r to make sure that you are 
using the correct operating system level. Also, you should make sure that all 
of the filesets used for those products exist on the system.

2. Identify the workload of your system.

You can use the command uptime to indicate the number of programs that 
are being executed at the same time, and how long your system is running. A 
sample output for this command is shown in Figure 15-16.

Figure 15-16   Output for command uptime

3. Identify the workload of CPU.

By using the command vmstat (or the nmon and nmon analyzer tool to 
generate the analysis result), you can get an indication of how busy your CPU 
is, and whether there are any free CPU resources to handle specific and 
additional requirements. If the result indicates that the CPU is near 100% 

 

 

 

 

340 WebSphere Commerce High Availability and Performance Solutions



utilization, you can safely assume that the CPU has become a performance 
issue. Specific to the WebSphere Commerce scenario, let us state that there 
is a significant number of users accessing and shopping on the Commerce 
server concurrently. For example, there are greater than 20 concurrent users. 
If the server is not powerful enough to manage the activities above and 
beyond the 20 concurrent users, the CPU of the server can easily be driven to 
100% utilization. Therefore, you must reconfigure your server to have a CPU 
or multiple CPUs that can support the number of concurrent users and reduce 
the utilization of the CPUs to a more acceptable utilization rate and where 
performance is satisfactory.

4. Identify the memory and swap status in your system.

The primary memory is the most important resource a computer has. Since 
CPUs are only made with instructions for reading and writing to memory, no 
programs would be able to run without it. If we identify that the CPU is 
working in a stable/reasonable status, it is the time to consider whether there 
is a problem in your memory. You can use the command vmstat or nmon to 
analyze the status of memory.

WebSphere Commerce is a complex eBusiness solution based on J2EE 
techniques. Generally, a large number of Java objects will be created and 
loaded into JVM in Commerce runtime, which is really memory consumed in 
the Commerce infrastructure. Although you want to enlarge the JVM to 
support Commerce server runtime to contain more capacity to handle 
business requirements, sometimes this does not work, since it is up to the 
status of your memory. If memory is already 100% consumed for JVM and 
system usage, there should be a bottleneck in the system memory.

5. Identify the disk I/O status in your system.

Disk I/O may be another bottleneck in your system when it is under peak 
transactions. Sometimes we can see that the status of CPU and memory is 
good, but the system suffers serious and long response times. Or we can see 
that the rate of CPU idle is high. In that case, we should convert to disk I/O. 
From the result from iostat or nmon tooling, we can identify the frequency of 
I/O read and I/O write. If there is always high I/O access to the disk, this might 
be a problem of disk bottleneck in the system.

6. Match the symptom with one of the monitoring results that you got from 
previous steps, then locate the root cause of this problem.

7. If you cannot find the root cause from the previous steps, it should be some 
type of product-specific problem. You can continue reading this book to learn 
more about how to monitor an individual product in the WebSphere 
Commerce environment separately.

 

 

 

 

 Chapter 15. Operating system monitoring tools 341



15.4  Summary

In this chapter, we introduced some tools for operating system monitoring (some 
of which are operating system specific). Be aware that, as the basic 
infrastructure for WebSphere Commerce, operating system monitoring is always 
the basic monitoring information that we have to collect to make sure that the 
entire system is working with a stable status.

 

 

 

 

342 WebSphere Commerce High Availability and Performance Solutions



Chapter 16. IBM DB2 Universal Database

The database is usually one of the potential areas for bottlenecks that makes 
WebSphere Commerce unable to scale and perform well. It is therefore crucial 
that the database performs appropriately and efficiently for your implementation.

In Chapter 5, “Database tier High Availability” on page 39, and Chapter 9, “High 
Availability solution for IBM DB2 Universal Database” on page 145, we describe 
the existing solutions to build up a High Availability runtime environment in 
WebSphere Commerce topology and how to set up such an environment. In this 
chapter, we discuss the following topics:

� DB2 performance considerations in WebSphere Commerce
� DB2 monitoring
� DB2 tuning
� Best practices in WebSphere Commerce

16
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 343



16.1  DB2 performance considerations

Before attempting to tune the database, it is important to realize that a 
WebSphere Commerce implementation is considered an On-Line Transaction 
Processing (OLTP) application. Therefore, the database should be tuned for an 
OLTP application. Typical characteristics of an OLTP application are:

� It has frequent insert or update activity.
� There are a high number of users accessing the database.
� SQL executing against the database is quick and relatively simple.

The following sections cover some of the specifics related to DB2 UDB V8.1 for 
distributed platforms. A more detailed document on DB2 for distributed platforms 
and WebSphere Commerce can be found at the WebSphere Commerce 
Developer Domain site at:

http://www.ibm.com/websphere/developer/zones/commerce

This section identifies and reiterates some of the key considerations.

16.1.1  Physical environment considerations

Considerations for the physical environment are related to how the data is 
actually spread among the disks and how the memory is managed for the 
databases, so that I/O and memory always attract most of the developers’ and 
testers’ concentration in implementing WebSphere Commerce.

Efficient I/O management
Reading from the database and writing back to the database (disk I/O) may 
become a bottleneck for any application accessing a database. Proper database 
layout can help reduce the potential for this bottleneck. It is a significant effort to 
change the physical layout of the database once it has been created. Hence, 
proper planning at the initial stages is important.

The first consideration is to ensure that the DB2 transaction logs reside on their 
own physical disk. Every update issued against the database is written to the 
logs (in addition to being updated in memory). Hence, there will be a lot of disk 
I/O in the location where the DB2 transaction logs reside. It is a good practice to 
try to ensure that all read/write activity on the disk is related only to the 
transaction logs, thus eliminating any I/O contention with other processes that 
may access the disk.

To set the location for the DB2 transaction logs, issue the following command:

db2 update db cfg for <dbalias> using NEWLOGPATH <path>

 

 

 

 

344 WebSphere Commerce High Availability and Performance Solutions



You will need to deactivate the database (disconnect all connected sessions or 
issue the db2 deactivate command) before the new location for the logs will be 
used. 

Configuration parameters related to the log files can be found in 16.3.2, 
“Parameters related to transaction logs” on page 358.

The second consideration in terms of disk layout is to determine how to manage 
the tablespaces efficiently. One performance principle in the management of 
Relational Database Management Systems (RDBMs) is to separate the 
database table data and database index data onto different physical disks. This 
enables better query performance, since index scans can execute in parallel with 
data fetch operations because they are on different physical disks.

In DB2, two types of tablespaces can be defined:

� System Managed Storage (SMS) tablespaces, which is the default
� Database Managed Storage (DMS) tablespaces

The separation of table and index data can only be specified if 
database-managed storage tablespaces are defined. So should you always use 
DMS tablespaces? Not necessarily. In many installations, you may not have the 
luxury of many physical disks, and hence will not be able to separate data and 
index. Additionally, SMS tablespaces are easier to administer as compared to 
DMS tablespaces, so you may wish to trade off some performance for ease of 
use. A lot of up-front planning is required for DMS tablespaces, since the space 
is pre-allocated at creation time. SMS tablespaces allocate space as it is 
required by the database.

If you choose to stick with the default and use SMS tablespaces, there is a utility 
that you can run to improve write performance. Issue the following command:

db2empfa <dbalias>

After this command has been issued, as new space is required by the database, 
it will be allocated one extent at a time, as opposed to one page at a time.

If you choose to go with DMS tablespaces, in addition to redefining the three user 
tablespaces (USERPACE1, TAB8K, TAB16K), you will also need to define an 
additional 4 K tablespace for index data. You then have to modify the table 
definition in the schema creation file to point to the new tablespace. For example, 
if you chose to name the additional tablespace IND4K, then you would need to 
access the file:

WC_Install_Dir/schema/db2/wcs.schema.sql

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 345



You would replace the INDEX IN clause for every table definition to use IND4K. 
For example, consider the following coding:

CREATE TABLE acacgpdesc (
       acactgrp_id          INTEGER NOT NULL,
       displayname          VARCHAR(254) NOT NULL,
       description          VARCHAR(254),
       language_id          INTEGER NOT NULL
)
  IN USERSPACE1
  INDEX IN USERSPACE1;

It changes as follows:

CREATE TABLE acacgpdesc (
       acactgrp_id          INTEGER NOT NULL,
       displayname          VARCHAR(254) NOT NULL,
       description          VARCHAR(254),
       language_id          INTEGER NOT NULL
)
  IN USERSPACE1
  INDEX IN IND4K;

This must be done prior to your WebSphere Commerce instance creation.

On the same subject of achieving better disk I/O, read performance can be 
improved by spreading the tablespaces across many physical disks. When the 
database manager has to read from disk, if the data is stored across multiple 
disks, it can be read in parallel, yielding better read performance. This can be 
done in one of two ways:

� Specifying multiple containers in the tablespace definition with each container 
specifying a file system that resides on different physical disks.

� Specifying a single container, but the container is a file system that spans 
several physical disks. You normally would rely on the operating system or a 
volume manager to help define the file system.

A utility such as iostat on UNIX platforms can be used to identify disk I/O 
bottlenecks. On an AIX platform, you can install the nmon, which is a useful tool 
to analyze disk I/O.

Configuration parameters related to disk I/O can be found in 16.3.3, “Parameters 
related to disk I/O” on page 359.

Note: Although you have different page sizes for your tablespaces for table 
data, you only need one size for the tablespace for index data, because all 
indexes created are less than 4 K in length.

 

 

 

 

346 WebSphere Commerce High Availability and Performance Solutions



Memory usage
DB2 associates memory for the database through the use of bufferpool objects. 
A bufferpool has a page size associated with it and is linked to one or more 
tablespaces. Thus, if tablespaces of different page sizes are created, then 
bufferpools corresponding to the different page sizes are required.

While you can create multiple bufferpools having the same page size, we 
recommend that only one bufferpool per page size be created, for the most 
efficient usage of memory on the database server.

The question is always how much memory to assign to the bufferpools. For DB2 
32-bit implementations, there is a limit, based on the operating system, that can 
be available for bufferpools. This ranges from a maximum of 1.5 GB on AIX 
platforms to 3.3 GB on Solaris. 

Assuming a dedicated database server, a general rule of thumb is to allocate a 
large proportion of memory available on the server, about 75% to 80%, but not 
exceed the platform limits.

Note that for 64-bit implementations of DB2, the limits are significantly increased. 
In this case, the bufferpool hit ratio would need to be monitored to determine the 
optimal setting for the bufferpools. You can also monitor the hit ratio for 32-bit 
implementation using database snapshots using the following command:

db2 get snapshot for database on <dbalias>

The output generated will contain some statistics on bufferpool logical and 
physical reads:

Buffer pool data logical reads             = DLR
Buffer pool data physical reads            = DPR
...
Buffer pool index logical reads            = ILR
Buffer pool index physical reads           = IPR

In this output, DLR, DPR, ILR, and IPR will have actual values. The hit ratio can 
be computed using the following formula:

(1 - (( DPR + IPR) / (DLR + ILR))) * 100%

The size of the bufferpool can be changed using the ALTER BUFFERPOOL 
command, or the BUFFPAGE parameter if the size of the bufferpool is set to -1.

16.1.2  DB2 objects management

This section describes how DB2 manages the objects in it, which contain tables, 
indexes, tablespaces, and agents.

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 347



Table management
After many changes to table data, logically sequential data may be on 
non-sequential physical data pages so that the database manager must perform 
additional read operations to access data. Additional read operations are also 
required if a significant number of rows have been deleted. In such a case, you 
might consider reorganizing the table to match the index and to reclaim space. 
You can reorganize the system catalog tables as well as database tables.

Consider the following factors, which might indicate that you should reorganize a 
table:

� A high volume of insert, update, and delete activity on tables accessed by 
queries.

� Significant changes in the performance of queries that use an index with a 
high cluster ratio.

� Executing RUNSTATS to refresh statistical information does not improve 
performance.

� The REORGCHK command indicates a need to reorganize your table.

� The tradeoff between the cost of increasing degradation of query 
performance and the cost of reorganizing your table, which includes the CPU 
time, the duration time, and the reduced concurrency resulting from the 
REORG utility locking the table until the reorganization is complete 
(performance overhead).

Efficient table management can improve the performance of the entire database 
system, but before that, we recommended analyzing and determining how to 
performance reorganize tables, and when it is necessary to perform a table 
reorganization. The best approach for DB2 is to examine the statistics collected 
by RUNSTATS. From the information RUNSTATS gets, the statistics show the 
data distribution within tables, the number of used and empty pages, and RIDs 
marked deleted in index leaf pages. The statistics also provide information about 
prefetch efficiency. If you run RUNSTATS regularly and analyze the statistics 
over a period of time, you can get more indication about the performance trend of 
the database system.

Note: Because reorganizing a table usually takes more time than running 
statistics, you might execute RUNSTATS to refresh the current statistics for 
your data and rebind your applications. If refreshed statistics do not improve 
performance, reorganization might help. For detailed information about the 
options and behavior of the REORG TABLE utility, refer to its command 
reference.

 

 

 

 

348 WebSphere Commerce High Availability and Performance Solutions



Index management
If there is no index defined in a table, a table scan must be performed for each 
each table referenced in a database query. When the database system is 
running for a long time, such as table orders in the Commerce database, it will 
become larger and larger. The result is that the larger the table, the longer a 
table scan takes since a table scan requires each table row to be accessed 
sequentially. In most cases, for a SQL query that might return only some rows, 
an index scan is much faster than a table scan, which will give the DB2 database 
system more capacity to handle other transactions’ requests at a consolidated 
duration.

Although indexes can reduce access time significantly, they can also have 
adverse effects on performance. Before you create indexes, consider the effects 
of multiple indexes on disk space and processing time:

� Each index requires storage or disk space. The exact amount depends on the 
size of the table and the size and number of columns in the index.

� Each INSERT or DELETE operation performed on a table requires additional 
updating of each index on that table. This is also true for each UPDATE 
operation that changes the value of an index key.

� The LOAD utility rebuilds or appends to any existing indexes.

� The indexfreespace MODIFIED BY parameter can be specified on the LOAD 
command to override the index PCTFREE used when the index was created.

� Each index potentially adds an alternative access path for a query for the 
optimizer to consider, which increases the compilation time.

Choose indexes carefully to address the needs of the application program. Some 
general index planning tips are:

� To avoid some sorts, define primary keys and unique keys.

� To access tables with a small size efficiently, try to use index to optimize 
frequent queries to create an index on any column that you will use when 
joining tables is necessary.

� To search efficiently, decide between ascending and descending ordering of 
keys depending on the order that will be used most often.

� We recommend using the SQL Explain facility to determine whether creating 
an index on specific columns is necessary.

Note: Commerce already has many indexes defined. Therefore, users should 
not need to create them everywhere, but carefully consider the implications 
that are listed below.

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 349



� To plan indexes, you can use the db2adv tool to get advice about indexes that 
might be used by one or more SQL statements.

Tablespace management
If you want to use Database Managed Storage devices as containers for 
tablespaces, you should consider following factors to make sure to effectively 
manage DMS:

� How to perform file system caching

File system caching is performed as follows:

– For DMS device container tablespaces, the operating system does not 
cache pages in the file system cache.

– For a DMS file container, the operating system might cache pages in the 
file system cache.

� How to buffer data read

A database buffer pool can store the data read from disk casually. But 
considering that there is a limitation to the buffer pool space, some data 
pages might be deleted from the buffer pool before the application actually 
uses this page. In this case, you might be able to increase the size of the 
database buffer pool to achieve more buffered data, which eventually 
improves the performance of the database. But on the other hand, it 
consumes more memory at the same time, so that you should identify 
whether there is buffer memory that can be used for the database buffer pool.

� Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database 
manager does not cache the data in its buffers. Each time an application 
needs one of these pages, the database manager must retrieve it from disk. 
However, if LOB or LONG data is stored in SMS or DMS file containers, file 
system caching might provide buffering and, as a result, we can get better 
performance.

Agent management
For each database that an application accesses, various processes or threads 
start to perform the various application tasks. These tasks include logging, 
communication, and prefetching.

There are four types of agents defined in the DB2 system:

� Idle agents
� Inactive agents
� Active coordinator agents
� Subagents

 

 

 

 

350 WebSphere Commerce High Availability and Performance Solutions



Most applications establish a one-to-one relationship between the number of 
connected applications and the number of application requests that can be 
processed by the database. However, it may be that your work environment is 
such that you require a many-to-one relationship between the number of 
connected applications and the number of application requests that can be 
processed.

The ability to control these factors separately is provided by two database 
manager configuration parameters, max_connections and max_coordagents. 
Before applying these two parameters to modify your agent working mechanism, 
we highly recommend thoroughly analyzing the database system based on your 
requirement, to prevent reaching the upper limitation of available database 
system resources.

16.2  DB2 monitoring

The normal approach to identifying a database performance issue is to utilize the 
results acquired from the database monitoring utility.

16.2.1  Introduction

DB2 should collect information from the database manager, its databases, and 
any connected applications. With these functionalities, we can achieve:

� Problem determination

Problem determination requires a sense of what is happening now, as it is 
necessary to see what is causing, or has recently caused, the problem. With 
some performance management and trending, you can avoid most problems.

� Performance management

Performance management allows you to use system resources optimally, and 
helps ensure that some problems are avoided. By using performance 
management information and techniques, you can try to avoid some time on 
problem determination and increase overall user satisfaction.

� Trend analysis

Trend analysis takes performance management to another level, where 
historical data is kept and used to determine growth and trends in usage. 
Trends help you identify changes in overall system activity and plan hardware 
upgrades if they are needed.

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 351



In DB2, there are two primary tools with which you can access system monitor 
information, each serving a different purpose: 

� The Snapshot™ monitor enables you to capture a picture of the state of 
database activity at a particular point in time (the moment the snapshot is 
taken). 

� The Event monitor logs data as specified database events occur. 

The system monitor provides multiple means of presenting monitor data to you. 
For both Snapshot and event monitors you have the option of storing monitor 
information in files or SQL tables, viewing it on screen (directing it to 
standard-out), or processing it with a client application.

Collecting system monitor data introduces processing overhead for the database 
manager, which not only consumes more CPU resources, but also increases 
memory consumption to store the collected data.

In order to minimize the overhead involved in maintaining monitoring information, 
monitor switches control of the collection of potentially expensive data by the 
database manager. Each switch has only two settings: ON or OFF. If a monitor 
switch is OFF, the monitor elements under that switch’s control do not collect any 
information. There is a considerable amount of basic monitoring data that is not 
under switch control, and will always be collected regardless of switch settings.

The typical information that you can get from the DB2 system monitor can be 
classified as listed in Table 16-1.

Table 16-1   DB2 monitoring system information classification

You can use the GET SNAPSHOT command to get snapshot information once 
you have turned on the switches.

Monitor switches Information collected

Buffer Pool Buffer pool usage statistics

Lock Info The number of locks that have occurred and deadlocks

Sort Info Sort overflows, number of sorts

Statement Seeing what SQL statements are currently running on the 
DB2 server

Timestamp Info Timestamp information

Unit of Work Statistics for units of work included in start and stop time and 
status

 

 

 

 

352 WebSphere Commerce High Availability and Performance Solutions



To check the status of the monitor switches, you can use the get monitor 
switches command. Figure 16-1 shows the output of this command.

Figure 16-1   Status of monitor switches

16.2.2  Snapshot monitor

After you turn on the switch for the specific object that you want to monitor, you 
can use the GET SNAPSHOT command to get the a snapshot. Table 16-2 shows 
the available commands that you can use for viewing the status of the database 
system.

Table 16-2   Commands list for viewing DB2 snapshots

Snapshot Command

Buffer Pool db2 get snapshot for bufferpools on dbname

Locks db2 get snapshot for locks on dbname

Dynamic SQL db2 get snapshot for dynamic sql on dbname

Table Activity db2 get snapshot for tables on dbname

Applications db2 get snapshot for applications on dbname

Tablespace db2 get snapshot for tablespaces on dbname

Database db2 get snapshot for database on dbname

Database Manager db2 get snapshot for DBM

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 353



From the DB2 command line, issue the commands listed in Table 16-2 on 
page 353 to get a snapshot like Example 16-1.

Example 16-1   DB2 DBM snapshot

bash-2.05$ db2 get snapshot for DBM

            Database Manager Snapshot

Node type                                      = Enterprise Server 
Edition with local and remote clients
Instance name                                  = db2inst8
Number of database partitions in DB2 instance  = 1
Database manager status                        = Active

Product name                                   = DB2 v8.1.1.96
Service level                                  = s050811 (U803920)

Private Sort heap allocated                    = 0
Private Sort heap high water mark              = 865
Post threshold sorts                           = Not Collected
Piped sorts requested                          = 108505
Piped sorts accepted                           = 108505

Start Database Manager timestamp               = 07/07/2007 
08:46:19.648761
Last reset timestamp                           =
Snapshot timestamp                             = 07/09/2007 
16:08:39.221033

Remote connections to db manager               = 19
Remote connections executing in db manager     = 0
Local connections                              = 2
Local connections executing in db manager      = 0
Active local databases                         = 1

High water mark for agents registered          = 27
High water mark for agents waiting for a token = 0
Agents registered                              = 27
Agents waiting for a token                     = 0
Idle agents                                    = 3

Committed private Memory (Bytes)               = 5603328

Switch list for db partition number 0

 

 

 

 

354 WebSphere Commerce High Availability and Performance Solutions



Buffer Pool Activity Information  (BUFFERPOOL) = OFF
Lock Information                        (LOCK) = ON  07/07/2007 
08:50:02.428191
Sorting Information                     (SORT) = OFF
SQL Statement Information          (STATEMENT) = OFF
Table Activity Information             (TABLE) = OFF
Take Timestamp Information         (TIMESTAMP) = ON  07/07/2007 
08:46:19.648761
Unit of Work Information                 (UOW) = OFF

Agents assigned from pool                      = 4406
Agents created from empty pool                 = 36
Agents stolen from another application         = 0
High water mark for coordinating agents        = 27
Max agents overflow                            = 0
Hash joins after heap threshold exceeded       = 0

Total number of gateway connections            = 0
Current number of gateway connections          = 0
Gateway connections waiting for host reply     = 0
Gateway connections waiting for client request = 0
Gateway connection pool agents stolen          = 0

Memory usage for database manager:

    Memory Pool Type                           = Database Monitor Heap
       Current size (bytes)                    = 180224
       High water mark (bytes)                 = 180224
       Configured size (bytes)                 = 376832

    Memory Pool Type                           = Other Memory
       Current size (bytes)                    = 2801664
       High water mark (bytes)                 = 2834432
       Configured size (bytes)                 = 18661376

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 355



16.2.3  Event monitor

To start your SQL event monitoring:

1. Open a new DB2 command-line processor session and execute the following 
DB2 UDB commands:

db2 connect to dbname user username using password
db2 update monitor switches using statement on
db2 create event monitor SampleMon for statements write to file 
‘/tmp/sample’ maxfiles 10 maxfilesize 10000
db2 set event monitor SampleMon state=1

2. Perform the normal database activities.

You will set the criteria for those regular database activities as well as 
potential issues that you seek to track during a specific period to be 
monitored. During monitoring, you will see a group of files in the /tmp/sample 
directory with an .evt extension. The size of the files is determined by the 
parameters and duration of time set by you. During monitoring, you should be 
able to see a group of files in the /tmp/sample directory with an .evt extension, 
and the sizes of these files are up to what information you set to be monitored 
and how long it lasts.

3. Go to the session that you opened in step 1 and issue the statement:

db2 set event monitor SampleMon state=0
db2 terminate

4. Execute the following command from a normal command-line session:

$ db2evmon -path /temp/sample > small.statement

All the captured SQL statements and their details will be captured in the 
single file small.statement.

Since abundant SQL statements are generated into the file mall.statement, it is 
important for you to identify what exactly you want. Example 16-2 is a sample 
output for an SQL statement.

Example 16-2   Sample output of SQL statement monitoring

409) Statement Event ...
  Appl Handle: 1373

Note: Keep this session open until the database activities are complete. 
Make sure that the /temp/sample directory is sufficiently large to hold the 
trace files. The /tmp/sample directory is chosen, as all the users have 
access to this directory. However, this directory could be replaced with any 
other directory.

 

 

 

 

356 WebSphere Commerce High Availability and Performance Solutions



  Appl Id: P7957356.D9C4.044423183000
  Appl Seq number: 0057
  Record is the result of a flush: FALSE
  -------------------------------------------
  Type     : Dynamic
  Operation: Close
  Section  : 37
  Creator  : NULLID  
  Package  : SYSSH200
  Consistency Token  : SYSLVL01
  Package Version ID  : 
  Cursor   : SQL_CURSH200C37
  Cursor was blocking: TRUE
  Text     : SELECT T1.XATTRIBUTE_ID, T1.LANGUAGE_ID, T1.ENUM, T1.NAME, 
T1.DESCRIPTION, T1.DISPLAYLABEL, T1.XGLOSSARY_ID, T1.ISSTORESPECIFIC, 
T1.LASTUPDATE, T1.CONTENTSOURCE, T1.USAGE, T1.FIELD1, T1.FIELD2, 
T1.OPTCOUNTER FROM XATTRIBUTE  T1 WHERE T1.DESCRIPTION=?
  -------------------------------------------
  Start Time: 07/08/2007 12:50:04.372305
  Stop Time:  07/08/2007 12:50:04.375307
  Exec Time:  0.003002 seconds
  Number of Agents created: 1
  User CPU: 0.000000 seconds
  System CPU: 0.000000 seconds
  Fetch Count: 1
  Sorts: 0
  Total sort time: 0
  Sort overflows: 0
  Rows read: 230
  Rows written: 0
  Internal rows deleted: 0
  Internal rows updated: 0
  Internal rows inserted: 0
  Bufferpool data logical reads: 1123
  Bufferpool data physical reads: 0
  Bufferpool temporary data logical reads: 0
  Bufferpool temporary data physical reads: 0
  Bufferpool index logical reads: 0
  Bufferpool index physical reads: 0
  Bufferpool temporary index logical reads: 0
  Bufferpool temporary index physical reads: 0
  SQLCA:
  sqlcode: 100
  sqlstate: 02000

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 357



Generally, four types of SQL statements need to be identified carefully:

� SQL statements consume the most execution time.
� SQL statements consume the most sort time.
� SQL statements consume the most CPU resource.
� SQL statements run most frequently.

16.3  DB2 tuning in WebSphere Commerce

There are many parameters to consider for performance. This section describes 
a subset of these that are considered important for WebSphere Commerce 
implementations. To set the values for the parameters, the following command 
can be used:

db2 update db cfg for <dbalias> using <paramname> <paramvalue>

16.3.1  Parameters related to memory

The database heap (DBHEAP) contains control block information for database 
objects (tables, indexes, and bufferpools), as well as the pool of memory from 
which the log buffer size (LOGBUFSZ) and catalog cache size 
(CATALOGCACHE_SZ) are allocated. Its setting is dependent on the number of 
objects in the database and the size of the two parameters mentioned. 

In general, the following formula can be used to estimate the size of the database 
heap:

DBHEAP=LOGBUFSZ + CATALOGCACHE_SZ + (SUM(# PAGES in each bufferpool) * 3%)

The log buffer is allocated from the database heap, and is used to buffer writes to 
the transaction logs for more efficient I/O. The default size of this setting one 
hundred and twenty-eight 4 K pages. A recommended starting point for the log 
buffer size (LOGBUFSZ) in WebSphere Commerce implementations is 256.

16.3.2  Parameters related to transaction logs

When considering values for the transaction log file size (LOGFILSZ) and the 
number of primary (LOGPRIMARY) and secondary (LOGSECOND) logs, some 
generalizations for OLTP applications can be applied. A high number of short 
transactions are typical in OLTP systems. Hence, the size of the log file should 
be relatively large. Otherwise, more processing time will be spent managing log 
files and writing to the transaction logs. A good starting point for the size of the 
log file in WebSphere Commerce implementations is to set the value to 10000.

 

 

 

 

358 WebSphere Commerce High Availability and Performance Solutions



Primary log files are allocated when the database is activated, or on the first 
connect. If a long-running transaction fills up all the primary logs, then secondary 
logs will be allocated as needed until the LOGSECOND limit is reached. The 
allocation of a secondary log file is a significant performance hit, and should be 
minimized if it cannot be avoided.

To determine the correct settings for these parameters, you need to monitor the 
database and see whether secondary log files are being allocated. If they are, 
then you need to increase the number of primary log files. You can monitor this 
by taking a database snapshot and looking for the following two lines:

Maximum secondary log space used (Bytes)   = 0
Secondary logs allocated currently         = 0

A good starting point for the number of primary log files (LOGPRIMARY) is 
anywhere from 6 to 10.

16.3.3  Parameters related to disk I/O

In addition to physical disk layout, several tuning parameters can be manipulated 
to affect disk I/O. Two key parameters are NUM_IOSERVERS and 
NUM_IOCLEANERS. 

� NUM_IOSERVERS specifies the number of processes that are launched to 
prefetch data from disk to the bufferpool pages. To maximize read 
parallelism, this parameter should be set to the number of physical disks that 
are being used by the database, to enable reading from each disk in parallel.

� NUM_IOCLEANERS specifies the number of processes that are launched to 
flush dirty bufferpool pages to disk. To maximize usage of system resources, 
this parameter should be set to the number of CPUs on the system.

The frequency of how often dirty bufferpool pages are flushed to disk can be 
influenced by the CHNGPGS_THRESH parameter. Its value represents the limit, 
in the form of a percentage, that a bufferpool page can be dirty before a flush to 
disk is forced. For OLTP applications, we recommend a lower value. For 
WebSphere Commerce implementations, the value should be set to 40.

One final parameter to consider in this section is MAXFILOP. It represents the 
maximum number of files DB2 can have open at any given time. If this value is 
set too low, valuable processor resources will be taken up to open and close 
files. This parameter needs to be monitored to be set to the correct value, but a 
good starting point is to set this value to 128. You can monitor this by taking a 
database snapshot and looking at the following line:

Database files closed                      = 0

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 359



If the value monitored is greater than zero, then the value for this parameter 
should be increased.

16.3.4  Parameters related to locking

Reducing locking contention is key to performance. Several parameters exist to 
influence locking behavior. The total amount of memory available to the 
database for locks is defined by the LOCKLIST parameter. The MAXLOCKS 
parameter defines the maximum amount of memory available for each 
connection to the database. It is represented as a percentage of the LOCKLIST.

Both of these parameters need to be sized appropriately in order to avoid lock 
escalations. A lock escalation occurs when all of the memory available to a 
connection is used, and multiple row locks on a table are exchanged for a single 
table lock. The amount of memory used for the first lock on an object is 72 bytes, 
and each additional lock on the same object is 36 bytes.

A good starting value for LOCKLIST can be approximated by assuming that a 
connection requires about 512 locks at any given time. The following formula can 
be used:

LOCKLIST = (512 locks/conn * 72 bytes/lock * # of database connections) 
/ 4096 bytes/page

MAXLOCKS can be set to between 10 and 20 to start. Further monitoring will be 
necessary to adjust both of these values. In the database snapshot output, look 
for the following lines:

Lock list memory in use (Bytes)            = 432
Lock escalations                           = 0
Exclusive lock escalations                 = 0

If lock escalations occur (value higher than 0), increase the locklist to minimize 
the escalations or increase the MAXLOCKS value to increase the limit of how 
much of the LOCKLIST a connection can use.

16.3.5  Parameters related to agents management

The following database manager configuration parameters determine how DB2 
database agents can be created and managed:

� Maximum number of agents (maxagents): The number of agents that can be 
working at any one time. This value applies to the total number of agents that 
are working on all applications, including coordinator agents, subagents, 
inactive agents, and idle agents.

 

 

 

 

360 WebSphere Commerce High Availability and Performance Solutions



� Agent pool size (num_poolagents): The total number of agents, including 
active agents and agents in the agent pool, that are kept available in the 
system. The default value for this parameter is half the number specified for 
maxagents.

� Initial number of agents in pool (num_initagents): When the database 
manager is started, a pool of worker agents is created based on this value. 
This speeds up performance for initial queries. The worker agents all begin as 
idle agents.

� Maximum number of connections (max_connections): This specifies the 
maximum number of connections allowed to the database manager system 
on each partition.

� Maximum number of coordinating agents (max_coordagents): For partitioned 
database environments and environments with intra-partition parallelism 
enabled when the connection coordinator is enabled, this value limits the 
number of coordinating agents.

� Maximum number of concurrent agents (maxcagents): This value controls the 
number of tokens permitted by the database manager.

In some peak usage system, where the resources for memory, CPU, and disk 
are almost 100% utilized, insufficient configuration might cause performance 
degradation for peak load periods. You can modify some of these parameters to 
control the load and avoid performance degradation.

16.3.6  Best practices

In this section we describe some of the most common best practices for any IBM 
DB2 UDB implementation.

Reorganizing data in tablespaces
When a high number of inserts, updates, or deletes have been issued against a 
table in the database, the physical placement of the rows and related indexes 
may not be optimal. DB2 provides a utility to reorganize data for a table:

db2 REORG TABLE <tabschema>.<tabname>;

DB2 also provides a utility to check whether a table or index data needs to be 
organized. While connected to a database, the following command can be 
issued:

db2 REORGCHK

This command checks all tables in the database and produces a listing, first by 
table and second by index. In the listing, an asterisk (*) in any of the last three 
columns implies that the table or index requires a REORG.

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 361



Collecting statistics
Each SQL statement submitted to the database is parsed, optimized, and a 
statement access plan is created for execution. To create this access plan, the 
optimizer relies on table and index statistics. In order for the optimizer to 
generate the best access plan, up-to-date statistics are required. Collecting 
statistics frequently (or at least when a significant amount of data changes) is a 
good practice.

To collect statistics for a table, the following command can be issued:

db2 RUNSTATS ON table <tabschema>.<tabname> WITH DISTRIBUTION AND 
DETAILED INDEXES ALL;

Statistics on the catalog tables should also be collected.

16.4  Utilities in database tier for WebSphere Commerce

In WebSphere Commerce, the site administrator plays a critical role in perfuming 
system administration tasks. Besides the basic tasks, includes install, configure, 
and maintain WebSphere Commerce and the associated software and 
hardware. Another key responsibility of the site administrator is to manage the 
Commerce database to support High Availability online stores operating 24 
hours a day, 365 days of the year.

WebSphere Commerce has already delivered some useful database utilities to 
achieve High Availability and high performance, which include:

� Massload
� Staging server
� DBClean

16.4.1  Massload

The WebSphere Commerce Loader package consists primarily of command 
utilities for preparing and loading data into a WebSphere Commerce database. 
You can use the Loader package to load large amounts of data and to update 
data in your WebSphere Commerce database.

The Loader command utility in this package uses valid and well-formed XML as 
input to load data into the database. Elements of the XML document map to table 
names in the database, and element attributes map to columns.

 

 

 

 

362 WebSphere Commerce High Availability and Performance Solutions



The Loader command utilities allow you to do the following:

� Transform data between a character-delimited variable format and an XML 
data format. 

� Transform XML data into alternate XML formats. 

� Generate a DTD based on the target database. 

� Generate identifiers for XML elements. 

� Load data into the WebSphere Commerce database. 

� Extract data from a database as an XML document.

Table 16-3 lists all of the utilities included in the Commerce Loader package.

Table 16-3   Loader package utilities

How massload works
The massload utility can help the WebSphere Commerce site administrator load 
an XML input file into a target database. Loading the XML file populates and 
updates the WebSphere Commerce database. The massload utility allows 

Utility Description

Text Transformer The Text Transformer transforms data between a 
character-delimited variable format and an XML data format.

XML Transformer The XML Transformer changes, aggregates, and remaps the 
data in an XML document to alternate XML formats for use 
by other users or systems as needed. 

DTD Generator The DTD Generator generates a DTD based on the target 
database to which your data must conform. This DTD will be 
used throughout the load process. 

ID Resolver The ID Resolver is a Loader package command utility that 
generates identifiers for XML elements with their associated 
identifiers.

Loader The Loader is responsible for populating and updating the 
WebSphere Commerce database. The Loader is the most 
common means of loading data into a system.

Extractor The Extractor extracts selected subsets of data from a 
database in the form of XML files.

Logger The Loader package command utilities log messages to 
indicate success, failure, and errors, as well as to provide 
program trace information.

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 363



column-level updates to a table. It also allows you to delete data from a 
database. 

Besides the functionalities listed above, the massload utility also includes the 
features below:

� Error reporter

The massload utility includes an error reporter that generates an exception 
document if an error occurred during massload execution.

� Product Advisor search-space synchronization

If you enable the loading utility’s Product Advisor search-space 
synchronization feature, you can maintain near real-time synchronicity of 
Product Advisor search spaces and WebSphere Commerce catalog tables 
being updated by the massload utility.

In the next section we provide the steps for loading data to the WebSphere 
Commerce database.

Step1: Configure the loading utilities
Ensure that you have finished the necessary configuration for running this utility:

1. Configure the loading utilities.

Before you can use the loading utilities, you might have to update some of the 
environment variables used by the utilities. The environment variables are set 
by the following scripts (for AIX) that are called by the loading utilities and 
other WebSphere Commerce utilities:

– Setenv script: WC_Install_Dir/bin/setenv.sh
– Setenv.db2 script: WC_Install_Dir/bin/setenv.db2.sh

2. Configure tracing and logging for the loading utilities.

In addition to the individual logs for some of the loading utilities, you can 
configure an additional message log file and a trace file for the loading 
utilities. You can configure the location of the loading utilities message log 
and trace files and their contents by editing the WCALoggerConfig.xml file.
To configure additional tracing and logging for the loading utilities:

a. Open the following in a text editor: 

WC_Install_Dir/xml/loader/WCALoggerConfig.xml 
b. Modify the contents of the file as follows:

i. Define the parameters for tracing.
ii. Define the parameters for logging.

c. Save your changes.

 

 

 

 

364 WebSphere Commerce High Availability and Performance Solutions



d. Ensure that the full path to WCALoggerConfig.xml is defined as part of the 
CLASSPATH environment variable before running any of the loading 
utilities.

3. Configure the massload utility.

a. Before using the massload utility you might want to change the following to 
suit your environment.

By default, the maximum amount of memory allocated to the JVM heap is 
64 MB. If this is not increased, the JVM can eventually run out of memory 
during the load process. The maximum amount of memory allocated to the 
Java heap can be varied by using the JVM -mx option in the Java 
command. If you are loading files that are more than 500 MB, then 
increase the JVM heap size to 512 MB or 1024 MB.

To modify the Java Virtual Machine (JVM) heap size used for the 
massload utility:

i. Open the following massload utility file in a text editor:

WC_Install_Dir/bin/massload.sh

ii. Change the JVM heap size to 1024 MB by specifying the -Xms and 
-Xmx options of the Java command.

If the -Xms and -Xmx parameters are already specified in the file, 
change the values to the heap size that you want. Ensure that you 
update all occurrences of -Xms and -Xmx. 

If the -Xms and -Xmx parameters are not specified in the file, change 
all occurrences of %JAVA_HOME%\bin\java in the utility command file 
to %JAVA_HOME%\bin\java -Xms1024M -Xmx1024M.

iii. Save the changes.

b. (Optional) Change the directory for the massload utility error log. 

c. (Optional) Configure the MassLoadCustomizer.properties file.

Step 2: Generate a DTD and schema for using loading utilities
The dtdgen utility creates a document type definition (DTD) file to use with the 
loading utilities. The dtdgen utility uses an input text file containing a list of 

Note: In addition to the trace log and message log for loading utilities, this 
utility produces the following log file for further problem analysis and 
determination:

� (For DB2): WC_Install_Dir/logs/massload.db2.log
� (For Oracle): WC_Install_Dir/logs/massload.db2.log

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 365



database table names and generates a DTD file describing the database, 
depending on how you invoke the dtdgen utility.

The dtdgen utility can create a DTD file based on the WebSphere Commerce 
database schema. If you use the DTD files provided with the starter store 
archives and you do not modify the database schema, you do not need to 
generate a DTD file using the dtdgen utility.

To generate a DTD file, or a DTD file and XML schema definition (XSD) file:

1. If necessary, configure the loading utilities first. (We discussed it this in 
“Step1: Configure the loading utilities” on page 364).

2. Create an input text file that contains database table names, one on each 
line, as shown in Example 16-3.

Example 16-3   Input text file for generating DTD file

MEMBER
ADDRBOOK
ADDRESS

3. Save the file as a .txt file.

4. Run the dtagen utility. If you have configured the dtdgen utility, make sure 
that you specify the new file name as the value of the customizer parameter 
of the DTD Generator command. You can get more information about the 
Commerce dtagen utility from this link:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?top
ic=/com.ibm.commerce.data.doc/refs/rml_dtdgen.htm

Step 3: Resolve identifiers for records that share identifiers 
with existing data

If you are loading new data into a WebSphere Commerce database that shares 
identifiers with data that already exists in the WebSphere Commerce database, 
you must include the existing data in the XML file that you want to load. The 
existing data must appear before the new data in the XML file.

An example of this situation is adding a new language to an existing catalog. For 
example, you have a master catalog in English and you want to add French 
information to the catalog.

Note: If you are loading data for a store archive and created the XML file using 
the DTDs provided with the store archive, this step is not necessary.

 

 

 

 

366 WebSphere Commerce High Availability and Performance Solutions

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.data.doc/refs/rml_dtdgen.htm


The idresgen utility generates new identifiers for the new data instead of 
referencing the existing data for either of the following situations:

� You do not include the existing data in your XML file. 

� You include the existing data, but the existing data appears after the new 
data.

By including the existing data before the new data, the idresgen utility is correctly 
able to resolve the identifiers and relate them to existing identifiers.

Step 4: Execute the massload utility
Make sure that you have configured correctly, as listed in previous steps, and 
then we can start running this utility as the non-root WebSphere Commerce user 
ID. Do not run this command as root. The syntax of the command massload is as 
Figure 16-2.

Figure 16-2   Syntax for massload command

Preformation consideration and practice
Loading utilities is sometime time-consuming and resource-consuming, 
especially when you want to load a huge volume of the content data related to 
Commerce stores into database.

Below are several considerations that might result in performance degradation 
with running the massload utility: 

� Trace is enabled.

To disable the tracing if it is enabled:

a. Log on the WebSphere Application Server admin console:

http://hostname:port/ibm/console

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 367



b. Click Servers → Application Servers.

c. From the Application Servers list, select the server name (for example, 
WC_demo) for your implementation.

d. Click Logging and Tracing → Diagnostic Trace. The diagnostic trace 
service panel is shown, as in Figure 16-3.

Figure 16-3   Diagnostic trace panel

e. Make sure that the Enable Log check box is not selected.

f. After changing the configuration, click Apply → Save to save the change.

� Not enough memory

Make sure that you have applied enough paging for loading huge volumes of 
data.

If massload is running during heavy workload on the server, locking issues 
may be causing the problem. This can sometimes be eliminated by disabling 
the cache triggers.

 

 

 

 

368 WebSphere Commerce High Availability and Performance Solutions



16.4.2  Staging server

Most online stores operate 24 hours a day, 365 days of the year, making it 
difficult to perform maintenance or test changes to the system. The WebSphere 
Commerce staging server allows the site administrator to update the data on the 
staging server and test the changes, and then propagate the change to the 
production server. This is useful for testing updates to the product catalog, but it 
is also important for testing new shopping process commands.

Staging server introduction
The WebSphere Commerce server application server environment on a staging 
server is very similar to the production server. The staging server requires 
exactly the same hardware and software and operating system configuration as 
the production server. Both the staging and production environments include the 
WebSphere Application Server, WebSphere Commerce Server, a database 
server, and a database. The versions of the software and operating systems 
must also be the same.

� The staging server contains a complete WebSphere Commerce Server 
instance, just like the production server. Normally, the staging server instance 
is created on a dedicated machine on your network.

� The staging server environment does not have to have the same number of 
nodes as the production environment. For example, a production 
environment may have the database on one physical machine, the 
WebSphere Commerce Server on another physical machine, and the HTTP 
server on a third machine. The staging environment can have these three 
elements on one physical machine. 

� From the application content's point of view, the staging server has the same 
EAR file, the same WAR file, and the same database schema as the 
production server.

� From the data content's point of view, the staging server has the same JSP 
pages, HTML pages, Java files, and the same data in the database as the 
production server.

Note: For more information about enabling and disabling the cache 
triggers, refer to the Enabling and disabling caching task in the IBM 
WebSphere Commerce online help found at the following Web site:

http://www-306.ibm.com/software/genservers/commerce/wcpe/library/
lit-tech-general-en.html 

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 369

http://www-306.ibm.com/software/genservers/commerce/wcpe/library/lit-tech-general-en.html
http://www-306.ibm.com/software/genservers/commerce/wcpe/library/lit-tech-general-en.html


� From the function's point of view, the staging server has the same function as 
the production server. Users can perform the same actions on the staging 
server as they would on the production server. For example, a user can 
launch the WebSphere Commerce Accelerator, perform a shopping flow, load 
the database using the loading utilities, or publish a store.

These similarities allow a user to test changes on the staging server as though it 
were the production server. These tests reassure users that changes that run 
correctly on the staging server will run correctly on the production server. This is 
the basic philosophy of the staging server.

The staging server consists of the following components:

� A WebSphere Commerce instance 

Tests and modifies your data. 

� Database schema scripts 

Creates the staging tables and triggers for the staging database. The staging 
database contains the same schema and tables as the production database, 
plus a set of triggers to log changes made in the staging database. The 
staging database schema scripts add triggers to the database. Changes are 
logged to the STAGLOG table (a staging table) using database triggers. 
Whenever you change a database table record in the staging database, the 
STAGLOG table records this change.

� The stage copy utility 

Allows an administrator to copy data from the production database to the 
staging database. You can copy the data into site-related tables, 
merchant-related tables, or individual tables. The stage copy utility should 
only be used in specific administrative situations, such as setting up a new 
staging server or recovery from a corrupt staging server database. An 
administrator should not make day-to-day changes on the production server 
or routinely use stage copy to copy the data to the staging server. 

� The stage propagate utility 

Allows an administrator to propagate changes from the staging database to 
the production database. The information in the STAGLOG table identifies the 
records in the staging database that must be inserted, updated, or deleted in 
the production database. The identified records are then updated in the 
production database. Processed records are indicated in the STAGLOG table 
by a 1 in the STGPROCESSED column. 

� The stage check utility 

Allows an administrator to check for potential unique index key conflicts 
between two tables on a staging server and a production server. 

 

 

 

 

370 WebSphere Commerce High Availability and Performance Solutions



How staging server works
The staging server uses the following four utilities.

Staging copy utility
The stagingcopy utility allows an administrator to copy data from the production 
database to the production-ready data. You can copy the data into site-related 
tables, merchant-related tables, or individual tables. After running the 
stagingcopy utility, the staging database data is aligned with that of a production 
database, so that any changes made to the staging database afterwards can be 
logged and later published to the production database.

Staging check utility
The stagingcheck utility command checks for unique index conflicts between the 
tables in the production-ready data and the production database. A unique index 
conflict can occur when content data is changed in the production database 
instead of the production-ready data (for example, if you create a product on the 
staging server, then create a different product on the production server, and the 
two different products have the same product ID).

We recommend running the stagingcheck utility before publishing data to the 
production server using the stagingprop utility.

Staging prop utility
The stagingprop utility publishes the delta database data from the 
production-ready data to the production server. It processes each record in the 
STAGLOG table. The stagingprop utility is the most frequently used of the 
staging utilities. For example, you may use the stagingprop utility nightly to 
publish the delta from the production-ready data to the production database.

Fileprop utility
The fileprop utility publishes managed files from the production-ready data to the 
WebSphere Commerce EAR file on the production server. Managed files are not 
copied to the database on the production server.

The general approach to create a staging server is described below. You can 
use it as instructions along with the WebSphere Commerce Installation Guide to 
create a staging server:

1. Install WebSphere Commerce and its supporting software using the custom 
installation option of the WebSphere Commerce installation wizard. 

Note: If you do not use the staging check utility, key conflicts found when 
running the stagingprop utility are indicated in the stagingprop log file.

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 371



2. Prepare the staging server to connect to the production database: 

a. Install a database client suitable for communication with your production 
database. 

b. Catalog the remote production database so that is accessible from your 
staging server.

3. Create a new WebSphere Commerce instance: 

a. Start the WebSphere Commerce Instance Creation wizard. 

b. Complete the pages of the wizard. 

c. On the Staging page of the wizard, ensure that you select Use staging 
server. If you do not select this check box, the resulting WebSphere 
Commerce instance will be a production WebSphere Commerce instance. 

d. Ensure that caching is not enabled in the Cache page. When the instance 
creation process complete, you will have a staging server instance.

4. Configure the staging database and the production database for use with the 
staging utilities. 

5. If you have any custom tables that you want to enable for staging, create 
triggers for the custom tables.

Performance consideration and practice
The staging utility provides the ability to propagate all changes for the staged 
data to the production data in one session. But in some cases, customers might 
have several stores in their production server, if they only want to propagate the 
changes in a certain store within one propagation session. In a normal scenario 
of a staging server, it is not working, which results in wasting time and losing 
concentration. In some extreme situation, if it is necessary to propagate updated 
staging data to the production server, more staging data always means more 
performance impact to the production server.

The staging utility in WebSphere Commerce V6.0 introduced a feature called 
filtering, which provides the infrastructure to achieve the filtered propagation 
according to business needs. Basically, it does not provide specific logic to filter 
according to specific business goals, like filter by store, by contract, or by 
promotion. However, it provides the infrastructure on top of which those goals 
can be implemented.

In this filtering solution for staging server, performance impact can be reduced by 
introducing a marking for each change. The marking can be any natural number 

Note: The staging server should be run on a separate system or machine 
partition from your production server.

 

 

 

 

372 WebSphere Commerce High Availability and Performance Solutions



stored in a new column called STGFILTER in the STAGLOG table. All of the 
changes related to the same business goal can be assigned the same marking to 
be recognized by the staging utilities. For example, since the latest propagation 
process, all of the changes related with store 501 have the same marking in the 
column STGFILTER. 

You can use the following command to propagate all changes with a new 
parameter named -filter:

stagingprop ... -filter 501 ...

The new parameter -filter can tell the stagingprop utility that only the changes 
with a marking 501 will be propagated in this time. For more details about filtered 
propagation, you can refer to this paper in developerWorks® from this link:

http://www.ibm.com/developerworks/websphere/library/techarticles/0702_j
iang/0702_jiang.html

16.4.3  DBClean

Most of the database performance defects or PMRs opened with WebSphere 
Commerce are a result of poor database maintenance. Over time the database is 
filled with expired orders information, expired guest user information, user traffic 
logs, stale coupons, and promotion information. If we do nothing to the database, 
the result is frequent occurrences of deadlocks, transaction time outs, throughput 
degradation, and time-consuming response times.

The DBClean, combined together with other well known DB2 maintenance 
utilities, consist of an entire WebSphere Commerce DB2 database maintenance 
solution. Refer to Chapter 25, “Database maintenance” on page 563, for more 
about DB2 maintenance.

 

 

 

 

 Chapter 16. IBM DB2 Universal Database 373

http://www.ibm.com/developerworks/websphere/library/techarticles/0702_jiang/0702_jiang.html


16.5  Conclusions

In this chapter, we talked about database performance consideration, database 
performance monitoring, and performance tuning. These are not separate from 
each other. They closely rely on each other. For example, without database 
monitoring utilities, you cannot know the real status of the database system. A 
High Availability and high performance database solution should be based on 
these three aspects, which means that the High Availability solution and the high 
performance solution are the output of the interactive and continued cycle, as 
shown in Figure 16-4.

Figure 16-4   DB2 performance improvement cycle

High Availability 
Solution

High Performance 
Soluton

Database 
Performance 
Consideration

Database 
Performance 
Monitoring

Database 
performance 

tuning

 

 

 

 

374 WebSphere Commerce High Availability and Performance Solutions



Chapter 17. Monitor and tune 
WebSphere Application 
Server for WebSphere 
Commerce

In general, WebSphere Commerce follows the funnelling methodology of tuning 
most WebSphere applications.

More processing is required on a Web site's front-end servers than on its 
back-end. Hence, a higher number of requests-serving threads is required at tier 
one (usually the Web server tier), and is then reduced for each subsequent tier 
(application server tier and database server tier). This configuration creates a 
funnel effect in which thread requirements are reduced at each tier.

This chapter introduces some key tuning parameters in WebSphere Application 
Server, and recommendations from WebSphere Commerce on how to use these 
parameters. Settings and values configured for some parameters are unique to 
WebSphere Commerce.

17
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 375



17.1  Web container thread connection pool

Unlike the threads used by the Web server, which requires many of them to 
handle large quantities of relatively simple requests in a short period of time (that 
is, serve a .jpg file), the application server’s requests are fewer in number, more 
complex, and take longer to process.

WebSphere Application Server allows users to customize both the minimum and 
maximum size of the Web container thread pool. The belief that having a high 
number of threads improves both throughput and the ability to handle a high 
number of concurrent users is simply not true.

In reality, with too many Web container threads running, each processor (CPU) 
on the server could potentially be dealing with a large number of requests at any 
given time. This may result in the operating system having to spend a significant 
amount of time managing and switching between threads instead of processing 
the actual requests. Also, each additional thread consumes resources such as 
memory and database connections in WebSphere Application Server. These 
resources from extraneous threads can be used more valuably if freed up.

Of course, if the Web container threads value is set too low, the WebSphere 
Application Server will not have enough workload, so the CPU will be 
underutilized.

A good rule of thumb is to set the maximum value to at least 10 threads. If you 
have multiple processors, start with five threads for each CPU when configuring 
the application server. For example, in a 4-way system, 20 Web container 
threads should be used. Increase the maximum number of threads only when 
you believe that CPU utilization could be higher by having additional concurrent 
workload.

WebSphere Commerce recommends setting the minimum and maximum values 
of Web container threads to the same value. This avoids thread close and spawn 
costs. The value should be tuned to throttle the application server to a point 
where it would continue to perform efficiently. 

To set Web container threads, open the WebSphere Application Server 
administrative console and follow these steps:

1. Expand Servers.

Tip: Web container thread connection pool’s default is 10–50 connections. If 
the machine has multiple processors, start with 10 threads per processor and 
increase if the processors seem underutilized.

 

 

 

 

376 WebSphere Commerce High Availability and Performance Solutions



2. Click Application Servers.
3. Click your_Commerce_Application_Name.
4. Click Web Container.
5. Click Thread Pool.
6. Set the minimum size and maximum size values.
7. Click Apply and OK.

17.2  Database connection pool

Unlike the recommendation in WebSphere Application Server’s InfoCenter, 
which states that the database connection pool should be smaller than the Web 
container thread pool, for WebSphere Commerce configurations, each 
WebSphere Web container thread needs at least one database connection to 
match. In addition, when Commerce Scheduler is being used, an additional 
database connection needs to be reserved to ensure that the WebSphere 
Commerce scheduler threads function properly.

To set the data source connections, open the WebSphere Application Server 
administrative console and follow these steps:

1. Select Resources.

2. Click JDBC™ Providers.

3. Click Data Sources.

4. Select your_commerce_data_source.

5. Go to Connection Pool.

6. Set the minimum connections and maximum connections for the database 
pool.

17.3  Prepared statement cache

According to the WebSphere Application Server Information Center, a 10% to 
20% performance improvement can be observed with the use of this parameter. 
To determine the correct setting, the Tivoli Performance Viewer is often used to 
observe the behavior and minimize cache discards. However, for WebSphere 

Tip: The database connection pool’s default is 5–65 connections. In general, 
you should have at least one database connection per Web container thread. 
If you are using the Commerce Scheduler, one additional connection is 
necessary. 

 

 

 

 

 Chapter 17. Monitor and tune WebSphere Application Server for WebSphere Commerce 377



Commerce, because of the high number of SQL statements executed internally, 
it is not possible to cache all prepared SQL statements in the application server.

The only reliable way to determine the optimal setting for the prepared statement 
cache is through actual performance measurement in a controlled environment 
with repeatable workloads. The recommended initial value for the prepared 
statement cache is 150, and it should be increased in intervals of 50, until no 
more performance increase is observed.

To set the prepared statement cache size, open the WebSphere Application 
Server administrative console and follow these steps:

1. Select Resources.
2. Click JDBC Providers.
3. Click your_commerce_data_source.
4. Set the value for statement cache size.

17.4  Dynamic caching

Caching dynamic content is one of the most important aspects of improving 
WebSphere Commerce performance. It improves both response time and 
throughput while reducing system loads. As a result, the site has better 
performance, and infrastructure costs can be reduced.

Since the page layout design and the access pattern of each Web site is so 
different, Application Server’s Dynamic Caching configuration file needs to be 
customized and configured differently in order to maximize the benefit of 
dynamic caching as much as possible.

All our sample stores come with a default dynamic cache configuration file that 
consists of some basic rules to cache some obvious pages (that is, product 
display). These rules are a good starting point to understand the potential of 
dynamic cache, but are not sufficient to make the store operate in the most 
efficient way.

The same cache tuning parameters are discussed in Chapter 13, “Caching” on 
page 265. 

Tip: The prepared statement cache’s default is 50 statements/connections. 
There is a 10–20% performance increase when tuning this parameter. Test 
performance in a repeatable manner in a controlled environment. 

 

 

 

 

378 WebSphere Commerce High Availability and Performance Solutions



17.5  Java Virtual Machine heap management

When a Java Virtual Machine (JVM) is started, it obtains a large area of memory 
from the native operating system. This area is called the heap, and Java 
performs its own memory management by allocating areas of the heap as 
memory is needed by the process.

To ensure stability and achieve optimal performance, it is vital to understand how 
the heap is utilized and also continuously monitor and tune it.

To manage JVM settings, open the WebSphere Application Server 
administrative console and follow these steps:

1. Open the WebSphere Application Server administration site.

2. Select Servers → Application servers → server1 → Java and Process 
Management → Process Definition → Java Virtual Machine. 

17.5.1  Heap expansion

Heap expansion occurs after garbage collection while exclusive access of the 
virtual machine is still held. The active part of the heap is expanded up to the 
maximum if one of the following is true:

� The garbage collector did not free enough storage to satisfy the allocation 
request.

� Free space is less than the minimum free space, which you can set by using 
the -Xminf parameter. The default is 30%.

� More than 13% of the time is being spent in garbage collection.

The amount to expand the heap is calculated as follows:

� If the heap is being expanded because less than -Xminf (default 30%) free 
space is available, the garbage collector calculates how much the heap 
needs to expand to get -Xminf free space.

If this is greater than the maximum expansion amount, which you can set with 
the -Xmaxe parameter (default of 0, which means no maximum expansion), 
the calculation is reduced to -Xmaxe.

If this is less than the minimum expansion amount, which you can set with the 
-Xmine parameter (default of 1 MB), it is increased to -Xmine.

� If the heap is expanding and the JVM is spending more than 13% for any 
other reason, the garbage collector calculates how much expansion is 
needed to expand the heap by 17% free space. This is adjusted as above, 
depending on -Xmaxe and -Xmine.

 

 

 

 

 Chapter 17. Monitor and tune WebSphere Application Server for WebSphere Commerce 379



� Finally, the garbage collector ensures that the heap is expanded by at least 
the allocation request if garbage collection did not free enough storage.

All calculated expansion amounts are rounded up to a 256-byte boundary (512 
bytes if concurrent mark is used) on 32-bit architecture, or a 1024 byte boundary 
on 64-bit architecture.

17.5.2  Heap shrinkage

Heap shrinkage occurs after garbage collection while exclusive access of the 
virtual machine is still held. Shrinkage does not occur if any of the following are 
true:

� The garbage collector did not free enough space to satisfy the allocation 
request.

� The maximum free space, which can be set by the -Xmaxf parameter (default 
is 60%) is set to 100%.

� The heap has been expanded in the last three garbage collections.

� This is a System.gc(), and the amount of free space at the beginning of the 
garbage collection was less than -Xminf (default is 30%) of the live part of the 
heap.

� If none of the above is true and more than -Xmaxf free space exists, the 
garbage collector must calculate how much to shrink the heap to get it to 
-Xmaxf free space, without going below the initial (-Xms) value. This figure is 
rounded down to a 256-byte boundary (512 bytes if concurrent mark is used) 
on 32-bit architecture, or a 1024 byte boundary on 64-bit architecture.

A compaction occurs before the shrink if all the following are true:

� A compaction was not done on this garbage collection cycle.

� No free chunk is at the end of the heap, or the size of the free chunk that is at 
the end of the heap is less than 10% of the required shrinkage amount.

� The garbage collector did not shrink and compact on the last garbage 
collection cycle.

Note that, on initialization, the JVM allocates the entire heap in a single 
contiguous area of virtual storage. The amount that is allocated is determined by 
the setting of the -Xmx parameter. No virtual space from the heap is ever freed 
back to the native operating system. When the heap shrinks, it shrinks inside the 
original virtual space.

 

 

 

 

380 WebSphere Commerce High Availability and Performance Solutions



17.5.3  Tuning the JVM heap size

There are many objects stored in the JVM. A typical WebSphere Commerce JVM 
heap is shown in Figure 17-1.

Figure 17-1   JVM heap size and application footprint 

WebSphere Commerce recommends that you begin with a minimum heap size of 
256 MB and maximum of 1024 MB.

To change the minimum and maximum JVM heap size:

1. Open the WebSphere Application Server administrative console, 
http://hostname:port/ibm/console, and log in. 

2. Expand Servers → Application servers → server1 → Java and Process 
Management → Process Definition → Java Virtual Machine. 

3. Change the min and max heap size values.

4. Click Apply and click Save at the top of this page. 

5. Restart WebSphere Application Server. 

Base Application 
Footprint

Application Data

Dynacache and 
PrepareStatement 
Cache Objects

Temporary Objects
and Free Space

512MB

1024MB

Application 
Footprint

Working 
Buffer

JVM Heap

 

 

 

 

 Chapter 17. Monitor and tune WebSphere Application Server for WebSphere Commerce 381



17.5.4  Monitoring JVM memory and garbage collection 

Using Verbose Garbage Collection (GC) is one of most efficient ways to 
understand the memory utilization and the garbage collection behavior within the 
Java Virtual Machine (JVM). This feature adds detailed statements to the JVM 
error log file of the application server about the amount of available and in-use 
memory. 

Enable verbose garbage collection
To set up verbose garbage collection, open the WebSphere Application Server 
administrative console and follow these steps:

1. Open the WebSphere Application Server administration site.

2. Select Servers → Application servers → server1 → Java and Process 
Management → Process Definition → Java Virtual Machine.

3. Check the box beside Verbose garbage collection.

4. Click Apply and click Save at the top of this page. 

5. Restart WebSphere Application Server. 

Here is an example of verbose garbage collection output:

<AF[2]: Allocation Failure. need 6920 bytes, 44962 ms since last AF>
<AF[2]: managing allocation failure, action=1 (0/533723648) 
(3145728/3145728)>
<GC(2): GC cycle started Mon Oct 13 14:34:35 2003
<GC(2): freed 396872056 bytes, 74% free (400017784/536869376), in 411 
ms>
  <GC(2): mark: 342 ms, sweep: 69 ms, compact: 0 ms>
  <GC(2): refs: soft 0 (age >= 32), weak 2, final 6655, phantom 0>
<AF[2]: completed in 414 ms>

17.5.5  Heap fragmentation due to pinned and dosed objects

Heap fragmentation is seen when the JVM fails to allocate an object when there 
should be sufficient space on the heap to do so. This occurs because the JVM 
cannot find a large enough contiguous space on the heap to allocate the 
requested object. 

 

 

 

 

382 WebSphere Commerce High Availability and Performance Solutions



Fragmentation is caused by the interaction between objects on the heap that 
cannot be moved and the fact that objects need to be allocated into a single 
contiguous area on the heap. These unmovable objects fall into two types:

� Pinned objects

These are objects that are referenced from a location not within the Java 
heap, either by variables in JNI™ native code or by some part of the JVM's 
internal structure. These fall into two more sub categories:

– Class objects: These are referenced from within the native component of 
the classloaders and the JIT.

– Other pinned objects.

These types of objects tend to be long lived, so once allocated they will stay 
in that location on the heap.

� Dosed objects

These are transiently pinned objects. These objects cannot be moved during 
the current GC cycle because references to them are held on the stack of a 
currently executing thread. This means that they are either temporary local 
variables to the methods in the call stack or they are parameters that have 
been passed between methods within the call stack.

To reduce fragmentation caused by pinned and dosed objects, a solution is to 
group these unmovable objects together into pools. In Java SDK 1.4.2, the 
GC allocates a kCluster as the first object at the bottom of the heap. A 
kCluster is an area of storage that is used exclusively for class blocks.

We recommend setting the kCluster size to be 10% more than the number of 
classes observed at peak. To find the number of pinned and dosed objects, 
add the -Dibm.dg.trc.print=st_verify parameter to the Generic JVM Argument 
field and you will see the number printed out in the GC log.

17.5.6  Heap fragmentation due to large objects

Often heap fragmentation is caused by large Java objects. Prior to launch into 
production, developers should monitor garbage collection and try to avoid 
creating large objects because of inefficient code.

Identify Java stack that creates large objects
An environment variable ALLOCATION_THRESHOLD enables a user to identify 
the Java stack of a thread making an allocation request of larger than the value 
of this environment variable. This is a very heavy trace. Avoid using it on a 
production environment. The output is: 

Allocation request for <allocation request> bytes <java stack> 

 

 

 

 

 Chapter 17. Monitor and tune WebSphere Application Server for WebSphere Commerce 383



If there is no Java stack, <java stack> becomes No Java Stack.

If you set this option to a value nnn (bytes), whenever an allocation request is 
made for an object size >= nnn (bytes), the Java stack trace corresponding to the 
thread requesting the allocation is printed into the standard error log.

Consider the following test case:

import java.io.*;
public class largeobj { 
static int limit = 20;
static int size1 = 1000000;
static int size2 =2*size1;
public static void main(String []args) throws IOException { 
for (int index0=0; true; index0++) {
if (0 == index0 % 100) System.out.println(index0);
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(bos);
oos.writeObject(String.class);
oos.close();
Object   array1 = null;
for(int i1=0; i1<limit; i1++) { 
System.out.println("" + i1);
array1 = new Object[size1] ;
for (int i2=0; i2<limit; i2++) { 
array1 = new Object[size2];
}
}
array1=null;
} 

}

}

If you set the option arbitrarily as:

export ALLOCATION_THRESHOLD=5000000

You will get messages in the following format during any allocation request larger 
than or equal to the threshold value:

Allocation request for 8000016 bytes 
at largeobj.main(largeobj.java:18)

To set ALLOCATION_THRESHOLD, navigate in the administrative console to 
Application servers → server_name → (Expand Java and Process 
Management) → Process Definition → Custom Properties.

 

 

 

 

384 WebSphere Commerce High Availability and Performance Solutions



Add the following name/value pairs:

Name ALLOCATION_THRESHOLD
Value value 

Make sure that you save your changes to the master configuration and restart 
the application server. 

Tune heap to accommodate more large objects
It is not always possible to avoid creating large objects. 

IBM Sovereign 1.4.2 SDK SR1 and later (build date of 20050209 and later) 
supports the configuration of large object area (LOA) to reserve the Java heap 
for allocating large objects (>=64 KB). 

With a new option -Xloratio specified, certain parts of the Java heap are reserved 
for large objects (>=64 KB). This part of the Java heap will never be used for 
small object allocation (<64 KB). For example:

-Xloratio0.2

This command reserves 20% of the active Java heap (not 20% of -Xmx, but 20% 
of the current size of the Java heap) to the allocation of large objects (>= 64 KB) 
only. When an allocation request for an object not less than 64 KB arrives, the 
process first tries to allocate from the remaining 80% of the heap. If it is unable to 
allocate, it then tries to allocate in the exclusively reserved area for large objects.

-Xmx should be changed to make sure that you do not reduce the size of the 
small object area, by using the following formula:

[New Xmx] = [Current Xmx] / (1 - [loratio])

For example, we need at least 1462 MB for -Xmx to use -Xloratio0.3 with current 
-Xmx1024 MB: 

1024 MB / (1 - 0.3) = 1462 MB

When to use LOA
Generally, thorough analysis of the verbosegc trace is needed to decide whether 
to configure the -Xloratio. WebSphere Commerce recommends that you start 
with -Xloraio0.1. 

If this is not enough, increase LOA with the following information as a general 
guideline. If you see fragmentation of the Java heap because of large objects (>= 
64 KB) and there is a significant number of allocation failures due to these 
objects, then you can enable Xloratio with 0.2 or 0.3. 

 

 

 

 

 Chapter 17. Monitor and tune WebSphere Application Server for WebSphere Commerce 385



From the verbosegc, if you see that 0.2 or 0.3 is being used up and the Java 
heap is still fragmented because of large objects, then consider increasing 
Xloratio to 0.4 or 0.5.

How to read LOA utilization
Consider this sample GC trace:

<AF[2163]: Allocation Failure. need 17112 bytes, 18162 ms since last 
AF>
<AF[2163]: managing allocation failure, action=1 (259024/472958976) 
(86602816/118239744)>
<GC(2163): mark stack overflow[1849]>
<GC(2163): GC cycle started Fri Mar 14 00:11:06 2008
<GC(2163): heap layout: (180404344/472958976) (108889384/118239744) /0>
<GC(2163): freed 202431888 bytes, 48% free (289293728/591198720), in 
342 ms>
<GC(2163): mark: 310 ms, sweep: 32 ms, compact: 0 ms>
<GC(2163): refs: soft 0 (age >= 32), weak 12, final 968, phantom 3>
<AF[2163]: completed in 344 ms>

LOA utilization is displayed in the second bracket on the lines of managing 
allocation failure and heap layout:.

In the line of 
<AF[2163]: managing allocation failure, action=1 (259024/472958976) 
(86602816/118239744)>
The second bracket displays (86602816/118239744), which indicates 
86602816 bytes (86MB) out of 118239744 bytes (118MB) is free in the 
Large Object Area. Subtract 86MB from 118MB, we get 32MB in LOA being 
utilized.

After the GC cleanup, in the line of:

<GC(2163): heap layout: (180404344/472958976) (108889384/118239744)
we see 108889384 bytes (108MB) out of 118239744 bytes (118MB) is free in 
LOA, which means only 10MB of LOA is used.

In this example, the user’s LOA is set to 0.2, which is more than enough. There is 
no need to increase LOA. The user may even want to lower it back to 0.1 and 
continue monitoring.

How to configure LOA
Add the -Xloratio to Generic JVM Arguments in the administrative console:

 

 

 

 

386 WebSphere Commerce High Availability and Performance Solutions



On WebSphere Application Server V6.0 select Servers → Application 
Servers → server_name → Java and Process Management → Process 
definition → Java Virtual Machine → Generic JVM Arguments.

17.6  Monitoring

In this section, we describe how WebSphere Application Server should be 
monitored, the types of data available for monitoring, and the tools and logs 
available within WebSphere Application Server to display that data.

17.6.1  Performance Monitoring Infrastructure (PMI)

The Performance Monitoring Infrastructure provides a set of APIs to obtain 
performance data for system resources, WebSphere Application Server queues, 
and actual customer application code.

PMI uses a client-server architecture. The server collects performance data in 
memory within the WebSphere Application Server. This data consists of counters 
such as servlet response time and data connection pool usage. A client can then 
retrieve that data using a Web client, a Java client, or a Java Management 
Extension (JMX™) client. A client is an application that retrieves performance 
data from one or more servers and processes the data. Clients can include:

� Graphical user interfaces (GUIs) that display performance data in real time.

� Applications that monitor performance data and trigger different events 
according to the current values of the data.

� Any other application that needs to receive and process performance data.

PMI predefined statistic sets
In IBM WebSphere Application Server V6, PMI provides four predefined statistic 
sets that can be used to enable a set of statistics. These four predefined statistic 
sets are:

� None
� Basic
� Extended
� All

 

 

 

 

 Chapter 17. Monitor and tune WebSphere Application Server for WebSphere Commerce 387



You can also use the Custom setting to define your own statistic set. Table 17-1 
provides the details on these options.

Table 17-1   Predefined statistic sets

If Extended or All statistic set is selected, PMI can have a very large memory 
footprint on the JVM heap. WebSphere Commerce is very dependent on caching 
inside the JVM to achieve optimal performance. Leaving PMI statistics collection 
at a high level can severely impact stability and performance.

Most of what PMI can provide is either not necessary for WebSphere Commerce 
or can be obtained from logs. For example, runtime JVM statistics can be 
obtained from a verbose GC log. Dynamic caching statistics can be viewed from 
a cache monitor.

Currently, we recommend that you use PMI only for monitoring the Web 
container thread pool, data connection thread pool, and prepared statement 
cache discard count.

For details on how PMI works, see WebSphere Application ServerWebSphere 
Application Server V6 Scalability and Performance Handbook, SG24-6392.

17.6.2  Trace and logging

WebSphere Commerce recommends that you monitor and regularly rotate the 
following logs in production: SystemOut.log and verbose GC log.

Statistic set Description

None All statistics are disabled.

Basic Statistics specified in J2EE 1.4, as well as top statistics like CPU 
usage and live HTTP sessions, are enabled. This set is enabled by 
default and provides basic performance data about runtime and 
application components.

Extended Basic set plus key statistics from various WebSphere Application 
Server components like WLM and Dynamic caching are enabled. 
This set provides detailed performance data about various runtime 
and application components.

All All statistics are enabled.

Custom Enable or disable statistics individually.

 

 

 

 

388 WebSphere Commerce High Availability and Performance Solutions

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


17.7  Tools and reference

Use the tools and references listed in this section when troubleshooting problems 
with WebSphere Application Server.

IBM Support Assistant 
This client software integrates many of the JVM problem determination tools 
such as: 

� ThreadAnalyzer to analyzer java thread dumps 
� MDD4J to analyze heap dumps
� PMAT to analyze verbose GC trace

It can be downloaded from:

http://www-306.ibm.com/software/support/isa/

JVM Diagnostic Guide:

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/

WebSphere Application Server MustGathers for debugging JVM 
Hang/Crash/OOM:

http://www-1.ibm.com/support/docview.wss?uid=swg21145599

GCCollector to analyze GC logs:

http://www.alphaworks.ibm.com/tech/gcdiag

Other heapdump analysis tools:

� Heap Analyzer 

http://www.alphaworks.ibm.com/tech/heapanalyzer

� HeapRoots

http://www.alphaworks.ibm.com/tech/heaproots

 

 

 

 

 Chapter 17. Monitor and tune WebSphere Application Server for WebSphere Commerce 389

http://www-306.ibm.com/software/support/isa/
http://www-128.ibm.com/developerworks/java/jdk/diagnosis/
http://www-1.ibm.com/support/docview.wss?uid=swg21145599
http://www.alphaworks.ibm.com/tech/gcdiag
http://www.alphaworks.ibm.com/tech/heapanalyzer
http://www.alphaworks.ibm.com/tech/heaproots


17.8  Performance fixes

We recommend that you stay up to date on performance fixes that are released 
on the product support Web sites:

� Recommended fixes and settings for WebSphere Commerce

http://www-1.ibm.com/support/docview.wss?uid=swg21261296

� WebSphere Commerce support Web site

http://www-306.ibm.com/software/genservers/commerce/wcbe/support/

� WebSphere Application Server support Web site

http://www-306.ibm.com/software/webservers/appserv/was/support/

 

 

 

 

390 WebSphere Commerce High Availability and Performance Solutions

http://www-1.ibm.com/support/docview.wss?uid=swg21261296
http://www-306.ibm.com/software/genservers/commerce/wcbe/support/
http://www-306.ibm.com/software/webservers/appserv/was/support/


Chapter 18. Monitor and tune Web 
servers

Our topology addresses Web server performance in two ways:

� Separate the Web server tier from the application server tier for security and 
performance reasons. 

The Web server machines are typically placed in a DMZ, with one network 
interface connected to the outbound firewall and a second network interface 
connected to the inbound firewall and the application server tier behind it (see 
topology overview in Figure 3-1 on page 28). The application server tier is 
better protected against direct malicious attacks from the Internet. Another 
reason for separating the Web tier is to permit independent scaling and tuning 
of Web (I/O intensive) and application (CPU intensive) layers. Unlike the 
sample topology used in this book, often fewer Web servers than application 
servers are required to support a given Commerce workload.

By separating Web servers and application servers, the workload is 
distributed to separate machines, yielding increased performance compared 
to a single tier installation.

� Run multiple Web servers for High Availability and performance reasons. Run 
enough Web servers so that there is enough capacity for managing peak 
workloads even when one Web server experiences a planned or unplanned 
outage.

18
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 391



In this chapter, we describe how to monitor and tune the performance of each 
Web server to support maximum end-to-end throughput and capacity for your 
WebSphere Commerce application.

We also describe how the IBM HTTP Server Plug-in for WebSphere Application 
Server can be tuned.

 

 

 

 

392 WebSphere Commerce High Availability and Performance Solutions



18.1  Monitor

In addition to OS level monitoring such as CPU and memory utilization of the 
Web servers, you may use the IBM HTTP Server built-in status page feature. 
You may also want to analyze the workload management being performed by the 
IBM HTTP Server Plug-in and configure IBM HTTP Server logging to provide 
some useful information in the access log for subsequent (offline) analysis. 

If you use Load Balancer, your Web servers are also monitored by Load 
Balancer’s advisors. 

18.1.1  IBM HTTP Server status page

The IBM HTTP Server server-status page is available on all supported IBM 
HTTP Server platforms. It shows performance data on a Web page in HTML 
format.

To activate the server-status page:

1. Open the IBM HTTP Server file httpd.conf in an editor.

2. Remove the comment character (#) from the following lines:

#LoadModule status_module modules/mod_status.so

#<Location /server-status>
#    SetHandler server-status
#    Order deny,allow
#    Deny from all
#    Allow from .example.com
#</Location>

3. Customize .example.com in the sample configuration to match your source 
workstation reverse DNS entry so that you are allowed to access the page. In 
our example this must be changed to:

Allow from .raleigh.ibm.com

4. Save the changes and restart the IBM HTTP Server.

5. Open the URL http://<webserver>/server-status in a Web browser, and 
click Refresh to update the status.

 

 

 

 

 Chapter 18. Monitor and tune Web servers 393



If your browser supports refresh, you can also use the URL 
http://<webserver>/server-status?refresh=5 to refresh every 5 seconds. 
As shown in Figure 18-1, you can see the number of requests currently being 
processed and the number of idle servers.

Figure 18-1   IBM HTTP Server status page

18.1.2  Access log

The Web server access log typically contains every request received by the Web 
server. The access log for the IBM HTTP Server is maintained in the directory 
given by the CustomLog directive in the httpd.conf file. In “Verify the Web server 
configuration file” on page 174, we verified the following setting for the 
WebSphere Commerce instance:

CustomLog "WC_Install_Dir/instances/Instance_Name/httplogs/
access_log" common

In that line, common denotes the log format. There are several predefined log 
formats, and you can define custom log formats using the LogFormat directive in 
order to provide the metrics that you want to monitor.

 

 

 

 

394 WebSphere Commerce High Availability and Performance Solutions



Refer to the Apache HTTP Server documentation for instructions on how to 
define custom log formats:

http://httpd.apache.org/docs/2.0/mod/mod_log_config.html#formats

For instance, you can include the time taken to serve each request. This 
information can be useful for analyzing DynaCache configurations (see 13.1.1, 
“Dynamic caching” on page 266).

18.1.3  Monitoring performed by Load Balancer

Load Balancer monitoring can be used to detect Web server outages or 
problems. Load Balancer monitoring is described in 19.1, “Monitor” on page 418. 
You can use reports or the graphical port monitor to detect Web server issues.

If Load Balancer assigns a negative weight to a server for a balanced port, the 
advisor for that port is not able to reach the balanced server. If the weight is 
negative on all other balanced ports, too, the server could be down.

If the weight for a balanced server is low, this indicates that the server is busier 
than other balanced servers.

Whenever Load Balancer marks a balanced server down, it looks for the 
serverDown script in the LoadBalancer_Install_Dir/bin directory (see 
“serverDown” on page 242). If the script exists, it is executed. You can modify this 
script to send an alert e-mail to an administrator, or any other action that you can 
script.

18.1.4  IBM HTTP Server Plug-in

IBM HTTP Server Plug-in intercepts IBM HTTP Server request processing and 
forwards requests having a certain URI pattern to the application servers. For 
example, for the WebSphere Commerce store front, the default URI pattern is 
webapp/wcs/stores/*.

There are several ways of checking how the plug-in works. You can enable 
tracing for the plug-in and use the WebSphere Application Server sample 
applications to test the workload behavior. Refer to “WebSphere plug-in 
behavior” in WebSphere Application Server V6 Scalability and Performance 
Handbook, SG24-6392, for information about how to trace how IBM HTTP 
Server Plug-in distributes workload among the application servers. 

 

 

 

 

 Chapter 18. Monitor and tune Web servers 395

http://httpd.apache.org/docs/2.0/mod/mod_log_config.html#formats
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www.redbooks.ibm.com/abstracts/sg246392.html?Open


18.2  Tuning parameters

There are several parameters for IBM HTTP Server that affect Web server 
performance. As IBM HTTP Server V6.0 is based on Apache HTTP Server V2.0, 
all parameters documented for the Apache server can be used for the IBM HTTP 
Server.

First of all, in WebSphere Commerce scenarios, IBM HTTP Server is used to 
serve static content only. All dynamic processing and HTTP session 
management take place in the application server tier. Keep this in mind when 
adjusting parameters for your Web servers.

18.2.1  Operating system settings

The following OS level settings are relevant for Web server performance. Refer 
to the documentation available for your operating system for instructions on how 
to change them:

� TCP/IP timeout on sockets

Do not use a too large a time-out value for TCP connections, as the server 
may run out of connections when receiving a high load.

� Maximum number of file descriptors

This should be increased as necessary for serving a potentially high number 
of static content files like image, Javascript, and CSS files.

18.2.2  httpd.conf settings

Most configuration settings are made in the httpd.conf file. 

The default httpd.conf file that comes with IBM HTTP Server contains a number 
of directives with comments that you can use. The WebSphere Commerce 
instance creation process uses the default httpd.conf as a template for the 
httpd.conf file that is used by the instances. 

In our scenario, the httpd.conf file resides in the 
WC_Install_Dir/instances/Instance_Name/httpconf directory on each Web 
server.

Keepalive
HTTP is a connectionless protocol, and by default each request opens and 
closes a socket. We recommend using the keepalive directive to keep sockets 
open for a certain time and reuse them for multiple requests. This is useful 

 

 

 

 

396 WebSphere Commerce High Availability and Performance Solutions



because each Web page typically requires multiple requests for embedded 
objects. 

Web pages served by rich Internet applications (RIAs, such as the WebSphere 
Commerce Web 2.0 starter store, which uses the Dojo Javascript library for 
AJAX processing) typically make extensive use of Javascript to dynamically and 
transparently reload content in the background after loading an initial version of a 
page. If the initially opened socket is kept open for these kinds of pages, it will be 
reused multiple times.

The directives to use are:

� Keepalive ON

This allows clients to send multiple requests down a socket connection. As 
the overhead needed to establish a connection is much larger than that 
needed to send data packets, it is nearly always necessary to set this to ON 
in order to achieve high throughput.

� KeepAliveTimeout 

This is the number of seconds to wait for the next request from a client on any 
single keepalive connection. Three to five seconds should work well here as a 
starting point. Do not use too large of an amount of time here, as some Web 
servers do not close connections properly. This setting forces the browsers to 
discard connections and reopen new ones.

� MaxKeepAliveRequests 

This controls the maximum number of requests that are allowed on a 
keepalive connection before it is closed. Typically, 100 will suffice. This 
setting will force even very active users to reopen connections at some point, 
so the value should not be too small.

Threads
Apache 2.0 is a thread-based Web server. (Although Apache 1.3 is thread-based 
on the Windows platform, it is a process-based Web server on all UNIX and 
Linux platforms. This means that it implements the multi-process, single-thread 
process model: for each incoming request, a new child process is created or 
requested from a pool to handle it.)

However, Apache 2.0, and therefore IBM HTTP Server V6.0 as well, is now a 
fully thread-based Web server on all platforms. This gives you the following 
advantages:

� Each request does not requires its own httpd process anymore, and less 
memory is needed.

 

 

 

 

 Chapter 18. Monitor and tune Web servers 397



� Overall performance improves because in most cases new httpd processes 
do not need to be created.

� The plug-in load-balancing and failover algorithms work more efficiently in a 
multi-threaded HTTP server. If one plug-in thread marks an application server 
unavailable, all other connection threads of the plug-in within the same 
process will share that knowledge, and will not try to connect to this particular 
application server again before the RetryInterval has elapsed (see “Retry 
interval” on page 406).

Multi-Processing Modules (MPM) architecture
Apache 2.0 achieves efficient support of different operating systems by 
implementing a Multi-Processing Modules (MPM) architecture, allowing it, for 
example, to use native networking features instead of going through an 
emulation layer in Version 1.3. For detailed information about MPM refer to the 
Apache HTTP Server documentation found at:

http://httpd.apache.org/docs/2.0/mpm.html

MPMs are chosen at compile time and differ for each operating system, which 
implies that the Windows version uses a different MPM module from the AIX or 
Linux version. The default MPM for Windows is mpm_winnt, whereas the default 
module for AIX is mpm_worker. For a complete list of available MPMs, refer to 
the Apache MPM documentation URL above. To identify which MPM compiled 
into an Apache 2.0 Web server, run the apachectl -l command, which prints out 
the module names. Look for a module name worker, or a name starting with the 
mpm prefix (see Example 18-1).

Example 18-1   Listing of compiled in modules for IBM HTTP Server V6 on AIX

# ./apachectl -l
Compiled in modules:
  core.c
  worker.c
  http_core.c
  mod_suexec.c
  mod_so.c

Note: On the UNIX platform, Apache 2.0 also allows you to configure more 
than one process to be started. This means that the thread model is then 
changed to multi-process, multi-thread.

 

 

 

 

398 WebSphere Commerce High Availability and Performance Solutions

http://httpd.apache.org/docs/2.0/mpm.html


The modules are:

� mpm_winnt module

This Multi-Processing Module is the default for the Windows operating 
systems. It uses a single control process that launches a single child process 
that in turn creates all the threads to handle requests.

� mpm_worker module

This Multi-Processing Module implements a hybrid multi-process 
multi-threaded server. This is the default module for AIX. By using threads to 
serve requests, it is able to serve a large number of requests with less system 
resources than a process-based server. Yet it retains much of the stability of 
a process-based server by keeping multiple processes available, each with 
many threads.

The mpm_worker module has proven efficient in many configurations.

MPM parameters
This section gives you configuration tips for the UNIX platforms and provides a 
good starting point for Web server tuning for WebSphere Commerce. Keep in 
mind that every system and every site has different requirements, so make sure 
to adapt these settings to your needs.

� ThreadsPerChild

Each child process creates a fixed number of threads as specified in the 
ThreadsPerChild directive. The child creates these threads at startup and 
never creates more. If using an MPM like mpm_winnt, where there is only one 
child process, this number should be high enough to handle the entire load of 
the server. If using an MPM like mpm_worker, where there are multiple child 
processes, the total number of threads should be high enough to handle the 
common load on the server.

� ThreadLimit

This directive sets the maximum configured value for ThreadsPerChild for the 
lifetime of the Apache process. ThreadsPerChild can be modified during a 
restart up to the value of this directive.

� MaxRequestsPerChild 

This directive controls after how many requests a child server process is 
recycled and a new one is launched. This was once added to the Apache 
server to work around memory leaks that have long been fixed. We therefore 
recommend setting this value to zero (which is the default).

� MaxClients

This controls the maximum total number of threads that may be launched. 
This should equal ServerLimit x ThreadsPerChild. 

 

 

 

 

 Chapter 18. Monitor and tune Web servers 399



It a Web server is used only to route requests to an application server, the 
maximum number of threads needs to be only slightly greater than the 
number of threads in the application server. The default configuration for 
WebSphere Commerce, however, requires the Web server to also serve all 
the static content for your WebSphere Commerce instance. For high 
performance, we therefore need more threads, as there are typically multiple 
static requests for each dynamic request.

Note that the parameter name is misleading, as a client (for example, a 
browser) typically opens multiple connections so that more than one thread is 
used per client.

� StartServers

The number of processes that will initially be launched is set by the 
StartServers directive.

� MinSpareThreads and MaxSpareThreads

During operation, the total number of idle threads in all processes will be 
monitored, and kept within the boundaries specified by MinSpareThreads and 
MaxSpareThreads.

� ServerLimit

The maximum number of processes that can be launched is set by the 
ServerLimit directive.

Threads and Keepalive
Keepalive sockets require threads to block on them during their lifetime. 
Therefore, you need to carefully balance the number of sockets, the socket time 
outs, and the number of threads on each Web server. Too many threads might 
lead to memory thrashing, too few threads could lead to all threads blocking on 
idle keepalive connections, forcing new connections to queue waiting for a 
thread to become available. 

SSL
In WebSphere Commerce systems, Web servers are typically SSL endpoints. 
SSL handshakes, encryption, and decryption therefore add significant overhead 
over IBM HTTP Server’s processing. 

Attention: Using a ThreadsPerChild value greater than 512 is not 
recommended on the Linux and Solaris platform. If 1024 threads are needed, 
the recommended solution is to increase the ServerLimit value to 2 to launch 
two server processes with 512 threads each. One or few server processes are 
best, except Solaris. The ThreadsPerChild should not exceed 500 for Linux, 
but only 25–100 for Solaris.

 

 

 

 

400 WebSphere Commerce High Availability and Performance Solutions



As WebSphere Commerce makes extensive use of SSL, we recommend using 
multiple remote Web servers on dedicated machines. Also, in WebSphere 
Commerce, once a user has signed in or added anything to his shopping cart, 
many pages will be requested using HTTPS, so limiting encrypted content is not 
an option.

WebSphere Commerce instance creation configures IBM HTTP Server to use 
the module mod_ibm_ssl for SSL processing. The following two directives are 
relevant for performance:

� SSLV2Timeout and SSLV3Timeout

The SSL sessions should live slightly longer than the typical user session, to 
avoid too many change cipher suite handshakes. Keepalive settings have no 
effect here. The length of the typical user session can be determined by 
analyzing the Web server access log.

� SSLCipherSpec

Another tuning knob is the encryption algorithm used by SSL. The client 
browser and IBM HTTP Server server negotiate the algorithm to be used by 
attempting to use the strongest algorithm in its list, then walking down the list 
until the algorithms match. Different encryption routines have widely varying 
rates of CPU consumption, for example, Triple DES uses vastly more cycles 
than RC4. To save processing time, you could therefore set the crypto list in 
the server to favor RC4 with MD5, as shown in Example 18-2.

Example 18-2   Setting encryption algorithm in httpd.conf for SSL-enabled virtual hosts

<VirtualHost ...>
...
SSLEnable
...
# RC4 with MD5 for SSL V2
SSLCipherSpec 21
# RC4 with MD5 for SSL V3
SSLCipherSpec 34
...
</VirtualHost>

You can find more information about the mod_ibm_ssl module at:

http://www-1.ibm.com/support/docview.wss?rs=177&uid=swg21179559

Compression
The mod_deflate module allows supporting browsers to request that content be 
compressed before delivery. It provides the deflate output filter that lets output 

 

 

 

 

 Chapter 18. Monitor and tune Web servers 401

http://www-1.ibm.com/support/docview.wss?rs=177&uid=swg21179559


from the server be compressed before it is sent to the client over the network. 
Some of the most important benefits of using the mod_deflate module are:

� Saves network bandwidth during data transmission
� Shortens data transmission time
� Generally improves overall performance

Detailed information about configuring and using mod_deflate can be found at: 

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

Access logs 
All incoming HTTP requests are logged here. Logging degrades performance 
because of the (possibly significant) I/O overhead.

To turn logging on or off, search for a line with the text CustomLog in httpd.conf. 
Comment out this line, then save and close the httpd.conf file. Stop and restart 
the IBM HTTP Server. By default, logging is enabled, but for better performance 
we recommend that you disable the access logs, or at least keep the log format 
not too verbose, in order to avoid to much hard disk I/O. If you decide to do 
access logging, make sure to turn reverse host name lookup off using the 
HostnameLookups Off directive, or else each client request results in at least one 
lookup request to DNS.

Expiration of static content 
The module mod_expires can be used to enable expiration times for static 
content. This is typically done for static content that is likely to be updated. For 
example, a downloadable PDF file with terms and conditions for using your 
online store is updated every time the terms and conditions change. 

To prevent the client browser from loading the file from its cache after an update, 
you can set expiration times at file, directory, virtual host, or server level. You can 
also set default expiration times for file types. The expiration time is passed back 
as an HTTP header with the response to a request for a static file, causing the 
client browser to reload the file from the server after the expiration time has 
passed even if the file is still being cached. 

 

 

 

 

402 WebSphere Commerce High Availability and Performance Solutions

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html


You should not use short expiration times on static files that are usually not 
changing, for example, product images. Only use expiration time on files that are 
going to be updated. Example 18-3 shows how to load and activate the module, 
how to configure images in the nocache directory for no caching (using an 
expiration time of 1 second after client access time), and how to configure PDF 
files in the same directory to expire one week after the file modification time.

Example 18-3   Static content expiration 

LoadModule expires_module     libexec/mod_expires.so
...
ExpiresActive On
...
<Directory 
/usr/IBM/WebSphere/AppServer/profiles/demo/installedApps/WC_demo_cell/W
C_demo.ear/Stores.war/ConsumerDirect/images/nocache>

<FilesMatch "\.(gif|jpg|png)">
order allow,deny
allow from all

# expire one second after client access time
ExpiresDefault A1

</FilesMatch>
<FilesMatch "\.pdf">

order allow,deny
allow from all

# expire one week after modification time
ExpiresDefault M604800

</FilesMatch>
</Directory>

More information about using mod_expires can be found at:

http://httpd.apache.org/docs/2.0/mod/mod_expires.html

18.2.3  IBM HTTP Server Plug-in

In this section we describe settings affecting the performance of the IBM HTTP 
Server Plug-in. The plug-in is introduced in 6.3, “Web container clustering and 
failover (Web server plugin)” on page 66. Performance tuning options are:

� You can change the workload distribution policy in the configuration file. See 
“Workload management policies” on page 404.

� You can change the retry interval for connecting to a cluster member marked 
as down. See “Retry interval” on page 406.

 

 

 

 

 Chapter 18. Monitor and tune Web servers 403

http://httpd.apache.org/docs/2.0/mod/mod_expires.html


� You can change connection time-out settings to bypass the operating system 
time out. See “Connection timeout” on page 408.

� You can divide the servers into a primary server list and a backup server list. 
This is a feature available since WebSphere V5, also called two-level failover 
support. See “Primary and backup servers” on page 410 for information.

� You can change the maximum number of connections that will be allowed to 
a server from a given plug-in. If this attribute is set to either zero or -1, there is 
no limit to the number of pending connections to the application servers. The 
default value is -1. See “Maximum number of connections” on page 412.

� You can change the refresh interval for the reloading of the plug-in 
configuration file. See “Refresh interval” on page 415.

Workload management policies
Since WebSphere Application Server V5, the plug-in has two options for the load 
distributing algorithm:

� Round-robin with weighting
� Random

Note: The weighting for the round-robin approach can be turned off by giving 
all application servers in a cluster equal weights.

 

 

 

 

404 WebSphere Commerce High Availability and Performance Solutions



The default value is Round Robin. It can be changed by selecting Servers → 
Web servers → WebServer_Name → Plug-in properties → Request 
Routing, as shown in Figure 18-2.

Figure 18-2   Plug-in load balancing options

There is also a feature in WebSphere Application Server V6 for the plug-in called 
ClusterAddress that can be used to suppress load balancing. However, this is 
normally not desirable. As in the sample topology, a low-level Load Balancer 
(software-based or hardware-based) normally precedes the Web servers and not 
the application servers. See “Cluster Address” on page 271, in WebSphere 
Application Server V6 Scalability and Performance Handbook, SG24-6392, for 
more details (this setting cannot be made through the administrative console).

Weighted round robin
When using this algorithm, the plug-in selects a cluster member at random from 
which to start. The first successful browser request is routed to this cluster 
member and then its weight is decremented by 1. New browser requests are 
then sent round robin to the other application servers and subsequently the 
weight for each application server is decremented by 1. The spreading of the 
load is equal between application servers until one application server reaches a 
weight of 0. From then on, only application servers with a weight higher than 0 
will have requests routed to them. The only exception to this pattern is when a 
cluster member is added or restarted or when session affinity comes into play.

 

 

 

 

 Chapter 18. Monitor and tune Web servers 405



Random
Requests are passed to cluster members randomly. Weights are not taken into 
account as with round robin. The only time the application servers are not 
chosen randomly is when there are requests with sessions associated with them. 
When the random setting is used, cluster member selection does not take into 
account where the last request was handled. This means that a new request 
could be handled by the same cluster member as the last request.

Retry interval
There is a setting in the plug-in configuration file that allows you to specify how 
long to wait before retrying a server that is marked as down. This is useful in 
avoiding unnecessary attempts when you know that server is unavailable. The 
default is 60 seconds.

This setting is specified in the configuration of each Web server, as shown in 
Figure 18-2 on page 405, on the Retry interval field. This default setting means 
that if a cluster member was marked as down, the plug-in would not retry it for 60 
seconds. To change this value, go to Servers → Web servers → 
WebServer_Name → Plug-in properties → Request Routing.

Finding the correct setting
There is no way to recommend one specific value. The value chosen depends on 
your environment, for example, on the number of cluster members in your 
configuration. 

Setting the retry interval to a small value allows an application server that 
becomes available to quickly begin serving requests. However, too small of a 
value can cause serious performance degradation, or even cause your plug-in to 
appear to stop serving requests, particularly in a machine outage situation. For 
example, if you have numerous cluster members, and one cluster member being 
unavailable does not affect the performance of your application, then you can 
safely set the value to a very high number.

Alternatively, if your optimum load has been calculated assuming all cluster 
members to be available or if you do not have very many, then you will want your 
cluster members to be retried more often to maintain the load.

Also, take into consideration the time it takes to restart your server. If a server 
takes a long time to boot up and load applications, then you will need a longer 
retry interval.

Another factor to consider for finding the correct retry interval for your 
environment is the operating system TCP/IP timeout value. To explain the 
relationship between these two values, let us look at an example configuration 
with two machines, which we call A and B. Each of these machines is running 

 

 

 

 

406 WebSphere Commerce High Availability and Performance Solutions



two clustered application servers (CM1 and CM2 on A, CM3 and CM4 on B). The 
HTTP server and plug-in are running on AIX with a TCP timeout of 75 seconds, 
the retry interval is set to 60 seconds, and the routing algorithm is weighted 
round robin. If machine A fails, either as expected or unexpectedly, the following 
process occurs when a request comes in to the plug-in:

1. The plug-in accepts the request from the HTTP server and determines the 
server cluster.

2. The plug-in determines that the request should be routed to cluster member 
CM1 on system A.

3. The plug-in attempts to connect to CM1 on machine A. Because the physical 
machine is down, the plug-in waits 75 seconds for the operating system 
TCP/IP timeout interval before determining that CM1 is unavailable.

4. The plug-in attempts to route the same request to the next cluster member in 
its routing algorithm, CM2 on machine A. Because machine A is still down, 
the plug-in must again wait 75 seconds for the operating system TCP/IP 
timeout interval before determining that CM2 is also unavailable.

5. The plug-in attempts to route the same request to the next cluster member in 
its routing algorithm, CM3 on system B. This application server successfully 
returns a response to the client, about 150 seconds after the request was first 
submitted.

6. While the plug-in was waiting for the response from CM2 on system A, the 
60-second retry interval for CM1 on system A expired, and the cluster 
member is added back into the routing algorithm. A new request is routed to 
this cluster member, which is still unavailable, and this lengthy waiting 
process will begin again.

There are two options to avoid this problem:

� The recommended approach is to configure your application servers to use a 
non-blocking connection. This eliminates the impact of the operating system 
TCP/IP timeout. See “Connection timeout” on page 408 for information.

� An alternative is to set the retry interval to a more conservative value than the 
default of 60 seconds, related to the number of cluster members in your 
configuration. A good starting point is 10 seconds + (number of cluster 
members * TCP timeout). This ensures that the plug-in does not get stuck in a 
situation of constantly trying to route requests to the failed members. In the 
scenario described before, this setting would cause the two cluster members 
on system B to exclusively service requests for 235 seconds before the 
cluster members on system A are retried, resulting in another 150-second 
wait.

 

 

 

 

 Chapter 18. Monitor and tune Web servers 407



Connection timeout 
When a cluster member exists on a machine that is removed from the network 
(because its network cable is unplugged or it has been powered off, for 
example), the plug-in, by default, cannot determine the cluster member's status 
until the operating system TCP/IP timeout expires. Only then will the plug-in be 
able to forward the request to another available cluster member.

It is not possible to change the operating system timeout value without 
unpredictable side effects. For instance, it might make sense to change this 
value to a low setting so that the plug-in can fail over quickly.

However, the timeout value on some of the operating systems is not only used 
for outgoing traffic (from Web server to application server) but also for incoming 
traffic. This means that any changes to this value will also change the time it 
takes for clients to connect to your Web server. If clients are using dial-up or slow 
connections, and you set this value too low, they will not be able to connect.

To overcome this problem, WebSphere Application Server V6 offers an option 
within the plug-in configuration file that allows you to bypass the operating 
system timeout. 

 

 

 

 

408 WebSphere Commerce High Availability and Performance Solutions



It is possible to change the connection timeout between the plug-in and each 
application server, which makes the plug-in use a non-blocking connect, as 
shown in Figure 18-3. To configure this setting, go to Servers → Application 
servers → AppServer_Name → Web server plug-in properties.

Figure 18-3   Plug-in connection timeout settings

Setting the connect timeout attribute for a server to a value of zero (default) is 
equal to selecting the No Timeout option, that is, the plug-in performs a blocking 
connect and waits until the operating system times out. Set this attribute to an 
integer value greater than zero to determine how long the plug-in should wait for 
a response when attempting to connect to a server. A setting of 10 means that 
the plug-in waits for 10 seconds to time out.

Finding the correct setting
To determine what setting should be used, you need to take into consideration 
how fast your network and servers are. Complete some testing to see how fast 
your network is, and take into account peak network traffic and peak server 

 

 

 

 

 Chapter 18. Monitor and tune Web servers 409



usage. If the server cannot respond before the connection timeout, the plug-in 
will mark it as down.

Since this setting is determined on the each application server, you can set it for 
each individual cluster member. For instance, you have a system with four 
cluster members, two of which are on a remote node. The remote node is on 
another subnet and it sometimes takes longer for the network traffic to reach it. 
You might want to set up your cluster in this case with different connection 
timeout values.

If a non-blocking connect is used, you will see a slightly different trace output. 
Example 18-4 shows what you see in the plug-in trace if a non-blocking connect 
is successful.

Example 18-4   Plug-in trace when ConnectTimeout is set

...
TRACE: ws_common: websphereGetStream: Have a connect timeout of 10; 
Setting socket to not block for the connect
TRACE: errno 55
TRACE: RET 1
TRACE: READ SET 0
TRACE: WRITE SET 32
TRACE: EXCEPT SET 0
TRACE: ws_common: websphereGetStream: Reseting socket to block
...

Primary and backup servers
Starting with V5, WebSphere Application Server implements a feature called 
primary and backup servers. When the plugin-cfg.xml is generated, all servers 
are initially listed under the PrimaryServers tag, which is an ordered list of 
servers to which the plug-in can send requests. 

There is also an optional tag called BackupServers. This is an ordered list of 
servers to which requests should only be sent if all servers specified in the 
primary servers list are unavailable. 

Within the primary servers, the plug-in routes traffic according to server weight or 
session affinity. The Web server plug-in does not route requests to any server in 
the backup server list as long as there are application servers available from the 
primary server list. When all servers in the primary server list are unavailable, the 
plug-in will then route traffic to the first available server in the backup server list. 
If the first server in the backup server list is not available, the request is routed to 
the next server in the backup server list until no servers are left in the list or until 
a request is successfully sent and a response received from an application 

 

 

 

 

410 WebSphere Commerce High Availability and Performance Solutions



server. Weighted round-robin routing is not performed for the servers in the 
backup server list.

You can change a cluster member role (primary or backup) using the 
administrative console. Select Servers → Application servers → 
<AppServer_Name> → Web server plug-in properties and select the 
appropriate value from the Server Role pull-down field (see Figure 18-3 on 
page 409).

All application server details in the plugin-cfg.xml file are listed under the 
ServerCluster tag. This includes the PrimaryServers and BackupServers tags, as 
illustrated in Example 18-5.

Example 18-5   ServerCluster element depicting primary and backup servers

...
<ServerCluster>
...
</Server>
   <PrimaryServers>
      <Server Name="wasna01_wasmember01"/>
      <Server Name="wasna02_wasmember03"/>
   </PrimaryServers>
   <BackupServers>
      <Server Name="wasna01_wasmember02"/>

<Server Name="wasna02_wasmember04"/>
   </BackupServers>
</ServerCluster>
...

The backup server list is only used when all primary servers are down.

Important: In WebSphere V6, the primary and backup server lists are only 
used when the new partition ID logic is not used. In other words, when 
partition ID comes into play, then primary/backup server logic does not apply 
any longer. To learn about partition ID, refer to WebSphere Application Server 
V6 Scalability and Performance Handbook, SG24-6392.

 

 

 

 

 Chapter 18. Monitor and tune Web servers 411



Maximum number of connections
All requests to the application servers flow through the HTTP Server plug-in. The 
application server selection logic in the plug-in has been enhanced so that it 
takes into account the number of pending connections to the application server. 
The maximum number of connections attribute is used to specify the maximum 
number of pending connections to an application server that can be flowing 
through a Web server process at any point in time. 

Each application server can have a maximum number of pending connections 
coming from Web server plug-ins, as shown in Figure 18-3 on page 409. To 
change this setting, go to Servers → Application servers → AppServer_Name 
→ Web server plug-in properties.

The default setting is No Limit, which is the same as though the value is set to -1 
or zero. The attribute can be set to any arbitrary value. For example, let the two 
application servers be fronted by two nodes running IBM HTTP Server. If the 
MaxConnections attribute is set to 10, then each application server could 
potentially get up to 20 pending connections. 

If the number of pending connections reaches the maximum limit of the 
application server, then it is not selected to handle the current request. If no other 
application server is available to serve the request, HTTP response code 503 
(service unavailable) is returned to the user.

To monitor the behavior of the plug-in when a cluster member has too many 
requests, use a load testing tool (such as ApacheBench or JMeter), the plug-in 
log, the HTTP servers’ access log, and Tivoli Performance Viewer. 

For our test we have configured wasmember05 to have a maximum connection 
setting of 3 and wasmember06 of 4. We have one HTTP server fronting the 
application servers. Running a load test with 30 concurrent users against this 
cluster eventually results in both members having reached the maximum 
connections value. At this point, the user gets Error 503. See Example 18-6 
(plug-in log) and Example 18-7 on page 413 (HTTP server access log).

Example 18-6   Plug-in log file errors when no server can serve requests 
(MaxConnections)

...
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - STATS: ws_server_group: 
serverGroupCheckServerStatus: Checking status of wasna01_wasmember05, 
ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 17 
reachedMaxConnectionsLimit 1
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - WARNING: 
ws_server_group: serverGroupCheckServerStatus: Server 

 

 

 

 

412 WebSphere Commerce High Availability and Performance Solutions



wasna01_wasmember05 has reached maximmum connections and is not 
selected
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - STATS: ws_server_group: 
serverGroupCheckServerStatus: Checking status of wasna02_wasmember06, 
ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 14 
reachedMaxConnectionsLimit 1
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - WARNING: 
ws_server_group: serverGroupCheckServerStatus: Server 
wasna02_wasmember06 has reached maximmum connections and is not 
selected
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - ERROR: ws_server_group: 
serverGroupNextRoundRobinServer: Failed to find a server; all could be 
down or have reached the maximimum connections limit
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - WARNING: ws_common: 
websphereFindServer: Application servers have reached maximum 
connection limit
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - ERROR: ws_common: 
websphereWriteRequestReadResponse: Failed to find a server
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - ERROR: ESI: getResponse: 
failed to get response: rc = 8
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - ERROR: ws_common: 
websphereHandleRequest: Failed to handle request
...

When the plug-in detects that there are no application servers available to satisfy 
the request, HTTP response code 503 (service unavailable) is returned. This 
response code appears in the Web server access log, as shown in 
Example 18-7.

Example 18-7   HTTP Server access log example

[11/May/2005:07:26:23 -0500] "GET /wlm/BeenThere HTTP/1.1" 503 431
[11/May/2005:07:26:23 -0500] "GET /wlm/BeenThere HTTP/1.1" 503 431

Further down in the plug-in log you can see that eventually both servers respond 
to requests again when they have reduced their backlog. This is shown in 
Example 18-8.

Example 18-8   Maximum connections - application servers pick up work again

...
#### wasmember05 worked off the pending requests and is "back in 
business", wasmember06 is still in “reachedMaxConnectionsLimit” status:

 

 

 

 

 Chapter 18. Monitor and tune Web servers 413



[Wed May 11 07:26:23 2005] 00007ab9 b640bbb0 - STATS: ws_server: 
serverSetFailoverStatus: Server wasna01_wasmember05 : 
pendingConnections 0 failedConnections 0 affinityConnections 0 
totalConnections 1.
[Wed May 11 07:26:23 2005] 00007ab9 aa5f8bb0 - STATS: ws_server_group: 
serverGroupCheckServerStatus: Checking status of wasna01_wasmember05, 
ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 17 
reachedMaxConnectionsLimit 0
[Wed May 11 07:26:23 2005] 00007ab9 aa5f8bb0 - STATS: ws_server: 
serverSetFailoverStatus: Server wasna01_wasmember05 : 
pendingConnections 0 failedConnections 0 affinityConnections 0 
totalConnections 2.
[Wed May 11 07:26:23 2005] 00007ab9 a9bf7bb0 - STATS: ws_server_group: 
serverGroupCheckServerStatus: Checking status of wasna02_wasmember06, 
ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 14 
reachedMaxConnectionsLimit 1
[Wed May 11 07:26:23 2005] 00007ab9 a9bf7bb0 - WARNING: 
ws_server_group: serverGroupCheckServerStatus: Server 
wasna02_wasmember06 has reached maximmum connections and is not 
selected
...
#### wasmember06 is working off the the requests. Once it reduced the 
number of pending connections to below 4 (which is the maximum) it can 
then also serve requests again. Both servers are handling user requests 
now:
...
[Wed May 11 07:26:23 2005] 00007ab5 b4608bb0 - STATS: ws_server: 
serverSetFailoverStatus: Server wasna02_wasmember06 : 
pendingConnections 3 failedConnections 0 affinityConnections 0 
totalConnections 4.
[Wed May 11 07:26:23 2005] 00007ab9 b5009bb0 - STATS: ws_server: 
serverSetFailoverStatus: Server wasna02_wasmember06 : 
pendingConnections 2 failedConnections 0 affinityConnections 0 
totalConnections 4.
[Wed May 11 07:26:23 2005] 00007ab9 b3c07bb0 - STATS: ws_server: 
serverSetFailoverStatus: Server wasna02_wasmember06 : 
pendingConnections 1 failedConnections 0 affinityConnections 0 
totalConnections 4.
[Wed May 11 07:26:23 2005] 00007ab9 b5a0abb0 - STATS: ws_server: 
serverSetFailoverStatus: Server wasna02_wasmember06 : 
pendingConnections 0 failedConnections 0 affinityConnections 0 
totalConnections 4.
[Wed May 11 07:26:24 2005] 00007ab9 b3206bb0 - STATS: ws_server_group: 
serverGroupCheckServerStatus: Checking status of wasna02_wasmember06, 

 

 

 

 

414 WebSphere Commerce High Availability and Performance Solutions



ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 14 
reachedMaxConnectionsLimit 0
...

This feature helps you to better load balance the application servers fronted by 
the plug-in. If application servers are overloaded, the plug-in skips these 
application servers automatically and tries the next available application server.

However, a better solution is to have an environment that can handle the load 
that you are expecting and to have it configured correctly. This includes setting 
weights that correspond to the system capabilities, having the correct balance of 
cluster members and Web servers, and setting up the queues for requests and 
connections.

Refresh interval
The refresh interval defines how often the plug-in will check to see whether the 
plug-in configuration file (plugin-cfg.xml) has changed. In production, preferably 
use a higher value than the default 60 seconds because updates to the 
configuration will not occur so often. If the plug-in reload fails for some reason, a 
message is written to the plug-in log file and the previous configuration is used 
until the plug-in configuration file successfully reloads. If you are not seeing the 
changes that you made to your plug-in configuration, check the plug-in log file for 
indications of the problem.

To change the refresh interval and specify the log file location and the log level, 
go to Servers → Web servers → WebServer_Name → Plug-in properties and 
change the Refresh configuration interval, the Logfile name, and the Log level 
fields. See Figure 10-3 on page 177.

 

 

 

 

 Chapter 18. Monitor and tune Web servers 415



 

 

 

 

416 WebSphere Commerce High Availability and Performance Solutions



Chapter 19. Monitor and tune Load 
Balancer

We use IBM WebSphere Edge Components Load Balancer to improve 
performance of our Web server tier and at the same time to make the Web 
server tier highly available. In this chapter we describe how to monitor and tune 
Load Balancer. 

We also discuss server affinity as a means for increasing performance and 
facilitating Web server log analysis.

19
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 417



19.1  Monitor

In addition to OS level monitoring such as CPU and memory utilization of the 
active Load Balancer machine itself, you may use reports provided by Load 
Balancer’s Dispatcher component to monitor load balancing behavior. You can 
see whether the Web servers that make up the cluster are active and sending 
responses to the advisors. You can also see whether the traffic is being balanced 
using the server monitor on the GUI.

Furthermore, you can use the binary logging feature, which allows server 
information to be stored in binary files. These files can then be processed to 
analyze the server information that has been gathered over time.

19.1.1  Reports

Example 19-1 shows the output of the dscontrol manager report command. 
The first table lists the servers being load balanced and their status. The second 
table lists the servers by port, weight, number of active and new connections, 
and load values.

The last table shows the advisors that were started, the port, and the timeout 
value attributed to it.

Example 19-1   Manager report

--------------------------------------------------------------------
|       SERVER                      |    IP ADDRESS   |   STATUS   |
--------------------------------------------------------------------
|           srvb504.torolab.ibm.com |    9.26.127.157 |     ACTIVE |
|         m106958f.itso.ral.ibm.com |     9.42.171.83 |     ACTIVE |
|           srvb501.torolab.ibm.com |    9.26.126.120 |     ACTIVE |
--------------------------------------------------------------------
-----------------------------
|   MANAGER REPORT LEGEND   |
-----------------------------
| ACTV | Active Connections |
| NEWC | New Connections    |
| SYS  | System Metric      |
| NOW  | Current Weight     |
| NEW  | New Weight         |
| WT   | Weight             |
| CONN | Connections        |
-----------------------------
-------------------------------------------------------------------

 

 

 

 

418 WebSphere Commerce High Availability and Performance Solutions



| nat1.torolab.ibm.com  |
| 9.26.52.154  | WEIGHT |  ACTV  |  NEWC  |  PORT  |   SYS  |
|     PORT:    80    |NOW  NEW|   49%  |   50%  |    1%  |    0%  |
-------------------------------------------------------------------
| srvb504.torolab.ibm.com |
|                    | 10  10 |      0 |      0 |    109 |      0 |
| m106958f.itso.ral.ibm.com  |
|                    |  9  9  |      0 |      0 |    211 |      0 |
| srvb501.torolab.ibm.com  |
|                    | 10  10 |      0 |      0 |     13 |      0 |
-------------------------------------------------------------------
-------------------------------------------------------------------
| nat1.torolab.ibm.com |
|     9.26.52.154  | WEIGHT |  ACTV  |  NEWC  |  PORT  |   SYS  |
|     PORT:   443    |NOW  NEW|   49%  |   50%  |    1%  |    0%  |
-------------------------------------------------------------------
| srvb504.torolab.ibm.com  |
|                    |  4  4  |      4 |      6 |     56 |      0 |
| m106958f.itso.ral.ibm.com  |
|                    | 13  13 |      2 |      2 |    241 |      0 |
| srvb501.torolab.ibm.com  |
|                    | 11  11 |      3 |      0 |     76 |      0 |
-------------------------------------------------------------------
---------------------------------------------------
|    ADVISOR    |    CLUSTER:PORT     |  TIMEOUT  |
---------------------------------------------------
|          http |                  80 | unlimited |
|           ssl |                 443 | unlimited |
---------------------------------------------------

You can check whether packets are being forwarded to the cluster by issuing the 
dscontrol executor report command, which produces a report of the packet 
traffic on the Executor component of Dispatcher, as shown in Example 19-2.

Example 19-2   Executor report

Executor Report:
----------------
Version level ................................. 06.00.02.58 - 
20070126-105431 [wsbld47]
Total packets received since starting ......... 714,873
Packets sent to nonforwarding address ......... 464,998
Packets processed locally on this machine ..... 0
Packets sent to collocated server ............. 0
Packets forwarded to any cluster .............. 91,223

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 419



Packets not addressed to active cluster/port .. 74
KBytes transferred per second ................. 62
Connections per second ........................ 2
Packets discarded - headers too short ......... 0
Packets discarded - no port or servers ........ 0
Packets discarded - network adapter failure ... 0
Packets with forwarding errors................. 0

19.1.2  Graphical server monitor

We can use the server monitor on the GUI to graphically view the load being 
distributed among the servers. It is available per port and per server. If you 
right-click a desired port or a specific server, you can select the Monitor option.

The Monitor tool provides the same information that you can view in the Manager 
report, but it dynamically updates the data and shows it in a chart. 

If you choose to monitor a port, there will be one bar or line for each server 
configured on that port. If you choose to monitor a specific server then there will 
be only one bar or line for the chosen server. By default, the chart presents the 
weight of the servers. 

 

 

 

 

420 WebSphere Commerce High Availability and Performance Solutions



Figure 19-1 shows a snapshot of the server weights for our NAT forwarding 
scenario, with the Load Balancer and two Web servers, srvb501 and srvb504, on 
the same subnet Toronto, and one Web server, m106958f, in Raleigh, while 
running a Borland SilkPerformer test script simulating five concurrent clients, 
making an HTTPS request every five seconds. You can also select Port load (the 
load value provided by the advisor), System load (the load value provided by the 
metric server), Active connections, and New connections.

Figure 19-1   Monitor tool

In order to monitor the behavior of the cluster, you can try repeatedly selecting a 
clustered page using the browser, or you can use an HTTP benchmarking tool to 
send requests to the cluster. In order to monitor the behavior of the cluster, you 
can try repeatedly selecting a clustered page using the browser, or you can use 
an HTTP benchmarking tool to send requests to the cluster. In our lab, we used 
Borland SilkPerformer. 

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 421



Using the Monitor tool, we can see the distribution of the load by selecting New 
connections in the Data Type box. This is shown in Figure 19-2 for a case in 
which one of the servers (or the network between Toronto and Raleigh) is 
experiencing problems, not accepting any new connections.

Figure 19-2   Load distributions (new connections) with one server down

 

 

 

 

422 WebSphere Commerce High Availability and Performance Solutions



Looking at the current number of active connections by selecting Active 
connections, as shown in Figure 19-3, we can see that the active connections of 
m106958f (the Raleigh machine) have timed out.

Figure 19-3   Active connections

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 423



The information about the Raleigh server being down is also available in port info 
of the dscontrol manager report output, as shown in Example 19-3.

Example 19-3   Manager report - failure of m106958f server

-------------------------------------------------------------------
| nat1.torolab.ibm.com |
|     9.26.52.154 | WEIGHT |  ACTV  |  NEWC  |  PORT  |   SYS  |
|     PORT:    80    |NOW  NEW|   49%  |   50%  |    1%  |    0%  |
-------------------------------------------------------------------
| srvb504.torolab.ibm.com  |
|                    |  9  9  |      3 |      2 |     20 |      0 |
| m106958f.itso.ral.ibm.com  |
|                    |  0  0  |      0 |      0 |     -1 |      0 |
| srvb501.torolab.ibm.com |
|                    | 10  10 |      4 |      4 |     22 |      0 |
-------------------------------------------------------------------

Note that the PORT column shows the value -1 for the m106958f server. This 
means that the advisor is getting no response from this server. That makes the 
weight of this server set to zero (see column WEIGHT).

19.1.3  Binary logging

You may switch on binary logging for analyzing server information that has been 
gathered over time.

To start binary logging, right-click Manager and select Start Binary Logging. To 
stop binary logging, right-click Manager and select Stop Binary Logging. You 
may configure binary logging by clicking Advisor: Protocol Port and selecting 
Configurations settings in the right pane (see 19.2.7, “Advisor” on page 436).

The following information is stored in the binary log for each server defined in the 
configuration:

� Cluster address
� Port number
� ServerID
� Server address
� Server weight
� Server total connections
� Server active connections
� Server port load
� Server system load 

 

 

 

 

424 WebSphere Commerce High Availability and Performance Solutions



Some of this information is retrieved from the executor as part of the manager 
cycle. Therefore, the manager must be running in order for the information to be 
logged to the binary logs. 

Refer to “Using binary logging to analyze server statistics” in Load Balancer 
Administration Guide, GC31-6858, for more information about binary logging.

19.2  Tuning Load Balancer parameters

From monitoring the load balancing behavior, you can draw conclusions for 
tuning both Web servers and Load Balancer. In Chapter 18, “Monitor and tune 
Web servers” on page 391, we describe how each single Web server can be 
configure for good performance for WebSphere Commerce. In this section, we 
describe how Load Balancer can be configured to distribute requests among the 
Web servers in a way yielding good performance and scalability.

Most important, you should configure Load Balancer’s Dispatcher component to 
use the manager and advisor subcomponents to provide server weights to the 
executor component for load balancing. Optionally, you may use metric server, 
which needs to be installed on the balanced servers to send OS level statistics 
back to the manager component. While the use of metric server is beyond the 
scope of this book, manager and advisors are used in all the scenarios as 
described in 7.1.2, “IBM WebSphere Edge Components Load Balancer” on 
page 82, and, more specifically, in 11.2, “Configure Load Balancer” on page 193.

Dispatcher can be tuned in many ways. For each component (executor, 
manager, advisor) and each managed object (host, cluster, port, server), there 
are several parameters. We list some of them here with regard to optimizations 
for WebSphere Commerce. Refer to Load Balancer Administration Guide, 
GC31-6858, for detailed information.

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 425



To make the settings described below in the GUI of either the MAC forwarding or 
the NAT forwarding scenario, log on to your Load Balancer node, run dsserver 
(if necessary) and lbadmin, and connect to your host as described in step 1 on 
page 193 to 4 on page 195. 

19.2.1  Host

To display executor stings, select Host: DispatcherHostName in the tree view, 
then click Configuration settings in the right pane. This displays the Host 
settings, as shown in Figure 19-4.

Figure 19-4   Host settings

The following parameters have an impact on performance: dsserver logging level 
and maximum dsserver log size. In your production system, keep the logging 
level low and limit the log size to minimize runtime file system access. See 
“Maintain Load Balancer logs” on page 596, for information about maintaining log 
files.

Note: For some objects, default values for contained objects can be defined. 
For example, you can set the default port stale time out at the cluster level for 
new ports in the cluster. We describe the settings under the component to 
which they apply. For example, port stale time out is explained at the port 
level.

Furthermore, all settings applying to server affinity (for example, port sticky 
time) are explained in 19.3, “Server affinity” on page 437.

 

 

 

 

426 WebSphere Commerce High Availability and Performance Solutions



19.2.2  Executor

To display executor settings, select Executor: IP address in the tree view, then 
click Configuration settings in the right pane. This displays the executor 
settings, as shown in Figure 19-5.

Figure 19-5   Executor settings

The following parameters have an impact on performance:

� High Availability time out: The number of seconds that the executor uses to 
time out High Availability heartbeats. The default value is 2. Decrease this if 
you want to force faster takeover when the Load Balancer is in standby mode. 
To avoid too many takeovers, do not choose a value that is too small.

� FIN timeout: A client sends a FIN packet after it has sent all its packets so that 
the server will know that the transaction is finished. When Dispatcher receives 
the FIN packet, it marks the transaction from active state to FIN state. When a 
transaction is marked FIN, the memory reserved for the connection can be 
cleared. 

To improve the performance of connection record allocation and reuse, set 
FIN time out to control the period during which Dispatcher should keep 
connections in the FIN state active in the Dispatcher tables and accepting 

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 427



traffic. Once a connection in the FIN state exceeds the FIN time out, it will be 
removed from the Dispatcher tables and ready for reuse. 

Once a connection in the FIN state exceeds fintimeout, it will be removed 
from the Dispatcher tables and ready for reuse.

� Maximum segment size: Dispatcher does not support MTU negotiation for 
Dispatcher's NAT (or CBR, see 19.3.3, “Configure CBR and SSL session ID 
affinity” on page 444) forwarding method because it is actively involved as an 
endpoint for TCP connections. For NAT and CBR forwarding, Dispatcher 
defaults the MTU value to 1500. This value is the typical MTU size for 
standard Ethernet, so you will probably not need to adjust this setting. 

When using Dispatcher's NAT or CBR forwarding method, if you have a 
router to the local segment that has a lower MTU, you must set the MTU on 
the Dispatcher machine to match the lower MTU.

19.2.3  Cluster

To display cluster settings, select Cluster: ClusterName in the tree view, then 
click Configuration settings in the right pane. This shows the cluster settings, 
as shown in Figure 19-6.

Figure 19-6   Cluster settings

There are no settings at the cluster level on this panel other than default settings 
for contained ports and servers, which we identified as relevant for WebSphere 
Commerce.

 

 

 

 

428 WebSphere Commerce High Availability and Performance Solutions



Click Proportions in the right pane. Here we can make more settings for 
generating server weights for balancing, and thus influence performance. The 
configuration panel is shown in Figure 19-7.

Figure 19-7   Cluster proportions setting

We can configure the importance for active connections (active), new 
connections (new), information from any advisors (port), and information from a 
system monitoring program such as metric server (system) that are used by the 
manager to set server weights. Each of these values, described below, is 
expressed as a percentage of the total and they therefore always total 100.

When an advisor is started and if the port proportion is 0, Load Balancer 
automatically sets this value to 1 in order for the manager to use the advisor 
information as input for calculating server weight. 

19.2.4  Port

The most important parameter for port performance is the forwarding method, 
which is defined when adding the port to the cluster. MAC forwarding is the 
fastest method, but you can only use it if all your load-balanced Web servers are 
in the same IP network. NAT forwarding is a little slower, as it requires that Load 
Balancer also processes the Web server responses. (With MAC forwarding, the 
IP source IP address information is not modified, so the Web servers can send 
their responses directly back to the client.) Content-based routing is generally the 
most expensive method, depending on the routing algorithm and the complexity 
of the rules in use (see “Rule-based load balancing” on page 431). 

You could increase balancing performance by working without server weights, 
for example, without manager and advisors. However, we do not recommend 

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 429



this, as you would not be able to automatically detect Web server outages and 
you might risk server overloading.

Once a port is created, its forwarding method cannot be changed, but there are 
several configuration options that can be changed at runtime.

To display port settings, select Port: PortNumber in the tree view, then click 
Configuration settings in the right pane. This displays the port settings, as 
shown in Figure 19-8.

Figure 19-8   Port settings

The following parameters have an impact on performance:

� Stale time out: For Load Balancer, connections are considered stale when 
there has been no activity on that connection for the number of seconds 
specified in stale time out. When the number of seconds has been exceeded 
with no activity, Load Balancer will remove that connection record from its 
tables, and subsequent traffic for that connection will be discarded. 

Some well-defined ports have different default stale time-out values. For 
example, the Telnet port 23 has a default of 259,200 seconds. Some services 
may also have staletimeout values of their own. 

Connectivity problems can occur when Load Balancer's stale timeout value is 
smaller than the service's timeout value. Clients may then believe that they 
have connections to the server after the timeout value, but Load Balancer will 
discard all connections in that case.

You can use stale timeout and FIN timeout (at the executor level) to control 
the cleanup of connection records.

 

 

 

 

430 WebSphere Commerce High Availability and Performance Solutions



� Weight bound: This specifies the maximum weight boundary that any server 
can have. Weights are set by the manager function based upon internal 
counters in the executor, feedback from the advisors, and feedback from a 
system-monitoring program, such as metric server. As you increase this 
number, the difference in how servers can be weighted is increased. At a 
maximum weightbound of 2, one server could get twice as many requests as 
another. At a maximum weightbound of 10, one server could get 10 times as 
many requests as another. The default maximum weightbound is 20.

� Sticky time: See 19.3, “Server affinity” on page 437.

� Port protocol: This is only changeable for MAC forwarding. Depending on the 
protocol that you are balancing, this can be set to TCP, UDP, or both. In case 
of HTTP, it must be either TCP or both.

� Cross port affinity: See 19.3, “Server affinity” on page 437.

� Sticky address mask bits: See 19.3, “Server affinity” on page 437.

� Maximum number of half-open connections: The threshold for the maximum 
half-open connections. Use this parameter to detect possible denial of service 
attacks that result in a large number of half-opened TCP connections on 
servers.

A positive value indicates that a check will be made to determine whether the 
current half-open connections exceed the threshold. If the current value is 
above the threshold, a call to an alert script is made. See “Denial of service 
attack detection” in Load Balancer Administration Guide, GC31-6858, for 
more information about how to set this up.

� Send TCP resets: If TCP reset is activated, Dispatcher will send a TCP reset 
to the client when the client has a connection to a server whose weight is 0. A 
server's weight may be 0 if it is configured as 0 or if an advisor marks it down. 
A TCP reset will cause the connection to be immediately closed. This feature 
is useful for long-lived connections where it hastens the client's ability to 
renegotiate a failed connection.

A useful feature to configure, in conjunction with TCP reset, is advisor retry. 
With this feature, an advisor has the ability to retry a connection before 
marking a server down. This would help prevent the advisor from marking the 
server down prematurely, which could lead to connection-reset problems. 
That is, just because the advisor failed on the first attempt does not 
necessarily mean that the existing connections are also failing. See 19.2.7, 
“Advisor” on page 436.

Rule-based load balancing
You can configure rule-based load balancing on a port to fine-tune when and 
why packets are sent to which servers. To do that, right-click Port: PortNumber, 
then click Add rule and select the type of rule. This displays a pop-up window for 

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 431



configuring a rule of the chosen type). While there are a number of different rules 
available for MAC and NAT forwarding, we do not recommend using them for 
WebSphere Commerce scenarios like ours for the following reasons:

� All of our Web servers are capable of serving the same content.

� The Web server utilizes only static content. All dynamic content is generated 
by the application tier.

� Differences in capacity of the Web servers are managed by manager and the 
advisors (and, if you use them, the metric servers).

� Rule evaluation is generally expensive. When using content rules, Load 
Balancer also needs to collect all IP packets of a request before it can forward 
the request.

Refer to Load Balancer Administration Guide, GC31-6858, for detailed 
information about rule-based load balancing.

19.2.5  Server

To display server settings, select Server: Hostname in the tree view, then click 
Configuration settings in the right pane. This displays the server settings, as 
shown in Figure 19-9.

Figure 19-9   Server settings

 

 

 

 

432 WebSphere Commerce High Availability and Performance Solutions



The following parameters have an impact on performance:

� Collocated: See step 15 on page 208 and step 7 on page 233.

� Current status: Use this to manually exclude a server from load balancing, for 
example, in order to apply changes to it. See Chapter 27, “Maintain and 
update Web servers” on page 579.

� Server weight: A number from 0–100 (but not to exceed the specified port's 
weightbound value) representing the weight for this server. Setting the weight 
to zero will prevent any new requests from being sent to the server, but will 
not end any currently active connections to that server. The default is one-half 
the specified port's maximum weightbound value. If the manager is running, 
this setting will be quickly overwritten.

� Fixed weight: The fixedweight option allows you to specify whether you want 
the manager to modify the server weight. If you set the fixedweight value to 
yes, when the manager runs it will not be allowed to modify the server weight.

� HTTP Advisor Request and Response: You may configure which requests an 
advisor should send to this server in order to check the server’s status, and 
which response the advisor should expect (if any). For instance, you could 
have the advisor try to access your store homepage. See “Configuring the 
HTTP or HTTPS advisor using the request/response (URL) option” in Load 
Balancer Administration Guide, GC31-6858, for details. 

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 433



19.2.6  Manager

To display manager settings, select Manager in the tree view, then click 
Configuration settings in the right pane. This displays the manager settings, as 
shown in Figure 19-10.

Figure 19-10   Manager settings

The following parameters have an impact on performance:

� Sensitivity: To work at top speed, updates to the weights for the servers are 
only made if the weights have changed significantly. Constantly updating the 
weights when there is little or no change in the server status would create an 
unnecessary overhead. When the percentage weight change for the total 
weight for all servers on a port is greater than the sensitivity threshold, the 
manager updates the weights used by the executor to distribute connections. 
Consider, for example, that the total weight changes from 100 to 105. The 
change is 5%. With the default sensitivity threshold of 5, the manager will not 
update the weights used by the executor, because the percentage change is 
not above the threshold. If, however, the total weight changes from 100 to 
106, the manager will update the weights.

 

 

 

 

434 WebSphere Commerce High Availability and Performance Solutions



� Smoothing index: The manager calculates the server weights dynamically. As 
a result, an updated weight can be very different from the previous one. 
Under most circumstances, this will not be a problem. Occasionally, however, 
it may cause an oscillating effect in the way the requests are load balanced. 
For example, one server can end up receiving most of the requests due to a 
high weight. The manager will see that the server has a high number of active 
connections and that the server is responding slowly. It will then shift the 
weight over to the free servers and the same effect will occur there, too, 
creating an inefficient use of resources. To alleviate this problem, the 
manager uses a smoothing index. The smoothing index limits the amount that 
a server's weight can change, effectively smoothing the change in the 
distribution of requests. A higher smoothing index will cause the server 
weights to change less drastically. A lower index will cause the server weights 
to change more drastically. The default value for the smoothing index is 1.5. 
At 1.5, the server weights can be rather dynamic. An index of 4 or 5 will cause 
the weights to be more stable.

� Weights refresh cycle: The manager refresh cycle specifies how often the 
manager will ask the executor for status information. The refresh cycle is 
based on the interval time. For example, if you set this to three, the manager 
will wait for three intervals before asking the executor for status.

� Update interval: This is the base for the weights refresh cycle setting.

� Reach update interval: This sets the update interval for the reach advisor, 
which you can use to check whether certain reach targets are up and 
responding. The advisor is also used by the High Availability component of 
Load Balancer to check the reach targets (see 11.3.2, “Adding reach targets” 
on page 235).

� Manager, Reach, and Metric logging level: In your production system, keep 
the logging level low and limit the log size to minimize runtime file system 
access. See “Maintain Load Balancer logs” on page 596, for information 
about maintaining log files.

� Binary logging interval: The interval option controls how often information is 
written to the logs. The manager will send server information to the log server 
every manager interval. The information will be written to the logs only if the 
specified log interval seconds have elapsed since the last record was written 
to the log.

� Binary log retention: The retention option controls how long binary log files 
are kept. Log files older than the retention hours specified will be deleted by 
the log server. This will only occur if the log server is being called by the 
manager, so stopping the manager will cause old log files not to be deleted.

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 435



19.2.7  Advisor

To display advisor settings, select Advisor: Protocol Port in the tree view, then 
click Configuration settings in the right pane. This displays the advisor settings, 
as shown in Figure 19-11.

Figure 19-11   Advisor settings

The following parameters have an impact on performance:

� Update interval: Set this value to control how often the advisor will query the 
servers for information.

� Timeout: This is the timeout in seconds at which the advisor waits before 
reporting that a receive from a server fails.

� Connect timeout: Set how long an advisor waits before reporting that a 
connect to a server for a particular port on a server (a service) fails.

To obtain the fastest failed-server detection, set the advisor connect and 
receive time outs to the smallest value (one second), and set the advisor and 
manager interval time to the smallest value (one second). However, if your 
environment experiences a moderate to high volume of traffic such that server 
response time increases, be careful not to set the connect timeout and 
receive timeout values too small, or the advisor may prematurely mark a busy 
server as failed. 

� Receive timeout: Set this to control how long an advisor waits before reporting 
that a receive from a particular port on a server (a service) fails.

 

 

 

 

436 WebSphere Commerce High Availability and Performance Solutions



� Maximum retries: Advisors have the ability to retry a connection before 
marking a server down. The advisor will not mark a server down until the 
server query has failed the number of retries plus 1. While we recommend in 
Load Balancer Administration Guide, GC31-6858, that the retry value should 
be no larger than three, we recommend setting it to one or even to zero, if 
your network is stable. If you choose to set it to zero, you should not send 
TCP resets for the port (see 19.2.4, “Port” on page 429).

� Logging level and maximum log size: In your production system, keep the 
logging level low and limit the log size to minimize runtime file system access. 
See “Maintain Load Balancer logs” on page 596, for information about 
maintaining log files.

19.3  Server affinity

Server affinity is a technique that enables the Load Balancer to remember which 
balanced server was chosen for a certain client at its initial request. Subsequent 
requests are then directed to the same server again.

If the affinity feature is disabled when a new TCP/IP connection is received from 
a client, Load Balancer chooses the correct server at that moment and forwards 
the packet to it. If a subsequent connection comes in from the same client, Load 
Balancer treats it as an unrelated connection, and again chooses the most 
appropriate server at that moment.

Server affinity allows load balancing for those applications that need to preserve 
state across distinct connections from a client at the Web server tier.

WebSphere Commerce does not store client state at the Web server tier. Web 
servers are only used for serving static content. All dynamic processing is done 
in the application server tier, where client state is preserved in the form of (HTTP) 
session objects (which might even be stored persistently in a database). When 
processing a request in the Web container, cookies are added to the response, 
containing WebSphere Commerce session information. The client browser 
resends these cookies with every new request, so that the application server can 
identify the user based on the cookie values.

While WebSphere Commerce requests may be load balanced to any Web 
server, server affinity can still be useful for WebSphere Commerce sites:

� For HTTPS, server affinity can be used to avoid repeated SSL handshake 
processing between the client and different Web servers.

� As a complete Web page is typically retrieved by multiple requests (for 
example, one for the HTML markup and several subsequent requests for 

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 437



embedded images and other media content), HTTP compression can be 
used more efficiently if all requests for one page are routed to the same Web 
server.

� Finally, if all requests within a browser session (or even all requests of the 
same user across multiple sessions) are processed by only one Web server, 
access log analysis is easier, as all the information is written to the same log 
file.

19.3.1  Types of server affinity

Some options available to maintain application state based on server affinity are:

� Stickyness to source IP address
� Cross-port affinity
� Passive cookie affinity
� Active-cookie affinity
� URI affinity
� SSL session ID

When using Load Balancer, the passive cookie, active cookie, and URI affinity 
options are rule based. They depend on the content of the client requests.

Stickyness to source IP address
This affinity feature is enabled by configuring the clustered port to be sticky. 
Configuring a cluster port to be sticky allows subsequent client requests to be 
directed to the same server. This is done by setting the sticky time to a positive 
number. The feature can be disabled by setting the sticky time to zero. 

The sticky time value represents the timeout of the affinity counter. The affinity 
counter is reset every time Load Balancer receives a client request. If this 
counter exceeds sticky time, new connections from this client may be forwarded 
to a different back-end server.

In Dispatcher and CBR components, you can set the sticky time in three 
elements of the Load Balancer configuration: 

� Executor: Setting the sticky time for the executor makes this value valid for all 
clusters and ports in the configuration.

� Cluster: You can set a specific sticky time value for each cluster. 

� Port: You can set a specific sticky time value for each port.

 

 

 

 

438 WebSphere Commerce High Availability and Performance Solutions



This feature applies to all forwarding methods. We describe how to set up source 
IP affinity for MAC and NAT forwarding in 19.3.2, “Configure source IP affinity for 
MAC and NAT forwarding” on page 442.

Cross-port affinity
Cross-port affinity is the sticky feature that has been expanded to cover multiple 
ports. For example, if a client request is first received on one port and the next 
request is received on another port, cross port affinity allows Dispatcher to send 
the client requests to the same server. 

For example, a user browses products and adds them to his shopping cart using 
port 80 (HTTP). For viewing the shopping cart and for the checkout process, 
HTTPS is used, which will encrypt all communication between the browser and 
the server. Cross-port affinity enables Dispatcher to forward this user’s requests 
for both ports 80 and 443 to the same server.

In order to use this feature, the ports must:

� Share the same cluster address.
� Share the same servers.
� Have the same sticky time value (not zero).
� Have the same sticky mask value.

More than one port can link to the same cross port. When subsequent 
connections come in from the same client on the same port or a shared port, the 
same server will be accessed.

Important: Setting affinity at the different levels means that any subse-
quent lower-level objects inherit this setting by default (when they are 
added). In fact, the only true value that is used for sticky time is what is set 
at the port level. So, if you set the sticky time for the executor to 60, then 
add a cluster and port, these also have a sticky time of 60. 

However, if you set a different sticky time for the cluster or the port, for 
example, you set it to 30, then this value overrides the Executor sticky 
time.

Note: This affinity strategy has some drawbacks. Some ISPs use proxies that 
collapse many client connections into a small number of source IP addresses. 
A large number of users who are not part of the session will be connected to 
the same server. Other proxies use a pool of user IP addresses chosen at ran-
dom, even for connections from the same user, invalidating the affinity.

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 439



Cross-port affinity applies to the MAC and NAT forwarding methods of the 
Dispatcher component. We describe how to set up cross port affinity for MAC 
and NAT forwarding in 19.3.2, “Configure source IP affinity for MAC and NAT 
forwarding” on page 442.

Passive cookie affinity
Passive cookie affinity is based on the content of cookies (name/value) 
generated by the HTTP server or by the application server. You must specify a 
cookie name to be monitored by Load Balancer in order to distinguish which 
server the request is to be sent to.

If the cookie value in the client request is not found or does not match any of the 
cookie values of the servers, the most appropriate server at that moment will be 
chosen by Load Balancer. 

This feature requires that CBR forwarding is used (see 19.3.3, “Configure CBR 
and SSL session ID affinity” on page 444) and works only on HTTP ports, not on 
HTTPS ports, because Dispatcher cannot decrypt SSL content. For 
content-based routing of HTTPS traffic you would need to use the Load Balancer 
CBR component in conjunction with IBM WebSphere Edge Components Caching 
Proxy. This configuration is beyond the scope of this book. Refer to Concepts, 
Planning, and Installation for Edge Components Version 6.0, GC31-6855, for 
more information.

Although looking at cookies could help to overcome the drawbacks of source IP 
affinity (see above), there are reasons why this type of affinity does not work well 
with WebSphere Commerce generated cookies:

� The cookies WC_USERACTIVITY and WC_AUTHENTICATION are only 
generated when a generic user logs in or adds an item to the shopping cart. 
From these points, the users are not generic users anymore. They are 
registered or guest users identified by a user ID. WC_USERACTIVITY and 
WC_AUTHENTICATION cookies carry the user ID as part of their names, not 
values. Load Balancer cannot be configured to look for cookies with names 
consisting of a static and a dynamic part.

� The cookie JSESSIONID identifies the HTTP session and would be a good 
candidate for routing requests to the same Web server for a user session. 
This cookie’s name is static, so Load Balancer can identify it in HTTP 
requests. But Load Balancer does not keep track of the Web server used for 
the first request made with a new cookie value (it does not hold the cookie 
value). Rather than doing that, it requires that each server configured for a 
port is assigned a fixed value, which is compared to the cookie value at every 

Note: The same drawbacks apply as for source IP affinity (see above).

 

 

 

 

440 WebSphere Commerce High Availability and Performance Solutions



request. If the server value is contained in the cookie value, the server is 
chosen to handle the request. JSESSIONID carries as part of its value the 
clone ID of the application server that handled the first request of the session, 
so JSESSIONID could only be used to link Web servers and application 
servers, which we do not recommend for WebSphere Commerce.

Active-cookie affinity
Active-cookie affinity enables load balancing Web traffic with affinity to the same 
server based on cookies generated by the Load Balancer. This function is 
enabled by setting the sticky time of a rule to a positive number, and setting the 
affinity to cookie. The generated cookie contains:

� The cluster, port, and rule
� The server that was load balanced to
� A timeout time stamp for when the affinity is no longer valid

Active cookie affinity formats the cluster/port/server/time information into a key 
value in the format of IBMCBR#####, so the IP and configuration information is 
not visible to the client browser.

The active cookie affinity feature applies only to the CBR component, which 
requires IBM WebSphere Edge Components Caching Proxy. This configuration 
is beyond the scope of this book. Refer to Concepts, Planning, and Installation 
for Edge Components Version 6.0, GC31-6855, for more information.

URI affinity
URI affinity allows you to load balance Web traffic to caching proxy servers, 
which allow unique content to be cached on each individual server. As a result, 
you will effectively increase the capacity of your site’s cache by eliminating 
redundant caching of content on multiple machines. You can configure URI 
affinity at the rule level, and once it is enabled and the servers are running, then 
the Load Balancer will forward new incoming requests with the same URI to the 
same server. 

Dispatcher can use URI affinity only with HTTP. For HTTPS you would need the 
CBR component in conjunction with IBM WebSphere Edge Components Caching 
Proxy. This configuration and load balancing to caching proxy servers are 
beyond the scope of this book. Refer to Concepts, Planning, and Installation for 
Edge Components Version 6.0, GC31-6855, for more information.

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 441



SSL session ID
During establishment of an SSL encrypted session, a handshake protocol is 
used to negotiate a session ID. This handshaking phase consumes a good deal 
of CPU power, so directing subsequent HTTPS requests to the same server, 
using the already established SSL session, saves processing time and increases 
the overall performance of the Web server.

Load Balancer watches the packets during the handshake phase and holds 
information about the session ID if SSL session negotiation is detected. To avoid 
repeated SSL handshakes between a client and different Web servers, this 
affinity type may be configured for WebSphere Commerce.

The forwarding method used to configure SSL session ID affinity is the 
Dispatcher’s CBR forwarding method. We describe how to configure the CBR 
forwarding method and SSL session ID affinity in 19.3.3, “Configure CBR and 
SSL session ID affinity” on page 444.

Server affinity conclusion
When using IBM WebSphere Edge Components Load Balancer, the types of 
server affinity that we recommend to use for WebSphere Commerce are source 
IP affinity and cross-port affinity. 

While using SSL, session ID affinity is possible for HTTPS traffic using the CBR 
forwarding method. Source IP affinity and cross-port affinity are not configurable 
at the same time for HTTP ports (only basic rule-based affinity is possible).

Passive cookie affinity cannot be used with WebSphere Commerce cookies.

Active cookie and URI affinity methods require advanced configurations. This 
configuration requiring IBM WebSphere Edge Components Caching Proxy is not 
covered in this book. Another reason for not covering it here is that the Caching 
Proxy is also deprecated as of IBM WebSphere Application Server Network 
Deployment V6.1.

19.3.2  Configure source IP affinity for MAC and NAT forwarding

With MAC and NAT forwarding, source IP affinity can be achieved for a port by 
configuring the port to be sticky. 

GUI configuration
To configure sticky ports for both your primary and your standby Load Balancer 
server, using the GUI:

 

 

 

 

442 WebSphere Commerce High Availability and Performance Solutions



1. Open the Load Balancer GUI by running lbadmin and connect to your server 
as described in steps 3 on page 194 through 4 on page 195 in 11.2, 
“Configure Load Balancer” on page 193. 

2. Expand the tree view to see the ports.

3. In our scenario we set the sticky time for ports 80 and 443 to 60 seconds. In 
the tree view, select Port:80. In the right pane of the GUI, select the 
Configuration settings tab. Enter a value of 60 into the Sticky time field. 
Then click Update configuration. Repeat for port 443 or any other port that 
needs to be sticky. (Figure 19-12 shows this setting for port 80.)

WebSphere Commerce switches between HTTP and HTTPS within one 
session. For example, when users have finished shopping and proceed to the 
checkout, or when they navigate to their user profile, they will be directed to a 
HTTPS site, which will encrypt all communication between the browser and 
the server. Cross-port affinity enables Dispatcher to forward this user’s 
requests for both ports 80 and 443 to the same server.

4. To set up cross-port affinity 80 to 443, select Port:80 in the tree view, then 
select the Configuration settings tab in the right pane. Enter the value 443 in 
the Cross port field, as shown in Figure 19-12. Do not forget to click Update 
configuration.

Figure 19-12   Setting sticky time and cross-port affinity for port 80

5. Save the configuration as explained in step 15 on page 208 in 11.2, 
“Configure Load Balancer” on page 193.

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 443



Command-line configuration
Port stickyness can also be configured using dscontrol from the command line. 
Example 19-4 shows the additional configuration for both the primary and the 
standby server.

Example 19-4   Setting up source IP stickyness and cross port affinity

dscontrol port set nat1.torolab.ibm.com:80 stickytime 60
dscontrol port set nat1.torolab.ibm.com:443 stickytime 60
dscontrol port set nat1.torolab.ibm.com:80 crossport 443

19.3.3  Configure CBR and SSL session ID affinity

If you decide that you do not need source IP stickyness for HTTP, but still want to 
reduce SSL overhead, you may use Dispatcher's content-based routing (CBR) 
forwarding method.

To set up CBR forwarding, you have two options: using the GUI or changing the 
NAT configuration files and reloading them using the GUI.

Configure CBR using the GUI
Follow the steps below:

1. Use the GUI and follow the instructions for NAT forwarding setup, for 
example, steps 1 on page 211 through 11 on page 218.

2. Only when adding ports (see step 4 on page 214), set the forwarding method 
to content-based routing, as shown in Figure 19-13.

Figure 19-13   Adding a port for CBR

 

 

 

 

444 WebSphere Commerce High Availability and Performance Solutions



3. After clicking OK, if Content-based Routing is selected, another dialog box is 
displayed for choosing the protocol to be forwarded, as shown in 
Figure 19-14.

Figure 19-14   Selecting the port protocol for CBR

4. Click HTTP when adding port 80, and SSL when adding port 443. Also 
choose SSL for WebSphere Commerce administrative ports such as 8000, 
8002, and so on.

5. After this, continue with the setup as described for the NAT forwarding 
method.

6. SSL session ID affinity is activated by setting the sticky time for the HTTPS 
port. Expand the tree view on the left until you see the ports, then click Port: 
443, and in the right pane click Configuration settings.

7. Change the Sticky time (seconds) field to your desired sticky time, for 
example, 60, as shown in Figure 19-15. Note that there is no field for 
cross-port affinity when using CBR forwarding.

Figure 19-15   Setting sticky time for port 443 

8. Click Update Configuration at the bottom to activate the change.

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 445



Configure CBR by modifying the NAT configuration files
If you have configured NAT forwarding and High Availability (but not source IP 
affinity or cross-port affinity), you may change the relevant lines in the 
configuration files for the primary Load Balancer and the Standby Load Balancer 
and then load the new configuration files.

1. The lines in the NAT configuration files that need to be changed are shown in 
Example 19-5.

Example 19-5   NAT configuration file lines to be changed for CBR (two lines)

dscontrol port add nat1.torolab.ibm.com:80 method nat reset no
dscontrol port add nat1.torolab.ibm.com:443 method nat reset no

2. Change these lines and add a line for port 443 sticky time, as shown in 
Example 19-6.

Example 19-6   New CBR configuration file lines for adding the ports (two lines)

dscontrol port add nat1.torolab.ibm.com:80 method cbr protocol http 
reset no
dscontrol port add nat1.torolab.ibm.com:443 method cbr protocol ssl 
reset no
dscontrol port set nat1.torolab.ibm.com:443 stickytime 60

3. Save the new files to the configuration directory 
(LoadBalancer_Install_Dir/servers/configurations/dispatcher on Linux, AIX, 
and Solaris) on the primary Load Balancer and the Standby Load Balancer, 
then follow the remaining steps on each machine.

We now need to load the new files using the GUI on each machine.

4. Open the Load Balancer GUI by running lbadmin and connect to your server 
as described in steps 3 on page 194 through 4 on page 195 in 11.2, 
“Configure Load Balancer” on page 193. 

 

 

 

 

446 WebSphere Commerce High Availability and Performance Solutions



5. Right-click Host: Hostname and select Load New Configuration, as shown 
in Figure 19-16.

Figure 19-16   Loading a new configuration

6. A dialog is displayed showing the files in the configuration directory, as shown 
in Figure 19-17.

Figure 19-17   Choosing the configuration file from the configuration directory

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 447



7. Click OK. 

The new configuration is now being loaded and activated.

SSL traffic is now sticky and the SSL session ID is saved as long as the sticky 
time. If a client does not make another request during that time, the ID is 
discarded and a new server is picked upon the next request for that client.

When using CBR with the Dispatcher component, you may use an additional rule 
type (content) for HTTP ports by right-clicking Port: 80, selecting Add Rule, and 
then selecting Content, as shown in Figure 19-18.

Figure 19-18   New rule type content for HTTP ports when using CBR forwarding

Refer to Load Balancer Administration Guide, GC31-6858, for detailed 
information about how to configure content-based rules. 

Note, however, that, as mentioned above, passive cookie affinity does not work 
for any rule type with WebSphere Commerce cookies.

 

 

 

 

448 WebSphere Commerce High Availability and Performance Solutions



19.3.4  Testing server affinity

After having set up source IP and cross-port affinity for MAC or NAT forwarding, 
or SSL session ID affinity for CBR forwarding, you can verify that server affinity 
works by right-clicking the port that you want to monitor and selecting Monitor. 
This will display the Server monitor chart window.

Now quickly make repeated requests using the same machine (for IP affinity), or 
the same browser instance (for SSL session ID affinity, respectively). For 
example, quickly navigate through your WebSphere Commerce store front.

You will see that new connections from your browser are routed to only one Web 
server (Figure 19-19).

Figure 19-19   New connections with server affinity

 

 

 

 

 Chapter 19. Monitor and tune Load Balancer 449



Active connections on the other servers are being closed for the other Web 
servers, while the number of active connections to the server that has initially 
been chosen is increasing, as shown in Figure 19-20.

Figure 19-20   Active connections with server affinity

 

 

 

 

450 WebSphere Commerce High Availability and Performance Solutions



Part 6 Performance test

Considering that the speed, scalability, stability, and confidence are the majority 
concerns for a business application, performance testing should be well defined 
and well planned to proactively detect performance issue before deploying to the 
production site. In this part, we cover five areas:

� Brief introduction to performance testing in WebSphere Commerce
� Design performance test plan
� Performance test tools
� Applying performance testing to WebSphere Commerce
� Analyzing test results and solving performance problems

Part 6
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 451



 

 

 

 

452 WebSphere Commerce High Availability and Performance Solutions



Chapter 20. Introduction to performance 
testing

Performance testing, also known as load testing, is testing of the responsiveness 
of a system. For example, performance testing can be used to ascertain how 
quickly can a system respond, how many responses a system provide can in a 
given unit of time, how long a certain level of responsiveness can be maintained, 
at what cost, and so on. 

The objective of performance testing is not to test the proper functioning of a 
given component or product in a single user test scenario. This aspect of testing 
should be covered by function testing. We assume that the single user function 
testing has already passed successfully, prior to performance testing that 
function. 

All the responses received during performance testing should be error free or the 
number of errors should be within an acceptable margin of error. During 
performance testing these errors could be due to concurrent users accessing the 
system or due to other performance defects. If a given system has good 
performance but the number of defective responses (due to functional, 
performance, or other defects) are above the margin of error, then such a 
performance test will be deemed to have failed. A failed test case is not always 
undesirable. For example, it can be useful in ascertaining capacity limits during 
stress testing.

20
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 453



The aim of performance testing is to:

� Establish the performance characteristics of the application, such as 
transaction response time, transaction rates, and CPU utilization. Profiling 
can be used on those slow requests to help determine the root cause of their 
poor response times. Fore more information about profiling refer to 
Chapter 14, “Profiling” on page 309.

� Identify system bottlenecks.

� Determine system capacity.

� Demonstrate system scalability by:

– Measuring CPU and throughput at various loads 

– Employing techniques to fully utilize available hardware

– Driving machines to >90% utilization

– Validating that hardware and software configuration is optimal

Methodical performance testing and recording of results reveals system capacity 
and provides insight into system scalability. A performance reference model, 
obtained from the execution of a controlled test plan, provides scaling 
predictability. Thus, when a variable, such as the number of users, is increased, 
the reference model may flag the need for additional hardware capacity. 

The performance test plan is a methodical testing approach that starts with 
acquisition of baseline information, and then adds capacity to determine how the 
system scales for all components. By controlled workload escalation, the defined 
test procedures expose constrained resources, or bottlenecks, which cause the 
overall system to begin displaying non-linear performance characteristics. The 
bottleneck then becomes the focus of drill down testing and analysis to alleviate 
the constraint, after which the process is repeated. Commonly restrained 
resources include thread pools, connection pools, and available memory.

Performance test scenarios are similar to, and sometimes overlap, other types of 
testing, but with the focus on developing a deep understanding of system 
performance. There are typically two desired results of a performance test:

� Gaining knowledge of how a system performs 

� Using that knowledge to improve the performance of the system by tuning the 
components, or perhaps by adding additional hardware capacity

 

 

 

 

454 WebSphere Commerce High Availability and Performance Solutions



20.1  Why is it complex

It is sometimes inaccurately assumed that performance testing is just as complex 
as some other test types, and thus any tester without any performance test 
experience can easily conduct performance testing. 

Although each type of testing has its unique challenges, the level of complexity 
that a performance test requires tends to be much higher. Here are some 
specific reasons why performance testing can be complex and challenging: 

� Performance testing generally tends to be towards the end of the site 
development and release cycle, as shown in Figure 20-1. Delays in earlier 
stages of the development cycle result in less time for conducting 
performance testing, thus making the task even more challenging. In addition 
to allocating sufficient time and a contingency buffer, every attempt should be 
made to start performance testing as early in the development cycle as 
possible.

� Performance testing may not be possible on the actual production hardware 
and equivalent requirements (or targets for the test results) may be 
unavailable or unclear for new or custom features. In such a case a 
correlation formula will need to be developed by some trial and error method 
to translate results obtained from the test environment to the production 
environment.

� Performance testing requires a diverse technical skill set. Performance 
testers should posses system administration skills for various platforms, 
software products, and technologies.

� Performance testing requires troubleshooting skills. Defects found during 
performance testing are often severe, yet difficult to isolate and fix. Often 
such defects will be difficult to reproduce as well.

� Performance testing usually requires building automation scripts and 
generating large amounts of realistic data before any testing may be started. 
You may even need to create utilities for generating test data. 

� The amount of skills one requires to perform a system test takes time to 
acquire. 

 

 

 

 

 Chapter 20. Introduction to performance testing 455



20.2  Why it is important

Even though performance testing can be complex, the investment of both 
sufficient time and resources in this effort is well worth the expense to:

� Avoid losing revenue and customers.

Performance defects tend to be runtime defects. Runtime defects that are 
discovered on live production environments impact the revenue generation 
capability of the site and, as such, have a direct impact on the bottom line of a 
business. In addition to impacting immediate revenue generation, a runtime 
defect may impact future revenue generation capability by discouraging 
customers from revisiting the site and repeating their business.

Performance runtime issues are generally not trivial to address, so you do not 
want to discover them on your live production environment. Runtime defects 
also tend to be complex—taking a long time to be fixed and impacting a large 
number of users or shoppers. 

� Drive out defects.

Performance testing often reveals many serious defects in the areas of 
database deadlocks, code deadlocks, code limitations, corruption of data, and 
the unavailability of service.

� Ensure concurrency.

Often there are problems that occur when two threads or processes are trying 
to do something at the same time. These problems, referred to as timing 
windows, are often difficult to reproduce with normal load on the site. Stress 
testing helps to find such problems, as it increases the chance for 
encountering such timing windows. 

� Ensure future quality.

Since software development is an iterative process, understanding the load 
limitations of the current product allows for the improvement of load 
capabilities for the future. This is very important, since it often finds, in 
advance, scaling problems that usually lead to expensive rework and 
redesign of the code. Understanding the problems encountered allows ample 
time for the planning of such redesigns.

� Do an iterative comparison.

This allows us to understand how various pieces of functionality affect 
concurrency and throughput. WebSphere Commerce applications can be 
complex and, as you add more complexity to them, the performance problems 
can be more elusive. By starting from simpler scenarios that use a minimal 
set of functions and adding more functionality with each iteration or test 

 

 

 

 

456 WebSphere Commerce High Availability and Performance Solutions



scenario, we can understand how each new function affects the overall 
performance.

20.3  Overall site development life cycle

When you set out to develop your site, or an enhancement to it, a number of 
process are engaged, depending on your business requirements. 

Figure 20-1   Site development life cycle

Figure 20-1 is self-explanatory. The key points that we want to highlight here are:

� Many of the activities are listed in a sequential format. However, there are still 
many possible ways to introduce parallel development for individual 
components. For example, independent components (or custom features) 
may be function and system (performance) tested as soon as they are 
available, instead of waiting for the development of the entire site to finish.

� Performance testing is a type of system test. As discussed above, the 
objective of performance testing is not to ensure that the function works 
accurately. Function testing should be done prior to performance testing. 
Using performance testing to find functional defects can be very expensive, 

Requirements

Architecture

Design

Development & Unit Test

Build Verification Test

System Verification Test

Release product

Functional Verification Test
Install Verification Test

Product Support & 
Maintenance

Fix,

Improve

& 
Enhance

Site development life cycle

 

 

 

 

 Chapter 20. Introduction to performance testing 457



since setting up a performance test environment and executing a 
performance test are much more involved activities then running a single user 
functional test.

We recommend that you test performance of relatively independent 
components individually. However, if you take that approach, then ensure that 
you plan on some level of integration or end-to-end testing so that these 
features are tested concurrently in a more realistic end-to-end scenario, prior 
to taking them live.

Performance test life cycle
Performance testing tasks usually involve, but are not limited to, the cycle of 
activities shown in Figure 20-2.

Figure 20-2   Performance test life cycle

Here is brief description of what is involved at each stage of performance testing:

1. Plan the test.

a. Review and gather business requirements.

b. Review design documents:

Step I

Step II

Step III

Step IV

Step V

Step VI

Iterative
Process
Iterative
Process

Planning the Test

Create Scripts

Create Scenario

Execute Scenario

Analyze Results

Tune System

 

 

 

 

458 WebSphere Commerce High Availability and Performance Solutions



Ensure that the design is in line with the business requirements and 
contains all the necessary information that may be required to create test 
scenarios.

c. Write test plan.

d. Have the test plan viewed and approved by the appropriate stakeholders, 
such as business analysts or business owners.

2. Create scripts or automation tools.

Develop, customize, or maintain automation tools (for example, simulators) or 
automation scripts (for example, that simulate test cases).

3. Create scenarios.

Create scenarios as per the approved test plan.

4. Execute scenario:

a. Prepare a test environment, if it was not done already for you:

• Set up the WebSphere Commerce environment against which the test 
will be executed.

• Set up the test environment. This will simulate the test client 
environment,on which the test scripts will be executed.

b. Execute the test.

c. Collect the logs and test the results for analysis as well as safe keeping for 
future reference.

5. Analyze and report the results. 

a. Analyze the test results.

b. Analyze all defects or performance issues and concerns.

6. (Optional) Performance tune.

If the test results are not acceptable then we performance tune the system 
and re-execute the scenario. For example, the execution of the scenarios 
during the performance test will show which requests have poor response 
times. Although not pictured in Figure 20-2, profiling fits into this iterative 
process. Profiling the slow requests can help determine the root cause of their 
poor response times. Fore more information about profiling refer to 
Chapter 14, “Profiling” on page 309.

 

 

 

 

 Chapter 20. Introduction to performance testing 459



20.4  Typical performance characteristics of a 
WebSphere Commerce site

Figure 20-3 shows the performance characteristics of a typical WebSphere 
Commerce site. At a high level, the trends depicted here can arguably apply to 
most well-performing eCommerce sites, although the scales of these graphs and 
some other details will differ.

Figure 20-3   A typical performance chart for WebSphere Commerce site (not to scale)

For the sake of our discussion, we assume the workload to be WebSphere 
Commerce application tier intensive and that the other tiers are able to handle it 
with relative ease. For example, we assume that the database server gets only a 
fraction of the overall workload due to a high Dynamic Cache hit ratio and that it 
is able to handle increasing workload without consuming system resources, such 

A typical performance chart

* Note: Another unit of throughput measurement is scenarios/hour

R
es

po
ns

e 
tim

e 
cu

rv
e 

(s
ec

on
ds

/p
ag

e)
Throughput curve (page hits/second*)

Breaking point (T
X )

Maximum response time allowed by business requirements (say, RB = 3s)

Maximum business 
capacity (TB)

Increasing value of a performance attribute (e.g. virtual users)

Throughput for peak workload expected (TP)

RB

RP

Maximum throughput possible (TM)

Maximum system 
capacity (Tc)

Rc

Minimum excess 
capacity required 
by business specs

Additional 
excess capacity

P

B
C

XPeak 
capacity 

(TP)

 

 

 

 

460 WebSphere Commerce High Availability and Performance Solutions



as CPU, with as much intensity as WebSphere Commerce tier would. For such a 
system, the typical performance behavior of a site should be as depicted in 
Figure 20-3. Figure 20-3 will be referred throughout the remaining portion of this 
chapter.

WebSphere Commerce benefits from the robust underlying scalability provided 
by WebSphere Application Server. In our testing we find that once the site 
reaches its maximum throughput (TM), it is able to maintain that throughput even 
with many-folds increase in workload, with only slight degradation to throughput. 
That is, the sites held well under stress. However, eventually, at a certain 
breaking-point, TX, it is not able to maintain maximum throughput, and then 
throughput comes down and suddenly we start seeing all sorts of concurrency 
and time-out errors.

Although maximum throughput (TM) may be maintained for a much larger 
volume of the workload, maximum business capacity (TB) may not. A system’s 
maximum business capacity is defined by its business requirements. 
Specifically, in Figure 20-3, any excess capacity (for example, throughput) that 
may be available past the limit defined by maximum business requirements (for 
example, maximum response time allowed, which is RB in our example) cannot 
be counted towards business capacity available.

Building your site capacity to account for High Availability
Usually, the more the excess capacity, the higher the availability. The excess 
capacity would usually translate to how many redundant components may be 
allowed to fail without causing any noticeable drop in user experience and thus 
still meeting the business capacity requirements. As always, cost of redundant 
components required to maintain excess capacity and business requirements 
dictate what level of High Availability could be built into a site.

Expected peak capacity versus maximum business capacity
The maximum business capacity (TB) should also be higher than the peak 
capacity (TP) expected. The expected peak capacity is based on the peak 
workload expected by the site. Any excess capacity, for example, C B-P (for 
example, excess throughput in the above graph, TB - TP), over the peak capacity 
contributes towards High Availability of the site. 

Usually, if your peak workload drives your available Web server CPU to >=50%, 
your available database CPU >=60%, and the following day is a public holiday in 
in a country and CPU >= 70% of its capacity, then it is time to scale your system. 
That is, your business capacity requirements for CPU consumption are 50%, 
60%, and 70% for your Web server, database, machines where the following day 
is a public holiday in a country, respectively.

 

 

 

 

 Chapter 20. Introduction to performance testing 461



Maximum business capacity versus maximum system capacity
Notice that the theoretical maximum system capacity is different from the 
business capacity that is defined by the business requirements. These two terms 
are often confused with one another. The maximum business capacity should 
not equate the maximum system capacity. Otherwise, any good news (for 
example, a business underestimating the site workload) may turn into a 
nightmare.

Theoretical maximum system capacity does not occur at maximum throughput 
(TM). Instead, it occurs for that value of throughput and response time that 
correspond to the maximum differential of the throughput to response time:

The maximum business capacity is a special case of this equation. It can be 
derived by applying the constraints as defined by business requirements. For 
example, in our case it is the maximum response time allowed of (for example, R 
= RB):

The difference between the maximum system capacity (C) and the business 
capacity required (C’) (for example, (C - C’)), is the second buffer or level of 
contingency over the excess capacity as defined in the previous section (C B-P).

Maximum system capacity (C), just like the required business capacity (C’), is 
usually calculated experimentally, by a trial-and-error process of running various 
load tests and observing where the change in slope of (dT/dR) occurs.

20.5  Types of performance tests for WebSphere 
Commerce

In the most simple of terms, the difference between various types of load and 
performance testing is the workload applied and the duration of the test. Here we 
discuss how different types of workloads and different test durations can be used 
to inspect a system’s performance characteristics.

 

 

 

 

462 WebSphere Commerce High Availability and Performance Solutions



20.5.1  Stress testing

Stress testing is a form of performance or load testing that is used to determine 
the stability of a given system or entity. It involves testing beyond normal 
operational capacity, usually at or beyond the peak workload expected, often to a 
breaking point, in order to observe the results, and to find breaking points or 
bottlenecks. For example, a Web server may be stress tested using scripts, bots, 
and various denial-of-service tools to observe the performance of a Web site 
during peak loads.   

The goal is to incorporate various workloads that will place abnormal burdens or 
specific areas of concern. These areas include CPU, memory, MQ Queues, I/O, 
threads, connections, JVM, and content.

Another aspect of stress testing is recovery testing. Here the goal is to verify the 
ability of the system to recover from varying degrees of failure. Such testing is 
conducted to evaluate a system or component at or beyond the limits of its 
specified business requirements. Stress testing methodology includes processes 
and technologies for testing system architecture to determine the maximum 
sustainable load for the site's hardware and software applications. The process 
defines how a software system is put under heavy load and demanding 
conditions in an attempt to make it fail. Such testing attempts to cause failures 
involving how the system behaves under extreme but valid conditions (for 
example, extreme utilization, insufficient memory, inadequate hardware, and 
dependency on over-utilized shared resources). 

Stress testing determines how the system degrades and eventually fails as 
conditions become extreme (for example, the number of simultaneous users 
increases, queries that return the entire contents of a database, queries with an 
extreme number of restrictions, and an entry at the maximum amount of data in a 
field). This technique measures whether the application environment is properly 
configured to handle expected, or potentially unexpected, high transaction 
volumes. Ideally, stress testing emulates the maximum system capacity that the 
application can support before causing a system outage or disruption.

20.5.2  Scalability testing

As mentioned earlier, the goal of stress testing is to identify peak load and stress 
conditions at which the program will fail to handle processing loads within 
required timespans. Whereas stress testing attempts to identify abnormal 
behaviors when the system is under extreme load conditions, the goal of 
scalability testing is to identify if the system scales as workload, data, or store 
complexity increases. That is, the goal is to build a graph (for example, data size 
versus response time) that will allow us to predict with reasonable accuracy the 

 

 

 

 

 Chapter 20. Introduction to performance testing 463



performance impact of site growth and possibly predict capacity milestones of 
peak capacity (P) and business capacity (B), as shown in Figure 20-3.

Examples of abnormal and non-scalable behavior are: 

� Non-linear increase in response times
� Non-linear decrease in throughput
� Data corruption
� Database or code deadlocks
� Cookie resets
� System crashes 

Scalability testing includes validation of site scalability from the following aspects:

� Interface (for example, GUI) scalability

This allows us to determine that size of data does not impact negatively the 
look and feel of the product. If you do not have access to a tool to test 
interface scalability then you can consider taking running a 100+1 test, as 
explained at 20.5.5, “100% + 1 testing” on page 467.

� Performance impact of data growth

As time goes on, WebSphere Commerce users will create more and more 
data and the existing data will age (for example, data that needs to be 
archived or cleaned/removed from the database). We need to determine the 
impact that this will have on the performance of their system. 

� Capacity scalability

Another major component of scalability is capacity scalability. We need to be 
able to understand and predict how different or additional hardware and 
topologies influence throughput and response times when using large sets of 
data. 

Scalability testing is achieved by primarily scaling the workload, data scalability, 
and store complexity, as discussed in the following sections.

Data scalability
Data scalability testing is defined as any testing that scales any part of the 
system that grows as the customer uses the system. This is primarily the 
WebSphere Commerce database (for example, the number of users, number of 
orders, and so on) and the various log files on your system. Since the plays a 
significant role towards WebSphere Commerce site performance, it is crucial to 
identifying the impact of increasing or aging data on site performance by running 
different scenarios for increasing data sets.

 

 

 

 

464 WebSphere Commerce High Availability and Performance Solutions



Workload scalability
Workload scalability refers to increasing the number of operations leading to 
increased workload to the WebSphere Commerce application. The increase in 
number of operations can be in the total number of operations or operations of a 
certain kind. For example, this may refer to increasing the number of virtual users 
while keeping the workload distribution untouched, or this may refer to keeping 
the same number of virtual users but increasing the number operation of certain 
kinds, say, changing the browse::buy ratio from 95::5 to 75::25.

Store complexity scalability
Usually, these types of test cases would not apply to all sites. Nonetheless, this 
is an important contributor to the site performance.

Store complexity scalability refers to increasing the complexity of store pages, for 
example, increasing the size of your JSPs significantly, adding complexity to 
your JSPs, adding a lot of eSpots, or increasing the number of JSPs (for 
example, having thousands of eSites that do not inherit JSPs from a presentation 
asset store), and so on. Note that the last eSites example is just for the purpose 
of elucidating the point. If there is such an eSite model then it would be, most 
likely, a bad design.

Special consideration should be given to testing Web2.0-based stores as the 
increased usability of Web 2.0 widgets comes at the cost of increased complexity 
of the underlying store page.

20.5.3  Soak, endurance, or reliability testing

A soak, endurance, reliability test is a test that runs for a long time (usually for 
days) under heavy load. It is generally used to detect memory leaks, which may 
be very slow and take days to impact the system as well as concurrency errors 
that may otherwise elude us, for example:

� Any (overnight) WebSphere Commerce related jobs, for example, 
WebSphere Commerce scheduler jobs, data exports or imports, and so on

� Any (overnight) non-WebSphere Commerce scheduled jobs, for example, 
security checks or audits, backups, and so on

 

 

 

 

 Chapter 20. Introduction to performance testing 465



Reliability testing is also a good test vehicle to test end-to-end performance of a 
fully integrated system. WebSphere Commerce sites can be very extensive or 
complex depending on your business requirements, integration of 
sub-components, and integration with other products. Many of these 
sub-components and products may have been tested separately and by different 
testers within or outside of your organization. Thus, it is very important for us to 
test the reliability of the entire system, as the interaction in this complex 
environment could be the source of many reliability problems. 

Figure 20-4   72 hour (3-day) reliability test with varying workload

In Figure 20-4, the reliability workload chart, we can see daily repetitive peak 
periods and WebSphere Commerce system maintenance activities. ETL refers to 
the extraction, transformation, and load utilities, for example, for your offline 
data mining activities. Cache invalidation may be required to clear the cache so 
that cache can be rebuilt based on the changes loaded into the database. 
Workspace publish refers to data published as a result of stage propagation or a 
publish request from the WebSphere Commerce Authoring environment.

20.5.4  Stress-endurance test

The main variable in the case of reliability testing is the period of time (the 
duration) for which the test is executed. However, we find that running the stress 
test for a very long duration at levels much higher than maximum system 
capacity (refer to 20.4, “Typical performance characteristics of a WebSphere 
Commerce site” on page 460) but below the breaking-point is able to show small 
and otherwise elusive memory leaks as well as any slow throughput degradation 

72 hour reliability test with varying workload

0
20
40
60
80

100
120
140
160

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
ETL

DBClean  
Workspace Publish

ETL
Cache 

Invalidation

ETL
DBClean

Workspace Publish

ETL

Shoppers
CSRs
Admin
Current

 

 

 

 

466 WebSphere Commerce High Availability and Performance Solutions



much quicker than a reliability test. It is almost like looking at these bottlenecks 
through a magnifying glass. However, the trade-off is that the response times of 
such a test cannot be very useful as a reliability test since the stress endurance 
test will be run at the maximum system capacity, beyond the maximum business 
capacity.

20.5.5  100% + 1 testing

The 100% + 1 test strategy is useful when an automated test solution that tests 
the client GUI directly does not exist, but there is an automation tool that can 
simulate the client's interactions with the server.

The 100% refers to running the 100% automation bucket that runs against the 
server directly simulating the GUI interactions but without GUI (since the 
assumption here is that you do not have a tool to test the GUI in an automated 
mechanism). The ” refers to the 1 (or more) testers manually running the test 
case using the client GUI. 

The key benefit of this approach versus the single user functional test is that you 
test the client GUI behavior while the server is under load. Using this 
methodology:

� Any server-side defect could be found since the 100% automation bucket is 
still being executed.

� Any client GUI-side defect that always occurs (either due to basic functional 
issues or load on the site) could be found since the manual test execution will 
always encounter it.

� Any client GUI-side defect that does not always occur (say, it occurs on 10% 
of the times) may not always be found since the manual test execution would 
need to be done 10 times to detect the defect once, and this may not be 
enough to generate a detectable error rate, even when that happens.

Although this process is not foolproof, it is probably the next best alternative to 
using an automation tool that works with the client GUI.

20.5.6  Capacity testing

The objective of capacity testing is to determine the maximum business capacity 
(CB) that a system can sustain without exceeding performance requirements as 
defined by the business. For example, there may be a limit to the maximum 
response time and maximum CPU utilization limits, and so on. 

During capacity testing, the system is tested under increasing but realistic load to 
find the point where a system resource fails to meet business requirements, for 

 

 

 

 

 Chapter 20. Introduction to performance testing 467



example, the point where it causes unacceptable response time, CPU utilization, 
or failures. Sufficient performance data at various loads allows the prediction of 
application performance under different operating conditions, as well as 
prediction of the maximum number of concurrent users. In this sense capacity 
testing is closely related to the scalability testing.

Capacity testing can highlight scalability issues involving distribution and 
load-balancing mechanisms. Increasing the workload will identify the maximum 
threshold of linear operation. Furthermore, capacity testing provides insight into 
how components interact with each other. 

For a more detailed description about the various ways of calculating capacity of 
your site refer to 20.4, “Typical performance characteristics of a WebSphere 
Commerce site” on page 460.

Saturation point testing
The objective of saturation point testing is to determine the maximum system 
capacity (C) as defined in “Maximum business capacity versus maximum system 
capacity” on page 462.

20.5.7  Performance regression testing

In order to ensure viable release-to-release comparison, the tests from the 
previous release should be executed on the new release, but on the same 
hardware as in previous releases. When this is not possible, for example, if the 
hardware is different, then a new baseline will need to be established by 
executing the tests using the new hardware with the previous release.

20.5.8  High Availability testing

High Availability testing is a unique performance testing. Sometimes we can say 
that it is a combination of most types of performance testing, but they are 
customized performance tests. Based on the requirements about what the 
components with High Availability features enabled need to be tested, different 
types of performance testing can be driven to evaluate the 
functionalities/usabilities of High Availability components. To WebSphere 
Commerce site testing, the major purpose of the High Availability testing can be 
summarized as following:

� To evaluate whether the High Availability utilities are working and stable in a 
WebSphere Commerce environment

� To evaluate the performance impact from High Availability enabled utilities to 
normal operations of the WebSphere Commerce site. Sometimes it might 

 

 

 

 

468 WebSphere Commerce High Availability and Performance Solutions



result in performance degradation. Generally, the impact can be classified 
into different terms, such as throughput degradation, CPU utilization, memory 
utilization, network latency, I/O wait, data synchronization, and so on.

� To evaluate the capability of High Availability in the WebSphere Commerce 
site to handle different types of planned and unplanned outage. Different 
types of outages can be designed, mostly based on the requirements from 
customers, such as unplanned power outage, planned software 
maintenance/upgrade, unplanned process outage, unplanned network 
outage, and so on. Most of times, such types of outage should be simulated 
by automatic script or manually. It is up to which type of High Availability you 
want to achieve in the WebSphere Commerce Web site, and the frequency 
with which the outage will happen in a realistic production site.

� To evaluate the High Availability feeling from the customers’ point of view. 
With High Availability utilities plugged into a WebSphere Commerce site, if 
any outage planned or unplanned happens, there should be no significant 
performance impact to the site, at least, from the customers’ view, the outage 
should not be noticeable, or it should be eliminated as much as possibility.

High Availability is a topic that becomes more common than before, so that High 
Availability testing is important for customers to select an appropriate solution to 
provide High Availability to their Commerce site to achieve high customer 
satisfaction and stable revenue growth.

 

 

 

 

 Chapter 20. Introduction to performance testing 469



 

 

 

 

470 WebSphere Commerce High Availability and Performance Solutions



Chapter 21. Designing a test plan

For any testing, we should create a test plan. Creating a test plan for 
performance testing is extremely critical. This is due to the fact that in a 
performance test there are many knobs that may be tweaked or that may need to 
be tweaked. These knobs are all the variables that go into creating a test 
scenario. This may include your environment settings, database or application 
server confirmation, scenario flow, and so on. 

All these knobs must be clearly documented and communicated to the 
appropriate stakeholders of your business, including the other testers and 
administrators, architects, business analysts, business owners, and so on. If 
these knobs are not set to correct values then it will very likely invalidate your test 
case execution.

In this chapter, we deal with many of the key knobs, and how to track them as 
well as how they may be communicated to your test plan reviewers and 
stakeholders.

21
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 471



21.1  Define scope and requirements of new design

It is important to gather the business requirements and their scope not only to 
ensure that we test them but also to review the design and ensure that the 
design is in accordance with the requirements. That is, the job of performance 
testers should not start after the site, component, or feature is developed, but at 
a time while it is being designed.

Identify the scope of the business requirements deriving the new design or a 
change to the design. For example:

� Is there an additional feature that is being developed or a new site?

� Who is the consumer of the this new feature (for example, administrators or 
shoppers, and so on)?

� Which environment will host this feature—the staging environment, 
production environment, or is it a just a productivity tool for the development 
environment?

� When will this feature be used in relation to the existing peak workload?

� What workload will this feature be a part of (for example, is this part of browse 
or buy)?

� What is the peak workload and, if this is an additional feature, then what 
additional workload will this feature generate?

� What are the throughput and response time requirements for the new 
workload?

� What is the data retention policy and purging frequency, and so on?

21.2  Define target environment

The ideal test environment is the one that mimics the production environment. 
However, it is not always financially viable, and as such your test environment 
may be different from your production environment. In such a case you need to 
convert your requirements to be applicable to your target test environment, and 
provide justification for the validity of your conversion factor or algorithm. This 
conversion factor or algorithm may be non-trivial, depending on the complexity of 
your site.

We recommend that you test with a database copy of your production 
environment. If, however, that is not feasible, or if you are developing a new site, 
then you also need to consider the amount of data that you require for executing 

 

 

 

 

472 WebSphere Commerce High Availability and Performance Solutions



your test. For example, what should the catalog size be? The number of 
products, items, attributes, the number of users, and so on. 

21.3  Define scenario and workload distribution

Depending on the similarity of your target test site to the production environment, 
you would need to scale the workload to suit your test environment. In addition to 
defining the easier aspects of the workload, such as the number of users 
(shoppers, administrators, and so on), scheduled jobs, and response time and 
throughput expectations, you also need to define scenarios based on your site 
flow, their relative weight, such as the browse-buy ratio, and their relative length, 
such as how many products a shopper will go through or how many search 
queries will be executed before placing an order. An accurate representation of 
the site flow, scenario weight, and length is important, as it impacts any 
performance results.

Relative weights can be defined as a percentage of total site traffic. One 
common and easy to make mistake is to not have the total traffic add up to 
100%.

 

 

 

 

 Chapter 21. Designing a test plan 473



Figure 21-1   A sample B2B scenario with workload distribution

In addition to the workload generated by human intervention, be that from the 
shoppers or from the various administrators, we also need to define any other 
modes of content update such as the backend updates, scheduled jobs, and so 
on.

Check Cart

Browse

Add To Cart

Create Requisition 
List

View Requisition 
List

Order Summary

Billing/Shipping Info

Order Process

QuickOrder

Add To 
Requisition List

Log Out Log Out

Log Out

Log Out

Add To Cart Add To Cart Add To Cart

Log Out Log Out

Log Out

Add To Cart
12%

6%

18%16%22%

10%
6%10%

10% 10%

4%

10%

16%10%
18%

40%

10%

8%

44%

4%

Create Requisition 
List

Log Out
50%

# items > 20

# items<=20

10% loop 2-3 times

Remove 
Requisition Lists

if >20

Log On

Cancel Cart

 

 

 

 

474 WebSphere Commerce High Availability and Performance Solutions



21.4  Define test cases

Throughout this book we have referred to scenario or test scenario without 
distinguishing it from a test case. As defined in 1.2.3, “Scenario” on page 8, a 
scenario is a summary of a sequence of events, whereas test cases are built 
from given scenarios, and they are the actual sequence of steps executed as 
part of the test. Thus, a test case includes details such as the data, objects, tools, 
user interface, clickable actions, user information, and so on.

Figure 21-2   Scenario, test case, and execution record defined

In a test plan, we build scenarios from the use cases defined in a design 
document, and from scenarios we build test cases. 

A scenario in itself is just a scenario. It is not a functional or performance 
scenario. On the contrary, a scenario must be functional and free from defects 
(in a single user functional test case) before it can be performance tested.

A test case, on the other hand, can be a functional or performance test case. A 
test case can further be a stress test case, soak test case, and so on.

A test case includes all the test attributes and control attributes (as defined in 
Chapter 23, “Applying performance testing to WebSphere Commerce” on 
page 507), except for the hardware. 

An instance of a test case is an execution record. The hardware on which a test 
case is run, the tester who executes it, and at what time the test case is executed 

• Use case (UC) scenario are defined in the design document
o UC1 = Register a user
o UC2 = Logon to a store
o UC3 = Browse through catalog
o UC4 = Make a purchase 
o UC5 = Log off

• Scenario (S)
o S = ΣUCi

• Test case (T)
o T = ΣS + Users + Think time + Data + Tuning

• Execution Record (ER)
o ER = T + Environment + Tester + Time

 

 

 

 

 Chapter 21. Designing a test plan 475



are all part of this record. Although the time of the test may sound trivial at first 
glance, your network traffic may have a different pattern depending on what time 
of day and day of week it is run.

21.5  Maintaining a well-defined test plan

The primary purpose of maintaining a test plan document is to ensure that there 
are no miscommunications as to the objective and substance of testing. This 
document also serves as a historic record upon which future testing can be 
based, such as for regression testing purposes and cross-reference purposes.

All the information discussed in this section belongs to a test plan. If any of the 
information is not directly available, then valid assumptions can be made as long 
as the accompanying justifications are documented as well. Along the same 
lines, any exclusions from the test plan should also be documented along with 
both the accompanying justifications and the expected risk of such an exclusion 
to the overall performance quality of the site.

Like any other project documentation, a lot of other useful information should go 
in to this document as well (for example, a list of dependencies for performance 
testing to be conducted and successful, as well as entry/exit criterion).

Entry and exit criterion refer to conditions for starting and concluding testing. 
They assume key significance if performance testing of various components or 
features happens in parallel, since this would allow efficient utilization of test 
resources by testing those components first, which meet the entry criterion first.

Last but not least, it is also very useful to include your test strategy as part of the 
test plan or as a separate document. The test strategy should include any 
information that would be critical in allowing the test plan reviewers to ascertain 
whether the testing will be valid and realistic. For example, is your the tooling 
capable of emulating a realistic site traffic and user experience, or is there 
additional configuration or work required to ensure that the testing would be 
realistic?

After the test plan is reviewed and approved by the appropriate stakeholders, it 
should be put under change control, and any subsequent change to this 
document should go to the appropriate level of the review process.

 

 

 

 

476 WebSphere Commerce High Availability and Performance Solutions



Chapter 22. Performance test tools

Rather than manually stressing an application, it is more reasonable to use test 
tools to test an application efficiently. In this chapter, we provide an overview of a 
small array of performance test tools, which includes:

� Rational Performance Tester
� SilkPerformer
� Page detailer

22
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 477



22.1  Test tools introduction

Deploying applications that perform and scale in an acceptable manner is not an 
accidental occurrence. Producing high performance software requires that you 
include several rounds of stress testing during the development cycle. You can 
use one or more of the many open source or commercial stress testing tools to 
automate the execution of your stress tests.

The primary purpose of stress testing tools is to discover under what conditions 
your application's performance becomes unacceptable. You do this by changing 
the application inputs to place a heavier and heavier load on the application and 
measuring how performance changes with the variation in those inputs. This 
activity is also called load testing. However, load testing usually describes a very 
specific type of stress testing: increasing the number of users to stress test your 
application.

The simplest way to stress test an application is to manually vary the inputs (for 
example, the number of clients, size of requests, frequency of requests, mix of 
requests) and then chart how the performance varies. If you have many inputs, 
or a large range of values over which to vary those inputs, you probably need an 
automated stress testing tool. Moreover, you will want test automation to repeat 
test runs following environmental or application-specific changes once you 
uncover an issue.

If you are testing manually, it can be difficult to accurately reproduce an identical 
set of tests across multiple test executions. When it comes to having multiple 
users testing your application, it is almost impossible to run manual tests 
consistently, and it can be very difficult to scale up the number of users testing 
the application.

Today, there is no generic, one-size-fits-all stress testing tool. Every application 
differs in what inputs it takes and how it executes them. Java and 
WebSphere-based Web applications generally receive requests from clients via 
the HTTP protocol. There are many stress testing tools that can simulate user 
activity over HTTP in a controlled and reproducible manner.

 

 

 

 

478 WebSphere Commerce High Availability and Performance Solutions



22.1.1  How to select test tool

With so many stress testing tools available today, how can you choose the one 
that is most appropriate for your application? Some of the points to consider 
when evaluating stress testing tools include:

� Client interaction

The stress testing tool must be able to handle the features and protocols that 
your application uses.

� Simulation of multiple clients

This is the most basic functionality of a stress testing tool.

� Scripted execution with the ability to edit scripts

If you cannot script the interaction between the client and the server, then you 
cannot handle anything except the most simple client requests. The ability to 
edit the scripts is essential. Minor changes should not require you to go 
through the process of regenerating a script.

� Session support

If a stress testing tool does not support sessions or cookies, it is not very 
useful, and may not be able to stress test Java and WebSphere applications.

� Configurable numbers of users

The stress testing tool should let you specify how many simulated users are 
running each script or set of tasks, including allowing you to vary the number 
of simulated users over time. Many stress testing tools enable you to start 
with a small number of users and ramp up slowly to a higher numbers of 
users.

� Reporting: success, errors, and failures

The tool that you choose must have a defined way to identify a successful 
interaction, as well as failure and error conditions. An error might be getting 
no Web page back at all, whereas a failure might be getting the wrong data 
back on the page.

� Page display and playback

A useful feature in many stress testing tools is the capability to inspect some 
of the pages that are being sent to the simulated users or to replay entire test 
scripts. You can then be confident that the stress test is functioning as you 
expect.

� Exporting test results

After running a stress test, you may want to be able to analyze the test results 
using various tools that are external to the stress testing tool, including 
spreadsheets and custom analysis scripts. Most stress testing tools include 

 

 

 

 

 Chapter 22. Performance test tools 479



extensive built-in analysis functions, but being able to export the data gives 
you more flexibility to analyze and catalog the data in arbitrary ways.

� Think time

Real-world users do not request one Web page immediately after another. 
There are generally delays between viewing one Web page and the next. The 
term think time is the standard way of expressing the addition of a delay into a 
test script to more realistically simulate user behavior. Many stress testing 
tools support randomly generated think times based on a statistical 
distribution.

� Variable data

Live users do not work with the same set of data on each interaction with your 
application. During a stress test, this should also be true of your simulated 
users. It is easier to make your simulated users appear to be working with 
varied data if the stress testing tool supports data input from lists, files, or a 
database.

� Script recording

Rather than writing scripts, it is much easier to manually run through a 
session with your browser and have that session recorded for later editing. 
Most stress testing tools include provisions for capturing manual interaction 
with your application.

� Analysis tools

Measuring performance is only half the story. The other, and perhaps more 
important, half of stress testing is analyzing the performance data. The type of 
analysis tools and degree of detailed analysis you can perform depend 
directly on what analysis tools are supported by the tool that you select. 
Therefore, evaluate this support in the tools that you are considering 
carefully.

� Load distribution

Your deployed application may well need to support hundreds of concurrent 
users once in production. How can you simulate this level of traffic in a stress 
testing environment? A typical workstation running a stress testing tool will 
likely begin bottlenecking once approximately 200 virtual users are running. 
To simulate a greater number of users, you can distribute the stress testing 
load across multiple workstations. Many of the available stress testing tools 
support distribution of load, and you will certainly want this feature for 
large-scale stress testing.

� Measuring server-side statistics

The basic stress testing tool measurement is client-based response times 
from client/server interactions. However, you may also want to gather other 
statistics, such as the CPU utilization or page faulting rates. With this 

 

 

 

 

480 WebSphere Commerce High Availability and Performance Solutions



server-side data, you can then do useful things like view client response times 
in the context of server load and throughput statistics.

22.1.2  Performance test tools classification

We can separate the major performance test tools into three categories:

� Commercial test tools
– IBM Rational Performance Tester
– Seague SilkPerformer
– Mercury Interactive Loadrunner
– Radview WebLoad
– CompuWare QALoad

� Free test tools
– Microsoft Web Application Stress Tool 
– Microsoft Application Center Test

� Open source test tools
– OpenSTA
– Jmeter
– Grinder
– Eclipse Test Performance and Tools Platform (TPTP)

22.2  IBM Rational Performance Tester
IBM Rational Performance Tester 6.1 (RPT 6.1) is a multi-user system 
performance test product hosted in the Eclipse shell with a Java-based execution 
engine. The focus of IBM Rational Performance Tester 6.1 is multi-user testing of 
Web applications.

IBM Rational Performance Tester is a load and performance testing solution for 
teams concerned about the scalability of their Web-based applications. 
Combining ease-of-use features with flexibility, Rational Performance Tester 
simplifies the test creation, execution, and data analysis to help teams ensure 
the ability of their applications to accommodate required user loads before the 
applications are deployed.

 

 

 

 

 Chapter 22. Performance test tools 481



22.2.1  Architecture of Rational Performance Tester

Figure 22-1 shows the relationship between Rational Performance Tester and the 
open source test solution driven by IBM and some other major sponsors.

Figure 22-1   Rational Performance Tester Architecture

Eclipse is an open source community, whose projects are focused on building an 
open development platform comprised of extensible frameworks, tools, and 
runtimes for building, deploying, and managing software across the life cycle. 
The Eclipse Foundation is a not-for-profit, member-supported corporation that 
hosts the Eclipse projects and helps cultivate both an open source community 
and an ecosystem of complementary products and services.

TPTP is a project in the Eclipse community that provides powerful frameworks 
and services for an open platform upon which developers build unique test and 
performance tools—both open source and commercial—that easily integrate with 
Eclipse and other tools and address the entire test and performance life cycle, 
from developer testing through production monitoring. 

The key points about the architecture of Rational Performance Tester are:

� Rational Performance Tester is built as a plug-in to the Rational Software 
Development Platform (Eclipse/workbench), which is hosted in the Eclipse 
shell.

� Rational Performance Tester uses Java-based tests and an execution engine.

� Rational Performance Tester uses many of the TPTP components, such as 
the HTTP proxy recorder, execution engine, IBM Rational Agent Controller, 
and so on.

� In RPT, some of the components from TPTP have been customized. Some 
components are hidden.

Rational Software Development Platform (Eclipse)

TPTP

Rational Performance Tester

 

 

 

 

482 WebSphere Commerce High Availability and Performance Solutions



For more detailed information about Eclipse or TPTP, you can check out the 
official Web site for TPTP:

http://www.eclipse.org/tptp/

22.2.2  Features of RPT

The basic features of Rational Performance Tester can be summarized as 
following:

� HTTP and HTTPS protocol support/capture
� Built-in Verification Points
� Automatic Data Correlation
� Data substitution with Datapools
� Programming extensibility with Java custom code
� Report customization and export capability

22.2.3  Procedure to use RPT to run performance test

The entire life cycle to perform a test by using Rational Performance Tester can 
be divided to five steps, as discussed in this section.

Create a performance test
In this step, you should create a performance test project and record a HTTP 
test.

1. Create a performance test project.

To create a performance test project:

a. In the test perspective, select File → New → Performance Test Project. 
The New Performance Test Project dialog box opens. 

b. In the Project Name field, type a name for the project. 

c. In Project contents, select Use default location. 

d. Click Finish. The performance test project is created and the Create New 
Test from Recording window appears so that you can record a test now. 

e. Click Next to start recording a test, or click Cancel to record the test later. 

2. Record an HTTP test.

The test creation wizard starts when you record a test. This wizard combines 
these actions: recording a session with a Web application, generating a test from 
the recording, and opening the test in the test editor. You can record a test from 
Internet Explorer or from another browser.

 

 

 

 

 Chapter 22. Performance test tools 483

http://www.eclipse.org/tptp/


For recording a test: 

1. Click File → New → Test from Recording.

2. In the New window, expand Test, click Test From Recording, and then click 
Next. 

3. In the Create New Test from Recording window, select Create Test from 
New Recording, and then click Next. 

4. In the list of projects, click the one in which to store this test and related files. 

5. In the Recording file name field, type a name for the test, and click Finish. 
The standard Navigator and the Java Package Explorer use this name, with 
extensions. You will also see this name in the Test Navigator. A progress 
window opens while your browser starts. 

6. In the address box for your browser, type the address of the Web-based 
application to test and activate the link. 

7. Perform the user tasks that you want to test. While you are recording, follow 
these guidelines: 

– Wait for each page to load completely. This waiting will not affect 
performance results, because you can remove extra waiting time (think 
time) when you play back the test. 

– Do not change browser preferences. 

8. After you finish performing the user tasks, stop recording. To stop recording, 
close your browser or click the right side of the Recorder Control view bar. A 
progress window opens while the test is generated. 

Note: If you have not yet created a project, the Project Name field displays 
a default name of testproj, which you can change.

Note: If you enter the address of a secure Web site (one that starts with 
https:), your browser might display a security alert. Depending on the 
security certificate for the site, you might be required to accept a security 
risk to proceed with the recording.

 

 

 

 

484 WebSphere Commerce High Availability and Performance Solutions



On completion, the Recorder Control view displays the message Test 
generation completed, the Test Navigator lists your test, and the test opens for 
you to inspect or edit. Figure 22-2 depicts the flow to generate the performance 
test in RPT.

Figure 22-2   Procedure to record and generate a test

Edit a performance test
After you record a test, you can edit it to include datapools (to provide variable 
data rather than the data that you recorded), verification points (to confirm that 
the test runs as expected), and correlate (to ensure that returned data is 
appropriate for the corresponding request). You can also add protocol-specific 
elements to a test.

With the test editor, you can inspect or customize a test that you recorded.

The test editor lists the HTTP pages for a test, by title. There are two main areas 
in the test editor window. The area on the left, Test Contents, displays the 
hierarchy of the HTTP pages for the test. The area on the right, the HTTP tab in 
Test Element Details, displays specific information about the selected item. The 
Timeout action and Timeout value settings apply to each page in the test.

Recording operation
generates two files

Perform Web activity based on your test scenario

Generate a Test

View and edit Tests in
GUI based editor

test.recmodel

test.rec

(trace file)

test.testsuite

 

 

 

 

 Chapter 22. Performance test tools 485



When you expand a test page, you see a list of the requests for the page, in 
separate folders, with names that are the full Web address minus the initial 
http://. Some requests are highlighted in yellow. This highlighting indicates that 
these requests contain one or both of the following types of information:

� A datapool candidate: This is a value, usually one specified by the tester 
during recording, that the test generator determined is likely to be replaced by 
values in a datapool. 

� Correlated data: These are values in a test, usually one of them in a response 
and the other in a subsequent request, that the test generator determined 
needed to be associated in order to ensure correct test playback. 

When you expand a request, you see the response data for the request. As 
shown in the following example, requests can also contain connection data. 
Because the response is selected in the test contents area, the test element 
details area displays the response data for this request.

Emulate workloads in a performance test
A schedule is the engine that runs a test. However, schedules are much more 
than simple vehicles for running tests. For example, you can use a schedule to 
control tests in the following ways: 

� Group tests under user groups to emulate the actions of different types of 
users.

� Set the order in which tests run: sequentially, randomly, or in a weighted 
order.

� Set the number of times each test runs. 

� Run tests at a certain rate. 

� Run user groups at remote locations. 

After you have created a schedule that describes the behavior for your system, 
you can run this schedule using successive builds of the application being tested 
or using an increasing number of virtual users. You then analyze the results that 
are reported.

For creating a schedule:

1. Right-click the project, and then click New → Performance Schedule. 

 

 

 

 

486 WebSphere Commerce High Availability and Performance Solutions



2. In the Performance Schedule wizard, type the name of the schedule, and 
then click Finish. A new schedule is displayed with one user group. You can 
add user groups, tests, and other items to the schedule to emulate a 
workload.Figure 22-3 is a sample view of the schedule in RPT, which has 
been added by the test created in previous steps.

Figure 22-3   RPT schedule view

After creating a schedule, you can implement following operations to the 
schedule:

� Add elements to a schedule.
� Set think time behavior.
� Run a test at a set rate.
� Run tests in random order.
� Set the number of users that start a run.
� Start users at different times.

 

 

 

 

 Chapter 22. Performance test tools 487



� Run a user group at a remote location.
� Emulate network traffic from multiple hosts.
� Set the duration of a run.
� Set the data that the test log collects.
� Control how a schedule stops.
� Set the problem determination level.
� Set the statistics displayed during a run.

Execute a test or schedule
After you have added the user groups, tests, and other items to a schedule, and 
you are satisfied that it represents a realistic workload, you run the schedule or 
test.

You can run a test locally with one user or a schedule with a default launch 
configuration.

For running a schedule or test locally:

1. In the Test Navigator, expand the project until you locate the schedule or test. 

2. Right-click the schedule or test, and then click Run → Run Performance 
Schedule or Run → Run Performance Test. 

When you run a schedule or test in this way, Performance Tester automatically 
sets up a simple launch configuration. A test runs on the local computer, with one 
user. A schedule runs with the user groups and the locations that you have set. 
However, the execution results have a default name (the same as the schedule 
or test, with a suffix) and are stored in a default location. 

Analyze the test result
You can evaluate the results that are generated dynamically during a run. You 
can also regenerate the results for viewing and analysis after a run.

Reports are displayed automatically during a run. When you close a report, it is 
not saved. However, you can display it again.

For displaying a report after a run has been completed:

1. In the Performance Test Runs view, expand the project until you locate the 
run. Each run begins with the name of the schedule or test, and ends with the 
date of the run in brackets. 

Note: You can configure a schedule or test. A typical reason for setting up a 
configuration is to control where the execution results are stored.

 

 

 

 

488 WebSphere Commerce High Availability and Performance Solutions



2. Right-click the test run, and then click one of the following options: 

– Display Default Report

Displays the report that you previously set as the default. To change this 
default, click Window → Preferences → Test → Performance Test 
Report.

– Display report-name Report

Displays the system-supplied reports. Note that the percentile report is 
available only after a run.

– Display Report

Displays a list of reports to select from. This list includes user-defined 
reports.

Besides displaying reports after a run, RPT can also help testers to more 
sufficiently manage and customize the result by:

� Comparing two reports

You can simultaneously display reports from different runs for comparison. 

� Customizing reports

You can customize reports to specifically investigate a performance problem 
in more detail than what is provided in the default reports. 

� Exporting results to a CSV file

You can export the entire results of a run or specific parts of the results to a 
CSV file for further analysis. 

� Exporting reports to HTML format

You can export an entire report, or a tab on a report, to HTML format. You can 
then e-mail the report or post it on a Web server. The exported report can be 
displayed and printed from any browser. To further analyze the data, paste 
the exported report into a spreadsheet program. 

� Viewing the test logs

To see a record of all the events that occurred during a test run or a schedule 
run, open the test log for that run. 

� Inspecting test log details in the Protocol Data view

To verify that a test is performing as you intended, use the Protocol Data 
view, which displays the HTML details that were generated during a schedule 
run. If problems occur in a test run, you can also compare the data retrieved 
during the run with the recorded data. 

 

 

 

 

 Chapter 22. Performance test tools 489



� Transferring test log data in real time

By default, test log data is transferred at the end of a run. To transfer data 
during a run, change the -DrptRealTimeHistory setting in the location file. 
Changing this setting lets you use the test log as a real-time progress 
monitor. 

� Exporting test logs in XML format

You can export test logs in XML format for further analysis. 

Figure 22-4, Figure 22-5 on page 491, and Figure 22-6 on page 492 are some 
sample reports after schedule execution in RPT.

Figure 22-4   RPT result - summary

 

 

 

 

490 WebSphere Commerce High Availability and Performance Solutions



Figure 22-5   RPT result - response time

 

 

 

 

 Chapter 22. Performance test tools 491



Figure 22-6   RPT result - page performance

22.3  Seague SilkPerformer

SilkPerformer is the load-testing tool that leads the industry today. It is used to 
assess the performance of Internet servers, database servers, distributed 
applications, and middleware, before and after they are fully developed. 
SilkPerformer can help you to quickly and cost-effectively produce reliable, 
high-quality application solutions.

22.3.1  What SilkPerformer can do

SilkPerformer creates highly realistic and fully customizable load tests. It does 
this through the use of virtual users that automatically submit transactions to the 
system being tested, in the same way that real users would. Using a minimum of 
hardware resources, you can generate tests that simulate many hundreds or 
thousands of concurrent users. You can use SilkPerformer's powerful reporting 
tools both during and after a load test to analyze the performance of your server 
and to locate bottlenecks so that you can maximize the potential of your system.

 

 

 

 

492 WebSphere Commerce High Availability and Performance Solutions



Generally, SilkPerformer can help you answer the following questions about your 
system under test:

� How many simultaneous users can my server support?

� What response times will my users experience during peak hours?

� Which hardware and software products do I need to ensure optimum 
performance from my server?

� Which components are the bottlenecks on my server?

� What is the impact on the performance of my system if I employ security 
technology?

� Which areas of my application perform well and which have bottlenecks? You 
can investigate your business transactions, objects, and operations.

� Which factors affect performance? What kinds of effect do they have? And at 
what point do those factors start impacting on service levels?

22.3.2  Procedure to use SilkPerformer to run performance test

Figure 22-7 shows the main interface to SilkPerformer.

Figure 22-7   Main interface of SilkPerformer

 

 

 

 

 Chapter 22. Performance test tools 493



For conducting a SilkPerformer performance test,:

1. Define a project outline.

The first step in conducting a SilkPerformer load test is to define the basic 
settings for the load-testing project. The project is given a name and, 
optionally, a brief description can be added. 

The settings that are specified are associated with a particular load-testing 
project. It is easy to switch between different projects, to edit projects, and to 
save projects so that they can later be modified and reused.

In general, a project contains all the resources needed to complete a load 
test.

2. Create a test script.

The second step in conducting a SilkPerformer load test is to create the test 
script that will prescribe the actions of the simulated users who will be run 
during the test. The script is written in SilkPerformer's proprietary scripting 
language, the Benchmark Description Language (BDL).

Scripts can be created in two ways. The easiest way is to use the 
SilkPerformer Recorder, which can automate much of the process for you. 
Alternatively, you can create a test script manually.

– Test script generation with the SilkPerformer Recorder

The standard method of creating a test script is to use the SilkPerformer 
Recorder to first capture and then record a representative amount of real 
traffic of the kind that you need to simulate in your test. The SilkPerformer 
Recorder then automatically generates the BDL test script from the 
recorded traffic.

– Manual test script generation

A second method of creating a test script is to manually create a new 
script from scratch in BDL.

– Sample script reuse

A variant on the second method of creating a test script is to base the new 
script on one of the sample BDL scripts provided with SilkPerformer.

3. Try-out test script.

The third step in conducting a SilkPerformer load test is to do a trial run of the 
test script that was created in the previous step. The object of the trial run is to 
ensure that the test script is free from errors, and that it will reproduce 
accurately the interaction needed between the client application and the 
server. Normally, this will be the traffic that was recorded by the SilkPerformer 
Recorder in the previous step.

 

 

 

 

494 WebSphere Commerce High Availability and Performance Solutions



For this try-out of the test script, options are automatically selected so that 
you can see a live display of the actual data downloaded. Log files and a 
report file are created so that you can also check later that the script is 
working properly. Only one user is run, and the stress test option is enabled 
so that there is no think time and no delay between transactions.

SilkPerformer's TrueLog Explorer helps you to find replay errors quickly, to 
customize session handling, and to add verifications to the script. Figure 22-8 
shows a sample display of TrueLog Explorer.

Figure 22-8   SilkPerformer TrueLog Explorer

4. Test customization.

The fourth step in conducting a SilkPerformer load test is to customize the 
test with random data. In order to run the script without any replay errors, 
Segue's TrueLog Explorer helps you to customize the session handling and 
to add verifications to the script.

 

 

 

 

 Chapter 22. Performance test tools 495



If a test script is used that has not been customized, the load tests will 
repeatedly reproduce the behavior recorded on one particular occasion, and 
this will not provide very accurate results. To realistically emulate the varied 
traffic of a large number of different users, the transactions in the test script 
need to be modified and, where necessary, randomized.

5. Establish baseline.

The fifth step in conducting a SilkPerformer load test is to ascertain the 
baseline performance, that is, the basic, ideal performance of the application 
being tested. The now-customized test is run with just one user per user type, 
and the results from this unstressed performance of the application form the 
basis for calculating the number of concurrent users and the setting of 
thresholds for page and transaction times. The measurements typical for a 
real load test (of response times and throughput, for example) are performed.

A secondary reason for determining the baseline test is to serve as a trial run 
of the customized test that was created in the previous step. Here the 
objective is to ensure that the customization has not introduced new errors 
into the script, and that the script will accurately and fully reproduce the 
interaction that is intended between the client application and the server.

After that, we should confirm that the test baseline established by the test in 
the sixth step actually reflects the desired performance of the application 
under test. This is done by inspecting the results from that test in a baseline 
report. 

 

 

 

 

496 WebSphere Commerce High Availability and Performance Solutions



6. Specify the performance test workload.

Prior to the execution of a load test, you must select the workload model that 
you want to use for your load test.

You can choose between the following six different workload models, as 
shown in Figure 22-9:

– Increasing
– Steady State
– Dynamic
– All Day
– Queuing

Figure 22-9   Workload setting for performance test

Note: Additionally, the number of concurrent virtual users per user type, 
the duration, and the involved agents must be adjusted accordingly.

 

 

 

 

 Chapter 22. Performance test tools 497



7. Execute the performance test.

To start the execution of the performance test:

a. Click the Run Test button in the SilkPerformer Workflow bar. The 
Workload Configuration dialog appears.

b. Check and, if necessary, change the workload configuration for your load 
test. Then run the test.

c. While the test is in progress, you can monitor its progress and also 
monitor activity on the server by viewing the tabular monitor view of 
SilkPerformer and the graphical monitor view of the Performance Explorer.

Before the execution, make sure that you have enabled the generation of the 
kinds of test results that will be needed to assess the performance of the server. 
You can configure this information from the project profile. Note that each project 
has a specific profile to work with itself. Figure 22-10 shows is the profile 
configuration interface.

Figure 22-10   Project profile configuration

 

 

 

 

498 WebSphere Commerce High Availability and Performance Solutions



8. Evaluate and analyze the test result.

After the test execution, first of all, you can see a summarized result for the 
test from SilkPerformer’s baseline report, as shown in Figure 22-11.

Figure 22-11   SilkPerformer Baseline report for performance test

At the same time, SilkPerformer provides an abundant statistics chart about the 
execution result. Testers and developers can get a more comprehensive view of 
the behavior of the system under test with:

� Transaction Status Report, which depicts the number of SilkPerformer 
transactions per second, as shown in Figure 22-12.

Figure 22-12   Transaction report in SilkPerformer

 

 

 

 

 Chapter 22. Performance test tools 499



� Throughput Report, as shown in Figure 22-13.The amount of data sent to and 
received from the server. This includes header and body content information, 
all TCP/IP-related traffic (HTTP, native TCP/IP, IIOP, POP3, SMTP, FTP, 
LDAP, and WAP), and secure traffic over SSL/TLS. 

Figure 22-13   Throughput report in SilkPerformer

� Response Time Report, as shown in Figure 22-14. The response time of 
successful transactions, excluding the think times within those transactions. A 
transaction response time is reported in this type of measurement if all API 
function calls within the transaction succeed.

Figure 22-14   Response time report in SilkPerformer

� Error Report, as shown in Figure 22-15. This chart shows the number of API 
errors per second, including Internet, database, and middleware APIs. A 
problem is considered an error if its severity is defined as an error or worse, 
that is, of higher severity (transaction exit or process exit). A problem is 
ignored if its severity is defined as informational or warning. 

Figure 22-15   Error report in SilkPerformer

22.4  Page Detailer

IBM Page Detailer is a browser-side tool to measure performance of a Web 
application. While the Profiler discussed in the previous sections supports 

 

 

 

 

500 WebSphere Commerce High Availability and Performance Solutions



analysis of the execution of the application on the server, the Page Detailer 
collects most of its useful data at the socket level to reveal the performance 
details of items in the Web page, from the client’s (browser’s) perspective. It is 
also useful for measuring the incremental impact of changes in a Web 
application.

Page Detailer allows you to look at how and when each item is loaded in a Web 
page. Analyzing this data allows you to identify the areas where performance 
could be improved. The user’s perception of performance is determined based 
on the time to display pages, so measuring and analyzing this data will provide 
insight into the user’s experience of your application. 

22.4.1  Overview
IBM Page Detailer is a graphical tool that enables Web site developers and 
editors to rapidly and accurately assess performance from the client's 
perspective. IBM Page Detailer provides details about the manner in which Web 
pages are delivered to Web browsers. These details include the timing, size, and 
identity of each item in a page. This information can help Web developers, 
designers, site operators, and IT specialists isolate problems and improve 
performance and user satisfaction. Page Detailer can be used with any site that 
your browser can access. 

Page Detailer is a separately downloadable product that can be obtained from 
IBM alphaWorks at:

http://www.alphaworks.ibm.com/tech/pagedetailer

IBM Page Detailer gathers the following information: 

� Connection time 
� Socks connection time and size 
� SSL connection time and size 
� Server response time and size 
� Content delivery time and size 
� Delays between transfers 
� Request headers 
� Post data 
� Reply headers 
� Content data 
� Page totals, averages, minimums, and maximums

For each page that is accessed, a color-coded bar chart of the time taken to load 
the page items will be generated. The length of a particular bar gives a good idea 
of the relative time spent in loading that item, as compared to the entire page. 
You will see that in some cases, items of a page may be loaded in parallel. This 

 

 

 

 

 Chapter 22. Performance test tools 501

http://www.alphaworks.ibm.com/tech/pagedetailer


will appear in the chart with bars that overlap. The information that is captured by 
the Page Detailer includes page size as well as sizes of all other items loaded by 
the browser. 

Different colors in the bar indicate how the time was spent:

� Page Time (Purple) 

The time taken to load all the components of a page.

� Host Name Resolution (Cyan)

The time spent to resolve the IP address of the host.

� Connection Attempt Failed (Brown)

The time taken to receive an error when a connection attempt is made.

� Connection Setup Time (Yellow)

The time taken to open a socket connection. If a SOCKS server is being 
used, this is the time to open a socket connection from the browser to the 
SOCKS server only.

� Socks Connection Time (Red)

The time taken to open a connection from a SOCKS server to the remote site. 

� SSL Connection Setup Time (Pink)

This is the time taken to negotiate an encrypted connection between the 
browser and the remote site, once a normal socket connection has been 
established.

� Server Response Time (Blue)

This is the time from the browser’s request to the receipt of the initial reply, 
after all the communications setup has been completed. Large responses are 
broken down into smaller components (packets). The server response time 
only measures the time to receive the first one.

� Delivery Time (Green)

The time taken to receive all additional data that was not included in the initial 
response.

 

 

 

 

502 WebSphere Commerce High Availability and Performance Solutions



An example of a chart produced with Page Detailer is provided in Figure 22-16. 

Figure 22-16   Page Detailer Chart view

To obtain more detailed information about a particular HTTP request, 
double-click the appropriate colored bar or the icon in the chart. This will display 
a text viewer 

22.4.2  Important considerations
Some important considerations while taking measurements are:

� Impact of network delays

Many problems may not be evident when accessing a server on a local 
network, but may become apparent when accessing the site remotely, 
particularly when using a modem connection. On the other hand, you can 
minimize the effect of external network delays by directly connecting on the 
Server’s LAN. This will allow you to isolate the performance impact of a 
change made to the Web page.

� Browser cache

Disabling the browser cache helps in getting repeatable results. However, 
you could also check the performance from a user’s perspective by enabling 
the browser cache and comparing both results.

� Packet loss

Packet loss can happen and get corrected in the underlying TCP/IP layers. 
This is invisible to the Page Detailer. Packet loss manifests itself as 

 

 

 

 

 Chapter 22. Performance test tools 503



inconsistent time measurements in Page Detailer. You can take a series of 
measurements at different times to factor it out.

22.4.3  Key factors
Some of the key factors that influence the time to load a Web page in a browser 
are:

� Page size

� Number, complexity, and size of items embedded in the page

� Number of servers that need to be accessed to retrieve all elements, and their 
location and network connectivity

� Use of SSL (This introduces an extra overhead.)

The Page Detailer will help you to identify when one of these problems is 
affecting some or all of your application. It will also help to identify problems such 
as broken links and server timeouts.

Some of the strategies that can be used to improve performance and resolve 
problems you have identified include:

� Minimize the number of embedded objects. Avoid the excessive use of 
images in particular. In cases where there is a standard header, footer, or 
side menu on every screen, consider the use of frames so that common 
elements do not have to be downloaded every time.

� The browser will typically retrieve multiple items in parallel, in the order in 
which they appear in the HTML page that it receives. Hence, sequencing of 
the items so that downloads for larger objects are started early can reduce 
the total time required to display the page, and avoid the user having to wait 
for a long time for the last elements to be retrieved.

� Ensure that caching is being used effectively. Often the same images are 
used multiple times on the same page. If there are two references to the 
same image in close proximity to each other in the HTML source, the browser 
may encounter the second reference before the HTTP request that was 
initiated to download the first reference has been completed. In this case the 
browser may issue another request to retrieve the image again. This can be 
avoided by pre-loading frequently used images multiple times early, or by 
structuring the generated pages so that such URLs do not appear 
consecutively.

� Minimize the use of SSL where possible. For example, some content such as 
images may not need to be secured even though the application as a whole 
needs to be secure.

 

 

 

 

504 WebSphere Commerce High Availability and Performance Solutions



� Try to avoid switching the user to an alias server name during the page load. 
This will help the browser to reduce the lookup time and possibly avoid a new 
connection.

22.5  Other performance test tools

There are many kinds of open-source and commercial products and services 
related to Web application testing. Below is a list of some of the commercial and 
free tools available. They are merely provided as an alternative source of testing 
tools if ApacheBench, OpenSTA, or Rational Performance Tester are not used.

� JMeter, Open Source software available from the Apache Software 
Foundation 

http://jakarta.apache.org/jmeter/

� TestMaker and TestNetwork, from PushToTest

http://www.pushtotest.com/

� Grinder

http://grinder.sourceforge.net

� LoadRunner from Mercury Interactive

http://www.mercury.com/us/products/performance-center/loadrunner/

� WebLOAD from Radview

http://www.radview.com/products/WebLOAD.asp

� WebStone from Mindcraft

http://www.mindcraft.com/webstone/

� OpenLoad from Opendemand Systems

http://www.opendemand.com/openload/

22.6  Trend of performance test tools

With the development of the IT industry, more and more new techniques have 
been involved in the software system, for example, Web2.0 and Ajax, so that 
performance testing becomes more and more complex and brings more 
challenges to performance testers.

 

 

 

 

 Chapter 22. Performance test tools 505

http://jakarta.apache.org/jmeter/
http://www.pushtotest.com/
http://grinder.sourceforge.net
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www.radview.com/products/WebLOAD.asp
http://www.mindcraft.com/webstone/
http://www.opendemand.com/openload/


In the area of performance testing tools, there are three major characteristics:

� More utilities related to performance test have been integrated into test tools, 
which include test recording, test editing, test execution, test result analysis, 
problem determination, and so on.

� Customization in test tools becomes more and more popular. For various 
testing purposes, customization of the testing tools always plays an important 
role in performance testing. The trend for this requirement is that more and 
more utilities in test tools can be customized for customers’ specific 
requirements, which surely brings more benefits to users.

� The fast development of Open source test tools. More and more software 
engineers dedicate themselves to the open source community, where they 
are investigating the mechanisms of the test tools in the code level, and 
collaborating with others. That is the reason why the open source tooling can 
achieve significant improvement in the future.

 

 

 

 

506 WebSphere Commerce High Availability and Performance Solutions



Chapter 23. Applying performance 
testing to WebSphere 
Commerce

Now that we have gone through various performance test types let us see how 
they apply to WebSphere Commerce.

There are many variables when it comes to running performance testing and 
many possible bottlenecks. This makes an already complex task even more 
daunting. However, applying performance testing to a certain type of business 
(for example, eCommerce, such as in the case of WebSphere Commerce) does 
narrow the problem domain.

23
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 507



23.1  Key attributes of a performance test

Before we delve into different types of performance tests we define the features 
that distinguish one performance test from another.

Figure 23-1   Performance testing an eCommerce site, such as a WebSphere Commerce 
site

In the case of eCommerce, the test attributes that dictate workload include:

� Number and type of virtual users

Simply put, virtual users are the concurrent, simulated users. A test run with 
100 virtual users means that there are 100 concurrent, simulated users who 
are using the site at any given time during the test. 

These users can be configured to use the same session or a different session 
for every new scenario execution. Usually, you would need to start a new 
scenario execution with a new session. 

Also, if 100 virtual users includes registered users then it does not mean that 
the same logon IDs will be used over and over again. On the contrary, almost 
always you would want to use random users. The only exception to this rule is 
in the case when your unique business requirements specifically call out for 
such a scenario. In our testing we noticed that if we keep using the same test 
IDs over and over again, then the stress-endurance test or the reliability test 
show gradual throughput degradation.

Performance testing an eCommerce site

Virtual users

Think time

Scenario

Environment

Throughput

Response time

Breaking point

Capacity

Test Attributes Control Attributes Test Output

Store

Duration

Error rate

 

 

 

 

508 WebSphere Commerce High Availability and Performance Solutions



Virtual users can be store administrators, shoppers, marketing managers, 
and so on. Depending on your scenario, you may need to further define the 
users based on certain demographic requirements of your business. This 
information should be available from your business analyst.

� Thinktime

Thinktime is decided by the distribution and type of incoming user traffic. 
Again, your business analyst should be able provide thinktime specifications 
(or requirements) for your testing.

� Scenario

Scenario includes the series of actions that virtual users execute while 
interacting with the WebSphere Commerce site. Inherently, this also includes 
different interfaces or utilities what might be used to interact with the 
WebSphere Commerce site. The scenario is decided by the use cases for 
your site design. Use cases should be available in your site design 
documents.

� Duration

The duration of a test is dictated by the intention of the test case. If the 
intention of the test case is to find deadlocks, memory leaks, or gradual 
throughput degradation (GTD), then the test should be run for 
longer—running into hours or days, as is the case with soak tests. If, 
however, you are testing scalability of the system, then the test can be run for 
a much shorter duration—running into an hour or a few.

The control attributes are related to the site setup and configuration:

� Store

Store refers to both the file and data assets that constitute your store. As 
discussed in “Store complexity scalability” on page 465, the complexity of 
your store pages and database customizations design impact the 
performance of your site. The amount of data could be another factor that 
could influence your site's performance.

It would be ideal to test your site’s performance with a backup copy of your 
production database. Although your initial tendency may be to focus on the 
performance considerations of your database customizations, you should 
also consider purging unwanted data from your database using the 
WebSphere Commerce dbclean utility. We recommend that you run the 
WebSphere Commerce dbclean utility periodically. For more information 
about WebSphere Commerce dbclean, refer to WebSphere Commerce 
InfoCenter.

 

 

 

 

 Chapter 23. Applying performance testing to WebSphere Commerce 509



� Environment

Environment includes both the hardware and software, along with their 
configuration settings.

– Hardware and site topology

The hardware that you employ for your site impacts its performance (for 
example, CPU speed, amount of memory, disk size and speed, disk 
controllers, disk cache, and so on). The topology that you have for your 
site also has a significant impact on your site’s performance. For example, 
having WebSphere Commerce database on the same machine as the 
WebSphere Commerce application will cause both of them to compete for 
the same hardware resources. While deciding on topology, you also need 
to consider the level of clustering that you need for your site, the 
active/active or active/passive support that you require, security or firewall 
options, and so on.

– Hardware and software configuration

This refers to all the various hardware and software configurations 
possible to performance tune your site, as discussed in this book. For 
example, setting up a 32-bit or 64-bit database, WebSphere Application 
Server, WebSphere Commerce configuration, and so on.

The test results provide a rich set of indicators. Most of the small to medium sites 
test for throughput and response time, whereas breaking point and capacity 
testing is left for major upgrades to the site. For a additional output parameters 
refer to 24.1, “Test results to be collected and verified” on page 522

� Throughput

The number of client interactions with WebSphere Commerce. The unit of 
interactions can be defined at different levels of granularity. For more details 
refer to 1.2.4, “Throughput” on page 9.

� Response time

Elapsed time between client request and server response. For more details 
refer to 1.2.5, “Response time” on page 9.

� Error rate

Error rate should be defined in similar terms as the throughput. For the 
reasons discussed in 1.2.4, “Throughput” on page 9 we recommend that you 
define throughput in terms of scenarios completed. In such a case the error 
rate would be defined as:

Scenario Error Rate = Total # of failed scenarios / Total # of 
attempted scenarios

 

 

 

 

510 WebSphere Commerce High Availability and Performance Solutions



However, if the throughput is defined in terms of transactions then the error 
rate would be defined as:

Transaction Error Rate = Total # of failed scenarios / Total # of 
attempted scenarios

� Capacity

Capacity can be maximum system capacity, required business capacity, or 
expected peak capacity. For more details refer to 20.4, “Typical performance 
characteristics of a WebSphere Commerce site” on page 460.

� Breaking point

The point of meltdown where the site performance degrades severely and 
unpredictably. For more details refer to 20.4, “Typical performance 
characteristics of a WebSphere Commerce site” on page 460.

The key idea of performance testing a WebSphere Commerce site is that, for a 
given set of scenarios and control attributes, you would tweak the virtual users 
and thinktime to put the system under stress.

23.2  Common test execution steps

Common performance test execution steps include:

1. Set up the test environment.

Setting up the test environment includes setting up everything that is required 
to run a performance test. This includes setting up a test WebSphere 
Commerce environment to mimick or simulate your target WebSphere 
Commerce production environment, as well as the test client software.

This also assumes that you have developed the automation scripts that will 
be executed using your client software. If you are building a new site you will 
also need to pre-create test data for your scripts to run on.

2. Tune up the test environment.

Throughout this book there are various performance tuning considerations 
that should be applied to optimize your site’s performance.

3. Warm up the test environment.

Before you can run the formal target performance test case you must warm 
up the environment. 

Warm-up is required to initialize that various caches in your system, 
especially Dynamic Cache, as well as to allow your database to build any 
access plans that may be required. For convenience we call out these two 

 

 

 

 

 Chapter 23. Applying performance testing to WebSphere Commerce 511



key aspects in the flow chart below and call them as application server 
warm-up and database warm-up, respectively.

To warm-up your test environment start your automation test with a single 
user and run up to a few users while monitoring your cache status. Once the 
hit ratio stabilizes, your site has been warmed up. 

After you have done this a few times you should know the rules of thumb (for 
example, the number of users required to run a warm-up test for a given 
duration) to warm up your site, and you may not need to constantly monitor 
your site’s operation to confirm whether warm-up was done successfully.

4. Reorganize the database and optimize database statistics.

Your test generates data and, as such, you should run the DB2 RUNSTATS 
and REORG utilities to optimize your database.

5. Back up the test environment.

Before continuing any further we recommend that you back up your 
environment, including your database. This would allow you to return to a 
baseline environment to compare the impact of various performance tuning or 
fixes that you may apply later on during the performance testing.

6. Execute the performance test.

If you backed up your environment, as mentioned in the previous step, or if 
you are restarting your test from a backed up environment, then you need to 
warm up your site a little bit to load the Dynamic Cache and the file system 
cache, and so on. You can do this with even a single user test for a few 
iterations of your test scenarios.

In the remainder of this chapter we discuss the execution of various 
performance tests.

7. Analyze the test results.

This subject is discussed in detail in Chapter 24, “Analyzing test results and 
solving performance problems” on page 521.

Note: Warming-up your test environment with the same users as the users 
included in your automation test can skew your performance test, depending 
on the duration of your warm-up, the duration of your test, and the amount of 
test data in the database. As such, we recommend that users used for 
warming up your test environment not be included in the target performance 
test case.

 

 

 

 

512 WebSphere Commerce High Availability and Performance Solutions



Figure 23-2   Highlighted test execution steps with shaded problem determination steps

Start Test

Setup test environment

Tune-up test environment

Warm-up database

Runstats & Rebind

Backup database

Performance
Problem?

Warm-up application server

Narrow the scenario
to isolate the problemScenario isolated?

Stop Test

Execute performance test

N

Y

Y

Y

N
N

Y

Y

Stop Test

Repeat test

Fix memory leak

Fix throughput problem

N

Single user can 
reproduce?

Fix functional defect

Errors happen 
under load?

Fix concurrency defect

Repeat test

Y Y

N

N

Y N

Gather & analyze results

Restore database

Problem specific
to test scenario?

High error rate?

Memory leak?

Throughput
(or response

time) problem?

 

 

 

 

 Chapter 23. Applying performance testing to WebSphere Commerce 513



23.3  Executing stress tests

Most of the performance testing is done at or above the peak workload expected. 
In the case of stress testing, the workload is mostly much larger than the peak 
workload expected. 

During a stress test, many test attributes and control attributes, as shown in 
Figure 23-1 on page 508, can be changed. However, for the present discussion 
we focus on the following, for any given scenario: 

� The number of virtual users

� The type of virtual users and their workload distribution, such as their 
browse-buy ration, which can be altered

� Thinktime - the time elapsed between two successive client interactions with 
the site

23.3.1  Testing for throughput

The preferred approach for stress testing a system is to stick to the realistic think 
time and gradually vary the number of virtual users so that the throughput 
exceeds the expected peak throughput (TP), then reaches the throughput level 
corresponding to the maximum business capacity (TP), and, eventually, reaches 
the breaking point (Tx) after sustaining the maximum system capacity (TC).

For more details and a graphical representation of the above statements refer to 
20.4, “Typical performance characteristics of a WebSphere Commerce site” on 
page 460.

This approach will give you realistic test results that are easy to interpret. The 
increase in throughput will be accompanied by an increase in CPU consumption, 
eventually maximizing the CPU when maximum throughput is achieved (TM).

However, in case you are testing on a test environment that is not as powerful as 
your production environment and you find that you are limited by your test 
hardware such that you are not able to increase the number of virtual users to 
take the system to the breaking point (Tx), then an alternative would be to 
decrease the thinktime. Decreasing the think time in your test scenarios way past 
the expected think time is akin to increasing virtual users way past the expected 
value. You can even turn your think time down to zero to maximize the stress on 
your site for a given number of virtual users.

This approach also benefits if you need to maximize your CPU consumption and 
throughput very quickly, instead of having a long trial and error process. 
However, the trade-off for this approach is the lack of ready-to-use test results. 

 

 

 

 

514 WebSphere Commerce High Availability and Performance Solutions



You would need to scale the results that you get from this test methodology so 
that you can interpret the corresponding behavior on your production 
environment for more realistic scenarios.

Such a scaling activity would require running a few experimental test cases and 
interpreting the results to come up with a scaling factor. Most of the time, 
especially for small and medium sized customers, such a scaling may turn out to 
be a linear factor. Any such scaling would need to be repeated with any major 
change in your system hardware, software, application, data, or even scenarios.

Once the system has reached maximum throughput (TC), the response times of 
further client interactions may not be relied upon. In our testing we find that 
WebSphere Application Server scales to increase in workload extremely well. 
So, although WebSphere Application Server handles all the additional work 
given to an application under stress, the queuing-up of workload leads to longer 
response times. For example, as the number of virtual users keep increasing and 
there are no more CPU cycles to accommodate this additional workload, then 
each virtual user gets a smaller and smaller time share of the CPU, driving the 
response times higher. 

These response times may be unacceptable for shoppers or users of the site. 

So, although the above approach provides you with an easy mechanism to 
stress the system and to look for bottlenecks, it still leaves the question of 
observed response times unanswered.

23.3.2  Testing for concurrency

In addition to testing for the throughput targets, we also need to make sure that 
the site is able to handle the required number of concurrent users. The testing 
done to test for throughput doubles for testing the concurrency. 

Similar to peak throughput expected, the business will have peak concurrency 
expected. There would also be business requirements of your site to maintain 
performance past peak concurrency expected, which we call the required 
business concurrency. Corresponding to the throughput breaking point, there 
would be a concurrency breaking point.

23.3.3  Analyzing stress test results

For each test scenario executed:

� For peak workload expected and minimum business capacity required, the 
error rate must be less than the acceptable error margin, as defined by your 

 

 

 

 

 Chapter 23. Applying performance testing to WebSphere Commerce 515



business requirement. For example, the acceptable error margin may include 
page errors less than 0.1%, resulting in less than 1% failed scenarios.

� Concurrency, throughput targets should be met or exceeded for both peak 
workload expected as well as for minimum peak business capacity required.

� Response time targets should be met or beat for both peak workload 
expected as well as for minimum peak business capacity required.

� For excess capacity past minimum business capacity (as shown in 
Figure 20-4 on page 466), although response time is allowed to go past the 
maximum requirement, the acceptable error rate should still conform to your 
business requirements. 

If any of these passing criterion are not met then it should be considered a 
defect. If error rate is the cause of the test case failure then the defective code 
needs investigation. 

If overall low performance is a concern then we need to go through the iterative 
process of performance tuning and re-executing the test case, as shown in 
Figure 23-1 on page 508. 

Last but not the least, if the concern is memory leak, core dump, or gradual 
throughput degradation, then refer to Chapter 24, “Analyzing test results and 
solving performance problems” on page 521.

23.4  Scalability testing

Whereas stress testing involves stressing the system way past the business 
capacity requirements, the scalability test primarily focuses on performance of 
the system within and around business capacity requirements. In the case of 
stress testing after the system has reached its maximum system capacity, 
response times starts degenerating very significantly, and as such there is not 
much to be learned from response times. In the scalability test case, response 
time is very critical, just like the throughput for a given set of test attributes, for 
example, concurrency, think time, and scenario.

The size of the catalog or the number of hosted stores in the system would also 
have a big impact on the performance of the system. Thus, more than one data 
parameter may also be varied from one hurdle to another. In the previous 
example we have only used users as a parameter for our stress test, but in 
reality there may be more than one.

Your database size is a major contributor to what throughput or response times 
your site may be able to provide.

 

 

 

 

516 WebSphere Commerce High Availability and Performance Solutions



In our previous discussion on stress testing we focused on increasing workload 
(virtual users and thinktime) for any given scenario. For example, we focussed 
on the test attributes only. In scalability testing we follow the same tactic, plus we 
test for different control attributes. 

This is an arbitrary distinction since different data sets, hardware setups, and so 
on, should be stressed as well. You may decide to combine both your stress and 
scalability testing in one series of test cases, starting from low load to peak load, 
and then eventually to the breaking point load. However, if the thinktime in your 
stress test is not realistic, then you would have the same additional work of 
scaling the test results to your production environment size before any 
meaningful decision could be made from them, as discussed in 23.3.1, “Testing 
for throughput” on page 514.

The reason that we find this distinction useful is that, depending your site, for a 
given deployment you may need more or a different level of focus on either 
stress or scalability. By lumping the two together you may lose the focus and 
even end up doing more testing than you actually require.

To test for valid response times the system needs to operate within or at its 
maximum system capacity. The site can still be operating way past the expected 
peak workload as defined by your business. Some sample business capacity 
numbers are discussed in “Expected peak capacity versus maximum business 
capacity” on page 461.

23.5  Soak, endurance, or reliability testing

Reliability testing is done around expected peak capacity (P) and higher. Usually, 
the testing should be conducted close to required minimum business capacity 
(B) but not more than the maximum system capacity (C). 

The key factors of reliability testing is the duration for which the test is run as well 
as the variable workload to mimic typical day-to-day activities on your site.

Reliability runs are usually run for days and can be half a day, one day, and so 
on, generally going up to seven days. A three-day reliability run is very common, 
since this is usually long enough to start showing symptoms of many 
performance problems, should they exist. A three-day test also gives you an 
opportunity to start it on a Friday, observe the test for a little while, then leave it 
running for the weekend, and then come back on Monday and observe the test in 
execution for another little while before it completes.

Figure 20-4 on page 466 gives an example of a three-day reliability test. The 
workload curve is not a straight line, but is modulated as shown in Figure 20-4 on 

 

 

 

 

 Chapter 23. Applying performance testing to WebSphere Commerce 517



page 466. In addition to varying the workload from the shoppers, extra workload 
of the likes generated by DB clean, WCA, massload, Sales Center activity, MQ, 
Staging, and Authoring server will be added as well. This utilities can be 
executed manually or, preferably, automatically. 

23.6  High Availability testing

In Chapter 20, “Introduction to performance testing” on page 453, we introduced 
the concept of High Availability testing in WebSphere Commerce performance 
testing. Generally, before starting the High Availability testing, having a good 
understanding of the utilities or solutions that we use to achieve High Availability 
in WebSphere Commerce site is very important. For example, if we want to use 
DB2 High Availability and Disaster Recovery (HADR) to achieve High Availability 
in the WebSphere Commerce database tier, several concepts should be kept in 
mind:

� The mechanism of HADR to achieve High Availability in a database

� Which outage scenarios HADR covers

� Whether there are any pre-implementation recommendations from HADR

� Whether there are any limitations in HADR which that impact the 
implementation

The general approach to apply High Availability testing on a WebSphere 
Commerce Web site can be classified as:

� Before enabling the High Availability utilities, execute a normal performance 
test case to establish a baseline for performance comparison purposes. Most 
times, the normal ratio for performance testing scenarios is not appropriate 
for High Availability testing, since we should simulate an appropriate and 
realistic scenario to test the behavior of High Availability utilities. In that case, 
appropriate customization is needed to implement the High Availability 
testing.

� Implement the High Availability utilities on the WebSphere Commerce site, 
and evaluate whether it is functional.

� With High Availability utilities enabled, drive normal performance execution to 
identify the performance impact to an additional High Availability 
configuration. We should collect the data for site throughput, error rate, 
resource (CPU, memory, disk I/O) utilization, and network status. With those 
dates on hand, compare the results one by one to identify and establish an 
overall picture of the performance impact of High Availability components 
enabled on the WebSphere Commerce site.

 

 

 

 

518 WebSphere Commerce High Availability and Performance Solutions



� Simulate the planned or unplanned outage by automatic script or manually, to 
identify the performance overhead brought from different outages (or we can 
say that some of them are disasters), and how can High Availability utilities 
help the Commerce site to achieve failover.

� With most of the outage scenarios’ data collected, draft a performance 
comparison table to identify how much benefit the candidate High Availability 
solution gives to the WebSphere Commerce site. This table will help to make 
an appropriate/reasonable business decision about how to achieve High 
Availability on the Commerce site.

The key point here is that High Availability is much more a concept built on the 
customer’s point of view, so that the comparison and judgement according to the 
result that we got should be assessed and evaluated from the customer’s view, 
which sometimes is the most difficult step in driving the performance test.

 

 

 

 

 Chapter 23. Applying performance testing to WebSphere Commerce 519



 

 

 

 

520 WebSphere Commerce High Availability and Performance Solutions



Chapter 24. Analyzing test results and 
solving performance 
problems

Collecting test results is as important as executing the test itself. Test execution 
can be useless if appropriate data is not gathered. What data and how much 
data should be gathered depends on the objective of the test case. Obviously, if 
you are in the process of troubleshooting a specific performance problem you 
may gather more data than the first time that you are executing a test case. The 
amount of data generated during a test case execution impacts the performance 
of the test case. As such, it is crucial to have the correct amount of 
logging/tracing and frequency of gathering data.

Note that in this chapter by the term test environment we mean the environment 
on which the test is run. It is possible that after successful testing this 
environment may actually be used or switched over as your production 
environment.

24
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 521



24.1  Test results to be collected and verified

For each test executed the following results would typically be recorded for 
analysis, as well as future reference:

1. Input attributes: For more information about these attributes refer to 
Figure 23-1 on page 508.

– Number and type of virtual users
– Think time
– Scenario
– Duration

2. Control attributes: For more information about these attributes refer to 
Figure 23-1 on page 508.

– Store including file assets and data

– Environment

• Hardware and site topology

• Hardware and software configuration: This can often be important 
since component levels may change during your site development, 
depending on the duration of your project, as well as the number of 
products integrating with WebSphere Commerce. It is important to 
know exactly what software stack created the successful result.

3. Output values:

– Minimum/average/maximum response time for all page hits: Refer to 
“Response time” on page 9 for further details.

– Minimum/average/maximum test scenario response time: Refer to 
“Response time” on page 9 for further details.

– Transaction/page hit/scenario throughput: Refer to 1.2.4, “Throughput” on 
page 9 for further details.

– Page hit/scenario failure ratio

– Resource utilization (memory, CPU, I/O, and so on): Refer to Chapter 15, 
“Operating system monitoring tools” on page 323, for further details

– Additional information as required by your business, such as orders/hour.

– Logs such as WebSphere Application Server logs, JVM logs, database 
logs, and test client logs.

 

 

 

 

522 WebSphere Commerce High Availability and Performance Solutions



The purpose of recording this information is that: 

� One may understand what is being tested.

� One may diagnose performance concerns without necessarily having to rerun 
the test case. This can also speed up getting support from subject matter 
experts who may not be directly involved in testing, including IBM Support.

� Someone can reproduce the exact same test and reproduce the same exact 
result in the future, for example, for comparison or for problem determination 
purposes.

� To have sufficient information about the results of test cases, which can then 
be used to predict the site behavior as the workload of the site changes. This 
information could also help better understand the site configuration changes 
that may be required to accommodate the workload changes.

Verify pass criterion
For all the test cases executed, you must analyze the results from various 
angles:

� Test results within business requirements

– Acceptable failure rate

Failures can happen due to various reasons, including functional defects 
and performance defects such as deadlocks. As discussed earlier, 
functional defects should ideally not happen during performance testing 
since if they do, they should not be acceptable. Performance defects, 
however, may sometimes be acceptable. For example, deadlocks in 
databases are inevitable. We always try to minimize and eliminate the 
possibility of having deadlocks in a database, but they are inevitable, 
depending on the workload at the site. As such, some margin of error, 
based on your business requirements, in a performance test is generally 
acceptably. 

The page hit failure rate should be less than your business requirements. 
Another business requirement that you need to track is the scenario failure 
rate. The page hit failure rate should not result in a scenario failure rate of 
more than this specification. The difference between the two is that 
whereas a page hit, such as catalog browsing, may result in a 
non-functional error, the user should be able to refresh the page and 
continue with shopping. For example, if there are more than ten page hits 
per scenario, 0.1% page hit errors and 1% scenario failure rate may be 
acceptable. Notice that in absolute numbers a scenario is still more 
resilient to failures than the sum page hit errors.

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 523



– Acceptable response time

Although the minimum and maximum response times for a page hit and a 
scenario are important, the average response time is what would generally 
be tracked. The average response times should also be within your 
business specifications.

– Acceptable concurrency and throughput

Ensuring that the throughput targets are met is also important even though 
it is the level of concurrency (number of virtual users) that seems to be 
driving the throughput. The level of concurrency is certainly more critical, 
but the throughput numbers provide you with revenue generation 
information for the scenario or site design that shoppers interact with. 
However, scenarios that may be long or non-intuitive may not always 
translate into orders.

� No memory leak or excessive fragmentation: For more information refer to 
“Solving memory problems in WebSphere applications” on page 527.

� No degradation of throughput or response time over time: For more 
information refer to “Solving throughput and response time problems” on 
page 549.

24.2  Common troubleshooting steps

WebSphere Commerce applications can be complex and as such 
troubleshooting performance problems can be one of the most important and 
complex tasks in the your site development cycle.

Here we discuss a general strategy for troubleshooting performance problems:

1. Set up the test environment. 

This includes your WebSphere Commerce site as well as any test tools 
required.

2. Warm up your site and back up your site before test execution. 

Before starting your test you must run a test to warm up your test 
environment. Warming up refers to running a very small load on your site for 
long enough so that various caches can be populated and the database can 
build an access plan.

We recommend that you take a backup of your database after this warm-up 
so that you have a clean restart point should you need to rerun the test case 
later on.

 

 

 

 

524 WebSphere Commerce High Availability and Performance Solutions



After you take the backup and restart the WebSphere Commerce application 
you will need to rerun through your scenario at least once before executing 
your test case so that Dynamic Cache can be populated.

3. Narrow down the part of your scenario causing the performance concern.

This is to isolate the problem so that you can focus on it without being 
distracted by any other interaction. Once you have narrowed down the 
interaction or the set of interactions that may be causing the performance 
concern, this would also make it easy for your to reproduce the problem 
quickly.

4. High error rate.

All functional defects (which can be reproduced always even by a single user, 
for example, without load on site) should be resolved prior to starting 
performance testing since finding functional defects by doing performance 
testing is very expensive due to time and resource required for performance 
testing. However, it is possible that some functional defects were not caught 
prior to running a performance test and thus generate errors. 

If, however, the errors are caused due to concurrent users accessing the site, 
then it is possible that code-related or database-related deadlocks may be 
causing the problems. In such a case more detailed tracing may be required 
to isolate the problem. It is also possible that such problems may be caused 
due to system configuration such that it is not able handle high workload 
causing overflows or time outs.

In remaining part of this chapter we explore strategies for addressing memory, 
throughput, and response time concerns in greater detail. 

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 525



.

Figure 24-1   Test execution cycle with highlighted problem determination steps

Start Test

Setup test environment

Tune-up test environment

Warm-up database

Runstats & Rebind

Backup database

Performance
Problem?

Warm-up application server

Narrow the scenario
to isolate the problemScenario isolated?

Stop Test

Execute performance test

N

Y

Y

Y

N
N

Y

Y

Stop Test

Repeat test

Fix memory leak

Fix throughput problem

N

Single user can 
reproduce?

Fix functional defect

Errors happen 
under load?

Fix concurrency defect

Repeat test

Y Y

N

N

Y N

Gather & analyze results

Restore database

Problem specific
to test scenario?

High error rate?

Memory leak?

Throughput
(or response

time) problem?

 

 

 

 

526 WebSphere Commerce High Availability and Performance Solutions



24.3  Solving memory problems in WebSphere 
applications

In Web applications based on WebSphere Application Server, such as 
WebSphere Commerce, memory utilization can impact system performance 
significantly. One of the most common memory problems is memory leak, which 
causes severe performance degradation. In theory, memory leaks should not 
happen in Java because it has Garbage Collection (GC). However, GC only 
cleans up unused objects that are not referenced anymore. Therefore, if an 
object is not used, but is still referenced, GC does not remove it, which leads to 
memory leaks in JVM problems. Beside memory leaks, other memory problems 
that you might encounter are memory fragmentation, large objects, and tuning 
problems. In many cases, these memory problems can cause the application 
server to crash. Many users first notice that application server performance 
gradually declines, and eventually crashes with OutOfMemory exceptions. 

Memory problems are hard to troubleshoot because they have multiple causes. 
This article provides methods of identifying the root causes of different memory 
problems and their corresponding solutions. It also introduces a recommended 
methodology to detect and solve memory leak problems in WebSphere 
Commerce.

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 527



Figure 24-2 shows the entire process for determining and solving memory 
problems. There are five kinds of solution listed in this diagram, which are further 
explained in the following sections: 

� Tuning the max heap 
� Tuning Xk/Xp 
� Identifying by swprofiler 
� Tuning the cache size 
� Performing the heap dump 

Figure 24-2   Process diagram for memory analysis methodology

24.3.1  Gather verbose Garbage Collection logs

To monitor the usage of JVM memory, get JVM verbose Garbage Collection logs 
from WebSphere Application Server (that is, native_stdout.log or 
native_stderr.log under the WebSphere Application Server Installation 
dir/profiles/default/logs/server1 directory). The default setting of WebSphere 
Application Server does not enable this, but you can enable it using the following 
WebSphere Application Server v6.0 example:

1. Open the WebSphere Application Server administration site by typing 
http://hostname:port/ibm/console. The port is the number of the HTTP 
administrative port, which is 9060 by default. Type an ID (any ID without a 
password) and log in to it.

2. Select Servers → Application servers → server1 → Java and Process 
Management → Process Definition → Java Virtual Machine. 

Fix Memory Problem

Verbose GC
provided?

Ask for
verbose GC

no

Free space
declining?

yes

Growing AF’s? no

no

Perform
Heap Dump

Tune cache
size

yes

Is cache
taking

too much?

yes

yes

Fragmentation?
Frequent GC?

nonoGC duration
High?

yes

Tune Max
Heap

yes

Tune Xk/XpStill
fragmented?

no

Large object
allocations?

yes Identify via
swprofiler

no

no
Done

Fragmentation
cannot be
removed

yes

 

 

 

 

528 WebSphere Commerce High Availability and Performance Solutions



3. Select Verbose garbage collection, as shown in Figure 24-3. 

4. Click Apply and click Save at the top of this page. 

5. Restart WebSphere Application Server. 

Figure 24-3   Enable verbose GC in WebSphere Application Server V6

After restarting WebSphere Application Server, you see the verbose GC output 
in native_stdout.log or native_stderr.log.

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 529



24.3.2  Analyzing verbose GC logs

To analyze memory problems in the application server, the first step is to gather 
GC information. You need a tool to analyze this information.

There are many tools for verbose GC log analysis, such as Tivoli Performance 
Viewer, Dump JVM (DMPJVM), and the WebSphere Resource Analyzer. These 
tools can abstract useful information, and illustrate the trend of JVM heap size 
usage over time. 

After you analyze your native_stdout.log or native_stderr.log, you should 
generate charts with the following information: 

� Occupancy (MB) 
� Allocation rate (KBps) 
� Total GC pause time (ms) 
� Mark and sweep time (ms) 
� Compact time (ms) 
� GC cycle length and distribution (ms) 
� Free space after GC (MB) 
� Free space before AF (allocation failure) (MB) 
� Size of request that caused AF (bytes) 

Among these charts, some are helpful in monitoring the effects of GC and 
detecting many problems. You can use GC Cycle length and distribution to 
analyze GC frequency and distribution, Free Space after GC to analyze memory 
leak, and Free Space before AF and Size of Request that caused AF to analyze 
fragmentation or large objects. Other charts can also assist in the analysis.

 

 

 

 

530 WebSphere Commerce High Availability and Performance Solutions



Identifying memory leaks
Figure 24-4 and Figure 24-5 on page 532 show some examples of free space 
after GC. In a normal Free Space after GC graph, where the application is using 
the Java heap properly, the red line should be approximately on a horizontal line, 
as in Figure 24-4. In Figure 24-5 on page 532, the declining red line means that 
the free space available to allocate is decreasing. If you suspect a memory 
problem, continue running the test until an OutOfMemory exception occurs 
because some downward trends in free space will stabilize after a period of time. 
This helps you to get better support from WebSphere Application Server and the 
JDK if the problem is related to or the JDK.

Figure 24-4   Example of normal Free Space after GC chart

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 531



Figure 24-5   Example of Free Space after GC chart with problem

Identifying memory fragmentation
If there is a memory problem, but no reduction in free space after GC, check the 
charts for “Free Space Before AF” and “Size of Request that caused AF”. AF 
means that an object needs heap space, but there is not enough contiguous 
space available in the JVM heap for it. Generally, AF occurs when the JVM heap 
is used up. However, AF also occurs if all the free space is fragmented, so that 
there is no contiguous space for this object. This problem is greatly magnified if 
there are large object allocations within the application because it becomes 
unlikely for the heap to have large contiguous space for these large objects. 
“Free Space before AF” means the size of free space when AF occurs. This 
space should be a small value because the heap size is nearly used up when AF 
occurs. Therefore, the red line is always near the bottom of the chart. Figure 24-6 
on page 533 shows normal usage without fragmentation problems. 

Severe fragmentation causes frequent GC cycles, and thus performance 
degradation. Rising GC frequency is another indicator of fragmentation.

 

 

 

 

532 WebSphere Commerce High Availability and Performance Solutions



Figure 24-6   Normal “Free Space before AF” chart

24.3.3  Option 1: Tune max heap size to optimize GC frequency

If the free space after GC does not decline, check the GC cycle length and 
distribution, and the total GC pause time. If the time since the last AF in “GC 
cycle length and distribution” is not too small, but the complete time in “Total GC 
Pause Time” is high, it means that GC is not very frequent and GC duration is 
very high. The duration of each GC cycle should be monitored and not exceed 10 
seconds, except for a compaction occurring within the cycle. In this situation, the 
heap is probably too large for the application and GC takes a long time to clean 
up objects in this large heap, so reduce the maximum heap size. In the other 
cases where GC frequency is too high, the heap is probably too small for the 
application and GC needs to run frequently, so increase the maximum heap size.

To tune the JVM max heap size: 

1. Open the WebSphere Application Server administrative console, 
http://hostname:port/ibm/console, and log in. 

2. Expand Servers → Application servers → server1 → Java and Process 
Management → Process Definition → Java Virtual Machine. 

3. Change the max heap size to a larger value. 

4. Click Apply and click Save at the top of this page. 

5. Restart WebSphere Application Server. 

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 533



6. Try your test case again and see if the problem disappears. 

24.3.4  Tactic 2: Tune -Xk and -Xp to minimize fragmentation

If the free space after GC does not decline, but the time since the last AF in the 
“GC cycle length and distribution” is always small, there might be some large 
objects or heap fragmentations. You can try to tune the Xk/Xp parameters to 
remove most of the fragmentations.

kCluster, pCluster, and fragmentation
Java objects located in the Java heap are usually mobile. That is, the garbage 
collector can move them around if it decides to re-sequence the heap. Some 
objects, however, cannot be moved either permanently or temporarily. Such 
immovable objects are known as pinned objects or dosed objects. Pinned and 
dosed objects are the immovable objects on the Java heap. GC does not move 
these objects during compaction. These are the major cause of heap 
fragmentation. 

All objects that are referenced from JNI to call external programs are pinned. Use 
of JDBC-2 drivers is a case in point. All objects on the heap that are referenced 
from the thread stacks are dosed.

In the Java SDK Release 1.3.1, Service Refresh 7 and later, the garbage 
collector allocates what is called a kCluster as the first region at the bottom of the 
heap. A kCluster is an area of storage that is used exclusively for class blocks. It 
is large enough to hold 1280 entries and each class block is 256 bytes long.

The GC then allocates a pCluster as the second object on the heap. A pCluster 
is an area of storage that is used to allocate any pinned objects. It is 16 KB long. 

When the kCluster is full, the GC allocates class blocks in the pCluster. When 
the pCluster is full, the GC allocates a new pCluster of 2 KB. Because this new 
pCluster can be allocated anywhere in the heap and must be pinned, it can lead 
to fragmentation problems. 

How fragmentation occurs
The pinned objects effectively deny the GC the ability to combine free space 
during heap compaction. This can result in a heap that contains a lot of free 

Note: i5/OS® should have no maximum heap size according to the System 
i™ Tuning Guide because the allocation model is different from other 
platforms. After it is set to unlimited, it may take a couple of days to stabilize at 
3 GB.

 

 

 

 

534 WebSphere Commerce High Availability and Performance Solutions



space but in relatively small, discrete amounts, so that an allocation that appears 
to be well below the total free heap space fails. When the request fails, we need 
to run a full GC compaction to free up memory. During the compaction, 
processing in the JVM comes to a halt. The more frequently we run compactions, 
the larger the degradation of performance.

Figure 24-7   Heap fragmentation causes allocation failures (AF)

Pinned/dosed objects

Live objects

Free memory

x x x x x

Some
allocation
request

Fragmented heap causes allocation failure! No large enough contiguous block of memory to allocate.

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 535



How to avoid fragmentation
Java SDK Release 1.3.1 at SR7, and later, provides command-line options to 
specify the size of the JVM kCluster and pCluster regions. Refer to Table 24-1 for 
a summary of the switches. For additional information see the IBM Java 
technology Web page Diagnosis Documentation, which has a section on 
garbage collection and performance tuning. The Web address is:

http://www.ibm.com/developerworks/java/jdk/diagnosis/142.html

Table 24-1   JVM kCluster and pCluster sizing switches

Set the initial sizes of the clusters large enough to help avoid fragmentation 
issues occurring on your Web site. It is not unusual in a large Java application, 
such as WebSphere Application Server, that the default kCluster space might not 
be sufficient to allocate all class blocks. 

In Example 24-1, the pinned size valuec(4265) and classes size value (3955) are 
about the right size needed for the -Xk parameter. However, we recommend that 
you add 10% to the reported value (3955).

Example 24-1   Sample garbage collection output using -verbosegc switch

<GC(VFY-SUM): pinned=4265(classes=3955/freeclasses=0) dosed=10388 
movable=1233792 free=5658>

JVM
region

JVM
switch

kCluster -Xk 

pCluster 
overflowsize

-Xp sz,ovfl The -Xp switch has two parameters:
sz = the pCluster size parameter in KB
ovfl = the overflow size parameter in KB

 

 

 

 

536 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/java/jdk/diagnosis/142.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/142.html


In the preceding example, -Xk4200 is probably a reasonable setting. The 
difference between pinned (=4265) and classes (=3955) provides a guide for the 
initial size of pCluster. However, because each object might be a different size, it 
is difficult to predict the requirements for the pCluster and pCluster overflow 
options.

Figure 24-8   By tuning kCluster (Xk) and pCluster (Xp) size, fragmentation can be 
avoided

Configuring the kCluster
Set -Xk to handle objects up to the specified size using the -Xk option:

-Xk maxNumClass

Here, maxNumClass specifies the maximum number of classes that the kCluster 
can contain. 

-Xk instructs the JVM to allocate space for maxNumClass class blocks in 
kCluster. The GC trace data obtained by setting -Xtgc2 can help provide a guide 
for the optimum value of the maxNumClasses parameter. You must keep -Xtgc2 
enabled until memory fragmentation is satisfactory.

Configuring the pCluster
Specify the pCluster and pCluster overflow sizes using the -Xp command-line 
option:

-Xp sizeClusterKB[,sizeOverflowKB]

Pinned/dosed objects

Live objects

Free memory

Large enough Xk/Xp size will not cause this problem but pre-allocating heap for pinned objects

Some
allocation
request

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 537



Here, sizeClusterKB specifies the size of the initial pCluster in KB and 
sizeOverflowKB optionally specifies the size of overflow (subsequent) pClusters 
in KB. The default values of sizeCluster and sizeOverflow are 16 KB and 2 KB, 
respectively. If your application suffers from heap fragmentation, turn on the GC 
trace (-Xtgc2) and specify the -Xk option. If the problem persists, experiment with 
higher initial pCluster settings and overflow pCluster sizes. 

Setting Xk and Xp values in WebSphere Administration 
Console

Figure 24-9 is an example of setting Xk and Xp, which specifies -Xk22000 
-Xp64k,16k in generic JVM arguments. If the problem persists, experiment with 
higher initial pCluster settings and overflow pCluster sizes. After this tuning, if 
there are fragmentations left, you can suspect large object problems.

Figure 24-9   Tuning Xp/Xk parameters in WebSphere Administrative console

 

 

 

 

538 WebSphere Commerce High Availability and Performance Solutions



24.3.5  Tactic 4: identifying by swprofiler

There are two situations for which you can suspect that unusual large objects 
exist. One is if, after tuning Xk and Xp parameters, there are still fragmentation 
problems. In this situation, the free space before AF has a large value, and stays 
at a high level, as shown in Figure 24-10. The free space is even larger than 
500 MB when AF occurs. In this case, suspect some unusual large objects. 

Figure 24-10   Large free space when AF occurs

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 539



In another situation, the free space after GC is declining. The AF request space 
is not only large, but also growing, as shown in Figure 24-11. In this case, you 
can also suspect problems associated with memory allocations for large objects.

Figure 24-11   Free space after GC declining with AF request space growing

To identify the large object problem, you to use the swprofiler tool. This tool helps 
you print the stack information of an object by setting the allocation limit and 
depth. To use this tool: 

1. Download the profiler.zip file and unzip it. Note that with the later version of 
the JDK, a built-in function has been created to replace the use of the 

 

 

 

 

540 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/apps/download/index.jsp?filename=profiler.zip&method=http&contentid=236623
http://www.ibm.com/developerworks/apps/download/index.jsp?filename=profiler.zip&method=http&contentid=236623
http://www.ibm.com/developerworks/apps/download/index.jsp?filename=profiler.zip&method=http&contentid=236623
http://www.ibm.com/developerworks/apps/download/index.jsp?filename=profiler.zip&method=http&contentid=236623
http://www.ibm.com/developerworks/apps/download/index.jsp?filename=profiler.zip&method=http&contentid=236623


swprofile. For details, see Technote “How to identify the Java stack of a 
thread making an allocation request larger than a certain size.” 

2. Get the proper lib file from the unzipped folder, and copy it to the bin path 
under the WebSphere Application Server installation folder. For example, 
copy this file to WAS_Home\java\jre\bin. 

3. For an AIX, Linux, Linux on zSeries, or Windows platform, type -Xrunswprof 
in the Generic JVM arguments field in the WebSphere Application Server 
administrative console. If your platform is Solaris, this command is 
-Xrunallocprof. 

4. Restart WebSphere Application Server. 

You see information about the swprofiler in native_stdout.log or native_stderr.log 
after restarting WebSphere Application Server, such as in Example 24-2.

Example 24-2   Confirmation of profiler starting up in the log

Swprofiler loaded OK
Allocation limit: XXXX, Depth: YYY

You can try to configure this allocation limit and depth. After that, when the JVM 
needs to allocate an object that requires space larger than the allocation limit, the 
tool records this allocation in the stderr log. In WebSphere Application Server V6, 
to set the limit and depth values: 

1. Open the WebSphere Application Server administrative console, http:// 
hostname:port/ibm/console, and log in. 

2. Expand Servers → Application servers → server1 → Java and Process 
Management → Process Definition → Custom Properties. 

3. Click New and add two pairs of properties and values (Example 24-3).

Example 24-3   Sample values for allocation limit and allocation depth

ALLOC_LIMIT 600000
ALLOC_DEPTH 10

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 541

http://www.ibm.com/developerworks/apps/download/index.jsp?filename=profiler.zip&method=http&contentid=236623


4. Save your changes and restart the server. 

After setting the allocation limit and depth (10 levels of thread stack in this 
example), you see the information about the allocation stack printed in the 
stderr log, as in Example 24-4.

Example 24-4   Sample allocation request 

<AF[591]: completed in 106 ms>
Large object allocated: size 22616428
at testalloc in class com/test/OOMTest 21616424
at service in class javax/servlet/http/HttpServlet

The final step is to locate the suspect large object by finding Large objects in 
native_stderr.log. If your problem is with growing objects, as illustrated in 
Figure 24-12, find and fix objects with increasing size. After fixing the large object 
problems, confirm whether the new Free Space after GC, Free Space before AF, 
and AF Request Size graphs are normal. It is important to know that you cannot 
remove the fragmentation. You can only reduce or minimize it to a degree. 

Figure 24-12   Free space before AF improves after removing suspected large objects

 

 

 

 

542 WebSphere Commerce High Availability and Performance Solutions



24.3.6  Tactic 4: tuning the cache size

If the free space after GC declines with no growing AF, then most likely cache 
tuning is causing the memory problems. Caching does not necessarily mean 
DynaCache. It includes other types of cache that are being used. One solution is 
reducing the in-memory cache size and letting the overflow entries use the disk 
cache if possible. 

Sometimes an excessive number of cache objects look like a memory leak since 
the cache grows as the application receives an increasing load. Customers and 
testers need to find a stabilization point where the system does not generate 
OutOfMemory errors due to too many cached objects. Tune the cache size 
according to how much heap size is being used. In Figure 24-13, the example 
shows an OutOfMemory exception. After further examination, you see that the 
cached page is 60–100 KB in size and the number of cache entries is set to 
5000. Therefore, half of this 1 GB heap is allocated to the cache.

Figure 24-13   Free space reaching zero because of increasing cache size

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 543



In most cases, you can adjust the DynaCache size to eliminate such problems. 
To tune the DynaCache size: 

1. Log in to the WebSphere Application Server administrative console. 

2. Expand Servers → Application servers → server1 → Container Services 
→ Dynamic Cache Service → Cache size. 

Note: A quick way to rule out caching, such a Dynamic Caching, concerns 
that may work for you is to try turning-off Dynamic Caching altogether, to force 
disk caching, or to keep all cached objects in memory. The behavior of your 
application under such circumstances may reveal whether caching policies or 
disk offload may be contributing to your caching concerns. 

Note, however, that this trial-and-error approach may change your 
application’s error path and thus deviate from your error-causing scenarios.

 

 

 

 

544 WebSphere Commerce High Availability and Performance Solutions



3. Set the value of the cache size that you want, as shown in Figure 24-14. 

4. Save your changes and restart the application server. 

Figure 24-14   Tuning the DynaCache size

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 545



Figure 24-15 shows the memory usage of the same test case after tuning the 
number of cache entries to 3000, and enabling the disk offload to let the overflow 
entries use the disk cache. The application has stabilized at 100 MB free space 
in the heap after three times the duration of the first test where the OutOfMemory 
exception was encountered. From Figure 24-15, you can see at the beginning 
the cache is warming up, causing a drop in free space. However, towards the end 
of the free space, the cache is stabilizing, which means that it is now fully 
warmed.

Figure 24-15   Free space after reducing cache size

24.3.7  Tactic 5: performing the heap dump

If all the charts are normal except “Free Space after GC declining,” suspect a 
memory leak. In this situation, we recommend performing a heap dump.

There are some tools that can help you perform this analysis. We used IBM 
HeapDump, a utility shipped with the IBM JDK. It lets you dump all the living 
objects in the Java heap into a text file called heapdump. This tool analyzes the 
memory usage of every Java object. This is a step to find which of them are 
consuming JVM space.

 

 

 

 

546 WebSphere Commerce High Availability and Performance Solutions



Here is an example of setting up the heapdump in WebSphere Application 
Server v6.0. To configure IBM_HeapDump, add the name and value pairs in the 
WebSphere Application Server administrative console, as shown in 
Figure 24-16. 

Figure 24-16   Name and value pairs

To do this: 

1. In the administrative console, open Servers → Application Servers → 
server_name → Java and Process Management → Process Definition → 
Environment Entries → New. From there, you can set these name-value 
pairs. This setting is specific for WebSphere Application Server v6.0. If you do 
not set the IBM_HEAPDUMPDIR, the default output directory is the root 
directory of your application server. 

2. Save your modification and restart the application server. Record the JVM 
PID of your application server process. 

3. At the time when you want to collect a heapdump, you can signal it by running 
kill -3 JVM_PID. This generates files named heapdump.date.time.pid.txt and 
javacore.date.time.pid.txt under your IBM_HEAPDUMPDIR. This tool signals 
multiple heapdump points at the point after a memory leak occurs. This is 
important to analyze the root cause of the leak. 

The commands for generating the heapdump file are different on different 
operating systems: 

� On Solaris, use:

kill -HUP JVM_PID

� On most UNIX platforms:

use kill -3 JVM_PID

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 547



� On a Windows system, there is a sequence of commands that causes a 
heapdump, as shown in Example 24-5.

Example 24-5   Forcing heap dump on Windows system

WAS_HOME\profiles\instance_name\bin\wsadmin.bat
wsadmin>set jvm [$AdminControl completeObjectName  type=JVM,process=server1,*]
wsadmin>$AdminControl invoke $jvm dumpThreads

With the generated heapdump and javacore files, you can analyze what caused 
this memory leak problem. Various analysis tools exist to help with this 
investigation. One useful tool is the Memory Dump Diagnostic for Java tool. To 
acquire you must download the IBM Support Assistant from the following Web 
site and perform the following steps:

http://www-306.ibm.com/software/support/isa/

When the heap dump is available, run the Memory Dump Diagnostic for Java 
tool:

1. Start IBM Support Assistant.
2. In IBM Support Assistant, select the Tools tab.
3. On the left side, click WebSphere 6.1.
4. On the right side, click Memory Dump Diagnostic for Java.

The Memory Dump Diagnostic tool displays a list of leak candidates after 
analyzing the heapdump files. This list contains the suspicious object paths, as 
shown in Figure 24-17.

Figure 24-17   Example of Memory Dump Diagnostic analysis result

 

 

 

 

548 WebSphere Commerce High Availability and Performance Solutions

http://www-306.ibm.com/software/support/isa/


24.4  Solving throughput and response time problems

This section focuses on the analysis of throughput problems for WebSphere 
Commerce applications and provides guidelines that have been proven to be 
effective and efficient from our work experience. Here, we also describe a 
general methodology for diagnosing WebSphere throughput degradation 
problems. It also provides suggestions on how to solve them to improve 
performance. It contains three main sections: 

� How to identify throughput problems in a performance test: This section 
introduces the main indicators of throughput degradation found in 
performance testing. 

� How to analyze and solve throughput problems: This section introduces a 
general methodology on how to deal with throughput degradation, explains 
the detailed working process of analyzing throughput degradation, and 
provides possible solutions. 

� Example of gradual throughput degradation (GTD) analysis and solution: This 
section takes you through a GTD example. 

24.4.1  Identifying throughput problems in performance testing

In performance testing, testers may encounter throughput or response time 
problems that seriously impact the application's performance. Identifying the 
throughput degradation problems and analyzing them to come up with the 
corresponding solution is an important task for WebSphere Commerce 
application developers and testers. With these throughput degradation problems 
solved, the performance of the WebSphere application improves significantly.

� Lower throughput or higher response times

This refers to throughput being lower than the required target or the response 
time being higher than the target. Code change, performance tuning, or 
hardware scalability may be able to increase the performance to your desired 
target.

� Throughput or response time degradation

This behavior is similar to lower throughput or higher response time, as 
mentioned above, except that there is a degradation or regression compared 
to a certain baseline established in the past. The baseline could be on 
another release of some product in your software stack or on another code 
release. Again, code change, performance tuning, or hardware scalability 
may be able to increase the performance to your desired target. In this case 
you have another tactic for troubleshooting, and that is the comparison with 
the previous test execution.

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 549



� Gradual throughput (or response time) degradation (GTD)

This is a systemic, and potentially complex, problem that you may encounter 
in performance testing. The main problem is that during the test interval (say, 
3 hours), the throughput decreases gradually, or the response time gets 
longer and longer, and this trend does not stabalize at any acceptable level. 
You can easily find this trend in your test report. If the downward slope is not 
significant then you may have to either stress your system more or let the test 
run for a longer duration to observe a noticeable depreciation.

Figure 24-18   Throughput degradation problems in the stress test tool report

24.4.2  Analyzing and solving throughput problems

This section summarizes our throughput analysis methodology, and then gives a 
detailed working process of how to analyze and solve the throughput 
degradation problems.

Throughput analysis methodology
The main causes of throughput degradation can be anything from code issues, 
database issues, configuration issues, to test data or method issues. We can use 
test reports to identify throughput degradation easily, but finding its root cause 
usually requires thorough investigation. 

Here we summarize a throughput analysis methodology: 

� The methodology does not cover all database problems. Generally, database 
problems can refer to any bottleneck due to database, including SQL queries, 
database tuning parameters, indexing issues, and data distribution problems. 

 

 

 

 

550 WebSphere Commerce High Availability and Performance Solutions



� Figure 24-19 assumes that a previous performance baseline has been 
established. To set a throughput baseline for a test case, and if the scenario 
has been tested in a previous release or version of the site, we often use its 
previous result as our baseline. If the scenario is new, we often use the final 
actual test result in the new release to set up our baseline for future 
comparison. 

� In Figure 24-19, divide and conquer means running with smaller scenarios, 
such as home page only, logon only, and browse only, to isolate the 
problematic portion of the scenario, rather than investigating the whole 
end-to-end run. 

� Cost/SQL is the execution cost per SQL query. Fetch time is not recorded in 
execution costs. 

� Access plans can change based on accumulated data. You can use DB2 
Explain utilities to find more clues. 

Figure 24-19 is the recommended scheme for throughput analysis. For a detailed 
description of each step, refer to the section below, ““Throughput degradation 
analysis and solution” on page 552.

Figure 24-19   Throughput analysis methodology

Fix throughput problem

All cmds
degraded?

Identify cmd &
Use profiler

no

yes

Exists after
app server

restart?

Non-DB problem,
memory problem?

no

yes

Runstats
ran?

Runstatsno

yes

DB tunings
done?

Tune Buffpools/
SortHeap/Locks

/etc
no

Data evenly
Distributed?Fix data

yes

no yesGradual
degradation?

Divide &
Conquer

yes

no

Analyze top
SQL’s (# + costs)

Take multiple
snapshots

Cost/SQL
or #SQL
growing?

Rows read /
exec growing?

yes

Purge data

no

yes

Tune index

no

Explain
access plan

no SQL tuning
done?

Scale hardware

yes

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 551



Throughput degradation analysis and solution
When encountering a throughput problem in performance testing, follow these 
steps to analyze and solve the problem. First, we should identify whether the 
problem is a low throughput problem, a throughput degradation problem, or a 
GTD problem. The main identification method is to check whether there is a 
downward trend for throughput charts in the test reports, or an upward trend for 
the response time during the test. If so, it is a gradual throughput degradation 
problem, as shown in Figure 24-18 on page 550. Otherwise, it is a low 
throughput problem, which may or may not be solved by performance tuning 
alone, and you may need to scale your hardware. 

You can start analyzing the problem using this detailed process: 

1. Check to see whether all WebSphere application commands degrade when 
compared to the baseline result. You can do this by checking the average 
response time of all the commands in our test report. If only certain 
commands are slow, it usually means a design problem or code issue, and 
you can use the RAD profiler or an equivalent Java profiler to pinpoint the 
culprit in the code.

2. Check to see whether throughput degradation exists after restarting 
WebSphere Application Server. If the problem is resolved after a server 
restart, it probably relates to a non-database-specific problem. The may be a 
memory problem, such as memory leak, heap fragmentation, or large object 
allocation. In some cases, the problem may be caused by a WebSphere 
Application Server defect, in which case you need to involve its service team. 
However, if you cannot solve the problem by restarting the server, go to step 
3 to continue the analysis. 

3. Check to see whether the database has been optimized. For DB2, check 
whether runstats has been run on the DB server. If not, start runstats. 
Runstats is important to improve DB2 performance when the data volume is 
large or the system has been running for a long time. Runstats can also help 
to optimize the DB2 access plan, which makes DB2 more efficient. For 
Oracle, you can optimize database performance with the following command, 
where you need to provide your schema name: 

execute dbms_utility.analyze_schema ('schema_name', 'COMPUTE'). 

This article mainly uses DB2 and runstats as our example. 

4. Check to see whether database tuning has been done. If not, try to tune DB2 
parameters. The available tuning objectives include bufferpools, sortheap, 
and locks. If the problem persists after DB tuning, there are two possible 
problems: 

– If the throughput is not gradual degradation, examine the DB2 snapshot 
file to analyze the status of the top SQL queries (the number of executions 
and costs of each query), and to find which query is causing the problem. 

 

 

 

 

552 WebSphere Commerce High Availability and Performance Solutions



– If the throughput is a gradual degradation (the focus of this article), go to 
step 5 to continue the analysis. 

5. Check to see whether the data is evenly distributed. If not, fix the data 
problem. Unevenly distributed data is created by improper warming up or 
unbalanced operation during the test. For example, the tester uses some 
fixed users to place an order in the warm-up, which creates thousands of 
orders related to these users in the database. On the other hand, if the tester 
only uses some fixed users to place orders in the formal testing, the 
corresponding data will accumulate. This makes DB2 queries use table scans 
instead of index scans and degrades database performance. The better 
method is to omit the warm-up users from the formal test and select the 
random users from the bigger user scale. For example, select 20 users 
randomly from 400 users to do both warm-up and formal testing. 

6. For divide and conquer, try to use the smallest scenarios to reproduce the 
problem. This can isolate the scale of the possible causes of throughput 
degradation. To accomplish this, divide the test scenarios into different 
groups and test separately, find the groups that caused throughput 
degradation, then divide those groups again and again until you narrow down 
to the minimum scenario group that caused the problem. 

7. Run the scenarios confirmed in step 6 for a long time and take multiple 
snapshots during the test. For example, take a 10-hour snapshot separately 
in the first and second day, and then compare these two snapshots. 

8. Compare multiple snapshots to see whether the cost/SQL and execution 
number of SQL queries are growing. If yes, purge the data and tune the 
index, if needed. Through comparing these files, you can identify the 
top-growing cost queries. The cost can be one of the following metrics: 
execution time per query execution, user CPU time per query execution, and 
system CPU time per query execution. Note that other costs such as fetch 
time are not included in the execution time reported by the snapshot. Notice 
that you must search the same SQL query in multiple snapshots to find what 
is growing. 

9. If the cost/SQL entries are all constant, compare the snapshots to see 
whether rows read/execution is growing for some SQL queries. If so, try to 
tune the corresponding index to improve the performance. If not, analyze the 
access plan (for example, using DB2 Explain utilities) to see which can be 
amended. 

10.In steps 8 and 9, you can identify the top queries that have growing cost/SQL 
or growing rows read per execution. Usually, these two characteristics of 
identified queries are the main indicators for performance degradation. To 
solve these problems, drop the extraneous index, add a new index, or 
periodically clean out the large volume of obsolete data in some tables. If 

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 553



there are no growing cost SQL queries in the snapshot, analyze the access 
plan to see which can be amended based on the accumulated data.

Figure 24-20 is an example that reflects the statistics of rows read/execution 
per SQL through comparing snapshots. We made this chart by comparing 
two snapshots in a four-day test. One is a 10-hour snapshot taken on day 2 
and the other is a 10-hour snapshot taken on day 4. The numbers in red 
mean that corresponding queries have growing costs and need to be 
amended.

.

Figure 24-20   Example of identifying growing cost SQL queries

Example of throughput degradation analysis
This section introduces an example of throughput degradation that we 
encountered while testing a sample WebSphere Commerce application. The test 
was run on an AIX platform in a 1-node test environment (for example, DB2, IBM 
HTTP Server, and WebSphere Application Server were installed on the same 
machine). This throughput degradation problem could be observed in a 3-hour 
stress comparison test. Based on the test result from the previous code release, 
we set the throughput baseline at 11,580 transactions per hour and estimated a 
10% performance improvement in the new release. The test target of this case 
was set at 12,738 transactions per hour. 

 

 

 

 

554 WebSphere Commerce High Availability and Performance Solutions



Finding throughput degradation
In the first run, we checked the report of our stress test tool. The throughput 
curve looked fairly straight and the degradation was not obvious at first. The rate 
of degradation was around 5% per hour. However, with such a degradation rate, 
in a few days the application cannot handle any load with reasonable response 
times. Figure 24-21 shows the throughput chart in the stress test report.

Figure 24-21   Find throughput degradation in stress test tool report

This was a gradual throughput degradation (GTD) problem. We followed steps 1 
to 3 to analyze the problem and got the following results: 

� All WebSphere Commerce commands were degraded, especially commands 
corresponding to orders. 

� When analyzing native_stderr.log, we found that the GC cycles were fine, and 
there were no memory issues, such as memory leak, heap fragmentation, 
and large object allocation. 

� After restarting the applications server, the throughput degradation still 
existed. 

� Runstats and common DB2 tuning had been done. 

In step 4, we doubled SORTHEAP to 2048 to avoid sort overflows because some 
queries needed to create temporary tables. 

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 555



In step 5, when checking the database we found some data issues. For example, 
after running this query, select member_id, count(*) from orders group by 
member_id having count(*) > 50, we got the result shown in Figure 24-22.

Figure 24-22   Data issue found in the database

The data in Figure 24-23 on page 557 indicates that four users had more orders 
than other users. After reviewing our test steps, we found the causes of this 
problem were: 

� In the warm-up, we often used four fixed users to run scenarios. 

� There were 200 users in the database, but only 20 users were selected to run 
scenarios in the formal test. 

The above two factors made the data distribution uneven in the database, so our 
solution was in two parts: 

� Increase the number of users from 200 to 400. 

� In the warm-up and formal test, randomly select each virtual user from 20 
non-overlapped users. After these changes, the data issues did not occur. 

In step 6, we narrowed the scenarios to order the shopping flow.

In step 7, we kept the test running for four days and took two 10-hour snapshots 
separately on day 2 and day 4.

In step 8, after comparing the two snapshots, we found no growing 
costs/execution for any query.

 

 

 

 

556 WebSphere Commerce High Availability and Performance Solutions



In step 9, after comparing the two snapshots, we identified that the top SQL 
queries had growing rows read per execution, shown in red in Figure 24-23.

Figure 24-23   Top SQL with growing rows read per execution

Identifying these growing SQLs gave us clues to the solution of this throughput 
degradation problem. Throughput had increased based on these events: 

� We dropped extraneous index MEMBER_ID+TYPE+STOREENT_ID on the 
ORDERS table, so queries will use the correct index 
MEMBER_ID+STATUS+STOREENT_ID. 

� We created the CHECKED index for the BUSEVENT table. 

� We periodically cleaned the CTXMGMT/BUSEVENT table in the test. 

Figure 24-24 shows the same SQL execution status after we applied the 
modifications just mentioned. Most of the growing rows read per execution have 
been solved. 

Figure 24-24   Growing rows read per execution solved

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 557



After fixing the growing SQL costs, the throughput seemed stable for the first 
three hours, as shown in Figure 24-25.

Figure 24-25   Throughput was stable in the first three hours

However, the degradation still existed in the long run, as shown in Figure 24-26. 

Figure 24-26   Throughput degraded in the long run

 

 

 

 

558 WebSphere Commerce High Availability and Performance Solutions



Then we analyzed the access plan and decided to do runstats and rebind the 
database during a long-running test. Figure 24-27 and Figure 24-28 on page 560 
show how runstats helped to optimize the access plan. In this example, access 
plan overall costs do not include the actual fetch time. 

Figure 24-27   Access plan before runstats

 

 

 

 

 Chapter 24. Analyzing test results and solving performance problems 559



Figure 24-28   Access plan after runstats

After we did runstats and a rebind of the database in the middle of a long-running 
test, the overall throughput had been stabilized again and the throughput 
degradation problem was solved successfully. Therefore, running runstats and 
rebinding the database should be done regularly to ensure that database 
indexes are not out of date.

 

 

 

 

560 WebSphere Commerce High Availability and Performance Solutions



Part 7 Maintenance

In Part 7, we complete the HA and performance messages conveyed in this book 
by discussing the maintenance of those tier environments that support 
WebSphere Commerce. For example, the maintenance of the:

� Databases
� WebSphere Application Server tier
� Web servers
� Load Balancer

Part 7
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 561



 

 

 

 

562 WebSphere Commerce High Availability and Performance Solutions



Chapter 25. Database maintenance

This chapter discusses the topics related to database maintenance. IBM DB2 
Universal Database has already delivered some useful utilities to help customers 
maintain their database, no matter whether for a test server or a production 
server. Besides that, WebSphere Commerce also deploys essential utilities to 
support High Availability and high performance in the database tier.

25
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 563



25.1  DB2 database maintenance in WebSphere 
Commerce

A WebSphere Commerce site will suffer significant performance degradation if 
the database is not being properly maintained. This section introduces guidelines 
for tasks that are required to maintain a WebSphere Commerce DB2 database. 

25.1.1  DB2 database maintenance utilities

The general DB2 database maintenance flow is shown in Figure 25-1.

Figure 25-1   DB2 general maintenance flow

Runstats
The RUNSTATS command will update the statistics that are used by the 
optimizer when determining access paths to the data. If the statistics are not up 
to date, the system will suffer performance degradation. 

Most WebSphere Commerce sites update statistics on a daily or weekly basis 
(generally over the weekend). You should also consider updating the statistics 
after schema changes or massive update or load (such as refreshing the 
catalog). Remember to run db2rbind after RUNSTATS so that the static 
packages can take advantage of the new statistics.

Runstats

Reorgchk

Rebind (db2rbind )

Runstats

Reg

 

 

 

 

564 WebSphere Commerce High Availability and Performance Solutions



The following SQL statements can be used to identify when the statistics were 
last updated for all the tables and indexes on the database:

db2 "select tabschema, tabname, stats_time from syscat.tables order by 
stats_time asc"
db2 "select indschema, indname, tabschema, tabname, colnames, 
stats_time from syscat.indexes order by stats_time asc"

You might be able to get some output as in Example 25-1.

Example 25-1   Sample database statistics output

DB2INST1 CATENTSHIP 2007-07-11-19.27.18.034540
DB2INST1 CATENTTYPE 2007-07-11-19.27.18.120666
DB2INST1 CATGPCALCD 2007-07-11-19.27.18.185215
DB2INST1 CATGPENREL 2007-07-11-19.27.19.254761
DB2INST1 CATGROUP 2007-07-11-19.27.19.359756
DB2INST1 CATGRPATTR 2007-07-11-19.27.19.554302
DB2INST1 CATGRPDESC 2007-07-11-19.27.19.631565

Depending on the size of your database, you might need to use a finer- grained 
method for updating statistics, such as profiling or sampling. For more 
information, guidelines, and examples, see the topic on the RUNSTATS 
command in the DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com
.ibm.db2.udb.doc/core/r0001980.htm

Or you can refer to the article titled “RUNSTATS in DB2 Universal Database, 
Version 8.2” on the developerWorks Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0412pay/

In general, you should perform RUNSTATS on tables and indexes in the 
following situations:

� After data has been loaded into the database (for example, massload)

� After a table has been reorganized with the REORG utility

� After the table and its indexes have been extensively updated by data 
updates, deletions, and insertions (for example, stage propagation, dbclean)

Reorgchk and Reorg
The REORG command reorganizes a table by compacting information and 
reconstructing the rows to eliminate fragmented data. The REORGCHK utility 
uses different algorithms to find the tables and indexes that need to be 
reorganized. The REORGCHK command will output a table listing all the table 

 

 

 

 

 Chapter 25. Database maintenance 565

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/core/r0001980.htm
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0412pay/


and index objects. An asterisk (*) on the REORG column will indicate that the 
calculated results exceed the set bounds of its corresponding formula, and that 
the table might need to be reorganized.

Unless you use the “CURRENT STATISTICS” specifier, the REORGCHK 
command will update the statistics for all the objects on the database. If you are 
running REORGCHK after RUNSTATS, you can use the “CURRENT 
STATISTICS” specifier to avoid updating the statics twice. You can also omit 
RUNSTATS and have REORGCHK update the statics, but this method provides 
less flexibility.

Once the tables or indexes to be reorganized have been identified using the 
REORGCHK command, the REORG command has to be explicitly invoked for 
each object. DB2 does not offer a way to automatically reorganize all the tables 
or indexes that were identified by REORGCHK.

Table reorganization is commonly performed in any one of the following ways:

� DBA to run REORG for each table identified by REORGCHK 

� Explicitly executing REORG for the tables and indexes that are most likely to 
need a reorganization (for example, the USER table after using dbclean to 
delete guest shoppers) 

� Implementing a script to select the tables or indexes that contain an asterisk 
(*) on the REORG column, and invoke the REORG command for each of 
them (not recommended) 

� Enabling Automatic Reorganization on DB2 8.2 (See below.)

A standard (offline) REORG will lock for write the tables being reorganized. If you 
need to allow updates to the tables, online table reorganization can be used 
instead.

Follow the links in the DB2 Information Center for more information about the 
REORGCHK command and the REORG INDEXES/TABLE command.

Rebind (db2rbind)
Static packages need to be rebound after executing RUNSTATS to make use of 
updated statistics. Packages can be rebound one by one using the REBIND 
command or all at once by using the db2rbind (rebind all packages) command. 
The use of the db2rbind command is as follows: 

db2rbind dbname -l db2rbind.log all

Note: The command will not rebind a package if it is in use.

 

 

 

 

566 WebSphere Commerce High Availability and Performance Solutions



WebSphere Commerce includes 16 out-of-the-box stored procedures that will be 
benefited by the rebind:

� adjustinventory
� allocateitem
� allocbora
� availableinv
� availinvstore
� availradate
� availreceipts
� backorderitem
� currentversion
� deletebackorder
� expectedinv
� getitems
� inventoryallocation
� raallocation
� reverseinventory
� shipitems

The following SQL can be used to identify the last bind date for all the packages 
in the database:

db2 "select pkgschema,pkgname,last_bind_time from syscat.packages order 
by last_bind_time desc”

You may get the output shown in Example 25-2.

Example 25-2   Sample output for checking last bind date for packages

DB2INST1 P7001184 2007-07-11-19.29.24.498032
DB2INST1 P7001131 2007-07-11-19.29.23.996449
DB2INST1 P7001094 2007-07-11-19.29.23.742995
DB2INST1 P7001068 2007-07-11-19.29.23.685187
DB2INST1 P7001032 2007-07-11-19.29.23.318409
DB2INST1 P7001005 2007-07-11-19.29.23.158569
DB2INST1 P7000945 2007-07-11-19.29.22.678456

Note: Automatic Runstats and Reorg are available from DB2 8.2 (8.1.7). 
Since the automatic maintenance feature internally schedules a classic 
reorganization for the table, it locks the table being reorganized for writing. 
Therefore, if you are using automatic maintenance, ensure that the 
maintenance is only scheduled for when the traffic to the site is minimal.

 

 

 

 

 Chapter 25. Database maintenance 567



25.1.2  WebSphere Commerce Database Cleanup utility

Keeping obsolete data affects runtime performance and makes the database 
difficult to manage. In order to keep the database consistent, policies should be 
defined and enforced to remove outdated information from the database. 

WebSphere Commerce includes a Database Cleanup utility that allows you to 
delete objects from the database. You may want to do this if you have changed a 
lot of information in your database and have unused tables or rows.

When the Database Cleanup utility deletes an object, the records in the object's 
tables are deleted to preserve the referential integrity of the database. The 
Database Cleanup utility deletes records in child tables based on the delete rule 
of the referential integrity definition in the database schema. You can set the 
delete rule to on delete cascade, on delete set null, or on delete restrict. If you 
add new tables, ensure that the referential integrity and delete rule is properly 
defined. Otherwise, the Database Cleanup utility cannot work with your new 
tables.

The general approach to implement WebSphere Commerce Database Cleanup 
utility is as shown in Figure 25-2.

Figure 25-2   WC database cleanup utility

Identify the data to be maintained

Define a policy that complies with your business 
requirements

Enforce the policy through scripting

(e.g., users or schstatus tables)

(e.g., how long should completed orders be kept on the database?)

(e.g., use dbclean to delete obsolete data
Add your custom tables to the dbclean utility)

 

 

 

 

568 WebSphere Commerce High Availability and Performance Solutions



The following command can be used to record the cardinality (number of rows) of 
each table. Run this command on a monthly basis and save the output. 
Comparing the current table cardinality with that of previous months will allow 
you to identify those tables that require the most attention and maintenance. 

db2 "EXPORT TO tablecard.csv OF DEL SELECT tabschema, tabname, definer, 
card, fpages FROM syscat.tables WHERE type = 'T' AND (days (current 
date) - days (stats_time)) < 7"

Tips for implementing DBClean:

1. If you are migrating from an existing version of WebSphere Commerce, you 
can run the Database Cleanup utility after your migration. Remember to 
evaluate the types of data on your system and how they affect database 
maintenance. Typically, user and order data can be quite large, resulting in 
large database tables. When you clean the database, this will be time 
consuming since it can fill up your database transaction log files or potentially 
lock database tables when your store is running. 

2. You should only run the Database Cleanup utility on a staging server to clean 
the staglog object. The staging database is different from the production 
database. The staging database only has configuration data without the 
operation data. Deleting configuration data might cause a delete cascade on 
the operation data. When the Stage Propagate utility propagates the deletion 
to the production database, this might cause a cascade delete to the 
operation data (which you want to keep). To clean configuration data, run the 
Database Cleanup utility on the production database. 

3. Depending on the amount of cleanup required for your database, you should 
consider running the DB2 REORGCHK utility prior to running the DBClean to 
improve performance during the cleanup.

Steps for implementing DBClean in WebSphere Commerce
The general steps to implement DBClean in WebSphere Commerce are:

1. Identify table that needs to be cleaned.

The Database Cleanup utility refers to the CLEANCONF table to determine 
which tables and which rows to delete when a particular object and object 
type are specified. The following table describes preconfigured deletion 
scenarios from the CLEANCONF table. You can configure your own deletion 
objects by adding similar rows to the CLEANCONF table.

About the detailed information for database Cleanup utility objects, you can 
refer to the description in Commerce Information Center from this link:

http://publib.boulder.ibm.com/infocenter/wchelp/v5r6m1/index.jsp?topic
=/com.ibm.commerce.admin.doc/refs/rduobjects.htm

2. Discuss the requirements for keeping data.

 

 

 

 

 Chapter 25. Database maintenance 569

http://publib.boulder.ibm.com/infocenter/wchelp/v5r6m1/index.jsp?topic=/com.ibm.commerce.admin.doc/refs/rduobjects.htm


Syntax for DBClean configuration and execution
To add a new configuration to the Database Cleanup utility, use the following 
syntax as a reference. For example, object Obj1 consists of table sample, which 
contains the following columns: columnA, columnB, lastupdate, and columnC. To 
configure the Database Cleanup utility to delete all objects with columnA> 10, 
and where lastupdate is n days ago:

1. Open a DB2 command prompt. 

2. Type the following to configure the Cleanup utility for this table, and add a 
new object named “Ojb1” into cleanconf table.

db2 insert into cleanconf (objectname, type, statement, namearg, 
sequence, daysarg) values ('Obj1', 'obsolete', 'delete from sample 
where columnA > 10 and (days(CURRENT TIMESTAMP)- days(lastupdate)) > 
?', 'no', 1, 'yes')

3. Execute the DBClean utility to clean the records that have been in existence 
for two days from the new table by typing the following:

./dbclean.sh -object o1 -db dbname -dbuser user -type obsolete -days 
2 -loglevel 1 

Performance consideration for DBClean 
DBClean can be tuned to gain performance improvement. The CLEANCONF 
table holds the actual SQL statement that the script references. Sample SQL 
stored in the CLEANCONF table to clean up the objects can be found at this link|:

http://publib.boulder.ibm.com/infocenter/wchelp/v5r6m1/index.jsp?topic=
/com.ibm.commerce.admin.doc/refs/rduobjects.htm

For other objects that can be cleaned up using DBClean, review the list at above 
link. A rule of thumb is to clean up, at the minimum, obsolete tables and objects. 
Some of the cleanup utility objects are:

� Order 
� Address 
� Usertraffic 
� Member 

Note: In the above command, the question mark (?) is replaced by the 
-days parameter from the following command line. The 'no' indicates that 
the name parameter is not used in the statement. The 'yes' indicates that 
the -days parameter is used in the statement. 'obsolete' describes the 
cleanup type for object Obj1. You can use other words, but you must use 
the same word in the -type argument when you invoke the Database 
Cleanup utility.

 

 

 

 

570 WebSphere Commerce High Availability and Performance Solutions

http://publib.boulder.ibm.com/infocenter/wchelp/v5r6m1/index.jsp?topic=/com.ibm.commerce.admin.doc/refs/rduobjects.htm


� Promotion 
� Catalog 
� Cacheivl 
� Scheduler 
� Staging

For more information, see this link about Database cleanup utility objects 
supported by Commerce:

http://publib.boulder.ibm.com/infocenter/wchelp/v5r6m1/index.jsp?topic=
/com.ibm.commerce.admin.doc/refs/rduobjects.htm

For example, if a user wants to delete guest shoppers who have no orders 
associated and who has been in the system for more than 10 days, a new object 
called guest_shopper can be created by inserting the following SQL into the 
CLEANCONF table and calling DBCLEAN on the object (Example 25-3).

Example 25-3   Sample SQL to delete guest shoppers with DBClean

Deletes guest_shopper ids older than 10days **
delete from member
where member_id in (select users_id from users where registertype='G'
and (days(CURRENT TIMESTAMP) - days(lastsession)) >= 10
and (users_id not in (select member_id from orders)) and (users_id > 
0)) 

 

 

 

 

 Chapter 25. Database maintenance 571

http://publib.boulder.ibm.com/infocenter/wchelp/v5r6m1/index.jsp?topic=/com.ibm.commerce.admin.doc/refs/rduobjects.htm


25.1.3  Commerce DB2 database maintenance solution

The recommended Commerce DB2 database maintenance solution is the 
combination of DB2 general database maintenance utilities and the Commerce 
database cleanup utility, as shown in Figure 25-3.

Figure 25-3   Commerce DB2 database maintenance solution

Rebind (db2rbind )Rebind (db2rbind )

DBClean

Runstats

Reg

Reorgchk

Runstats

 

 

 

 

572 WebSphere Commerce High Availability and Performance Solutions



Chapter 26. Maintain and update 
WebSphere Application 
Server tier

While in production, continue to monitor the important parameters that we 
discussed in Chapter 17, “Monitor and tune WebSphere Application Server for 
WebSphere Commerce” on page 375.

In this chapter, we describe how to maintain and update the WebSphere 
Application Server machines in a WebSphere Commerce High Availability 
configuration. We describe actions that need to be taken in order to perform 
hardware upgrades, OS upgrades, product upgrades, fix installations, 
deployment requiring an EAR update, and log maintenance.

We group the types of upgrades into types that do not require a server outage or 
restart, and types that do require an outage. As our application server 
configuration only consists of active nodes, the upgrade types that require a 
server outage are further distinguished according to whether upgraded and not 
yet upgraded servers can be active at the same time (compatible upgrade) or not 
(incompatible upgrade).

26
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 573



26.1  Maintenance not requiring planned outages

There are some maintenance tasks that do not require any application servers to 
be stopped:

� Application server log maintenance
� Deployment of cachespec.xml
� Deployment of new custom code including EJBs and JSPs 
� Deployment of WebSphere Commerce instance configuration file

26.1.1  WebSphere Application Server log maintenance

The following WebSphere Application Server logs should be maintained on a 
regular basis.

FFDC
The first failure data capture (FFDC) feature preserves the information that is 
generated from a processing failure and returns control to the affected engines. 
The captured data is saved in a log file for analyzing the problem. FFDC is 
intended primarily for use by IBM Service. FFDC instantly collects events and 
errors that occur during the WebSphere Application Server runtime. The 
information is captured as it occurs and is written to a log file that can be 
analyzed by an IBM Service representative. The data is uniquely identified for the 
servant region that produced the exception.

If not properly maintained, this log can grow very big, causing you to run out of 
disk space and halting application server processing.

Hence, we recommend that you rotate this log regularly.

You can also configure the property files to automatically purge FFDC logs. The 
FFDC configuration properties files are located in the properties directory under 
the Application Server product installation. You must set the 
ExceptionFileMaximumAge property to the same value in all three files: 
ffdcRun.properties, ffdcStart.properties, and ffdcStop.properties. You can set the 
ExceptionFileMaximumAge property to configure the amount of days between 
purging the FFDC log files. The value of the ExceptionFileMaximumAge property 
must be a positive number. 

Perform the following steps to configure the number of days between the FFDC 
log file purges. The value is in days.

1. Open the ffdcRun.properties file. The file is located in the 
app_server_root/properties directory.

 

 

 

 

574 WebSphere Commerce High Availability and Performance Solutions



2. Change the value for the ExceptionFileMaximumAge property to the number 
of days between the FFDC log file purges. The value of the 
ExceptionFileMaximumAge property must be a positive number. The default 
is seven days. For example, ExceptionFileMaximumAge = 3 sets the default 
time to three days. The FFDC log file is purged after three days. 

3. Save the ffdcRun.properties file and exit. 

4. Repeat the previous steps to modify the ffdcStart.properties and 
ffdcStop.properties files. 

The FFDC file management function now removes the FFDC log files that have 
reached the maximum age and generates a message in the SystemOut.log file.

Garbage collection log (native_stderr.log)
The GC log should be recycled regularly.

SystemOut.log and SystemErr.log
In the SystemOut.log, turn off any custom code tracing.

Change the log file size to a minimum of 5 to 10 MB.

Change the number of historical files to more than 5.

Trace.log
We recommend that this file be turned off on production.

The recommendation is to enable the trace service, but do not configure any 
trace specification strings. If trace is required, turn it on dynamically during 
runtime for a short period of time and turn it off as soon as enough data is 
gathered.

Threaddump and heapdump
Threaddump and heapdump are automatically generated when an 
out-of-memory condition occurs. These files could potentially get very large 
(some heapdumps could reach more than 500 MB in size). 

You should consider redirecting these files to a separate hard drive that has 
sufficient disk space and archive or delete these files once you are done using 
them for problem determination.

 

 

 

 

 Chapter 26. Maintain and update WebSphere Application Server tier 575



26.1.2  Deployment of cachespec.xml

cachespec.xml can be dynamically reloaded at this location:

WC_eardir/Stores.war/WEB-INF

If it is loaded properly, you will see a message in the SystemOut.log similar to 
this:

[5/10/07 15:43:42:438 EDT] 0000000a ConfigManager I   DYNA0047I: 
Successfully loaded cache configuration file 
C:\WebSphere\AppServer60\profiles\demo\installedApps\WC_demo_cell\WC_de
mo.ear\Stores.war\WEB-INF/cachespec.xml.

This is very handy when you want to quickly test any changes made in the 
cachespec.xml without having to restart the application server.

However, this is only the runtime copy of the file on the individual application 
server node. The master copy of the file on deployment manager has not yet 
been updated. Once the file is finalized, you must do a regular deployment of the 
application update in order to synchronize with the master configuration of this 
file on deployment manager. Otherwise, while the master configuration of this file 
is of an older version, an application update is deployed using the normal 
process, your temporary runtime copy of the cachespec.xml will be lost and 
overwritten with the older version.

26.1.3  Rollout update

WebSphere Commerce Version 6 takes advantage of a new feature in 
WebSphere Application Server V6 called rollout update, whereby in a clustered 
environment, an application update request is sent to one node at a time, and 
only when the first node completes its update and comes back online is the 
change repeated on a subsequent node. Hence, this process ensures that at any 
given time during the application update, at least one node remains online and 
actively processing user requests. Because of this new feature, the following 
changes no longer require an outage: any partial application updates such as 
new custom code deployment, store publish, and file updates inside Commerce 
EAR.

Depending on the network speed, the size of the WebSphere Commerce EAR, 
and application server processing power, the rollout update process could take 
some time. Anywhere from fewer than 5 minutes to more than 30 minutes is 
possible.

 

 

 

 

576 WebSphere Commerce High Availability and Performance Solutions



Deployment of new custom code including EJBs and JSPs 
A sample tutorial on how to deploy JSP using a rollout update is found here:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.
commerce.samples.doc/tutorial/tdedeployjsp.htm

Deployment of Commerce instance configuration file
Once the WebSphere Commerce instance configuration file (located in 
WC_installdir /instances/instance_name/xml/instance_name.xml) is changed, 
either manually or through WebSphere Commerce configuration manager, you 
must also ensure that you run the ANT target UpdateEAR target to update the 
runtime configuration with the new configuration file. This process ensures that 
all nodes running the WebSphere Commerce instance place an updated copy of 
the configuration file in the following location:

WAS_profiledir/installedApps/WC_instance_name_cell/WC_instance_name.ear
/xml/config/wc-server.xml

Run ANT script
The UpdateEAR target uses a partial application (.zip) or instance configuration 
file (xml) to update the deployed WebSphere Commerce Enterprise application.

� Prerequisites

The administrative server must be running to run the 
ConfigureCommerceServer target and any subtargets. 

The createInstance.properties file must exist for this Ant target to work. For 
information about generating the properties file, see ANT targets. 

� Required parameters: instance_name 

The name of the WebSphere Commerce instance with which you are working 
(for example, demo). For example:

WC_installdir/bin/config_ant.sh -DinstanceName=instance_name 
UpdateEAR 

26.2  Planned outages

In addition to hardware and OS upgrades, this section describes a few common 
tasks that may require planned outages of the WebSphere Application Server 
tier.

 

 

 

 

 Chapter 26. Maintain and update WebSphere Application Server tier 577

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tdedeployjsp.htm


26.2.1  WebSphere Application Server fix pack/APAR upgrade

When applying WebSphere Application Server fixes, it is required that you stop 
all Java processes associated with Java SDK shipped with WebSphere 
Application Server, the nodeagent process, the deployment manager process, 
and all server processes that belong to serviceable products, such as the IBM 
HTTP Server.

Follow the README for installation details.

26.2.2  WebSphere Commerce fix pack/APAR upgrade

When installing WebSphere Commerce fixes, follow instructions in the fix pack 
installation guide or APAR readme.

You only need to apply the fixes on ONE WebSphere Commerce node—the one 
where you created the WebSphere Commerce instance.

When installing a WebSphere Commerce APAR that requires no update to the 
database, you do not need to stop any servers.

However, when installing the WebSphere Commerce fix pack, a database 
update is also required. You need to stop the application servers to ensure data 
integrity.

 

 

 

 

578 WebSphere Commerce High Availability and Performance Solutions



Chapter 27. Maintain and update Web 
servers

In this chapter we describe how to maintain and update the Web server 
machines in WebSphere Commerce High Availability configurations. We 
describe actions that need to be taken in order to perform hardware upgrades, 
OS upgrades, product upgrades, fix installations, deployment of new static 
content, and log maintenance.

We group the types of upgrades into types that do not require a server outage or 
restart, and types that do require an outage. As our Web server configuration 
only consists of active nodes, the upgrade types that require a server outage are 
further distinguished according to whether upgraded and not yet upgraded 
servers can be active at the same time (compatible upgrade) or not (incompatible 
upgrade).

Each upgrade type requires different preparation and execution processes. Also, 
some upgrades require a certain order of updating the application server tier and 
the Web server tier.

27
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 579



27.1  Maintenance not requiring planned outages

There are some maintenance tasks that do not require any Web server to be 
stopped:

� Web server log maintenance
� Deployment of new static content (if certain prerequisites are met)

27.1.1  Maintain IBM HTTP Server logs

Special care needs to be taken of the log files on a Web server. For IBM HTTP 
Server, there are two types of log files:

� IBM HTTP Server logs (access log and error log)
� IBM HTTP Server Plug-in log

IBM HTTP Server logs (Apache logs)
If you have turned logging on (see 18.1.2, “Access log” on page 394), you need 
to make sure that there is enough disk space for the access and error logs. As 
the amount of information in the access log can grow very large, you should also 
periodically rotate the log files by moving or deleting the existing logs. There are 
two ways of doing this:

� The so-called graceful restart of the server.
� Using log piping to the rotatelogs utility.

Graceful restart
By using a graceful restart, you can instruct IBM HTTP Server to open new log 
files without losing any existing or pending connections from clients. However, in 
order to accomplish this, the server must continue to write to the old log files 
while it finishes serving old requests. Therefore, you need to wait for some time 
after the restart before doing any processing on the log files. A typical scenario 
that simply rotates the logs and compresses the old logs to save space is shown 
in Example 27-1.

Example 27-1   Scripted log rotation and compression

cd WC_Install_Dir/instances/Instance_Name/httplogs
mv access_log access_log.old
mv error_log error_log.old
IHS_Install_Dir/bin/apachectl -k graceful -f 

WC_Install_Dir/instances/Instance_Name/httpconf/httpd.conf
sleep 600
gzip access_log.old error_log.old

 

 

 

 

580 WebSphere Commerce High Availability and Performance Solutions



You may use the cron utility to regularly execute scripts on UNIX systems.

Log piping
The executable IHS_Install_Dir/bin/rotatelogs can be used to rotate the access 
and error logs. To use it, open the httpd.conf file 
(WC_Install_Dir/instances/Instance_Name/httpconf/httpd.conf) and modify the 
CustomLog and ErrorLog directives, as shown in Example 27-2:

Example 27-2   Using log piping

CustomLog “| IHS_Install_Dir/bin/rotatelogs 
WC_Install_Dir/instances/Instance_Name/httplogs/access_log.%Y%m%d 
86400” common
ErrorLog “| IHS_Install_Dir/bin/rotatelogs 
WC_Install_Dir/instances/Instance_Name/httplogs/error_log.%Y%m%d 
86400”

This example would create a new access log every day and append the current 
date to the name, for example, access_log.20070724.

You still need to regularly execute operating system scripts that archive or 
remove the rotated logs, but you do not need to restart the Web server.

IBM HTTP Server Plug-in
In “Update the Web server configuration” on page 176, we have configured the 
plug-in log to be written to the 
WC_Install_Dir/instances/Instance_Name/httplogs/http_plugin.log file. 

Like the access and error logs, the plug-in log can be renamed or moved while 
IBM HTTP Server Plug-in is still writing to the file. IBM HTTP Server Plug-in will 
continue on to writing to the moved file. You may therefore use the graceful 
restart option of IBM HTTP Server to rotate the plug-in log, too (see 
Example 27-1 on page 580).

27.1.2  Deploy new static content

Deploying new versions of your WebSphere Commerce application mostly 
includes updating the static content on the Web servers. Remember that with 
WebSphere Commerce, the Web servers are used only to serve static content 
and to forward requests for dynamic pages to the application servers.

Important: To use the syntax shown in Example 27-2 on page 581 for log 
piping, IBM HTTP Server Version 6.0.2.1 or later is required.

 

 

 

 

 Chapter 27. Maintain and update Web servers 581



Deploying new static content does not require a server outage or restart if the 
following prerequisites are met:

� Old and new versions of the static content must work with both old or new 
versions of the application. If both old and new static content files work with 
the old version of the application, the Web servers should be updated first. If 
both old and new static content files work with the new version of the 
application, the application servers should be updated first. 

If the new static content is incompatible with the old application and the old 
static content is incompatible with the new application, or if the two versions 
of the application must not be used in the same user session, but site 
downtime is not desired, then Web servers and application servers should be 
updated in separate groups, using Web server to application server affinity, 
as described in 27.2.3, “Incompatible upgrades” on page 588.

� No change of content expiration times is required (see Chapter 18, “Monitor 
and tune Web servers” on page 391). 

If a change is required here, but otherwise the first prerequisite is met, you 
may use the graceful restart option to restart the server and apply the new 
expiration times after changing the httpd.conf file.

27.2  Maintenance involving planned outages

Upgrades to the Web server tier may not always be possible without stopping 
one or more Web servers for some time. After explaining a technique called 
quisling for gracefully removing a Web server from the Load Balancer cluster 
(see 27.2.1, “Quiescing a Web server” on page 583), we look at different types of 
upgrades requiring server outage:

� Compatible upgrades, where an updated Web server can be restarted while 
non-updated Web servers are still online (See 27.2.2, “Compatible upgrades” 
on page 587.)

� Incompatible upgrades, where updated Web servers must not be restarted 
while any non-updated Web servers are still online (See 27.2.3, “Incompatible 
upgrades” on page 588.)

In both cases, not all the servers need to be stopped at the same time when 
following our instructions. The WebSphere Commerce site can be kept online.

While in many cases our High Availability configuration allows us to keep the 
WebSphere Commerce site online, there might still be upgrades (typically at the 
application and database tiers) that require taking the entire site down. We 
describe how to configure the Web servers to display a maintenance page before 

 

 

 

 

582 WebSphere Commerce High Availability and Performance Solutions



making these kinds of updates (see 27.2.4, “Maintenance Web page for site 
downtimes” on page 592).

27.2.1  Quiescing a Web server

Quiescing a Web server is a technique for gracefully removing a Web server 
from the Load Balancer cluster when server affinity (stickyness) is configured for 
the Web server on any port (see 19.3, “Server affinity” on page 437). 

Rather than just allowing existing connections to complete without being 
severed, this method allows existing connections to complete and forwards 
subsequent new connections to the quiesced server from those clients with 
existing connections that are designated as sticky, as long as the quiesced 
server receives the new request before stickytime expires. 

Remember, with WebSphere Commerce, we do not need to use server affinity, 
as the user’s HTTP session is maintained by the application server tier while it is 
identified by cookies that are stored in the client browser. However, server affinity 
may increase performance (again, see 19.3, “Server affinity” on page 437).

Important: When performing the upgrades described in the following 
sections, one or more of your Web servers are down for a certain amount of 
time. To ensure that the remaining Web servers can still handle the incoming 
requests without performance degradation, utilization of each Web server 
should not be more than 50% (CPU, memory, open files, sockets, and so on) 
at peak times when all Web servers are online. If this is not the case, consider 
performing upgrades at off-peak times or temporarily adding more Web 
servers.

 

 

 

 

 Chapter 27. Maintain and update Web servers 583



To quiesce a server when using IBM WebSphere Edge Components Load 
Balancer, log on to your Load Balancer node, run dsserver (if necessary) and 
lbadmin, and in the GUI, connect to your host (as described in steps 1 on 
page 193 to 4 on page 195). Then follow these simple steps:

1. In the tree view, right-click Manager, as shown in Figure 27-1.

Figure 27-1   Quiescing a server

 

 

 

 

584 WebSphere Commerce High Availability and Performance Solutions



2. Click Quiesce Server. This brings up a pop-up window, as shown in 
Figure 27-2.

Figure 27-2   Selecting the server to quiesce

3. Select the server that you want to quiesce in the Server box. Depending on 
the sticky time and the current user activity, quiescing a server with sticky 
time may take quite long. If you do not want to wait, you may check the 
Quiesce now? check box. The server will then be removed from the cluster 
immediately, allowing existing connections to complete, but ignoring any 
sticky times configured for the server’s ports.

Log on to the active Load Balancer as root and execute the following command:

dscontrol manager quiesce server Server_IP_or_hostname [now]

Example 27-3 shows how we quiesce our Web server node 1.

Example 27-3   Quiescing Web server node 1

dscontrol manager quiesce server srvb501.torolab.ibm.com

Again, using the now option would ignore sticky times.

Important: Also quiesce the Web servers on the standby Load Balancer.

 

 

 

 

 Chapter 27. Maintain and update Web servers 585



To reactivate a server:

1. In the tree view, right-click Manager and in the Manager context menu select 
Unquiesce Server, as shown in Figure 27-3.

Figure 27-3   Unquiescing a server

A pop-up window for selecting the server to unquiesce is displayed 
(Figure 27-4).

Figure 27-4   Selecting the server to unquiesce

2. Select the server to unquiesce and click OK.

 

 

 

 

586 WebSphere Commerce High Availability and Performance Solutions



Unquiescing a server may also be scripted on the command line as follows:

dscontrol manager unquiesce server Server_IP_or_hostname

27.2.2  Compatible upgrades

We refer to upgrades as compatible if Web servers to which the updates have 
already been applied can be taken online while Web servers that have not yet 
been updated are still online. Without server affinity in the Load Balancer, this 
means that requests may be routed to updated and non-updated Web servers 
within the same user session.

Compatible upgrades that require a Web server to be offline while the update is 
being applied typically include:

� Hardware and capacity upgrades
� OS upgrades
� Software product upgrades
� Refresh packs, fix packs
� Fixes, APARs, iFixes, eFixes, and so on

If only compatible upgrades had to be performed, the Web server tier could be 
utilized over 50% at peak times, as there would only need to be enough capacity 
to compensate for one server being down at a time. However, this is usually not 
sufficient, as we discuss further in 27.2.3, “Incompatible upgrades” on page 588”.

Instructions for all compatible upgrade types
For each Web server, repeat the following steps:

1. Quiesce the server (see 27.2.1, “Quiescing a Web server” on page 583).

2. Perform the update (see specific instructions below).

3. Test your Web server by sending requests directly to the Web server rather 
than to the Load Balancer.

4. Unquiesce the server (see 27.2.1, “Quiescing a Web server” on page 583).

Instructions to specific types of compatible upgrades
This section lists details for step 2 above, for each type of compatible upgrade.

Hardware and capacity upgrades
This type of upgrade most likely requires a server shutdown. After restarting, the 
Web server may simply be restarted. Some parameters possibly need to be 
adapted to the new hardware, in order to utilize increased capacities.

 

 

 

 

 Chapter 27. Maintain and update Web servers 587



OS upgrade
If a new OS is installed, the Web server software might need to be reinstalled 
and reconfigured. See 8.5, “Install IBM HTTP Server” on page 127, and 11.1, 
“Add additional Web servers” on page 186, for how to configure it by copying the 
configuration from another Web server.

Software product upgrade
If a different major version of IBM HTTP Server (or even a different Web server 
product) is installed, this might require reconfiguration different from the 
configuration described in this book for IBM HTTP Server. Do not even think 
about it.

Refresh packs and fix packs
Refresh packs and fix packs normally do not require any reconfiguration. Refer to 
8.5.2, “Install fixes” on page 133, for instructions on how to apply refresh packs 
and fix packs.

Fixes, APARs, iFix, eFix, and so on
Fixes normally do not require any reconfiguration. Fixes are installed similarly to 
fix packs. Also refer to the installation instructions that are included with the fixes.

27.2.3  Incompatible upgrades

There are certain types of upgrades at the Web and application server tier that 
make it impossible to update the Web servers (or the application servers) one by 
one. 

If a new application version with major differences from the current application is 
to be deployed, old static content might not be compatible to the new JSPs, and 
vice versa. Further, it might not be possible to switch between updated and not 
yet updated Web servers (by Load Balancer), or between updated and not yet 
updated application servers (by the IBM HTTP Server Plug-in on the Web server) 
within one user session. (Switching might lead to application flow and GUI 
inconsistencies, depending on the nature of the upgrades.)

If this is the case, it might still be okay to use the old version of the application 
(for example, old static content, old application) and the new version (for 
example, new static content, new application) in parallel in different user 
sessions. For example, one user could see the old application while another user 
already sees the new application.

 

 

 

 

588 WebSphere Commerce High Availability and Performance Solutions



If this is okay, an upgrade may be performed as follows:

1. Configure Load Balancer server affinity and Web server to application server 
affinity such that a client always connects to the same Web server (within a 
certain sticky time) and the application servers are divided into two separate 
groups, as shown in Figure 27-5.

Figure 27-5   Separating application servers

Refer to 19.3, “Server affinity” on page 437, for details on how to set up server 
affinity in Load Balancer. For performance reasons, server affinity should be 
enabled here all the time.

Binding Web servers to certain application servers can be done by editing the 
plug-in configuration:

a. First disable automatic plug-in propagation for your Web servers in the 
Network Deployment Manager administrative console for each Web 
server by navigating to Servers → Web servers → WebServer_Name → 
Plug-in properties and deactivating Automatically propagate plugin 
propagation (see Figure 10-3 on page 177). When you are done with all 
Web servers, save your changes to the master configuration.

b. On each Web server, one -by-one, use the process for compatible 
upgrades described above (see 27.2.2, “Compatible upgrades” on 
page 587). Back up and then edit the plug-in configuration file 
(WC_Install_Dir/instances/Instance_Name/httpconf/plugin-cfg.xml) as the 

XX XX
XX XXX
XX X
XX XXX

XX XX
XX XXX
XX X
XX XXX

XX XX
XX XXX
XX X
XX XXX

XX XX
XX XXX
XX X
XX XXX

IBM HTTP
Server 2

IBM HTTP 
Server 1

WebSphere
Commerce
Server 2

WebSphere
Commerce
Server 1

IBM Load Balancer
with server affinity

IBM HTTP
Server 3

WebSphere
Commerce
Server 4

WebSphere
Commerce
Server 3

Internet

Client 2Client 1

IBM HTTP
Server 4

 

 

 

 

 Chapter 27. Maintain and update Web servers 589



non-root_user. Find the definition for your application server cluster and 
comment out (using <!-- and -->) the server elements belonging to the 
other group. Example 27-4 shows our plug-in configuration with one of the 
two servers in the cluster commented out.

Example 27-4   Plug-in configuration with modified cluster definition

...
<ServerCluster Name="Cluster_Name" ...>

<Server CloneID="11tf0t8ul" Name="Node1_Name_Cluster_Member1" ...>
<Transport Protocol="http" .../>
<Transport Protocol="https" ...> ... </Transport>

</Server>
<!-- <Server CloneID="11trs2mtc" Name="Node2_Name_Cluster_Member2" ...>

<Transport Protocol="http" .../>
<Transport Protocol="https" ...> ... </Transport>

</Server> -->
<PrimaryServers>

<Server Name="WC_demo_node_WC_demo_01_goro"/>
<!-- <Server Name="goro2Node01_WC_demo_01_goro2"/> -->

</PrimaryServers>
</ServerCluster>
...

c. Save the file and restart your Web server.

HTTP sessions and dynamic cache objects should also only be replicated 
within the two groups of application servers, and not between members of 
different groups, in case sticky time is exceeded at the Load Balancer, but 
the HTTP session is still valid. If sticky time is expired and a client is 
diverted from a not-yet-updated Web server to an updated Web server, a 
new session should be started (or a notice should be displayed informing 
the user about an expired session).

Refer to “HTTP session management” and “Configure distributed session 
management” in WebSphere Application Server V6 Scalability and 
Performance Handbook, SG24-6392, for details on setting up session 
replication and to “Cache replication” in WebSphere Application Server V6 
Scalability and Performance Handbook, SG24-6392, for details on setting 
up cache replication. Essentially, you need to do this:

i. Set up an additional replication domain (one was created when setting 
up the cluster). (Go to the administrative console and select 
Environment → Replication domains.)

ii. On each application server, configure one of the two replication 
domains for session and cache replication, such that there are two 

 

 

 

 

590 WebSphere Commerce High Availability and Performance Solutions



equally sized groups of servers that match the groups configured for 
Web server to application server affinity above. (Go to the 
administrative console and select Servers → Application servers → 
AppServer_Name → Web Container Settings → Session 
management → Distributed environment settings → 
Memory-to-memory replication → Replication domain and 
Servers → Application servers → AppServer_Name → Container 
Services → Dynamic cache service → Consistency settings → 
Full group replication domain.) Save your changes and synchronize 
with all nodes.

iii. One by one, restart your application servers.

2. Now quiesce the first group of Web servers, one by one, as described in 
27.2.1, “Quiescing a Web server” on page 583.

3. Upgrade the first group of Web servers and application servers. 

Typically, the application tier upgrade is performed as EAR deployment or 
update on the Network Deployment Manager. To prevent the upgrade from 
being distributed to the nodes of the second group of application servers, 
there are two options:

– Do not check Synchronize changes with nodes when saving the 
changes to the master configuration, then manually synchronize the 
nodes of the first group in the System administration → Nodes view. 
(Select the nodes and click Synchronize.)

– Stop the nodeagents in the servers of the second group before performing 
the upgrade. As non-root_user, execute the following command:

WAS_Install_Dir/profiles/Profile_Name/bin/stopNode.sh

4. Restart the first group of application servers and Web servers.

5. Unquiesce the first group of Web servers (see 27.2.1, “Quiescing a Web 
server” on page 583). New users will now be able to see the new application.

6. Quiesce the second group of Web servers. All users will now see the new 
application.

7. Upgrade the second group of Web servers and application servers.

The EAR deployment or update has already been performed on the Network 
Deployment Manager. (See step 3.) Now the nodes of the second group of 
application servers need to be synchronized. Depending on which option you 
chose in step 3, do one of the following:

– Go to System administration → Nodes and synchronize all nodes 
(select the nodes and click Synchronize) in the second group, so the EAR 
update is copied to each of the servers.

 

 

 

 

 Chapter 27. Maintain and update Web servers 591



– Restart the nodeagents on the servers in the second group by executing 
the following command as non-root_user:

WAS_Install_Dir/profiles/Profile_Name/bin/startNode.sh

The changes should be automatically synchronized after starting the 
nodeagents.

8. Restart the second group of application servers and Web servers.

9. Unquiesce the second group of Web servers.

10.Unconfigure Web server to application server affinity by undoing the changes 
made in step 1 on page 589:

a. One by one, undo the changes to plugin-cfg.xml on each Web server and 
restart the Web server.

b. Using the Network Deployment Manager administrative console, change 
session and cache replication back to just one replication domain. Save 
your changes and synchronize with all nodes.

c. One bye one, restart your application servers.

27.2.4  Maintenance Web page for site downtimes 

In the previous sections we have described techniques to apply updates without 
taking the site offline. Although at limited capacity, the site has still been able to 
server customers.

In some cases, however, the site needs to be taken offline completely to deploy 
application updates or to perform database maintenance. With WebSphere 
Commerce, this may, for example, be the case in the following situations:

� Incompatible application (EAR) updates need to applied at the application 
server tier. For example, new and old application versions cannot be used 
within one user session, and temporary server affinity from Web servers to 
application servers (see 27.2.3, “Incompatible upgrades” on page 588) 
cannot be configured (or is not desired).

� Necessary database schema or content updates cannot be performed while 
the site is being accessed and the database is in use. 

If the site needs to be taken down, a temporary page should be returned to all 
clients upon all requests, informing the users of the maintenance in progress.

To configure this such that all user sessions can be finished first (for example, a 
user should be able to finish browsing and purchasing items), the Web servers 
should be quiesced as described in 27.2.1, “Quiescing a Web server” on 
page 583, and reconfigured one by one. 

 

 

 

 

592 WebSphere Commerce High Availability and Performance Solutions



For this technique to work properly, server affinity must be configured for the 
Load Balancer to ensure that a user does not switch between Web servers still 
serving the WebSphere Commerce site and Web servers already reconfigured to 
show the maintenance page (see 19.3, “Server affinity” on page 437).

To configure a Web server to show a maintenance page:

1. Quiesce the server.

2. Copy your maintenance page (for example, maintenance.html) into your 
instance’s document root directory. This is the directory configured as 
DocumentRoot in your httpd.conf file (for example, 
WC_Install_Dir/instances/Instance_Name/web).

3. Modify httpd.conf: 

a. Find these two lines and comment them out (prepend with a #):

LoadModule was_ap20_module 
Plugin_Install_Dir/bin/mod_was_ap20_http.so
WebSpherePluginConfig 
"WC_Install_Dir/instances/Instance_Name/httpconf/plugin-cfg.xml"

b. Configure your maintenance.html file as an error page by adding (or 
modifying) the ErrorDocument directive:

ErrorDocument 404 /maintenance.html

This way, all URIs that would normally be handled by the plug-in will result 
in 404 errors, as they do not point to any existing files on the Web server. 
Using the ErrorDocument directive, the maintenance page will be 
displayed whenever a 404 error occurs.

c. Save the httpd.conf file.

4. Restart your Web server (see “Restart the Web server” on page 184).

After making all necessary changes at the database, application server, and 
Web server tiers, undo the changes described above on all Web servers, then 
restart the servers. Quiescing is not necessary this time, as only static content 
has been served and no user session has been established.

Tip: It is easier to provide a copy of the httpd.conf file that contains the 
changes described in step 3 above. For future upgrades requiring a site 
outage, instead of steps 3 and 4 above, just stop your Web server and restart 
it, passing the file name of the modified copy of httpd.conf as the -f parameter 
to apachectl.

 

 

 

 

 Chapter 27. Maintain and update Web servers 593



 

 

 

 

594 WebSphere Commerce High Availability and Performance Solutions



Chapter 28. Maintain and update Load 
Balancer

In this chapter, we describe how to maintain and update the Load Balancer 
machines in WebSphere Commerce High Availability configurations. We 
describe actions that need to be taken in order to perform hardware upgrades, 
OS upgrades, product upgrades, fix installations, and log maintenance for IBM 
WebSphere Edge Components Load Balancer. 

Application updates (new custom code and static content) typically do not affect 
the Load Balancer machines in our configuration, so we can look at the Load 
Balancer machines independently from other nodes.

Like we did for the Web servers (see Chapter 27, “Maintain and update Web 
servers” on page 579), we group the types of upgrades into types that do not 
require a server outage or restart, and types that do require an outage. Unlike 
Web servers, we cannot use multiple Load Balancers in active/active 
configurations (as the site is only accessible through one IP address). Rather, we 
have an active/passive configuration with one standby node monitoring the 
active node (see 7.2, “Introduction to Load Balancer High Availability” on 
page 85, and 11.3, “Configure Load Balancer High Availability” on page 226).

28
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 595



28.1  Maintenance not requiring planned outages

With IBM WebSphere Edge Components Load Balancer, log file maintenance is 
the only type of maintenance not requiring you to stop the Dispatcher server.

Maintain Load Balancer logs
Load Balancer posts entries to a server log, a manager log, a metric monitor log 
(logging communications with Metric Server agents if these are used), and a log 
for each advisor that you use. Additionally, for the Dispatcher component only, 
entries can be made to a subagent (SNMP) log. 

You can set the logging level to define the expansiveness of the messages 
written to the log. At level 0, errors are logged and Load Balancer also logs 
headers and records of events that happen only once (for example, a message 
about an advisor starting to be written to the manager log). Level 1 includes 
ongoing information, and so on, with level 5 including every message produced 
to aid in debugging a problem if necessary. The default for the manager, advisor, 
server, and subagent logs is 1.

You can also set the maximum size of a log. When you set a maximum size for 
the log file, the file will wrap. When the file reaches the specified size, the 
subsequent entries will be written at the top of the file, overwriting the previous 
log entries. You cannot set the log size to a value that is smaller than the current 
one. Log entries are timestamped so you can tell the order in which they were 
written.

The higher you set the log level, the more carefully you should choose the log 
size. At level 0, it is probably safe to leave the log size to the default of 1 MB. 
However, when logging at level 3 and above, you should limit the size without 
making it too small to be useful. 

You can set the logging level and log file size using the Load Balancer 
administrative GUI (lbadmin) or using the dscontrol command. Refer to 19.2, 
“Tuning Load Balancer parameters” on page 425, and to “Using Load Balancer 
logs” in the Load Balancer Administration Guide, GC31-6858, for detailed 
information.

28.2  Maintenance involving planned outages

Upgrades to the Load Balancer hardware, operating system, or software, 
typically require stopping the network dispatcher. When using Load Balancer 
High Availability (see 11.3, “Configure Load Balancer High Availability” on 

 

 

 

 

596 WebSphere Commerce High Availability and Performance Solutions



page 226), we can stop the active or the standby Load Balancer from performing 
the desired maintenance or upgrades without affecting WebSphere Commerce 
site availability. However, for the time of updating the standby Load Balancer, the 
active Load Balancer is a single point of failure. Therefore, we recommend using 
a temporary (standby) machine, if you want true High Availability all along and to 
reduce the timeframes for the existence of single points of failure.

Like for Web servers, we also look at different types of upgrades requiring server 
outage:

� Compatible upgrades, where an updated Load Balancer can exist in a High 
Availability configuration with a not-yet-updated Load Balancer (See 28.2.1, 
“Compatible upgrades” on page 597.)

� Incompatible upgrades, where an updated Load Balancer cannot exist in a 
High Availability configuration with a not-yet-updated Load Balancer (See 
28.2.2, “Incompatible upgrades” on page 602.)

28.2.1  Compatible upgrades

We refer to upgrades as compatible if an updated Load Balancer can exist in a 
High Availability configuration with a not-yet-updated Load Balancer.

Compatible upgrades that require Load Balancer to be stopped while the update 
is being applied typically include:

� Hardware and capacity upgrades
� OS upgrades
� Software product upgrades
� Refresh packs and fix packs
� Fixes, APARs, iFixes, eFixes, and so on

Instructions for all compatible upgrade types
The instructions in this section apply to all the types of upgrades mentioned 
above. You may follow a procedure using a temporary machine, reducing single 
point of failure time, if your upgrades take some time. Alternatively, you can 
follow a simpler procedure.

Upgrade using a temporary machine
To upgrade your primary Load Balancer and Standby Load Balancer using a 
temporary machine:

1. Install a new Load Balancer machine and apply all needed maintenance and 
upgrades. See 8.6, “Install Load Balancer” on page 140. Configure the 
machine for load balancing your Web server cluster as described in 11.2, 
“Configure Load Balancer” on page 193. If you have done performance tuning 

 

 

 

 

 Chapter 28. Maintain and update Load Balancer 597



as described in Chapter 19, “Monitor and tune Load Balancer” on page 417, 
also apply your tuning to the new machine. We refer to this machine as 
temporary Load Balancer.

2. For all three machines, open the administration GUI and connect to the host, 
as described in steps 1 on page 193 to 4 on page 195.

3. Make sure that you save your Load Balancer configurations on all three 
machines (as described in step 15 on page 208).

4. Make sure that your primary Load Balancer is in active state. Click High 
Availability in the tree view and select Current statistics in the right pane to 
view the state (see Figure 11-49 on page 231). If your recovery strategy is 
Auto and your primary Load Balancer is functional, it should be in active state. 
If your recovery strategy is Manual and your primary Load Balancer is in 
standby state, perform the following steps (see also step 4 on page 229):

a. In the tree view, right c-click High Availability and select Take over from 
the context menu, as shown in Figure 28-1.

Figure 28-1   Taking over load balancing from the active machine

 

 

 

 

598 WebSphere Commerce High Availability and Performance Solutions



A pop-up window is displayed, as shown in Figure 28-2.

Figure 28-2   Take over confirmation dialog

b. Click Yes to take over load balancing from your Standby Load Balancer.

5. Remove the High Availability configuration from your Standby Load Balancer 
by right-clicking High Availability in the tree view (of the Standby Load 
Balancer GUI now) and selecting Remove Backup from the context menu. 
Then stop the executor, either by right-clicking Executor and selecting Stop 
Executor, or by using the command dscontrol executor stop (see also 
11.3.5, “Test Load Balancer High Availability” on page 244).

6. Remove the High Availability configuration from your primary Load Balancer 
by right-clicking High Availability and selecting Remove Backup. 

7. Reconfigure High Availability using your primary Load Balancer as the 
primary machine and the temporary Load Balancer as the standby/backup 
machine. Follow the instructions in 11.3, “Configure Load Balancer High 
Availability” on page 226, but use manual as the recovery strategy. 

8. Upgrade your Standby Load Balancer. See “Instructions for specific types of 
compatible upgrades” on page 601.

9. Now force a takeover of the temporary Load Balancer from your primary Load 
Balancer, so that your temporary machine becomes active. See step 4 on 
page 598 (which explains how to do this for the primary Load Balancer in 
case it is in standby state).

10.Remove the High Availability configuration and stop your primary Load 
Balancer. See step 5 (which explains how to do this for the Standby Load 
Balancer).

Note: At this point, until you have completed the temporary High 
Availability configuration as described in the next two steps, your primary 
Load Balancer is a single point of failure.

 

 

 

 

 Chapter 28. Maintain and update Load Balancer 599



11.Remove the High Availability configuration from your temporary Load 
Balancer. (Step 6 on page 599 explains this for the primary Load Balancer.)

12.Reconfigure High Availability using your temporary Load Balancer (which is 
still load balancing traffic at this point) as the primary machine and the 
(updated) Standby Load Balancer as the standby/backup machine. Follow 
the instructions in 11.3, “Configure Load Balancer High Availability” on 
page 226, but use manual as the recovery strategy. 

13.Upgrade your primary Load Balancer. See “Instructions for specific types of 
compatible upgrades” on page 601.

14.Now force a takeover of the Standby Load Balancer from your temporary 
Load Balancer, so that your Standby Load Balancer becomes active. See 
step 4 on page 598 (which explains this for the primary Load Balancer in case 
it is in standby state).

15.Remove the High Availability configuration from your temporary Load 
Balancer and stop your temporary Load Balancer. See step 5 on page 599 
(which explains this for the Standby Load Balancer).

16.Remove the High Availability configuration from your Standby Load Balancer. 
(Step 6 on page 599 explains this for the primary Load Balancer.)

17.Reconfigure High Availability using your (updated) primary Load Balancer as 
the primary machine and the Standby Load Balancer (which is still load 
balancing traffic at this point) as the standby/backup machine. Follow the 
instructions in 11.3, “Configure Load Balancer High Availability” on page 226. 
You may use automatic or manual recovery. If you choose automatic, the 
primary Load Balancer will take over as soon as the High Availability 
configuration is complete. If you choose manual, your Standby Load Balancer 
will continue to route traffic.

Note: At this point, until you have completed the next temporary High 
Availability configuration as described in the next two steps, your 
temporary Load Balancer is a single point of failure. 

Note: At this point, until you have completed the final High Availability 
configuration as described in the next two steps, your Standby Load 
Balancer is a single point of failure.

 

 

 

 

600 WebSphere Commerce High Availability and Performance Solutions



Upgrade without using a temporary machine
If you think that using a temporary machine is too complicated and do not mind 
your active Load Balancer being a single point of failure for some time, you may 
follow this following simple procedure that does not need a temporary machine:

1. Make sure that you save your Load Balancer configurations on both the 
primary Load Balancer and the Standby Load Balancer (as described in step 
15 on page 208).

2. Stop the Load Balancer that is in standby state. To see which machine is in 
standby state, click High Availability in the left pane of the GUI and Current 
Statistics in the right pane to see the state (Figure 11-49 on page 231). To 
stop the Load Balancer, either right-click Executor and select Stop 
Executor, or use the command dscontrol executor stop (see also 11.3.5, 
“Test Load Balancer High Availability” on page 244).

3. Upgrade the machine that you just stopped. See “Instructions for specific 
types of compatible upgrades” on page 601.

4. Restart the Load Balancer by reloading the configuration that you saved 
before. In the GUI, right-click Host: Hostname in the tree view and select 
Load New Configuration. A pop-up window is displayed for choosing the 
configuration file. Choose the one that you just saved.

5. If your High Availability recovery strategy is manual, you may now force a 
takeover of the machine that you just upgraded from the active machine. See 
step 4 on page 598 (which explains it for the primary Load Balancer in case it 
is in standby state).

6. Stop the Load Balancer on the machine that still needs to be upgraded (see 
step 2 to see how to stop the Load Balancer). If your recovery strategy is auto, 
the other machine will now take over load balancing.

7. Upgrade the machine that you just stopped. See “Instructions for specific 
types of compatible upgrades” on page 601.

8. Restart the Load Balancer by reloading the configuration that you saved 
before, as explained for the other machine in step 4.

9. If your recovery strategy is manual, you may now choose to take over from 
the previously upgraded machine or let that machine continue with load 
balancing.

Instructions for specific types of compatible upgrades
This section lists details for the steps above about how to upgrade a machine.

Hardware and capacity upgrades
This type of upgrade most likely requires a server shutdown. After restarting, the 
Load Balancer server may simply be restarted by using the command dsserver 

 

 

 

 

 Chapter 28. Maintain and update Load Balancer 601



and reloading a configuration file. Some parameters possibly need to be adapted 
to the new hardware in order to utilize increased capacities.

OS upgrade
If a new OS is installed, Load Balancer might need to be reinstalled and 
reconfigured. See 8.6, “Install Load Balancer” on page 140. Configure the 
machine for load balancing your Web server cluster as described in 11.2, 
“Configure Load Balancer” on page 193. If you have done performance tuning as 
described in Chapter 19, “Monitor and tune Load Balancer” on page 417, also 
reapply your tuning to the new installation. 

Software product upgrade
If a different major version of Load Balancer (or even a different Web server 
product) is installed, this might require reconfiguration different from the 
configuration described in this book for Load Balancer V6.0.

Refresh packs and fix packs
Refresh packs and fix packs normally do not require any reconfiguration. Refer to 
8.6.2, “Install Load Balancer refresh pack” on page 143, for instructions on how 
to apply refresh packs and fix packs.

Fixes, APARs, iFix, eFix, and so on
Fixes normally do not require any reconfiguration. Fixes are installed similarly to 
fix packs. Also refer to the installation instructions that are included with the fixes.

28.2.2  Incompatible upgrades

We refer to upgrades as incompatible if an updated Load Balancer cannot exist 
in a High Availability configuration with a not -yet-updated Load Balancer. 
Possible reasons for incompatibility include:

� Installation of a new major release with an incompatible High Availability 
mechanism

� Migration to a new solution (for example, different software or a 
hardware-based solution)

� Migration to a different High Availability solution (for example, TSA)

� Migration to a new operating system.

In the case of an incompatible upgrade, we recommend installing the new high 
available load balancing configuration in parallel to the current installation, on 
new, dedicated hardware.

 

 

 

 

602 WebSphere Commerce High Availability and Performance Solutions



If you can use dedicated hardware, you need to make sure that no IP traffic is 
routed to the new installation during the setup phase, for example, by using 
different IP addresses or a separate network. When the installation is done, take 
down your current Load Balancer hardware and switch over to using the correct 
IP addresses on the new hardware.

If you want to reuse your existing hardware, you need to stop load balancing 
before installing the new solution. If you have a Web server that can handle the 
traffic for your site during the time frame for setting up the Load Balancer, you 
can temporarily assign the Web server cluster IP address to that Web server. 
Otherwise, we recommend taking the site down by having one Web server 
display a maintenance page (see 27.2.4, “Maintenance Web page for site 
downtimes” on page 592) and temporarily assigning the cluster IP address to 
that Web server.

 

 

 

 

 Chapter 28. Maintain and update Load Balancer 603



 

 

 

 

604 WebSphere Commerce High Availability and Performance Solutions



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on 
page 608. Note that some of the documents referenced here may be available in 
softcopy only. 

� WebSphere Application Server V6 Scalability and Performance Handbook, 
SG24-6392

� WebSphere Application Server Network Deployment V6: High Availability 
Solutions, SG24-6688

� Mastering DynaCache in WebSphere Commerce, SG24-7393

Other publications

These publications are also relevant as further information sources:

� Load Balancer Administration Guide, GC31-6858

Online resources

These Web sites are also relevant as further information sources:

� Edge caching

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic
=/com.ibm.commerce.admin.doc/concepts/cdc_esi.htm

� Tom Alcott: Everything you always wanted to know about WebSphere 
Application Server but were afraid to ask—Part 3

http://www-128.ibm.com/developerworks/websphere/techjournal/0606_col
_alcott/0606_col_alcott.html

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 605

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.admin.doc/concepts/cdc_esi.htm
http://www-128.ibm.com/developerworks/websphere/techjournal/0606_col_alcott/0606_col_alcott.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0606_col_alcott/0606_col_alcott.html


� Implementing a Highly Available Infrastructure for WebSphere Application 
Server Network Deployment, Version 5.0, without Clustering

http://www.ibm.com/developerworks/websphere/library/techarticles/030
4_alcott/alcott.html

� High Availability Cluster Multi-Processing (HACMP) 

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic
=/com.ibm.cluster.hacmp.doc/hacmpbooks.html

� Solving memory problems in WebSphere applications

http://www.ibm.com/developerworks/websphere/library/techarticles/070
6_sun/0706_sun.html

� Solving performance degradation problems in WebSphere applications

http://www.ibm.com/developerworks/websphere/library/techarticles/070
6_lou/0706_lou.html

� RUNSTATS command

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/
com.ibm.db2.udb.doc/core/r0001980.htm

� RUNSTATS in DB2 UDB Version 8.2

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-041
2pay/

� Reliable Scalable Cluster Technology (RSCT) 

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic
=/com.ibm.cluster.rsct.doc/rsctbooks.html

� IBM Tivoli System Automation for Multiplatforms 

http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationfor
Multiplatforms2.1.html

� DB2 Information Center

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� Replication solutions for common scenarios

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/
com.ibm.websphere.ii.db2udb.replication.intro.doc/prod_overview/iiyr
cintrsbdd.html

� Session management

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topi
c=/com.ibm.commerce.admin.doc/concepts/csesmsession_mgmt.htm

 

 

 

 

606 WebSphere Commerce High Availability and Performance Solutions

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_sun/0706_sun.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.hacmp.doc/hacmpbooks.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_lou/0706_lou.html
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/core/r0001980.htm
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0412pay/
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.rsct.doc/rsctbooks.html
http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationforMultiplatforms2.1.html
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.db2udb.replication.intro.doc/prod_overview/iiyrcintrsbdd.html
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.admin.doc/concepts/csesmsession_mgmt.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.admin.doc/concepts/csesmsession_mgmt.htm


� Deprecated and removed features

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic
=/com.ibm.websphere.nd.doc/info/ae/ae/rmig_deprecationlist.html

� Creating profiles using the graphical user interface

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic
=/com.ibm.websphere.base.doc/info/aes/ae/tpro_instances.html

� Caching Web 2.0 store pages

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?top
ic=/com.ibm.commerce.web20storesolution.refapp.doc/tasks/tsm_web20_
extend.html

� iostat command

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic
=/com.ibm.aix.cmds/doc/aixcmds3/iostat.htm

� dtdgen utility

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic
=/com.ibm.commerce.data.doc/refs/rml_dtdgen.htm

� IBM Support Assistant Version 4.0

http://www-306.ibm.com/software/support/isa/

� JVM Diagnostic Guide:

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/

� WebSphere Application Server MustGathers for debugging JVM 
Hang/Crash/OOM:

http://www-1.ibm.com/support/docview.wss?uid=swg21145599

� Diagnostic Tool for Java garbage collector

http://www.alphaworks.ibm.com/tech/gcdiag

� Heap Analyzer 

http://www.alphaworks.ibm.com/tech/heapanalyzer

� HeapRoots

http://www.alphaworks.ibm.com/tech/heaproots

� Tutorial: Deploying precompiled JSP files to your WebSphere Commerce 
Server

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.samples.doc/tutorial/tdedeployjsp.htm

 

 

 

 

 Related publications 607

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rmig_deprecationlist.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tpro_instances.html
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.web20storesolution.refapp.doc/tasks/tsm_web20_extend.html
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/iostat.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.data.doc/refs/rml_dtdgen.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tdedeployjsp.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tdedeployjsp.htm
http://www.alphaworks.ibm.com/tech/heapanalyzer
http://www.alphaworks.ibm.com/tech/heaproots
http://www.alphaworks.ibm.com/tech/gcdiag
http://www-306.ibm.com/software/support/isa/
http://www-128.ibm.com/developerworks/java/jdk/diagnosis/
http://www-1.ibm.com/support/docview.wss?uid=swg21145599


How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft 
publications and Additional materials, as well as order hardcopy Redbooks, at 
this Web site: 

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 

 

 

 

608 WebSphere Commerce High Availability and Performance Solutions

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/


Index

Numerics
100% + 1 test strategy   467

A
AbstractManagedDynamicCacheRegistry   254
Access beans   254
Access log   402
AccessBean   251
accountability   19
active coordinator agents   350
active/passive clustering solution   81
active-active failover support   14
active-manual failover support   14
Adapter throughput report   330
AddJob command   303
administration skills   22
Administrative Console   6
administrative console   72
advisors   82
AF Request Size graphs   542
agent pool size   361
Akamai EdgeSuite   268
allocateitem   567
allocation rate   530
allocbora   567
ALTER BUFFERPOOL   347
ANT script   577
Apache logs   580
ApacheBench   412
Application development

Performance testing   247
application programming interfaces (APIs)   146
application server   33
application server cluster   189
Application server log maintenance   574
application server node   172
Apply control tables   47
Apply program   46, 52
Apply qualifier   47, 49
Astaro   81
ASYNC (asynchronous)   44
asynchronous I/O   325
Audit Log resource manager   34

 

 

 

© Copyright IBM Corp. 2008. All rights reserved.
authentication cookie   62
authoring environment   21
Automatic Client Reroute (ACR)   44
automatic recovery   35
Availability   57

Failover   58
Hardware-based high availability   57

availableinv   567
availinvstore   567
availradate   567
availreceipts   567

B
backorderitem   567
Backup cluster

Configuration
WebSphere cells and cluster   76

Backup servers   72, 404
BackupServers tag   410
Barracuda Networks   81
Borland SilkPerformer   421
buffer data read   350
buffer pool   352
bufferpool   347
BUFFPAGE   347
build environment   21

C
cache   254

fragmentation   534, 537–538
Cache ID   68, 269, 307
Cache policy   307
cache replication   303
cache size   528
cache static content   265
cachespec.xml   574, 576
Caching

In memory   269
caching   265
Caching Proxy

Statistics   306
CAI Networks   81
capacity   9, 16

 

 609



capacity testing   467
Capture program   46, 50–51
catalog   50
catalog cache size   358
CATALOGCACHE_SZ   358
cell   6–7
cell level documents   176
Cisco   81
Citrix   81
cleanconf table   570
CLOBS   257
Clone ID   68
Cluster   72

Backup servers   72, 404
Primary servers   72, 404

cluster address   83
Cluster member   73

Marking down   70
Security   76

cluster members   21
Cluster Security Services (CtSec)   34
ClusterAddress tag   405
clustering   7, 73
code block   251
code deployment scripts   21
command caching   xv, 267, 292
Commerce Scheduler   377
communications redundancy   13
compact time   530
complete outage   15
configuration directory   174
Configuration resource manager   34
ConnectTimeout   408
Content Based Routing (CBR)   84
contents of object cache instances   304
continuous availability   4
continuous replication   49
cookie component IDs   287
cookie-based session management   59–60
CookieErrorView   63
Cookies   68
core resource managers of RSCT   34
Count parameter   329
Coyote Point Systems   81
CPU   323
CPU activity   329
CPU and AIX specification   325
CPU statistics   330
CPU utilization   324

credential-based authentication   35
Crescendo Networks   81
currentversion   567
Custom Java code   21
custom JVM properties   297
CustomLog   402

D
data and index pages   41
data blocking   49
data consistency   43
data loading scripts   21
data redundancy   13
data replication service (DRS)   307
data scalability testing   464
Data Source

Connections   377
Data transmission time   402
Database

Connection Pool   377
Disk usage

NUM_IOCLEANERS   359
NUM_IOSERVERS   359

Locking
Lock List   360

Logs
Log File Size   358
Primary   358
Secondary   358

Memory
Catalog Cache Size   358
Heap   358
Log Buffer Size   358

Reorganizing
REORG   361
REORGCHK   361

database   251
database administration skills   22
Database cleanup utility objects   571
Database Connection Pool   377

Commerce Scheduler   377
Database Managed Storage (DMS)   350
database management systems   39
database schema   21
database schema scripts   370
database server   33
database servers   5
databases   21

 

 

 

 

610 WebSphere Commerce High Availability and Performance Solutions



DataBean   251
DataBean activation   253
DB2

disk requirements   93
fixpack   105
installation prerequisites   91
memory requirements   93
prerequisites checking   93

DB2 database instance   36
DB2 database registry variables   45

DB2_CONNRETRIES_INTERVAL   45
DB2_MAX_CLIENT_CONNRETRIES   45

DB2 HADR   39
DB2 monitoring   343
DB2 performance considerations   343
DB2 recovery log   47
DB2 Relational Connect   48
DB2 Release Notes   93
DB2 SQL replication   39
DB2 tables   46
DB2 transaction logs   344
DB2 tuning   343
DB2 UDB for iSeries   48
DB2 Universal Database (DB2 UDB)   40
db2adv tool   350
db2hadrp   41
DBAM Systems   81
DBClean   362, 373
DBHEAP   358
deadlock condition   258
default contract   254
deletebackorder   567
dependencies   4
Deployment Manager   57
deployment manager   6
Deployment Manager profile   118
development environment   11
development environments   21
disk adapters   324
disk I/O   323
Disk Utilization report   330
disks   329
disks I/O rates, transfers, and read/write ratio   324
Dispatcher   82, 244

Executor
Forwarding methods

MAC forwarding   84
dispatcher   83
Distributed Fragment Caching and Assembly Sup-

port   268
DMGR   6
DMgr   29
DMS   345
document type definition (DTD)   365
Dojo Javascript library   397
Dojo widgets.   256
DRS   61
dscontrol   193

cluster configure   226
executor report   419
manager report   418

dsserver   244
Start Dispatcher   194

DTD Generator   363
dtdgen utility   366
Dump JVM (DMPJVM)   530
DynaCache Event Listener   287
DynaCacheEsi application   271
DynaCacheEsi.ear   282
DynaCacheInvalidation job   303
Dynamic Cache mbean statistics   304
Dynamic Cache Monitor   304

Edge Statistics   305
Installation   272–273, 275, 278

dynamic cache service   267
Dynamic Cache Service (DynaCache)   265
Dynamic Caching   378
Dynamic caching   266
dynamic caching   63
Dynamic LPAR (DLPAR)   325

E
Eclipse   481
eCommerce sites   1
Edge Side Includes   286
Edge Side Includes (ESI)   265
Edge Side Includes (ESI) caching   266
Edge Statistics   305
EdgeCacheable   286
EJB   251
EJB access beans   250
EJB container   65
EJS workload management   65
Elfiq Networks   81
Enterprise Application Archive (EAR)   289
Enterprise Java Beans   21
Error reporter   364

 

 

 

 

 Index 611



ESI   268
Cache   269
Cache statistics   306

Cache Hits   306
Cache Misses By Cache ID   307
Cache Misses By URL   307
Cache Time Outs   307
Content   307
ESI Processes   306
Evictions   307
Number of Edge Cached Entries   306

include tags   269
Processor   269
Processor cache   304
Request   307

esiEnable   282
esiInvalidationMonitor   282
esiMaxCacheSize   282
eSites   465
eSpots   465
Event monitor   352
Event resource manager   34
event timing   49
Executor   242
executor   82
expectedinv   567
external clustering software   33
Extractor   363

F
F5 Networks   81
fail back   5
Failover   58, 66

Primary and backup servers   411
Web server plug-in   411

failover   5, 10, 25, 75
Failover tuning

ConnectTimeout   408
RetryInterval   406

fallback   5
FatPipe Networks   81
Fault tolerance   59
federation   5
ffdcRun.properties   574
file system perform caching   350
File System resource manager   34
filenames   254
fileprop utility   371

first failure data capture (FFDC)   574
FlushToDiskOnStop   295
Foundry Networks   81
free space after GC   530
free space before AF   530
free space on file systems   324
FTP   187
funnelling methodology   375

G
garbage collection   382, 534, 536
Garbage Collection (GC)   527–528
GC

see garbage collection
GC cycle length and distribution   530
GCCollector   389
Generic Route Encapsulation (GRE)   230
getitems   567
getter behavior   253
goActive   239–240
goInOp scripts   239
goStandby   239, 241
gradual throughput degradation (GTD)   549
Grinder   505

H
HA Deployment Manager   29
HACMP   33, 38–39
HAManager   59
hardware faults   16
hardware redundancy   13
Hardware-based high availability   57
HashMaps   252
Hashtables   252
heap dump   528
heap expansion   379
heap fragmentation   538
heapdump   389, 575
HeapRoots   389
heartbeat destination address   230
High Availability   1, 79
High availability

Operating system TCP timeout value   406
Overcapacity   58
Process redundancy   57

high availability   3, 27
High Availability (HA)   40
High Availability Disaster Recovery (HADR)   40, 

 

 

 

 

612 WebSphere Commerce High Availability and Performance Solutions



146
high availability disaster recovery (HADR)   42
High Availability Group Services (HAGS)   35
High Availability Manager (HAManager)   59
High Availability test   468
High Availability Topology Services (HATS)   35
high performance   27
highavailChange   243
Horizontal scaling   75
horizontal scaling   75
Host resource manager   34
HTTP   478
HTTP response code 503   412–413
HTTP session   59
httpd command   398
httpd.conf   393

I
IBM alphaWorks   311, 501
IBM Extended Cache Monitor for IBM WebSphere 
Application Server   304
IBM HTTP Server   127, 393

Server-status page   393
Tuning

MaxClients   399
MaxRequestsPerChild   399
MaxSpareThreads   400
MinSpareThreads   400
ServerLimit   400
StartServers   400
ThreadLimit   399
ThreadsPerChild   399

IBM HTTP Server Plug-in   66, 128
IBM HTTP Web cache   325
IBM Page Detailer   309
IBM Rational Performance Tester   481
IBM WebSphere Application Server   128, 186
IBM WebSphere Application Server Network De-
ployment   81, 118
IBM WebSphere Edge Components   81–82, 140, 
185

Load Balancer   193
IBM WebSphere Edge Components Load Balancer   
89, 140
ibmlb.admin.rte module   144
ID Resolver   363
idle agents   350
idresgen utility   367

In   27
inactive agents   350
inbound firewall   186
incompatible application (EAR)   592
indexes   257
initial number of agents in pool   361
In-memory cache   269
instance creation scripts   171
instanceof keyword   252
instances   21
Integer storeId   254
integration points   22
Interval parameter   329
interval timing   49
invalidation events   297
invalidation notifications   297
inventoryallocation   567
iostat   346
iostat command   330
IP sprayer   79, 81
IP spraying   83

J
J2EE application   6
Java

heap   534
SDK Release 1.3.1, Service Refresh 7   534

Java code   249
Java code profiling   309–310
Java Database Connection-2

drivers   534
Java Management Extension   387
Java Server Pages   21
java.util.ArrayList   251
java.util.HashMap   251
java.util.Hashtable   251
java.util.Vector   251
JDBC-2, drivers

see Java Database Connection-2, drivers
jetNEXUS   81
JMeter   412, 505
JMX   387
JSESSION cookie   69
JSESSIONID cookie   69
JSP fragments   253
JSP page directive   253
JSP result cache   266
Juniper Networks   81

 

 

 

 

 Index 613



JVM heap size usage   530
JVM memory   528
JVM verbose Garbage Collection (GC)   528

K
kCluster   383, 534, 536–537
keepalive   396
KeepAliveTimeout   397
KEMP Technologies   81
kernel statistics and run queue information   324
kernel threads   329
ksh   243

L
lbadmin   193
LDAP servers   5
life cycle events   16
lightweight clients   82
Lists   252
Load Balancer   33, 82, 85, 140, 144, 186, 236

Advisors
HTTP   204

Cluster IP alias   226
Command line interface

dscontrol   193
Configuration

Add cluster   196
Basic scenario   193
Client gateway address   212
Executor   196
Network router address   216
Port   199
Return address   216
Save   208

Dispatcher
Start   193

Executor
Start   196

Forwarding method
NAT/NAPT   210

High availability   226
Active server   86
Backup server   86
Backup server configuration   233
Configuration   229
Primary server   86
Primary server configuration   226
Recovery strategy   230

Server role   230
Server state   226
Standby server   86

High availability configuration
Reach target   235

High availability scripts   226
Configuration   239

Manager
Log   203
Start   203

Server affinity   437
Active cookie affinity   441
Cross port affinity   439
Passive cookie affinity   440
SSL session ID   442
Stickyness to source IP address   438
URI affinity   441

Server monitor   418
load balancer   20, 79
load balancers   5
Load balancing   58, 65–66
LOAD command   349
LOAD utility   349
Loader   363
LoadRunner   505
LOB or LONG data   350
local variable   252
lock info   352
locking contention   360
LOCKLIST   360
log buffer size   358
log pages   41, 43
LOGBUFSZ   358
LOGFILSZ   358
Logger   363
LOGPRIMARY   358
LOGSECOND   358
loopback aliases   85
loopback interface   210
LRU lazy cache   254

M
MAC forwarding   83, 193
machines   21
manager   82
Maps   252
mark and sweep time   530
Massload   362

 

 

 

 

614 WebSphere Commerce High Availability and Performance Solutions



massload utility   364–365
master catalog   254
max heap   528
MaxClients   399
MaxConnections attribute   412
maximum business capacity available   9
maximum number of agents   360
maximum number of concurrent agents   361
Maximum number of connections   412
maximum number of connections   361
maximum number of coordinating agents   361
Maximum number of threads   399
MaxKeepAliveRequests   397
MAXLOCKS   360
MaxRequestsPerChild   399
MaxSpareThreads   400
measurable   8
member id   254
Memory   347
memory   323
memory analysis methodology   528
Memory Dump Diagnostic tool   548
memory fragmentation   527
memory leak problems   527
memory leaks   527
memory usage   252
memory use   324
Memory-to-memory replication   61
metric server   83
Microsoft Internet Information Services   127
MinSpareThreads   400
mod_deflate module   401
MonitorCommand   159
MPM architecture   398
mpm_winnt   398–399
mpm_winnt module   399
mpm_worker   398
mpm_worker module   399
multiple containers   346
Multi-process   397
Multi-Processing Modules architecture   398
multiprocessor systems   330
mutual high availability   86

N
NAT forwarding   239
NAT/NAPT   210
native_stderr.log   529–530

native_stdout.log   529–530
natural disaster   16
NEARSYNC   147
NEARSYNC (near synchronous)   43
Network Address Translation (NAT)   84
Network bandwidth   402
Network Deployment Manager   33, 289

Administrative Console   188
node   186

network I/O rates, transfers, and read/write ratios   
324
network redundancy   13
nmon tool   324–325
nmonXX.tar.Z file   325
node   5
nodeagent process   578
Non-blocking connection   409
non-DB2 relational databases   48
Non-default AccessBean constructors   250
non-final or non-private getter methods   252
non-secure session cookie   60
Nortel   81
NUM_IOCLEANERS

Database   359
NUM_IOSERVERS

Database   359

O
occupancy   530
OLTP   344
On-Line Transaction Processing (OLTP)   344
OpenLoad   505
outsourcing performance testing   24

P
Page Detailer   310, 500

Connection Attempt Failed   312, 502
Connection Setup Time   312, 502
Considerations   315, 503
Data capture   312, 502
Delivery Time   313, 502
Details view   318
Detect broken links   316, 504
Detect server timeouts   316, 504
Host Name Resolution   312, 502
Legend   318
Measure Web application performance   310, 
500

 

 

 

 

 Index 615



Monitoring HTTP and HTTPS requests   311
Page Time   312, 502
Performance measurement

Browser cache   315, 503
Network delays   315, 503
Packet loss   315, 503

Server Response Time   313, 502
Socks Connection Time   313, 502
SSL Connection Setup Time   313, 502

page hits/second   9
paging space and paging rates   324
partial outage   15
pCluster   534, 537
PCTFREE   349
peer state   41, 43
Performance

Load testing   478
Project cycle   247
Stress testing tools   478

Evaluation   479
Functions   479

Testing tools   505
Grinder   505
JMeter   505
LoadRunner   505
OpenLoad   505
TestMaker   505
TestNetwork   505
WebLOAD   505
WebStone   505

Think time   480
Web site performance improvement   316, 504

performance management   351
Performance Monitoring Infrastructure See PMI
Performance of a Web page

Key factors   316, 504
Performance problems

Application design   322
Back-end system   322
External view   322
Hardware   322
Monitoring tools   322
Network   322
Product bugs   322
Response time   322

performance regression testing   468
performance test cases   12
performance testing   7
performance tests   27

Performance tuning
Access log   402
Logging   402

Persistent sessions   61
physical layout   344
ping packet   235
pinned objects   534
planned outage   15
Plug-in

Configuration
ClusterAddress   405

Plug-in configuration file name   178
Plug-in installation location   178
plugin-cfg.xml   71
PMI   387

Counters   387
Predefined statistic set

All   387
Basic   387
Custom   388
Extended   387
None   387

PMI counter   294
policy based automation   35
power failure   16
Prepared Statement Cache   377
Prepared Statement Cache Size   378
primary database   40, 42
Primary Load Balancer   237
primary memory   341
Primary servers   72, 404
PrimaryServers tag   410
problem determination   351
Product Advisor search-space synchronization   364
production environment   11, 21
profile   6
profiling   309
Project cycle   247
project management   19
ps (Process Status) command   331
putty   325

Q
quiesce   584
quiescing   582

R
raallocation   567

 

 

 

 

616 WebSphere Commerce High Availability and Performance Solutions



Radware   81
Random   404, 406
Rational Performance Tester   481
reach target   235
Redbooks Web site   608

Contact us   xix
regdb2salin   159
Relational Database Management Systems (RD-
BMs)   345
Reliability Scalable Cluster Technology (RSCT)   33
reliability testing   466
reliability workload chart   466
reliable messaging service   35
Reliable Scalable Cluster Technology (RSCT)   34, 
38
remote catchup pending state   43
remote journaled tables   48
REORG   361
Reorg   565
REORGCHK   361
Reorgchk   565
replication   46
replication control tables   48
representative   8
reproducible   8
resource grouping   36
Resource Management (RM)   34
resource managers   34
resource monitoring   35
Resource Monitoring and Control (RMC)   34, 159
response time   9
retry logic   44
RetryInterval   72, 398, 403, 406
return address   85
reverseinventory   567
rich internet applications (RIAs)   397
Rolling Upgrade   16
rotatelogs utility   580
Round robin

Server weights   404
Turn off   404
With weighting   404

RUNSTATS   348
run-time environment   11

S
saturation point testing   468
Scalability   73

Horizontal and vertical combined   76
Horizontal scaling   75
Vertical scaling   74

scalability testing   464
scalable heartbeat   35
scaling hardware   24
SCCHOST column   303
scenario   8
scenarios   25
scenarios/hour   9
SCHCONFIG record per JVM   303
SCHCONFIG table   303
SCP   187
Secure Sockets Layer (SSL)   22
Security

Cluster member   76
Sensor resource manager   34
Sentral Systems Ltd   81
Separator (

)   68
Server weights   67, 404
ServerLimit   400
serverUp   243
Servlet 2.3 specification   59
servlet cache   266
Session clustering   61
Session ID   68
Session ID See Session identifier
Session identifier   59, 68

Cookies   68
SSL ID   68
URL rewriting   68

Session management
Database persistence   61
DRS   61
Memory-to-memory replication   61
Persistent sessions   61
Session clustering   61

Session state   59
session-aware JSP   253
Sets   252
shared virtual IP address   83
shipitems   567
SilkPerformer   493

baseline report   499
TrueLog Explorer   495

simple mark-up language   268
simple subscription-set member   50
single container   346

 

 

 

 

 Index 617



Single-thread process   397
Singleton service   59
site development   16
site development life cycle   24
size of request that caused AF   530
skill availability   19
skilled resources   22, 24
smitty tool   172
SMS   345
Snapshot monitor   352
soak, endurance, reliability test   465
software crashes   16
software redundancy   13
sort info   352
source code   20
source database   40
source IP affinity   84
source-target pairs   50
spreadsheet format (.csv)   325
SQL event monitoring   356
SQL Explain facility   349
SQL profiling   309–310
SQL queries   249
SQL replication   46

apply data   48
capture data   48
register source   48
subscribe sets   48

SQL scripts   49
SSL

ID   68
SSLCipherSpec   401
SSLV2Timeout and SSLV3Timeout   401
staging environment   11, 21
staging server   362, 369, 372
staging utility   372
stagingcheck utility   371
stagingcopy utility   371
stagingprop utility   371
STAGLOG   373
staglog   569
Standby Database   42
standby database   40, 42–43
StartCommand   159
StartServers   400
statement   352
static   8
STGFILTER   373
Sticky time   438

stickytime   583
StopCommand   159
store complexity scalability testing   465
store default information   254
store description   254
store directory tree   254
StoreCopy   254
StoreRegistry   253–254
Stores WebApp   254
stress endurance test   467
stress testing   12
stress testing methodology   463
Stress-Endurance Test   466
StringBuffer   252
StringBuffers   252
subagents   350
subscription set   49
subscription-set members   50
Sun Java System Web Server   127
supported language ids   254
Surrogate-Capabilities   269
svmon command   332
switches   536
switchover   5
swprofiler   528
swprofiler tool   540
SYNC (synchronous)   43
synchronized access   251
System throughput report   330
system view   10
System.out.println   251
SystemOut.log   575

T
Table Catalog   51
table management   348
table space definition   346
tax categories   254
TCP/IP timeout   71
test environment   21
TestMaker   505
TestNetwork   505
Text Transformer   363
The Stage Check utility   370
The Stage Copy utility   370
The Stage Propagate utility   370
Think time   480
Thinktime   509

 

 

 

 

618 WebSphere Commerce High Availability and Performance Solutions



Thread Pool
Web Container   376

ThreadAnalyzer   389
threaddump   575
ThreadLimit   399
Threads

Idle   400
Maximum number   399
Web Container   376

ThreadsPerChild   399–400
three tier architecture of a J2EE application   28
throughput analysis methodology   550
Throwing and Catching exception   252
timestamp info   352
Tivoli Performance Viewer   530
Tivoli Software Information Center   36
Tivoli System Automation   35

cluster   37
equivalency   37
fixed resource   37
floating resource   37
relationship   37

location relationships   37
start/stop relationships   37
tie breaker   38

resource   37
resource attribute   37
resource groups   37

Tivoli System Automation (TSA)   33
Tivoli System Automation for Multiplatforms   35
Top   328
top command

i
no longer display idle   328

k
kill processes   328

M
memory usage   328

P
sort by CPU usage   328

r
renice processes   328

S
sort by how long proccess been running   328

u
view processes   328

topology information   20
total GC pause time   530
Trace and logging   387

transaction   8
transaction processing systems   39
traps   329
trend analysis   351
TSA   35
tty and CPU Utilization report   330

U
unit of work   352
unplanned outage   16
unquiesce   586
UpdateEAR target   577
URL

Rewriting   68
URL rewriting   63
URL rewriting session management   59
User-defined disk groups   325

V
Varchar   257
variables   239
Vectors   252
verbose GC output   529
verbosegc trace   385
Vertical scaling   74
virtual IP address   20
virtual memory   329
vmstat command   329
VNC   325

W
Web application performance   310, 500
Web application testing   505
Web Container   376

Thread Pool   376
Threads   376

Web container   64, 67
Clustering and failover   66

Web server   33, 67, 268
Access log   413
httpd.conf   187
nodes   186
Process-based   397
Thread-based   397

Web server plug-in   268
Failover   411
Marking down cluster member   70

 

 

 

 

 Index 619



Primary and backup servers   411
Settings   72
Workload management   64
Workload management policies   404

Web servers   5
Web site performance

Caching   316, 504
Downloads of large objects   316, 504
Number of embedded objects   316, 504
SSL   316, 504

Web tier   79
WebContainer Inbound Chain   71
WebLOAD   505
WebSphere

Cluster   72
Deployment Manager   57
Resource analyzer   412
Workload management   64

Benefits   66
EJB requests   65
EJS   65
HTTP requests   64
Web server plug-in   64

WebSphere Application Server   389
deployment manager cell   6

WebSphere Application Server session cookie   60
WebSphere Commerce   27, 118, 185

development skills   22
WebSphere Commerce Developer   11
WebSphere Commerce Enterprise Edition   11
WebSphere Commerce Express   11
WebSphere Commerce Loader   362
WebSphere Commerce Professional   11
WebSphere Commerce session cookie   60
WebSphere Network Deployment Manager profile   
118
WebSphere Resource Analyzer   530
WebStone   505
Weighted round robin   404–405
workload   7
Workload distribution policy   72, 403
Workload management   55, 64–65

BackupServers tag   410
Benefits   66
Browser requests   405
EJB requests   65
EJS   65
HTTP requests   64
Policies   404

Random   404
Weighted round robin   404–405

PrimaryServers tag   410
Random   406
Web server plug-in   64

workload management service   76
Workload Manager (WLM)   325
workload scalability testing   465

X
Xk/Xp   528
-Xloratio   385
-Xmaxe parameter   379
-Xmaxf parameter   380
-Xmine parameter   379
-Xminf parameter   379
XML schema definition (XSD)   366
XML Transformer   363
-Xms   380
-Xmx   385
-Xmx parameter   380
X-Windows   325

Z
Zeus Technology   81

 

 

 

 

620 WebSphere Commerce High Availability and Performance Solutions



W
ebSphere Com

m
erce High Availability 

and Perform
ance Solutions

 

 

 

 



 

 

 

 



 

 

 

 



®

SG24-7512-00 ISBN 0738431338

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

®

WebSphere Commerce 
High Availability and 
Performance Solutions
High Availability 
solutions for 
unplanned and 
planned outages

Installing and 
configuring a highly 
available system

Monitoring and 
performance tuning

Building a high performance and high availability Commerce site is 
not a trivial task—from having the correct capacity hardware to 
handling the workload to properly test the code change before 
deploying in a production site. This IBM Redbooks publication covers 
several major areas that need to be considered when using 
WebSphere® Commerce and provides solutions on how to address 
them. Some of the topics discussed are:

� How to build a Commerce site to deal with various kinds of 
unplanned outage. This includes utilizing IBM WebSphere 
Application Server Network Deployment 6.0 and IBM® DB2® 
High Availability Disaster Recovery (HADR) in a Commerce 
environment.

� How to build a Commerce site to deal with planned outages such 
as software fixes and operation updates. This include use of the 
WebSphere Application Server Rollout Update feature and the use 
of the Commerce Staging Server and Content Management.

� How to proactively monitor the Commerce site and prevent 
potential problems from occurring. We discuss various tools, such 
as WebSphere Application Server build-in tools and Tivoli®'s 
Performance Viewer.

� How to utilize Dynacache to future enhance your Commerce site's 
performance. This includes additional Commerce command 
caching introduced in the Commerce fix pack and e-spot caching. 

� The methodology of doing performance and scalability testing on 
a Commerce site.

Back cover
 

 

 

 

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Getting started
	Chapter 1. Introduction
	1.1 Introduction to some key High Availability terms
	1.1.1 High Availability
	1.1.2 Failover and mutual failover
	1.1.3 Switchover
	1.1.4 Fail back of fallback
	1.1.5 Nodes, cells, and clusters

	1.2 Introduction to different performance metrics and terminology
	1.2.1 Workload
	1.2.2 Transaction
	1.2.3 Scenario
	1.2.4 Throughput
	1.2.5 Response time
	1.2.6 Capacity
	1.2.7 Failover

	1.3 Introduction to different WebSphere Commerce environments
	1.3.1 Development environment
	1.3.2 Runtime environment

	1.4 Considerations for implementing High Availability solution
	1.4.1 Continuous business capacity and performance
	1.4.2 Failover support and disaster recovery
	1.4.3 System monitoring and performance tuning
	1.4.4 Performance testing

	1.5 Types of system outages
	1.5.1 Different scopes of system outage
	1.5.2 Different causes of system outage

	1.6 High Availability solution for WebSphere Commerce

	Chapter 2. Project planning for High Availability and performance
	2.1 Identify your scenario
	2.2 Identify your resources and skills requirements
	2.2.1 Inventory of site assets
	2.2.2 Inventory skilled resources required

	2.3 Plan your activities
	2.3.1 Education and training
	2.3.2 Getting skilled help
	2.3.3 Site development life cycle
	2.3.4 Scaling hardware versus performance tuning
	2.3.5 Performance testing is critical
	2.3.6 Failover support for launch


	Chapter 3. Scenario for this book
	3.1 Topology
	3.2 Chapters overview
	3.2.1 High Availability
	3.2.2 Application development
	3.2.3 Performance monitoring and tuning
	3.2.4 Performance test
	3.2.5 Maintenance


	Part 2 High Availability solutions for unplanned and planned outages
	Chapter 4. External clustering software
	4.1 Reliability Scalable Cluster Technology
	4.2 Tivoli System Automation
	4.2.1 Introduction
	4.2.2 Terms in Tivoli System Automation
	4.2.3 Start with Tivoli System Automation
	4.2.4 Relationship with RSCT

	4.3 HACMP

	Chapter 5. Database tier High Availability
	5.1 High Availability Disaster Recovery
	5.1.1 Introduction
	5.1.2 Architecture of HADR
	5.1.3 How HADR works
	5.1.4 Synchronization modes for HADR
	5.1.5 Automatic Client Reroute

	5.2 HACMP
	5.3 SQL replication
	5.3.1 Introduction
	5.3.2 How SQL replication works


	Chapter 6. WebSphere Application Server High Availability
	6.1 Introduction to availability
	6.1.1 Hardware-based High Availability
	6.1.2 Workload management
	6.1.3 Failover
	6.1.4 HAManager
	6.1.5 Session management

	6.2 WebSphere workload management defined
	6.2.1 Distributing workloads
	6.2.2 Benefits

	6.3 Web container clustering and failover (Web server plugin)
	6.3.1 Session management and failover inside the plug-in
	6.3.2 Web container failures
	6.3.3 Web server plug-in failover tuning

	6.4 WebSphere Application Server clustering
	6.5 WebSphere Commerce cell and cluster setup

	Chapter 7. Web tier High Availability
	7.1 Introduction to Web server High Availability
	7.1.1 Available solutions
	7.1.2 IBM WebSphere Edge Components Load Balancer

	7.2 Introduction to Load Balancer High Availability

	Part 3 Install and configure a High Availability WebSphere Commerce system
	Chapter 8. Base product and fix pack installations for all tiers
	8.1 Database nodes
	8.1.1 DB2 installation prerequisites
	8.1.2 Base product installation
	8.1.3 Manually create DB2 64-bit instance
	8.1.4 Installation of DB2 fix pack

	8.2 WebSphere Commerce node 1
	8.3 Additional WebSphere Commerce nodes
	8.4 Configure a WebSphere Network Deployment Manager
	8.4.1 Install IBM WebSphere Application Server Network Deployment
	8.4.2 Create the WebSphere Network Deployment Manager Profile

	8.5 Install IBM HTTP Server
	8.5.1 Base installation
	8.5.2 Install fixes

	8.6 Install Load Balancer
	8.6.1 Install the license
	8.6.2 Install Load Balancer refresh pack


	Chapter 9. High Availability solution for IBM DB2 Universal Database
	9.1 HADR
	9.1.1 Configuring HADR on a primary/standby database
	9.1.2 Enabling client reroute in a HADR environment
	9.1.3 Installing Tivoli System Automation
	9.1.4 Defining and administering a TSA cluster
	9.1.5 Enabling instance and HADR with TSA


	Chapter 10. WebSphere Application Server and WebSphere Commerce federation and clustering
	10.1 Scenario setup as described in the clustering whitepaper
	10.2 Details on configuring Web server node 1
	10.2.1 Pre-instance creation tasks
	10.2.2 Post instance creation tasks
	10.2.3 Post federation tasks


	Chapter 11. Web server clustering
	11.1 Add additional Web servers
	11.1.1 Preparation
	11.1.2 Copy files from Web server node 1
	11.1.3 Modify the Web server configuration
	11.1.4 Add the new Web server to the cell configuration

	11.2 Configure Load Balancer
	11.2.1 MAC forwarding
	11.2.2 NAT forwarding
	11.2.3 Configure the Web servers for WebSphere Commerce
	11.2.4 Configure the IBM HTTP Server Plug-in

	11.3 Configure Load Balancer High Availability
	11.3.1 Configure basic High Availability
	11.3.2 Adding reach targets
	11.3.3 Command-line configuration
	11.3.4 Configuring the High Availability scripts
	11.3.5 Test Load Balancer High Availability
	11.3.6 Starting Dispatcher automatically after a reboot


	Part 4 Design with performance in mind
	Chapter 12. Development performance considerations
	12.1 Development best practices for performance
	12.1.1 Access Bean usage
	12.1.2 Java classes and keywords
	12.1.3 JSPs
	12.1.4 Registry objects
	12.1.5 Database operations
	12.1.6 Command execution
	12.1.7 Web 2.0 considerations

	12.2 Performance best practices for database customizations
	12.2.1 Table design
	12.2.2 Index design
	12.2.3 Avoiding deadlocks

	12.3 Performance best practices for SQL queries
	12.3.1 Reduce the result set as early as possible
	12.3.2 Avoid using sub-selects and redundant expressions
	12.3.3 IN versus Exists
	12.3.4 Other important SQL tuning hints


	Chapter 13. Caching
	13.1 Types of caching
	13.1.1 Dynamic caching
	13.1.2 Edge Side Includes (ESI) caching

	13.2 Set up ESI caching
	13.2.1 Prerequisites for ESI caching
	13.2.2 Configure ESI caching

	13.3 Caching enhancements in WebSphere Commerce 6.0.0.1 and later
	13.4 Cache replication
	13.4.1 Cache replication
	13.4.2 In-memory cache
	13.4.3 Offload to disk
	13.4.4 FlushToDiskOnStop
	13.4.5 Limitation on invalidation when server is stopped
	13.4.6 Performance tuning
	13.4.7 Tune disk cache
	13.4.8 Instructions to set up cache replication
	13.4.9 Other options to ensure cache content consistency across cluster
	13.4.10 Monitor runtime cache
	13.4.11 Monitor ESI caching
	13.4.12 Summary


	Chapter 14. Profiling
	14.1 SQL profiling
	14.2 Java code profiling
	14.3 Mapping an SQL statement to Java code
	14.4 IBM Page Detailer
	14.4.1 Overview
	14.4.2 Important considerations
	14.4.3 Key factors
	14.4.4 Tips for using Page Detailer
	14.4.5 Reference


	Part 5 Monitoring and performance tuning
	Chapter 15. Operating system monitoring tools
	15.1 Operating system introduction
	15.2 General utilities related with operating system monitoring
	15.2.1 nmon
	15.2.2 Top
	15.2.3 vmstat
	15.2.4 iostat
	15.2.5 ps
	15.2.6 svmon

	15.3 Best practices for AIX monitoring
	15.4 Summary

	Chapter 16. IBM DB2 Universal Database
	16.1 DB2 performance considerations
	16.1.1 Physical environment considerations
	16.1.2 DB2 objects management

	16.2 DB2 monitoring
	16.2.1 Introduction
	16.2.2 Snapshot monitor
	16.2.3 Event monitor

	16.3 DB2 tuning in WebSphere Commerce
	16.3.1 Parameters related to memory
	16.3.2 Parameters related to transaction logs
	16.3.3 Parameters related to disk I/O
	16.3.4 Parameters related to locking
	16.3.5 Parameters related to agents management
	16.3.6 Best practices

	16.4 Utilities in database tier for WebSphere Commerce
	16.4.1 Massload
	16.4.2 Staging server
	16.4.3 DBClean

	16.5 Conclusions

	Chapter 17. Monitor and tune WebSphere Application Server for WebSphere Commerce
	17.1 Web container thread connection pool
	17.2 Database connection pool
	17.3 Prepared statement cache
	17.4 Dynamic caching
	17.5 Java Virtual Machine heap management
	17.5.1 Heap expansion
	17.5.2 Heap shrinkage
	17.5.3 Tuning the JVM heap size
	17.5.4 Monitoring JVM memory and garbage collection
	17.5.5 Heap fragmentation due to pinned and dosed objects
	17.5.6 Heap fragmentation due to large objects

	17.6 Monitoring
	17.6.1 Performance Monitoring Infrastructure (PMI)
	17.6.2 Trace and logging

	17.7 Tools and reference
	17.8 Performance fixes

	Chapter 18. Monitor and tune Web servers
	18.1 Monitor
	18.1.1 IBM HTTP Server status page
	18.1.2 Access log
	18.1.3 Monitoring performed by Load Balancer
	18.1.4 IBM HTTP Server Plug-in

	18.2 Tuning parameters
	18.2.1 Operating system settings
	18.2.2 httpd.conf settings
	18.2.3 IBM HTTP Server Plug-in


	Chapter 19. Monitor and tune Load Balancer
	19.1 Monitor
	19.1.1 Reports
	19.1.2 Graphical server monitor
	19.1.3 Binary logging

	19.2 Tuning Load Balancer parameters
	19.2.1 Host
	19.2.2 Executor
	19.2.3 Cluster
	19.2.4 Port
	19.2.5 Server
	19.2.6 Manager
	19.2.7 Advisor

	19.3 Server affinity
	19.3.1 Types of server affinity
	19.3.2 Configure source IP affinity for MAC and NAT forwarding
	19.3.3 Configure CBR and SSL session ID affinity
	19.3.4 Testing server affinity


	Part 6 Performance test
	Chapter 20. Introduction to performance testing
	20.1 Why is it complex
	20.2 Why it is important
	20.3 Overall site development life cycle
	20.4 Typical performance characteristics of a WebSphere Commerce site
	20.5 Types of performance tests for WebSphere Commerce
	20.5.1 Stress testing
	20.5.2 Scalability testing
	20.5.3 Soak, endurance, or reliability testing
	20.5.4 Stress-endurance test
	20.5.5 100% + 1 testing
	20.5.6 Capacity testing
	20.5.7 Performance regression testing
	20.5.8 High Availability testing


	Chapter 21. Designing a test plan
	21.1 Define scope and requirements of new design
	21.2 Define target environment
	21.3 Define scenario and workload distribution
	21.4 Define test cases
	21.5 Maintaining a well-defined test plan

	Chapter 22. Performance test tools
	22.1 Test tools introduction
	22.1.1 How to select test tool
	22.1.2 Performance test tools classification

	22.2 IBM Rational Performance Tester
	22.2.1 Architecture of Rational Performance Tester
	22.2.2 Features of RPT
	22.2.3 Procedure to use RPT to run performance test

	22.3 Seague SilkPerformer
	22.3.1 What SilkPerformer can do
	22.3.2 Procedure to use SilkPerformer to run performance test

	22.4 Page Detailer
	22.4.1 Overview
	22.4.2 Important considerations
	22.4.3 Key factors

	22.5 Other performance test tools
	22.6 Trend of performance test tools

	Chapter 23. Applying performance testing to WebSphere Commerce
	23.1 Key attributes of a performance test
	23.2 Common test execution steps
	23.3 Executing stress tests
	23.3.1 Testing for throughput
	23.3.2 Testing for concurrency
	23.3.3 Analyzing stress test results

	23.4 Scalability testing
	23.5 Soak, endurance, or reliability testing
	23.6 High Availability testing

	Chapter 24. Analyzing test results and solving performance problems
	24.1 Test results to be collected and verified
	24.2 Common troubleshooting steps
	24.3 Solving memory problems in WebSphere applications
	24.3.1 Gather verbose Garbage Collection logs
	24.3.2 Analyzing verbose GC logs
	24.3.3 Option 1: Tune max heap size to optimize GC frequency
	24.3.4 Tactic 2: Tune -Xk and -Xp to minimize fragmentation
	24.3.5 Tactic 4: identifying by swprofiler
	24.3.6 Tactic 4: tuning the cache size
	24.3.7 Tactic 5: performing the heap dump

	24.4 Solving throughput and response time problems
	24.4.1 Identifying throughput problems in performance testing
	24.4.2 Analyzing and solving throughput problems


	Part 7 Maintenance
	Chapter 25. Database maintenance
	25.1 DB2 database maintenance in WebSphere Commerce
	25.1.1 DB2 database maintenance utilities
	25.1.2 WebSphere Commerce Database Cleanup utility
	25.1.3 Commerce DB2 database maintenance solution


	Chapter 26. Maintain and update WebSphere Application Server tier
	26.1 Maintenance not requiring planned outages
	26.1.1 WebSphere Application Server log maintenance
	26.1.2 Deployment of cachespec.xml
	26.1.3 Rollout update

	26.2 Planned outages
	26.2.1 WebSphere Application Server fix pack/APAR upgrade
	26.2.2 WebSphere Commerce fix pack/APAR upgrade


	Chapter 27. Maintain and update Web servers
	27.1 Maintenance not requiring planned outages
	27.1.1 Maintain IBM HTTP Server logs
	27.1.2 Deploy new static content

	27.2 Maintenance involving planned outages
	27.2.1 Quiescing a Web server
	27.2.2 Compatible upgrades
	27.2.3 Incompatible upgrades
	27.2.4 Maintenance Web page for site downtimes


	Chapter 28. Maintain and update Load Balancer
	28.1 Maintenance not requiring planned outages
	28.2 Maintenance involving planned outages
	28.2.1 Compatible upgrades
	28.2.2 Incompatible upgrades


	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

