

Cincom® MANTIS®

WebSphere® MQ Programming

P39-1365-13

Version 3.5.01 and 6.5.01

Cincom® MANTIS®
WebSphere® MQ Programming
Publication Number P39-1365-13

© 2001, 2004-2006, 2008, 2010, 2011, 2013, 2015, 2018, 2019 Cincom Systems, Inc.
All Rights Reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

See https://www.cincom.com/us/company/terms-policies for a list of Cincom trademarks and other
trademarks that may appear in Cincom product documentation.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
USA

PHONE: +1 513 612 2300
FAX: +1 513 612 2000
WORLD WIDE WEB: http://www.cincom.com

Attention:
Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

External Web site disclaimer:
Cincom Systems, Inc. does not own, nor does it warrant the accuracy, adequacy or completeness of,
the information and materials contained in linked documentation, and expressly disclaims liability for
any errors or omissions in the information and materials. No warranty of any kind, implied, express or
statutory, including but not limited to the warranties of non-infringement of third party rights, title,
merchantability, fitness for a particular purpose and freedom from computer virus, is given in
conjunction with the information and materials contained in this linked documentation. Nothing
contained herein constitutes nor is intended to constitute an offer, inducement, promise, or contract
of any kind. The data, information, and materials contained herein are for informational purposes only
and are not represented to be error free. Any links are provided as a courtesy. They are not intended
to nor do they constitute an endorsement by Cincom Systems, Inc. of the linked materials.

https://www.cincom.com/us/company/terms-policies
http://www.cincom.com/

Release information for this manual
Cincom® MANTIS® WebSphere® MQ Programming, P39-1365-13, is dated June 1, 2019.
This document supports release 3.5.01 and 6.5.01 of MANTIS®.

Cincom Technical Support for MANTIS®
To contact support, please visit https://supportWeb.cincom.com.

https://supportweb.cincom.com/

WebSphere® MQ Programming, P39-1365 4
Contents

Contents

1. Overview ... 7

Description of WebSphere MQ Programming .. 8
Development cycle figure .. 8

Using an Interface layout as a template for your Interface .. 9
Generalized Interface program ... 10
MQI and WebSphere MQ Programming ... 11
Reference materials .. 12
Internal Interfaces for MQSeries support .. 13

2. Fundamental usage ... 15

Common fields in MQSeries Interface views .. 16

3. Field naming conventions .. 19

Field prefixes ... 20
Adding another level of prefixing ... 20

Different kinds of fields, requiring different actions ... 21

4. Errors .. 22

General error categories ... 23
Negative REASON codes .. 24

5. Constants .. 33

Including MQ_INIT in a user program .. 34
Categories of MQSeries constants in MQ_INIT .. 35

6. Building a MANTIS MQSeries application .. 37

Creating a program that reads a message queue .. 38
Creating a program that writes to a message queue.. 39
Initializing Interfaces that do not require special initialization 40

How to use the CLEAR statement to initialize an Interface 40
What the CLEAR statement does .. 40

Initializing Interfaces that require special initialization ... 41
Sample code for initializing an Interface that requires special initialization 41

Using the MQSeries Interface layouts .. 42
Using the MQBEGIN Interface to start a unit of work .. 43
Using the MQCOMMIT Interface to establish a sync point and commit all previous message GETs
and PUTs ... 44
Using the MQCONNECT Interface to open and connect to an MQSeries object 45
Using the MQDISCONNECT Interface to close and disconnect from an MQSeries object . 47
Using the MQEXIT Interface to close all open handles ... 48
Using the MQGET Interface to read an MQSeries message 49
Using the MQPUT Interface to send an MQSeries message 51

WebSphere® MQ Programming, P39-1365 5
Contents

Using the MQROLLBACK Interface to rollback to a previous sync point and reverse all previous
message GETs and PUTs ... 53
Using the MQTM Interface to map the MQSeries trigger data to the MANTIS MQTM Interface
... 54

7. MQSeries/MANTIS triggering ... 57

General MANTIS trigger considerations .. 58
Procedure for using MANTIS as a trigger handler ... 58
Programs that illustrate the trigger-handling process ... 58
Writing a MANTIS application program to handle the triggered event 58
Sample program for sending a message to a trigger queue 59
Sample program for handling an MQSeries trigger event 59

UNIX MQSeries/MANTIS trigger considerations ... 60
The trigger.sh script as a model for your trigger handler 60
Steps required for trigger handling ... 60
Procedure for constructing a trigger handler ... 60
MQSeries and MANTIS procedure for handling the triggered event 60

Mainframe MQSeries/MANTIS trigger considerations .. 62
The CSOXTRIG front-end application as a model for your trigger handler 62
Steps required for trigger handling ... 62
Procedure for constructing a trigger handler ... 62
MQSeries and MANTIS procedure for handling the triggered event 62

8. MQSeries/MANTIS example programs .. 65

MQ_INIT ... 66
MQ_SAMPLE ... 67

Uses for MQ_SAMPLE ... 67
Queue used for sending and receiving messages ... 67
UNIX screen shot of MQ_SAMPLE ... 67
MQ_SAMPLE’s errors for COMMIT and ROLLBACK functions under mainframe CICS 67

MQ_HANDLER ... 68
Abilities necessary for any handler to possess .. 68
MEMADDR argument to MQ_HANDLER ... 68
Running MQ_HANDLER interactively vs. running it automatically 68

MQ_TRIGGER ... 69
MQ_TRIGGER .. 69
MQ_TRIGGER sample output screen ... 69
GETERR(2033) ... 69

9. MQSeries/MANTIS diagnostic considerations 71

Diagnosing a MANTIS program error .. 72
Dumping MQSeries Interface views ... 73

UNIX sample of a dumped MQCONNECT Interface .. 73
Procedure for dumping the failing Interface layout .. 73
System-specific dump file descriptions ... 74
Dump length ... 74

WebSphere® MQ Programming, P39-1365 6
Contents

10. General UNIX and Mainframe considerations 76

MQSeries Client Configuration for UNIX MANTIS ... 77
Installation considerations ... 78

UNIX ... 78
Mainframe ... 78

MQCONNECT .. 80
UNIX ... 80
Mainframe ... 80

MQDISCONNECT .. 82
UNIX ... 82
Mainframe ... 82

MQGET ... 83
UNIX ... 83
Mainframe ... 83

MQPUT ... 84
UNIX ... 84
Mainframe ... 84

MQROLLBACK ... 85
UNIX ... 85
Mainframe ... 85

MQCOMMIT .. 86
UNIX ... 86
Mainframe ... 86

MQBEGIN .. 87
UNIX ... 87
Mainframe ... 87

MQEXIT .. 88
UNIX and Mainframe ... 88

MQTM .. 89
UNIX ... 89
Mainframe ... 89

Index .. 90

WebSphere® MQ Programming, P39-1365 7
Chapter: 1. Overview
Section: Description of WebSphere MQ Programming

1. Overview
This chapter provides a detailed description of MQSeries support, in order to help you
develop a MANTIS application.

WebSphere® MQ Programming, P39-1365 8
Chapter: 1. Overview
Section: Description of WebSphere MQ Programming

Description of WebSphere MQ Programming
WebSphere MQ Programming is a MANTIS feature that adds support for IBM’s MQSeries
messaging product. This feature enables MANTIS application programmers to send
MQSeries messages to, and receive MQSeries messages from, any local or remote
machine that supports MQSeries.

Cincom has implemented WebSphere MQ Programming differently from other MANTIS
facilities. It is implemented as the following:

 A set of Interfaces. These are stored under the MASTER user and serve as
templates.

 A generalized Interface program. This program is invoked when a MANTIS program
CALLs one of the Interfaces.

Development cycle figure
Below is a figure representing a typical development cycle that uses MANTIS and the
MQSeries Interface:

WebSphere® MQ Programming, P39-1365 9
Chapter: 1. Overview
Section: Using an Interface layout as a template for your Interface

Using an Interface layout as a template for your Interface
The Interface layouts that (along with the generalized Interface program) make up
WebSphere MQ Programming are templates for your Interfaces. To use an Interface
layout as a template, perform the following:

1. Use the Interface Design Facility Library Functions to fetch the appropriate
Interface template.

2. As appropriate for your application, customize the copy of the Interface layout
For example, a possible change you can make is to add fields for user data at the
end of the Interface layout.

3. Use Library Functions to save the Interface template under a new name.

WebSphere® MQ Programming, P39-1365 10
Chapter: 1. Overview
Section: Generalized Interface program

Generalized Interface program
The major component of MQSeries support is a generalized Interface program. For all
environments, the name of the “Program to be Called” is MANTISMQ. This name is then
processed as follows, according to operating system:

 Mainframe. Consider the following:
- In CICS—The name MANTISMQ is translated internally to CSOXWMQS.
- In BATCH—The name MANTISMQ is translated to a program called CSOXBMQS.

 UNIX. MANTISMQ is the entry point name, which is located in a shared library
called libmanmqs.so.

Under both mainframe CICS and UNIX, this program performs the following:

1. Processes the requests from the MANTIS application
2. Makes the corresponding MQI calls to MQSeries

WebSphere® MQ Programming, P39-1365 11
Chapter: 1. Overview
Section: MQI and WebSphere MQ Programming

MQI and WebSphere MQ Programming
Cincom has modeled WebSphere MQ Programming after the standard MQSeries API
called “MQI.” Application programmers who are familiar with MQI in either the C or
COBOL programming languages will find this feature to be simple and easy to use.

WebSphere® MQ Programming, P39-1365 12
Chapter: 1. Overview
Section: Reference materials

Reference materials
Programmers who are not familiar with the MANTIS INTERFACE and MANTIS CALL
statements should refer to the following:

 For information on Interface design:
- If you use OpenVMS or UNIX—MANTIS Facilities, P39-1301.
- If you use z/OS or z/VSE—MANTIS Facilities for z/OS and z/VSE, P39-5301.

 For information on the CALL and INTERFACE statements:
- If you use OpenVMS or UNIX—MANTIS Language, P39-1311.
- If you use z/OS or z/VSE—MANTIS Language for z/OS and z/VSE, P39-5302.

WebSphere® MQ Programming, P39-1365 13
Chapter: 1. Overview
Section: Internal Interfaces for MQSeries support

Internal Interfaces for MQSeries support
MANTIS provides the following internal Interfaces for MQSeries support.

These internal Interfaces are located on the MASTER user library.

Interface Description Comments

MQBEGIN Starts a unit of work. Optional.
 Unix only.

MQCOMMIT Establishes a sync point and
ends a unit of work.

 Optional.
 Unix and Mainframe Batch

only.

MQCONNECT Opens an MQSeries object
and connects to it.

 This interface requires
special initialization,
performed with the
“INITCONN” function.

 Creates a handle that all
other Interfaces use.

MQDISCONNECT Closes an MQSeries object
and disconnects from it.

MQEXIT Closes all open handles. Optional.
 This Interface does not

correspond to an
MQSeries function; this
Interface is an extra
Cincom feature.

MQGET Reads an MQSeries message. The user should perform
the following:

1. Modify the Interface.
2. Save the Interface under a

different name.
 This interface requires

special initialization,
performed with the
“INITGET” function.

MQPUT Sends an MQSeries message. The user should perform
the following:

1. Modify the Interface.
2. Save the Interface under a

different name.
 This interface requires

special initialization,
performed with the
“INITPUT” function.

WebSphere® MQ Programming, P39-1365 14
Chapter: 1. Overview
Section: Internal Interfaces for MQSeries support

Interface Description Comments

MQROLLBACK Reverse GETs and PUTs back
to a prior sync point or a unit
of work begin.

 Optional.
 Unix and Mainframe Batch

only.

MQTM Retrieves the z/OS MQTM
messages or the UNIX
MQTMC2 Trigger message.

 Optional.
 Unix and Mainframe CICS

only.

WebSphere® MQ Programming, P39-1365 15
Chapter: 2. Fundamental usage
Section: Internal Interfaces for MQSeries support

2. Fundamental usage
This chapter provides a detailed discussion of common fields in MQSeries Interface
views. All MQSeries Interface views start with the same common fields. Although the
Interface type may prefix each of these fields, the order and meaning of the fields
remains the same across all MQSeries Interface layouts.

WebSphere® MQ Programming, P39-1365 16
Chapter: 2. Fundamental usage
Section: Common fields in MQSeries Interface views

Common fields in MQSeries Interface views
See the following syntax definition:

CALL mqinterface(function, handle, compcode, reason, ident, dmplength,
dmpfilename …)

For explanations of the parameters in this syntax definition, see the rest of this
chapter.

function

Description Required. The desired operation request.

Format 3–8 character text expression.

Options The allowable function strings are:

 “GET”
 “MQGET”
 “PUT”
 “MQPUT”
 “BEGIN”*†
 “MQBEGIN”†
 “COMMIT”*†b
 “MQCMIT”*†b
 “CONNECT”
 “MQCONN”
 “DISCONN”
 “MQDISC”
 “ROLLBACK”*†b
 “MQBACK”*†b
 “DUMP”
 “EXIT”*†
 “INITPUT”
 “INITGET”
 “INITCONN”
 “INITMQTM”*†

* Unix
† Mainframe CICS
b Mainframe Batch

Consideration An invalid function is a function that does not equal one of the strings listed above (for
example, NULL is an invalid function). If the function is invalid, MANTIS returns an error
in the REASON and COMPCODE fields.

handle

Description Required. The MQSeries handle that MQSeries sets and uses for subsequent MQI calls.

Format A MANTIS symbolic name, defined as a BIG.

Consideration Retain this value for subsequent calls.

compcode

WebSphere® MQ Programming, P39-1365 17
Chapter: 2. Fundamental usage
Section: Common fields in MQSeries Interface views

Description Required. The MQSeries compcode, where MQSeries sets a high-level completion code
for the prior CALL.

Format A MANTIS symbolic name, defined as a BIG.

Consideration The MQSeries Interface sets this value to:

 1. Successful.
 2. Warning.
 3. Error.

General Considerations

 All Interfaces call the same entry point, which is named MQS_ENTRY. The
FUNCTION field in each Interface points the MANTIS/MQSeries executable to the
appropriate handler.

 Prior to making any Interface calls, set all information pertaining to the call in the
Interface layout that includes the following:
- HANDLE (usually)
- FUNCTION

 After the call completes, check the Interface symbolic name for an indication of a
warning or error. If the Interface symbolic name returns a non-NULL value,
interrogate the REASON field.

 You may connect to multiple MQSeries objects. When you do this, the called
Interface program generates multiple HANDLES (one HANDLE for each connection).
You can disconnect from these handles by explicitly calling the MQDISCONNECT
Interface that has the corresponding HANDLE and settings. Another disconnection
method is to call the MQEXIT routine, which disconnects the application from all
connected objects.

 For UNIX, to preserve data integrity, when MANTIS terminates (either normally or
abnormally), MANTIS automatically calls the MQEXIT Interface as though the
Interface was called by the user’s application.

reason

Description Required. The MQSeries reason code that MQSeries sets. If a non-zero COMPCODE is
returned, the reason field further defines the problem.

 This field will contain the exact MQSeries reason code when an error occurs. For errors
detected internally by the MQSeries Interface, a negative reason code will be returned.
These codes will be further defined later in this documentation.

Format A MANTIS symbolic name, defined as a BIG.

Consideration For a description of each reason code, refer to MQSERIES Application Programming
Reference, SC33-1673.

ident

Description Internal. The Interface identification field.

Format A MANTIS symbolic name, defined as a BIG.

Consideration This field is used internally to identify the Interface type and requires no user
modification.

dmplength

Description Optional. The length of the Interface layout to dump.

Format A MANTIS symbolic name, defined as a BIG.

WebSphere® MQ Programming, P39-1365 18
Chapter: 2. Fundamental usage
Section: Common fields in MQSeries Interface views

Consideration For more information, see 9. MQSeries/MANTIS diagnostic considerations.

dmpfilename

Description Optional. Name of the dump file being generated.

Format A MANTIS symbolic name, defined as a TEXT for a length of 80 bytes.

Consideration For more information, see 9. MQSeries/MANTIS diagnostic considerations.

WebSphere® MQ Programming, P39-1365 19
Chapter: 3. Field naming conventions
Section: Common fields in MQSeries Interface views

3. Field naming conventions

WebSphere® MQ Programming, P39-1365 20
Chapter: 3. Field naming conventions
Section: Field prefixes

Field prefixes
For most Interface layouts, many fields within the Interface layout have the same
prefix. For example, in the MQPUT Interface layout, many fields are prefixed with
“MQMD_”. This prefix precedes the name of each field in the MQMD structure layout for
an MQPUT MQI call to MQSeries.

You will find many similarly named fields in MQSeries Interface layouts. To prevent the
automatic mapping feature of MANTIS from reusing these fields, all fields in all
Interface layouts are prefixed to indicate in which Interface they are contained.

For example, consider the MQPUT Interface layout. Since FUNCTION, HANDLE, REASON,
COMPCODE, IDENT, DMPLENGTH, and DMPFILENAME can be found in all views, these
fields are all prefixed with PUT:

 PUT_FUNCTION
 PUT_HANDLE
 PUT_REASON
 PUT_COMPCODE
 PUT_IDENT
 PUT_DMPLENGTH
 PUT_DMPFILENAME

Adding another level of prefixing
You can add another level of prefixing in order to keep the functions separate. To do
so, use PREFIX on the INTERFACE statement defining the Interface layout:

10 INTERFACE QUEUE1("MQPUT1",PASSWORD,PREFIX)

20 INTERFACE QUEUE2("MQPUT2",PASSWORD,PREFIX)

30 QUEUE1_PUT_FUNCTION="CONNECT"

WebSphere® MQ Programming, P39-1365 21
Chapter: 3. Field naming conventions
Section: Different kinds of fields, requiring different actions

Different kinds of fields, requiring different actions
Although many fields exist in the MQGET and MQPUT Interface views, you need not set
all of these fields prior to the Interface call. This is because fields that are sent to
MQSeries from the MANTIS application are classified as one of the following:

 Inbound field. The MANTIS application programmer must fill in these fields.
 Outbound field. These fields return data to the MANTIS application. The

application may need to interrogate outbound fields.
 Inbound/Outbound field. These fields offer 2-way communication. In some cases,

the MANTIS application programmer must fill in these fields. In other cases, the
application may need to interrogate these fields.

The function that is being performed dictates which fields in the Interface layout must
be set or interrogated. To learn more about which fields must be set for a given
function, refer to MQSERIES Application Programming Reference, SC33-1673.

WebSphere® MQ Programming, P39-1365 22
Chapter: 4. Errors
Section: Different kinds of fields, requiring different actions

4. Errors
After returning from any of the Interface calls, check the INTERFACE symbolic variable
for error conditions or warning conditions.

WebSphere® MQ Programming, P39-1365 23
Chapter: 4. Errors
Section: General error categories

General error categories
There are only 3 possible values that can be returned by any of the MQSeries
Interfaces, as described in the following table:

Symbolic
name value

Interface
name

Situation

Recommended
Response

" " All Function successfully
completed.

None required.

WARNING All A warning occurred during
the MQSeries API call of the
Interface routine.

Compare the value of the
REASON field to the REASON field
value listed in MQSERIES
Application Programming
Reference, SC33-1673.

ERROR All An error occurred during the
processing of the user’s
request. It could have been
an internal error or one
generated by an MQSeries
API call.

Review the value of the REASON
field in the view. If the value is
positive, compare the value to
the MQSERIES Application
Programming Reference, SC33-
1673. If the value is negative,
compare the value to one of the
possible values listed below.

WebSphere® MQ Programming, P39-1365 24
Chapter: 4. Errors
Section: Negative REASON codes

Negative REASON codes
These codes can be generated from any of the MQSeries Interface calls. They are
restricted to the internal workings of the MQSeries Interface and exclude any of the
possible error conditions returned by the MQSeries APIs.

The following table lists each possible negative REASON value. The vast majority of
these values should never be encountered but are listed here for completeness. For
each possible error condition, the table lists the following:

 Name of Interface in which this error condition or warning condition occurs
 Situation in which this error condition or warning condition occurs
 Recommended response to this error condition or warning condition

For information on positive REASON codes (those generated by the MQSeries API call), refer to
MQSERIES Application Programming Reference, SC33-1673.

REASON
value

Interface
name

Situation

Recommended response

-1 All An error occurred during
initial memory allocation.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-2 All The Interface layout
supplied an invalid value in
the FUNCTION field.

Correct the FUNCTION field so that it
contains one of the following values:
 BEGIN or MQBEGIN
 COMMIT or MQCMIT
 CONNECT or MQCONN
 DISCONN or MQDISC
 DUMP
 EXIT
 GET or MQGET
 INITCONN
 INITGET
 INITMQTM
 INITPUT
 PUT or MQPUT
 ROLLBACK or MQBACK

WebSphere® MQ Programming, P39-1365 25
Chapter: 4. Errors
Section: Negative REASON codes

REASON
value

Interface
name

Situation

Recommended response

-3 All The Interface layout
supplied an invalid value of
ZERO in the HANDLE field.

Perform the following:
Correct the
value in the
HANDLE
field so that
it matches
one of the
values
returned by
the
MQCONNECT
call.
Check the
spelling of
the
HANDLE
variable.
Check to
see if you
have
assigned a
valid handle
value to the
HANDLE
variable. If
not, assign a
valid
handle.

WebSphere® MQ Programming, P39-1365 26
Chapter: 4. Errors
Section: Negative REASON codes

REASON
value

Interface
name

Situation

Recommended response

-4 All The Interface layout
supplied an invalid
NONZERO value in the
HANDLE field. This may be
the result of one of the
following:
 A handle was

closed and
disconnected.

 The program
modified the
variable holding
the handle.

 For Mainframe
CICS Pseudo-
Conversational
mode: A screen
converse
occurred in
between an
MQSeries
connection and
the current use
of this handle,
causing the loss
of the
connection.

Correct the value in the HANDLE field
so that it matches one of the values
returned by the MQCONNECT call.

-5 All The DUMP function failed
because you did not set the
interface type to a valid
type.

Note: For the recommended response,
see 9. MQSeries/MANTIS diagnostic
considerations.

-6 All The DUMP function failed
because of one of the
following:
 The Interface

type was not
identified.

 The
DMPLENGTH
field was set to
ZERO.

Note: For the recommended response,
see 9. MQSeries/MANTIS diagnostic
considerations.

WebSphere® MQ Programming, P39-1365 27
Chapter: 4. Errors
Section: Negative REASON codes

REASON
value

Interface
name

Situation

Recommended response

-7 All The DUMP function failed
because a write error
occurred. This may have
resulted from one of the
following:
 You have

insufficient I/O
or access
privileges to
perform the
write operation
on the dump
file.

 Exhaustion of
space on the
device where
the dump file is
supposed to be
stored.

Note: For the recommended response,
see 9. MQSeries/MANTIS diagnostic
considerations.

-8 All The DUMP function failed
because an open failure
occurred on the dump file
name in the view. This may
have resulted from one of
the following:
 The

DMFILENAME
field contained
a blank or
invalid file
name.

 The dump file
name had
insufficient
privileges.

Note: For the recommended response
and the correct DMFILENAME syntax,
see 9. MQSeries/MANTIS diagnostic
considerations.

-10 All An error occurred during
initial internal processing
of the user handle.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

WebSphere® MQ Programming, P39-1365 28
Chapter: 4. Errors
Section: Negative REASON codes

REASON
value

Interface
name

Situation

Recommended response

-14 All A memory free error
occurred after an MQSeries
object was closed.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-15 All A “memory free” error
occurred when an attempt
was made to free an
internal MQSeries object
during a call to either the
MQDISCONNECT or MQEXIT
interface.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-16 All A “memory free” error
occurred when an attempt
was made to free an
internal MQSeries object
during a call to either the
MQDISCONNECT or MQEXIT
interface.

Note: This error should never occur
but has been documented for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-19
Note:
Mainframe
only.

MQBEGIN An MQSeries begin was
attempted in an
environment that does not
support it.

Note: The MQSeries begin is not
available for the mainframe
environments. Refer to MQSeries
Application Programming Reference,
SC33-1673.

-22
Note:
Mainframe
CICS only.

MQCOMMIT An MQSeries commit was
attempted in an
environment that does not
support it.

Note: The MQSeries commit is not
available for the mainframe CICS
environments. Refer to MQSeries
Application Programming Reference,
SC33-1673.

WebSphere® MQ Programming, P39-1365 29
Chapter: 4. Errors
Section: Negative REASON codes

REASON
value

Interface
name

Situation

Recommended response

-23 All A memory free error
occurred while the
MQSeries Interface was
terminating.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-26 MQCONNECT A memory allocation error
occurred after an MQseries
object was opened.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-27 MQCONNECT A memory allocation error
occurred after an MQSeries
object was connected.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-29
Note:
Mainframe
CICS only.

MQROLLBACK An MQSeries ROLLBACK was
attempted in an
environment that does not
support it.

Note: The MQSeries rollback is not
available for the mainframe CICS
environments. Refer to MQSeries
Application Programming Reference,
SC33-1673.

-34
Note:
Mainframe
only.

ALL The MANTIS program
attempted to access the
MQSeries Interface,
without having been
authorized to do so.

Note: The installation options for this
version of MANTIS do not allow access
to the MQSeries Interface.
If you would like more information,
contact your Master User.

WebSphere® MQ Programming, P39-1365 30
Chapter: 4. Errors
Section: Negative REASON codes

REASON
value

Interface
name

Situation

Recommended response

-35
Note:
Mainframe
CICS only.

ALL A memory allocation error
occurred while the
MQSeries Interface
environment was being
initialized.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-36
Note:
Mainframe
CICS only.

MQTM The call to the MQTM
Interface was made, but
the TM_MEMADDR field,
located in the Interface
layout, was not set to a
valid memory address that
contained the MQSeries
MQTM record.

Note: For the recommended response,
see 7. MQSeries/MANTIS triggering.

-37
Note:
Mainframe
CICS only.

MQTM An attempt was made to
free the memory that the
TM_MEMADDR field,
located in the MQTM
Interface layout, specified.
This may have been the
result of one of the
following:
 In the

TM_MEMADDR
field, which is
located in the
MQTM view,
there was an
invalid address.

 A CICS program
caused memory
corruption.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-38
Note:
Mainframe
Batch only.

MQTM MQSeries triggering is not
supported in the
Mainframe batch
environments.

Note: For the recommended response,
see 7. MQSeries/MANTIS triggering.

WebSphere® MQ Programming, P39-1365 31
Chapter: 4. Errors
Section: Negative REASON codes

REASON
value

Interface
name

Situation

Recommended response

-39
Note: UNIX
only.

MQTM A call to the MQTM
Interface was made
without the MQTMC2
environment variable
having been set.

Correct the process that is invoked to
handle the message that invoked the
trigger. This process must pass the
MQTMC2 record to MANTIS by setting
the record in the MQTMC2
environment variable before MANTIS is
executed.
Note: For more information, see 7.
MQSeries/MANTIS triggering.

-40 MQCONNECT Memory chains within the
MANTIS process were
corrupt during the
MQCONNECT routine call
that attempted to acquire
memory for internal
purposes.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-41 MQCONNECT Memory chains within the
MANTIS process were
corrupt during the
MQCONNECT routine call
that attempted to acquire
memory for internal
purposes.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

-42 MQDISCONNECT
MQEXIT

A memory free error
occurred while the
MQSeries Interface was
being terminated.

Note: This error should never occur
but is documented here for the sake
of completeness.
Perform the following:

Document
the
problem.
Contact
Cincom’s
technical
support.

WebSphere® MQ Programming, P39-1365 32
Chapter: 4. Errors
Section: Negative REASON codes

REASON
value

Interface
name

Situation

Recommended response

-43
Note:
Mainframe
CICS only.

MQCONNECT Memory for tracking OPEN
handles could not be
obtained. This may have
been the result of one of
the following:
 Many calls were

made to the
MQCONNECT
interface,
without a call
being made to
the
MQDISCONNECT
interface.

 A program in
Program Design
was re-run too
many times
without either a
call to
MQDISCONNECT
in
Conversational
mode or a
COMMIT
occurring.

Because mainframe CICS MANTIS can
only concurrently connect to the same
MQSeries Queue Manager 50 times,
you must limit the number of calls to
the MQCONNECT interface to 50 or
less.
Note: For more information on
MQCONNECT for CICS Mainframe, see
7. MQSeries/MANTIS triggering.

WebSphere® MQ Programming, P39-1365 33
Chapter: 5. Constants
Section: Negative REASON codes

5. Constants
MQSeries’s many capabilities and options result in the availability of numerous
constants for use in MQSeries’s various functions. Cincom has duplicated these
constants into a program called MQ_INIT, which is located under the MASTER user.

WebSphere® MQ Programming, P39-1365 34
Chapter: 5. Constants
Section: Including MQ_INIT in a user program

Including MQ_INIT in a user program
Include MQ_INIT in any user program by performing one of the following:

 Copying all or part of MQ_INIT into your program during editing
 Including MQ_INIT in your program as a COMPONENT

WebSphere® MQ Programming, P39-1365 35
Chapter: 5. Constants
Section: Categories of MQSeries constants in MQ_INIT

Categories of MQSeries constants in MQ_INIT
MQ_INIT contains the categories of MQSeries constants that are listed in the following
table.

Category of MQSeries
constants

Description

Completion Codes Constants that can be used with any Interface to test the value
of the COMPCODE field for normal, warning, and error
statuses.

MQCLOSE Options Constants defining options in the MQDISCONNECT Interface
that can be used during the CLOSE of an MQSeries object.

MQGMO Constants for GET Constants that can be used in the MQGET Interface and consist
of the following:
 MQGMO Get Message Options
 Match Options
 Group Status
 Segment Status
 Segmentation and Expiry

MQMD Constants for PUT Constants that can be used in the MQPUT Interface and consist
of the following:
 Structure ID
 Version number
 Report Options
 Message Type
 Feedback Values
 Encoding Values
 Coded Character
 Set Identifiers
 Format Values
 Priority Values
 Persistence Values
 Message Identifier Values
 Message Correlation Identifier
 Put Application Types
 Put Message Flags

MQOPEN Object Type
Definitions

Constants that define the object type being opened and used
in the MQCONNECT Interface.

MQPMO Constants for PUT Constants that can be used in the MQPUT Interface and consist
of the following:
 MQPMO Version Number
 MQPMO Structure Length
 MQPMO Put-Message Options
 MQPMO Message Record Fields

Reason Codes Constants that can be used with any Interface to test the value
of the REASON field for any of the errors generated by
MQSeries.

WebSphere® MQ Programming, P39-1365 36
Chapter: 5. Constants
Section: Categories of MQSeries constants in MQ_INIT

WebSphere® MQ Programming, P39-1365 37
Chapter: 6. Building a MANTIS MQSeries application
Section: Categories of MQSeries constants in MQ_INIT

6. Building a MANTIS MQSeries
application

This chapter describes how to perform the following:

 Create programs that use CALLs to the MQSeries Interfaces
 Initialize the MQSeries Interfaces
 Use the MQSeries Interfaces

WebSphere® MQ Programming, P39-1365 38
Chapter: 6. Building a MANTIS MQSeries application
Section: Creating a program that reads a message queue

Creating a program that reads a message queue
To create a program that reads a message queue, perform the following:

1. Define your message layouts to MANTIS. To accomplish this, perform the following:
a. On the MANTIS Facility Selection Menu, select the Design an Interface option.
b. Load the MQGET Interface design template.
c. Add your message data fields to the end of the Interface layout.
d. Save the new Interface description under a different name.
e. If your program will be reading more than one message layout, repeat steps B–

D.
2. Write a program that contains the following structure for your application logic and

your Interface CALLs:

Pseudo-code Comment

MQCONNECT

MQINITGET

MQBEGIN Your program may or may not require this Interface CALL.

Loop

 MQGET

 MQCOMMIT or MQROLLBACK Your program may or may not require this Interface CALL.

Endloop

MQDISCONNECT or MQEXIT

WebSphere® MQ Programming, P39-1365 39
Chapter: 6. Building a MANTIS MQSeries application
Section: Creating a program that writes to a message queue

Creating a program that writes to a message queue
To create a program that writes to a message queue, perform the following:

1. Define your message layouts to MANTIS. To accomplish this, perform the following:
a. On the MANTIS Facility Selection Menu, select the Design an Interface option.
b. Load the MQPUT Interface design template.
c. Add your message data fields to the end of the Interface layout.
d. Save the new Interface description under a different name.
e. If your program will be reading more than one message layout, repeat steps B–

D.
2. Write a program that contains the following structure for your application logic and

your Interface CALLs:

Pseudo-code Comment

MQCONNECT

MQINITPUT

MQBEGIN Your program may or may not require this Interface CALL.

Loop

 MQPUT

 MQCOMMIT or MQROLLBACK Your program may or may not require this Interface CALL.

Endloop

MQDISCONNECT or MQEXIT

WebSphere® MQ Programming, P39-1365 40
Chapter: 6. Building a MANTIS MQSeries application
Section: Initializing Interfaces that do not require special initialization

Initializing Interfaces that do not require special initialization
Use the CLEAR statement to initialize Interfaces that do not require special
initialization. These Interfaces are:

 MQBEGIN
 MQCOMMIT
 MQDISCONNECT
 MQEXIT
 MQROLLBACK
 MQTM

How to use the CLEAR statement to initialize an Interface
To use the CLEAR statement, place it on a program line, followed by an Interface
name. Below is sample code that includes the CLEAR statement and an Interface name:

10 INTERFACE MQCOMMIT("MASTER:MQCOMMIT",PASSWORD)

...

1000 CLEAR MQCOMMIT

1010 COM_FUNCTION="COMMIT"

1020 COM_HANDLE=SAVE_HANDLE1

1030 CALL MQCOMMIT

What the CLEAR statement does
When the program executes the CLEAR statement, the CLEAR statement performs the
following:

1. Clears all fields in the Interface.
2. Sets all TEXT fields in the Interface to NULL.
3. Sets all numeric fields in the Interface to ZERO.

When you execute the CLEAR statement, fields defined in the Interface have initial values of
NULL or ZERO. This follows normal MANTIS rules. The exception occurs when you auto-map
fields to variables to which you have already assigned values.

WebSphere® MQ Programming, P39-1365 41
Chapter: 6. Building a MANTIS MQSeries application
Section: Initializing Interfaces that require special initialization

Initializing Interfaces that require special initialization
Use CALLs to special functions in order to initialize Interfaces that require special
initialization. These Interfaces are:

 MQCONNECT. Call the INITCONN function to initialize this Interface layout. See
Initializing the MQCONNECT Interface.

 MQGET. Call the INITGET function to initialize this Interface layout. See Initializing
the MQGET Interface to its default usable state.

 MQPUT. Call the INITPUT function to initialize this Interface layout. See Initializing
the MQPUT Interface to its default usable state.

For information on the default state for each of these Interface layouts, refer to MQSERIES
Application Programming Reference, SC33-1673.

Sample code for initializing an Interface that requires special
initialization

Below is sample code for specifying the INITPUT function (used for initializing the
MQPUT Interface layout):

10 INTERFACE QUEUE1("MQPUT1",PASSWORD)

20 CALL QUEUE1("INITPUT")

30 IF PUT_COMPCODE<>ZERO

40 .DO ERROR_ROUTINE

50 END

WebSphere® MQ Programming, P39-1365 42
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

Using the MQSeries Interface layouts
The MQSeries Interface layouts, which are described in this section, are designed for
use with the MQSeries Interface program. They are located in the MASTER library

These Interface layouts are listed in the following table:

For information on using these Interface layouts in programs, see Creating a program that reads
a message queue and Creating a program that writes to a message queue.

Interface
layout name

Description

Used
as-is?

Requires
special
initialization?

Comments

MQBEGIN Starts a unit of
work.

Yes No N/A

MQCOMMIT Commits messages
that were sent and
received during a
unit of work.

Yes No N/A

MQCONNECT Opens and connects
to an MQSeries
object.

Yes Yes Returns handle for use on other
Interfaces.
Note: Requires special
initialization prior to its use
(“INITCONN”).

MQDISCONNECT Closes and
disconnects from an
MQSeries object.

Yes No N/A

MQEXIT Closes all open
handles.

Yes No N/A

MQGET Reads an MQSeries
message.

No Yes To modify this Interface, perform
the following:
1. Copy this Interface.
2. Add your message data layout

to the end of the copy.
Note: Requires special
initialization prior to its use
(“INITGET”).

MQPUT Sends an MQSeries
message.

No Yes To modify this Interface, perform
the following:
1. Copy this Interface.
2. Add your message data layout

to the end of the copy.
Note: Requires special
initialization prior to its use
(“INITPUT”).

MQROLLBACK Resets rollback to
prior synch point.

Yes No N/A

WebSphere® MQ Programming, P39-1365 43
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

Interface
layout name

Description

Used
as-is?

Requires
special
initialization?

Comments

MQTM Maps the MQSeries
trigger data.

Yes No N/A

Using the MQBEGIN Interface to start a unit of work
The MQBEGIN Interface enables the user program to start a unit of work, as defined by
MQSeries and its mqbegin API.

Changing the MQBEGIN Interface layout

Altering data already present in this Interface layout. Do not change this Interface
layout. Doing so will corrupt the Interface and will result in the premature termination
of MANTIS.

Adding user data to the end of this Interface layout. You need not add user data to
this Interface layout.

MQBEGIN Interface layout figure

The Interface layout is shown below:

Initializing the MQBEGIN Interface

Special initialization. This Interface does not require special initialization before you
can use it.

Initialization procedure. To initialize this Interface, perform the following:

1. Set BEG_HANDLE to a valid handle returned by the MQCONNECT Interface.
2. Set BEG_FUNCTION to the string value “BEGIN” or “MQBEGIN”.

Sample code. See the following sample code for examples of setting BEG_HANDLE and
BEG_FUNCTION:

230 INTERFACE MQBEGIN("MASTER:MQBEGIN",PASSWORD)

240 BEG_FUNCTION="BEGIN"

250 BEG_HANDLE=SAVE_HANDLE1

260 CALL MQBEGIN

Description of sample code. The above MANTIS program performs the following:

3. Loads the MQBEGIN Interface.
4. Sets the required fields (BEG_FUNCTION and BEG_HANDLE).

WebSphere® MQ Programming, P39-1365 44
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

5. Calls the Interface to begin a unit of work based on the object pointed to by the
HANDLE that was returned by a previous MQCONNECT (CON_HANDLE or another
variable assigned its value).

MQBEGIN Interface and Transaction Server

MQBEGIN is not supported in Transaction Server. In Transaction Server, transaction
support of MQSeries messages falls under normal MANTIS transaction guidelines.

Using the MQCOMMIT Interface to establish a sync point and commit
all previous message GETs and PUTs

The MQCOMMIT Interface enables you to establish a sync point and to commit all
previous message GETs and PUTs in the manner that MQSeries and its mqcmit API
define.

Changing the MQCOMMIT Interface layout

Altering data already present in this Interface layout. Do not change this Interface
layout. Doing so will corrupt the Interface and will result in the premature termination
of MANTIS.

Adding user data to the end of this Interface layout. You need not add user data to
this Interface layout.

MQCOMMIT Interface area layout figure

The Interface area layout is shown below:

Initializing the MQCOMMIT Interface

Special initialization. This Interface does not require special initialization before you
can use it.

Initialization procedure. To initialize this Interface, perform the following:

1. Set COM_FUNCTION to the string value “COMMIT” or “MQCMIT”.
2. Set COM_HANDLE to a valid handle that was returned by the MQCONNECT

Interface.

Sample code. See the following sample code:

230 INTERFACE MQCOMMIT("MASTER:MQCOMMIT",PASSWORD)

240 COM_FUNCTION="COMMIT"

250 COM_HANDLE=SAVE_HANDLE1

260 CALL MQCOMMIT

Description of sample code. The above MANTIS program performs the following:

3. Loads the MQCOMMIT Interface.
4. Sets the required fields (COM_FUNCTION and COM_HANDLE).

WebSphere® MQ Programming, P39-1365 45
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

5. Calls the Interface, in order to establish a sync point based on the object that is
pointed to by the HANDLE that was returned by a previous MQCONNECT
(CON_HANDLE).

MQCOMMIT and Transaction Server

MQCOMMIT is not supported in Transaction Server. In Transaction Server, transaction
support of MQSeries messages falls under normal MANTIS transaction guidelines.

Using the MQCONNECT Interface to open and connect to an MQSeries
object

The MQCONNECT Interface enables the user program to open and connect to an
MQSeries object via the mqconn and mqopen APIs. Not all calls to the MQCONNECT
interface result in an mqconn call; one qconn call is made for each unique object.
Nevertheless, every call to the MQCONNECTY interface will yield a call to the mqopen.

Changing the MQCONNECT Interface layout

Altering data already present in this Interface layout. Do not change this Interface
layout. Doing so will corrupt the Interface and will result in the premature termination
of MANTIS.

Adding user data to the end of this Interface layout. You need not add user data to
this Interface layout.

MQCONNECT Interface layout figure

The Interface layout is shown below:

For information on elements 7–12 in the preceding figure, refer to MQSeries Application
Programming Reference, SC33-1673. These elements are the following:

 QMGRNAME
 OPTIONS
 OBJECTTYPE
 OBJECTNAME
 OBJECTQMGRN_
 ALTERNATEUSE

WebSphere® MQ Programming, P39-1365 46
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

Initializing the MQCONNECT Interface

Special initialization. This Interface requires special initialization—that is, before you
can use this Interface, you must call a special function in order to initialize the
Interface to its default usable state.

Initialization steps. Accomplish the special initialization by performing the following:

1. Place the “INITCONN” string in the FUNCTION field.
2. Call the MQCONNECT Interface.

To review the settings for the default state of mqconn, refer to MQSERIES Application
Programming Reference, SC33-1673. Once the INITCONN function initializes the
mqconn to its default values, the application can change them prior to calling the
MQCONNECT Interface to connect and open the MQSeries object.

Sample code. See the following sample code for examples of placing the INITCONN
string in the FUNCTION field and calling the MQCONNECT Interface:

10 INTERFACE MQCONNECT("MASTER:MQCONNECT",PASSWORD)

15 CON_FUNCTION="INITCONN"

20 CALL MQCONNECT

Description of sample code. The above MANTIS program performs the following:

1. Loads the MQCONNECT Interface.
2. Sets the required field (CON_FUNCTION).
3. Calls the MQCONNECT Interface.

Connecting to the MQSeries object

Connection procedure. To open the MQSeries object and connect to it, perform the
following:

1. Change the CON_FUNCTION to “CONNECT” or “MQCONN”.
2. Call the INTERFACE.

Sample code. See the following sample code:

25 CON_FUNCTION="CONNECT"

30 CALL MQCONNECT

Description of sample code. The above MANTIS program performs the following:

1. Sets the required field (CON_FUNCTION).
2. Calls the MQCONNECT Interface.

Once the MQCONNECT call returns successfully, CON_HANDLE contains a value to
use for all input and output to that object.

Using the same MQCONNECT Interface to open multiple objects

Connection procedure. To use the same MQCONNECT Interface to open multiple
objects, perform the following:

1. Save the CON_HANDLE into another SMALL or BIG variable (for example,
SAVE_HANDLE1).

2. Reinitialize the Interface with a CALL using function INITCONN.
3. Call the MQCONNECT Interface.

Sample code. See the following sample code:

10 INTERFACE MQCONNECT("MASTER:MQCONNECT",PASSWORD)

20 SMALL SAVE_HANDLE1

WebSphere® MQ Programming, P39-1365 47
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

30 SMALL SAVE_HANDLE2

40 CON_FUNCTION="INITCONN"

50 CALL MQCONNECT

60 CON_FUNCTION="CONNECT"

70 CALL MQCONNECT

80 SAVE_HANDLE1=CON_HANDLE

90 CON_FUNCTION="INITCONN"

100 CALL MQCONNECT

110 CON_FUNCTION="CONNECT"

120 CALL MQCONNECT

130 SAVE_HANDLE2=CON_HANDLE

Comment on the preceding code. When dealing with queues, you may want to have
multiple contexts in order to establish different currencies. For example, the same
queue can be opened multiple times in a program:

 Opened once for browsing
 Opened once for destructive reading
 Opened once for writing

You can use the same MQCONNECT Interface and save separate handles to each
connection.

Using the MQDISCONNECT Interface to close and disconnect from an
MQSeries object

The MQDISCONNECT Interface enables the user program to close and disconnect from
an MQSeries object via the mqclose and mqdisc APIs. Every call to the MQDISCONNECT
interface will result in the call to mqclose. The last mqclose on a particular connected
MQSeries object will result in a call to the mqdisc API.

Changing the MQDISCONNECT Interface layout

Altering data already present in this Interface layout. Do not change this Interface
layout. Doing so will corrupt the Interface and will result in the premature termination
of MANTIS.

Adding user data to the end of this Interface layout. You need not add user data to
this Interface layout.

MQDISCONNECT Interface area layout figure

The Interface area layout is shown below:

WebSphere® MQ Programming, P39-1365 48
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

Initializing the MQDISCONNECT Interface

Special initialization. This Interface does not require special initialization before you
can use it.

Initialization procedure. To initialize this Interface, perform the following:

1. Set DIS_FUNCTION to the string value of “DISCONNECT” or “MQDISC”.
2. Set DIS_HANDLE to a valid handle returned by the MQCONNECT Interface.
3. Set DIS_OPTIONS to any needed disconnect options.

Sample code. See the following sample code:

100 INTERFACE MQDISCONNECT("MASTER:MQDISCONNECT",PASSWORD)

110 DIS_FUNCTION="DISCONNECT"

120 DIS_HANDLE=SAVE_HANDLE1

130 CALL MQDISCONNECT

Description of sample code. The above MANTIS program performs the following:

1. Loads the MQDISCONNECT Interface.
2. Sets the required fields.
3. Calls the Interface, in order to close and disconnect the MQSeries object pointed to

by the HANDLE that was returned by a previous MQCONNECT.

Using the MQEXIT Interface to close all open handles
The MQEXIT Interface enables the user program to close all open handles with one call
to MQEXIT.

Changing the MQEXIT Interface layout

Altering data already present in this Interface layout. Do not change this Interface
layout. Doing so will corrupt the Interface and will result in the premature termination
of MANTIS.

Adding user data to the end of this Interface layout. You need not add user data to
this Interface layout.

MQEXIT Interface layout figure

The Interface layout is shown below:

Initializing the MQEXIT Interface

Special initialization. This Interface does not require special initialization before you
can use it.

Initialization procedure. To initialize this Interface, set EXT_FUNCTION to the string
value “EXIT”.

WebSphere® MQ Programming, P39-1365 49
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

UNIX Only: During MANTIS termination, whether it’s for NORMAL or FATAL processing, BATCH
or INTERACTIVE, if there are any connected resources, the MANTIS nucleus calls MQEXIT.

Sample code. See the following sample code:

340 INTERFACE MQEXIT("MASTER:MQEXIT",PASSWORD)

350 EXT_FUNCTION="EXIT"

360 CALL MQEXIT

Description of sample code. The above MANTIS program performs the following:

1. Loads the MQEXIT Interface.
2. Sets the EXT_FUNCTION as required.
3. Calls the Interface, in order to close all open handles, created from prior calls, to

the MQCONNECT Interface.

Using the MQGET Interface to read an MQSeries message
The MQGET Interface enables you to read an MQSeries message via the mqget API.

Changing the MQGET Interface layout

Changing fields that are already present in this Interface layout. Do not change
(Alter, Insert, or Delete) the fields that already exist in this Interface layout. Doing so
will corrupt the Interface and will result in the premature termination of MANTIS.

Adding user message data to the end of this Interface layout. You must add user
message data to the end of this Interface layout. Before you can read an MQSeries
message via the mqget API, perform the following:

1. Use the Interface Design Facility Library Functions to fetch the MQGET Interface
template.

2. Select the Update Area Layout option.
3. Add your message data layout to the end of the MQGET Interface template.
4. Use Library Functions to save the MQGET Interface template under a new name.

Do not alter MQGET Interface template by replacing it.

Each different message layout requires its own MQGET Interface and is modeled on
MASTER:MQGET.

MQGET Interface layout figure

The Interface layout is shown below:

WebSphere® MQ Programming, P39-1365 50
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

Initializing the MQGET Interface to its default usable state

Special initialization. This Interface requires special initialization—that is, before you
can use this Interface, you must call a special function in order to initialize the
Interface to its default usable state.

The initialization process will not alter any of the user fields that you added to the end of the
Interface layout.

To review the settings for the default state of an MQGET Interface, refer to MQSERIES
Application Programming Reference, SC33-1673.

Initialization procedure. To initialize the Interface, perform the following:

WebSphere® MQ Programming, P39-1365 51
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

1. Set the FUNCTION field to the “INITGET” string.
2. Call the Interface.

Sample code. See the following sample code:

140 INTERFACE MQGET1("MQGET1",PASSWORD)

150 GET_FUNCTION="INITGET"

160 CALL MQGET1

Description of sample code. The above MANTIS program performs the following:

1. Loads the MQGET1 Interface.
2. Sets the GET_FUNCTION variable.
3. Calls the MQGET1 Interface.

Changing the initialized Interface in order to receive a message

Once you have initialized the Interface, you can set the GET_FUNCTION and
GET_HANDLE variables before you call the MQGET Interface, so that you are able to
receive a message.

Procedure for receiving a message. To receive a message, perform the following:

1. Change the GET_FUNCTION variable to “GET” or “MQGET”.
2. Set the GET_HANDLE variable to a valid handle from a previous MQCONNECT.
3. Call the Interface.

Sample code. See the following sample code:

200 GET_FUNCTION="GET"

210 GET_HANDLE=SAVE_HANDLE2

220 CALL MQGET1

Description of sample code. The above MANTIS program performs the following:

1. Sets the GET_FUNCTION variable.
2. Sets the GET_HANDLE variable to a valid handle from a previous MQCONNECT.
3. Calls the MQGET1 Interface.

Using the MQPUT Interface to send an MQSeries message
The MQPUT Interface enables you to send an MQSeries message via the mqput API.

Changing the MQPUT Interface layout

Changing fields that are already present in this Interface layout. Do not change the
sequence of fields in the beginning of this Interface layout. Doing so will corrupt the
Interface and will result in the premature termination of MANTIS.

Adding user message data to the end of the Interface layout. You must add user
message data to the end of this Interface layout. Before you can send an MQSeries
message via the mqput API, perform the following:

1. Use the Interface Design Facility Library Functions to fetch the MQPUT Interface
template.

2. Select the Update Area Layout option.
3. Add your message data layout to the end of the MQPUT Interface template.
4. Use Library Functions to save the MQPUT Interface template under a new name.

Do not alter the MQPUT Interface template by replacing it.

WebSphere® MQ Programming, P39-1365 52
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

Each different message layout requires its own version of the MQPUT Interface and is modeled
on MASTER:MQPUT.

MQPUT Interface layout figure

The Interface layout is shown below:

Initializing the MQPUT Interface to its default usable state

Special initialization. This Interface requires special initialization—that is, before you
can use this Interface, you must call a special function in order to initialize the
Interface to its default usable state.

The initialization process will not alter any of the user fields that you added to the end of the
Interface layout.

WebSphere® MQ Programming, P39-1365 53
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

To review the settings for the default state of an MQPUT, refer to MQSERIES Application
Programming Reference, SC33-1673.

Initialization procedure. To initialize the Interface, perform the following:

1. Place the “INITPUT” string in the PUT_FUNCTION field.
2. Call the Interface.

Sample code. See the following sample code:

140 INTERFACE MQPUT1("MQPUT1",PASSWORD)

150 PUT_FUNCTION="INITPUT"

160 CALL MQPUT1

Description of sample code. The above MANTIS program performs the following:

1. Loads the MQPUT1 Interface.
2. Sets the PUT_FUNCTION variable.
3. Calls the MQPUT1 Interface

Changing the initialized Interface in order to send a message

Once you initialize the Interface, you can perform the procedure for sending a
message.

Procedure for sending a message. To send a message, perform the following:

1. Change PUT_FUNCTION to “PUT” or “MQPUT”.
2. Set the PUT_HANDLE variable to a valid handle from a previous MQCONNECT.
3. Set the PUT_LENGTH variable defining the length of your user data. This value does

not include the length of the fields prior to your user data.
4. Call the Interface.

Sample code. See the following sample code:

170 PUT_FUNCTION="PUT"

180 PUT_HANDLE=SAVE_HANDLE2

190 PUT_LENGTH = 100

200 CALL MQPUT1

Description of sample code. The above MANTIS program performs the following:

1. Sets the PUT_FUNCTION variable.
2. Sets the PUT_HANDLE variable to a valid handle from a previous MQCONNECT.
3. Sets the PUT_LENGTH variable to 100. This is the total length of the user data

area.
4. Calls the MQGET1 Interface.

Using the MQROLLBACK Interface to rollback to a previous sync point
and reverse all previous message GETs and PUTs

The MQROLLBACK Interface enables you to perform the following:

1. Rollback to a previous sync point.
2. As MQSeries and its mqback API specify, reverse all previous message GETs and

PUTs.

WebSphere® MQ Programming, P39-1365 54
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

Changing the MQROLLBACK Interface layout

Changing fields that are already present in this Interface layout. Do not change this
Interface layout. Doing so will corrupt the Interface and will result in the premature
termination of MANTIS.

Adding user data to the end of this Interface layout. You need not add user data to
this Interface layout.

MQROLLBACK Interface layout figure

The Interface layout is shown below:

Initializing the MQROLLBACK Interface

Special initialization. This Interface does not require special initialization before you
can use it.

Initialization procedure. To initialize this Interface, perform the following. These
steps will establish a sync point based on the object (CON_HANDLE), pointed to by the
HANDLE, that was returned by a previous MQCONNECT:

1. Set the ROL_HANDLE variable to a valid handle that was returned by the
MQCONNECT Interface.

2. Set the ROL_FUNCTION variable to the string “ROLLBACK” or “MQBACK”.
3. Call the Interface.

Sample code. See the following sample code:

270 INTERFACE MQROLLBACK("MASTER:MQROLLBACK",PASSWORD)

280 ROL_FUNCTION="ROLLBACK"

290 ROL_HANDLE=SAVE_HANDLE1

300 CALL MQROLLBACK

Description of sample code. The above MANTIS program code performs the following:

1. Loads the MQROLLBACK Interface.
2. Sets the required fields (ROL_FUNCTION and ROL_HANDLE).
3. Calls the Interface.

Transaction Server and MQROLLBACK

MQROLLBACK is not supported in Transaction Server. In Transaction Server, transaction
support of MQSeries messages falls under normal MANTIS transaction guidelines.

Using the MQTM Interface to map the MQSeries trigger data to the
MANTIS MQTM Interface

The MQTM Interface maps the MQSeries trigger data to the MANTIS MQTM Interface.

WebSphere® MQ Programming, P39-1365 55
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

For more information on using MANTIS as an MQSeries trigger message handler, see 7.
MQSeries/MANTIS triggering and 10. General UNIX and Mainframe considerations.

Changing the MQTM Interface layout

Changing fields that are already present in this Interface layout. Do not change this
Interface layout. Doing so will corrupt the Interface and will result in the premature
termination of MANTIS.

Adding user data to the end of this Interface layout. You need not add user data to
this Interface layout.

MQTM Interface layout figure

The Interface layout is shown below:

Initializing the MQTM Interface

Special initialization. This Interface does not require special initialization before you
can use it.

Initialization procedure. To initialize this Interface, set TMC_FUNCTION to the string
“INITMQTM”.

Sample code. See the following sample code:

370 INTERFACE MQTM("MASTER:MQTM",PASSWORD)

380 TMC_FUNCTION = "INITMQTM"

390 CALL MQTM

Description of sample code. In order to retrieve the MQSeries trigger message data,
the preceding MANTIS program performs the following:

4. Loads the MQTM Interface.
5. Sets the required field (TMC_FUNCTION).
6. Calls the Interface.

Upon successful return, there is sufficient information to enable the MANTIS program to
connect to the appropriate queue and retrieve the message that triggered the event.

WebSphere® MQ Programming, P39-1365 56
Chapter: 6. Building a MANTIS MQSeries application
Section: Using the MQSeries Interface layouts

WebSphere® MQ Programming, P39-1365 57
Chapter: 7. MQSeries/MANTIS triggering
Section: Using the MQSeries Interface layouts

7. MQSeries/MANTIS triggering
This chapter describes how to use MANTIS as an MQSeries trigger handler. It is
organized in the following sections:

 General MANTIS trigger considerations.
 UNIX MQSeries/MANTIS trigger considerations.
 Mainframe MQSeries/MANTIS trigger considerations.

Using MANTIS for triggering is not currently supported under Mainframe Batch.

WebSphere® MQ Programming, P39-1365 58
Chapter: 7. MQSeries/MANTIS triggering
Section: General MANTIS trigger considerations

General MANTIS trigger considerations
MQSeries can invoke MANTIS in the background, so that MANTIS can handle a particular
message type being sent to a queue that is defined as a trigger queue.

To clarify: this interface is designed to be used in a background environment. No
results, other than errors, will be returned to the application when the application is
executed interactively.

Procedure for using MANTIS as a trigger handler
To use MANTIS as a trigger handler, perform the following:

7. Use MQSeries queue definitions to associate MANTIS with a particular MQSeries
queue and message type. For more information, refer to the following:
- MQSeries Application Programming Guide, SC33-0807
- One of the following platform-specific sections in this chapter. See UNIX

MQSeries/MANTIS trigger considerations or Mainframe MQSeries/MANTIS trigger
considerations.

8. Tell MANTIS which user, password, and program to execute in order to handle the
trigger message. Each platform requires a different procedure. For platform-
specific information, see one of the following:
- UNIX MQSeries/MANTIS trigger considerations
- Mainframe MQSeries/MANTIS trigger considerations

Programs that illustrate the trigger-handling process
MANTIS includes a set of programs to illustrate the trigger-handling process.

See 8. MQSeries/MANTIS example programs for descriptions of the following:

 How these trigger-handling programs work
 Front-end components needed to complete the trigger-handling process

The following two platform-specific sections describe components needed to complete
the trigger-handling process.

Writing a MANTIS application program to handle the triggered event
Once you have customized the trigger-handler front-end for your environment, you
must write a MANTIS application program to handle the triggered event.

This MANTIS application program must call the MQTM Interface in order to retrieve the
following:

 For UNIX users: MQTMC2 record description.
 For Mainframe CICS users: MQTM record description.

For details on the MQTMC2 or MQTM record description, refer to MQSERIES Application
Programming Reference, SC33-1673. Each of these two record descriptions contains
detailed information about the message that caused the trigger event.

After the MANTIS application calls the MQTM Interface, it must perform the following:

9. Interrogate the fields.
10. Open the appropriate queue.
11. Retrieve the message.

WebSphere® MQ Programming, P39-1365 59
Chapter: 7. MQSeries/MANTIS triggering
Section: General MANTIS trigger considerations

Sample program for sending a message to a trigger queue
For an example of how to send a message to a queue defined as a trigger queue, study
the MASTER:MQ_TRIGGER sample program (see MQ_TRIGGER).

Sample program for handling an MQSeries trigger event
For an example of how to handle an MQSeries trigger event, study the
MASTER:MQ_HANDLER sample program (see MQ_HANDLER).

WebSphere® MQ Programming, P39-1365 60
Chapter: 7. MQSeries/MANTIS triggering
Section: UNIX MQSeries/MANTIS trigger considerations

UNIX MQSeries/MANTIS trigger considerations

The trigger.sh script as a model for your trigger handler
Use the trigger.sh script as a model when you develop your own trigger handler. This
script, one of the MQSeries/MANTIS example programs, is located in the
$MANTIS_ROOT/libmqs directory that accompanies the UNIX version of MANTIS.

Steps required for trigger handling
For trigger handling, the following must occur:

12. You must associate trigger.sh, or a program that you have modeled after it, with
the trigger queue.

13. MQSeries must execute trigger.sh, or a program that you have modeled after it, as
the trigger handler.

Procedure for constructing a trigger handler
Perform the following in trigger.sh (or in a program that you have modeled on it):

14. Redirect all MANTIS terminal output to a log file.
15. this because MANTIS executes the user, password, and program in batch form, in

the background.
16. Enter settings for the MANTIS working environment, such as MANTIS_PATCH,

MANTIS_ROOT, MANTIS_CLASS, and so on.
17. Set the MQTMC2 environment variable to the trigger record passed from MQSeries.
18. Make any other changes specified by the documentation inside trigger.sh.

Since MQSeries invokes the trigger script and ultimately MANTIS, you must give MQSeries full
READ/WRITE/EXECUTE privileges to all files within the $MANTIS_ROOT directory structure.

MQSeries and MANTIS procedure for handling the triggered event

Description of the procedure for handling the triggered event

MQSeries and MANTIS take the following steps (shown in Figure depicting the procedure
for handling the triggered event) to cooperatively handle the triggered event:

19. An MQSeries-enabled application (MANTIS or any other application) sends a message
to an application queue (this application queue must be defined as being trigger-
enabled).

The following figure depicts this MQSeries-enabled application as residing on the same system
as the application queue, but there are no restrictions on the type or location of the
application or system. The only requirement is that MQSeries routes the message to the correct
destination.

20. MQSeries copies the message to the initiation queue.
21. The trigger monitor program that has been watching the initiation queue performs

the following:
a. Detects an inbound message.
b. Launches the appropriate application, trigger.sh, to handle the message (the

MQTMC2 data structure is passed to trigger.sh as an argument).

WebSphere® MQ Programming, P39-1365 61
Chapter: 7. MQSeries/MANTIS triggering
Section: UNIX MQSeries/MANTIS trigger considerations

22. Trigger.sh performs the following:
a. Places the MQTMC2 data into the MQTMC2 environment variable.
b. Sets up the MANTIS environment.
c. Executes MANTIS in batch mode, using the appropriate USER, PASSWORD, and

PROGRAM.
23. MANTIS signs on via the specified USER and PASSWORD.
24. The MANTIS program specified by trigger.sh in step 4 begins executing.

This program is written to handle one or more trigger message types. This program
uses the MQTM Interface to retrieve the MQTMC2 data that trigger.sh placed in the
environment variable MQTMC2.

25. The MANTIS program performs the following:
a. Connects to the initiation queue returned in the MQTM Interface.
b. Retrieves the message that caused the trigger event.

26. The application may choose to connect to other application queues to send and
receive messages; there are no restrictions on what the application does next.

Figure depicting the procedure for handling the triggered event

MQSeries and MANTIS take the following steps (see Description of the procedure for
handling the triggered event) to cooperatively handle the triggered event:

WebSphere® MQ Programming, P39-1365 62
Chapter: 7. MQSeries/MANTIS triggering
Section: Mainframe MQSeries/MANTIS trigger considerations

Mainframe MQSeries/MANTIS trigger considerations

The CSOXTRIG front-end application as a model for your trigger
handler

Use the CSOXTRIG front-end application (CICS transaction) as a model when you
develop your own trigger handler. Cincom provides this application, one of the
MQSeries/MANTIS example programs, in both executable and source forms.

Steps required for trigger handling
For trigger handling, the following must occur:

27. You must associate CSOXTRIG, or a program modeled after it, with the trigger
queue.

28. MQSeries must execute CSOXTRIG, or a program modeled after it, as the trigger
handler.

Procedure for constructing a trigger handler
Perform the following in CSOXTRIG (or in an application that is modeled after it):

29. Customize the BTRANID setting.
This is the ID of the MANTIS background transaction that this front-end application
will start.

30. Customize the BUID setting.
This is the user that is executed in batch MANTIS.

31. Customize the BPSW setting.
This is the password that is executed in batch MANTIS.

32. Customize the BTRIG setting.
This is the program that is executed in batch MANTIS.

You need not customize the MSHMEM setting—it will be automatically set to the address of the
Shared GETMAIN area that will contain the MQTM trigger to be passed from MQSeries.

33. For further setting changes, review the documentation within CSOXTRIG.

MQSeries and MANTIS procedure for handling the triggered event

Description of the procedure for handling the triggered event

MQSeries and MANTIS take the following steps (shown in Figure depicting procedure for
handling the triggered event) to cooperatively handle the triggered event:

34. An MQSeries-enabled application (MANTIS or any other application) sends a message
to an application queue (this application queue must be defined as being trigger-
enabled).

The following figure depicts this MQSeries-enabled application as a UNIX application residing on
the same system as the application queue, but there are no restrictions on the type or location
of the application or system. The only requirement is that MQSeries routes the message to the
correct destination.

35. MQSeries copies the message to the initiation queue.
36. The CICS trigger monitor program (CKTI) that has been watching the initiation

queue performs the following:

WebSphere® MQ Programming, P39-1365 63
Chapter: 7. MQSeries/MANTIS triggering
Section: Mainframe MQSeries/MANTIS trigger considerations

a. Detects an inbound message.
b. Launches the appropriate application, CSOXTRIG, to handle the message (the

MQTM data structure is passed to CSOXTRIG as an argument on the CICS start).
37. CSOXTRIG performs the following:

a. Places the MQTM data into a shared getmain area.
b. Passes the getmain area address, USER, PASSWORD, and PROGRAM to MANTIS

on the start.
38. MANTIS, running as a background MANTIS task, signs on via the specified USER and

PASSWORD.
39. The specified MANTIS program begins executing.

This program is written to handle one or more trigger message types. This program
uses the MQTM Interface to retrieve the MQTM data that CSOXTRIG placed in the
getmain area by CSOXTRIG.

40. The MANTIS program performs the following:
a. Connects to the initiation queue returned in the MQTM Interface.
b. Retrieves the message that caused the trigger event.

41. The application may choose to connect to other queues to send and receive
messages; there are no restrictions on what the application does next.

Figure depicting procedure for handling the triggered event

MQSeries and MANTIS take the following steps (Description of the procedure for
handling the triggered event) to cooperatively handle the triggered event:

WebSphere® MQ Programming, P39-1365 64
Chapter: 7. MQSeries/MANTIS triggering
Section: Mainframe MQSeries/MANTIS trigger considerations

WebSphere® MQ Programming, P39-1365 65
Chapter: 8. MQSeries/MANTIS example programs
Section: Mainframe MQSeries/MANTIS trigger considerations

8. MQSeries/MANTIS example
programs

Cincom provides MANTIS example programs along with the MANTIS distribution. These
programs test the MQSeries Interface and demonstrate its usage. Find them under the
MASTER user.

The following sections describe these programs in more detail.

MANTIS program Associated screen Description

MQ_HANDLER MQ_HANDLER Working MANTIS program that serves as a
message trigger handler.

MQ_HANDLER@ MQ_HANDLER MANTIS source code for MQ_HANDLER.

MQ_INIT N/A MANTIS subroutine containing MQSeries
constants.

MQ_SAMPLE MQ_SAMPLE Working MANTIS program that tests each
MQSeries Interface.

MQ_SAMPLE@ MQ_SAMPLE MANTIS source code for MQ_SAMPLE.

MQ_TRIGGER N/A Working MANTIS program that SENDs a message
to trigger MQ_HANDLER.

MQ_TRIGGER@ N/A MANTIS source code for MQ_TRIGGER.

WebSphere® MQ Programming, P39-1365 66
Chapter: 8. MQSeries/MANTIS example programs
Section: MQ_INIT

MQ_INIT
By itself, MQ_INIT only allocates and initializes MANTIS variables that are used as
constants for the various MQSeries Interface fields.

MQ_INIT is built as a subroutine that can be copied into a user program. Use it as one
of the following:

 External subroutine
 Internal subroutine
 Component

For more information on MQ_INIT, see 5. Constants.

WebSphere® MQ Programming, P39-1365 67
Chapter: 8. MQSeries/MANTIS example programs
Section: MQ_SAMPLE

MQ_SAMPLE
MQ_SAMPLE is an example program that performs the following:

42. Tests each MQSeries Interface.
43. For each Interface, displays either a “SUCCESSFUL” status or an “ERROR” status.

Uses for MQ_SAMPLE
You can use MQ_SAMPLE:

 As a test to find out whether the connection between MANTIS and MQSeries is
working properly.

 As an example for developing MANTIS programs that perform MQSeries messaging.

Queue used for sending and receiving messages
MANTIS uses the SYSTEM.DEFAULT.LOCAL.QUEUE as the queue for sending and
receiving messages. Therefore, you must be authorized to perform write operations to
this queue. For SYSTEM.DEFAULT.LOCAL.QUEUE, you may substitute any queue to
which you have write privileges.

UNIX screen shot of MQ_SAMPLE
The UNIX screen shot of MQ_SAMPLE below shows a “SUCCESSFUL” status for all
MQSeries Interfaces.

MQ_SAMPLE’s errors for COMMIT and ROLLBACK functions under
mainframe CICS

For the mainframe CICS environments, MQ_SAMPLE will generate an error (-22) for the
COMMIT function and an error (-29) for the ROLLBACK function because they are not
supported.

WebSphere® MQ Programming, P39-1365 68
Chapter: 8. MQSeries/MANTIS example programs
Section: MQ_HANDLER

MQ_HANDLER
MQ_HANDLER is a MANTIS example program that demonstrates how MANTIS can be used
as an MQSeries trigger handler.

Abilities necessary for any handler to possess
MQ_HANDLER demonstrates the abilities necessary for any handler to possess. A
handler must perform the following:

44. Receive the Trigger Record by calling the MANTIS Interface MQTM (For Mainframe,
this is MQTM; for Unix, this is MQTMC2). The MANTIS application can review the
data in this Interface’s fields, in order to determine the next step.

45. Using the MQCONNECT Interface, connect to the queue containing the message to
which this program was triggered.

46. Retrieve the triggered message via the appropriate MQGET Interface. Each message
type will require its own Interface that is modeled after the MQGET Interface.

47. Disconnect from the queue via the MQDISCONNECT Interface.
48. Take appropriate action by connecting, sending, or receiving other messages.

MEMADDR argument to MQ_HANDLER
Mainframe CICS uses the MEMADDR argument to MQ_HANDLER. The MEMADDR
argument’s purpose is to serve as a storage address of the MQTM record that CSOXTRIG
passed to MANTIS. For more information, see Mainframe MQSeries/MANTIS trigger
considerations.

Running MQ_HANDLER interactively vs. running it automatically
Cincom did not design MQ_HANDLER to be run interactively; rather, Cincom designed it
to be executed by the MQSeries trigger monitor. If you attempt to run MQ_HANDLER
interactively, MANTIS aborts. If the trigger queue and definitions are set up properly,
MQSeries will execute MQ_HANDLER automatically when you interactively run
MASTER:MQ_TRIGGER.

WebSphere® MQ Programming, P39-1365 69
Chapter: 8. MQSeries/MANTIS example programs
Section: MQ_TRIGGER

MQ_TRIGGER

MQ_TRIGGER
MQ_TRIGGER, a MANTIS example program, sends a message to a trigger-enabled queue
called TRIGGER.QUEUE. MQ_TRIGGER works with the MQ_HANDLER program.

The MQ_HANDLER program performs the following:

 Serves as a trigger handler.
 Responds to the message that MQ_TRIGGER sends to

TRIGGER.QUEUE.

Before using MQ_TRIGGER, review the material under
MQ_HANDLER.

MQ_TRIGGER sample output screen
Below is an MQ_TRIGGER sample output screen:

GETERR(2033)
Regarding the GETERR(2033) error message, consider the following:

 Improperly configured trigger queues or definitions. If the sent message works
properly, most errors are related to the GET in MQ_TRIGGER and are usually due to
improperly configured trigger queues or definitions. To locate the source of this
error, perform the following:
- For CICS—Review the CICS JOBLOG to see if the trigger monitor successfully

started CSOXTRIG.
- For both CICS and UNIX—Review the MANTIS DUMP file for indications of how

far the MASTER:MQ_HANDLER program progressed before it failed. For more
information on the MQSeries/MANTIS Dump mechanism, see 9.
MQSeries/MANTIS diagnostic considerations.

WebSphere® MQ Programming, P39-1365 70
Chapter: 8. MQSeries/MANTIS example programs
Section: MQ_TRIGGER

 Timing problem. Occasionally, a timing problem causes error 2033. This happens
because insufficient time was provided in which to invoke, execute, and receive
the message from MQ_HANDLER. To resolve this problem, simply run MQ_TRIGGER
again.

WebSphere® MQ Programming, P39-1365 71
Chapter: 9. MQSeries/MANTIS diagnostic considerations
Section: MQ_TRIGGER

9. MQSeries/MANTIS diagnostic
considerations

WebSphere® MQ Programming, P39-1365 72
Chapter: 9. MQSeries/MANTIS diagnostic considerations
Section: Diagnosing a MANTIS program error

Diagnosing a MANTIS program error
When a MANTIS program causes errors while it is attempting to CONNECT, GET, PUT,
etc, perform the following steps to diagnose the problem:

49. Check the Interface name for returned values.
For detailed descriptions of these return values, see 4. Errors.

50. Review the COMPCODE field in the Interface layout.
The COMPCODE field contains a number that represents problem severity. For more
information about the COMPCODE field in the Interface views, see 2. Fundamental
usage.

51. Review the REASON field in the Interface layout.
The REASON field contains a NON-ZERO value if an error occurs. This value will be a
positive value if the MQSeries API generated the error. A negative value in the
REASON field represents an internal error in the interface. For more information on
this number:
- For positive REASON values, perform the following:

o Compare this number with the MQRC_ values found in the MANTIS program
MQ_INIT.

o Look up a description of the number in MQSERIES Application Programming
Reference, SC33-1673.

- For negative REASON values, review Negative REASON codes
For more information about the REASON field in the Interface views, see 2.
Fundamental usage.

52. Perform a DUMP of the Interface layout. This may be required under severe
conditions—especially when CINCOM Technical Support is involved. For more
information on dumping MQSeries Interface views, see Dumping MQSeries Interface
views.

WebSphere® MQ Programming, P39-1365 73
Chapter: 9. MQSeries/MANTIS diagnostic considerations
Section: Dumping MQSeries Interface views

Dumping MQSeries Interface views
Each MQSeries Interface layout contains a FUNCTION field that you must initialize to
the function you would like to perform. For example:

 MQCONNECT contains a field called CON_FUNCTION. Set this field to “INITCONN” or
“CONNECT”.

 MQDISCONNECT contains a field called DIS_FUNCTION. Set this field to “DISCONN”.

There’s an additional value to which you can set all FUNCTION fields: “DUMP”. “DUMP”
signals the Interface subroutines to dump the contents of the Interface layout.

UNIX sample of a dumped MQCONNECT Interface
Below is a UNIX sample of an MQCONNECT Interface layout that has been dumped:

Procedure for dumping the failing Interface layout
Special initialization. Although an Interface does not require special initialization to
dump, it makes sense to dump the Interface layout after it has failed to perform as
intended. Dumping the layout, before calling the Interface as the view is intended to
do, could result in error being returned in the REASON field.

Procedure for dumping the failing Interface. To dump the failing Interface layout,
set the FUNCTION variable to the string “DUMP”.

Code sample. See the following code:

180 CON_FUNCTION="INITCONN"

190 CALL MQCONNECT

200 CON_FUNCTION="CONNECT"

210 MQOD_OBJECTNAME="SYSTEM.DEFAULT.LOCAL.QUEUE"

220 MQOD_OBJECTTYPE=MQOT_Q

230 CON_OPTIONS=MQOO_INPUT_AS_Q_DEF+MQOO_OUTPUT

240 CALL MQCONNECT

250 IF MQCONNECT<>""

260 CON_FUNCTION="DUMP"

270 . CON_DMPFILENAME="MMQD"

280 CALL MQCONNECT

290 STOP

300 END

Description of the code sample. The preceding MANTIS code performs the following:

WebSphere® MQ Programming, P39-1365 74
Chapter: 9. MQSeries/MANTIS diagnostic considerations
Section: Dumping MQSeries Interface views

53. Initializes the MQCONNECT Interface by performing the following:
a. Specifying “INITCONN” in the FUNCTION field.
b. Properly setting the remaining connection fields.

54. Resets the FUNCTION field to “CONNECT”.
55. Calls MQCONNECT to connect to the SYSTEM.DEFAULT.LOCAL.QUEUE.
56. Once control is returned, the Interface CALL is checked for errors by comparing the

Interface name to “”.
57. If an error occurs, sets the FUNCTION field is set to “DUMP”.
58. Sets the DMPFILENAME to "MMQD".
59. Calls MQCONNECT again to dump the Internet layout.

System-specific dump file descriptions
Consider the dump file description that is relevant to your system. Dump file name:
Each view has a field called DMPFILENAME. This field relates to the output of the
“DUMP” function but is platform specific in it’s meaning. For all platforms, output of
the “DUMP” is appended to the file, if it already exists. If you use the “DUMP” feature
of an MQSeries interface the DMPFILENAME must be set, there is no default name.

 UNIX. The output file name may also contain a full path or default to the current
working directory. Make sure you have write privileges to the file regardless of its
location. If the dump file name does not already exist, MANTIS creates it.

 Mainframe CICS. The filename associated by the DMPFILENAME field refers to a
Transient Data Queue. Therefore, the naming restrictions of a TD Queue apply.
Before using the Queue name, it must be created with the following DCB:

In addition to the above DCB for the mmqd, the following CICS (Transaction Server)
definitions are required:
- NAME=MMQD
- TYPE=EXTRA
- DATABUFFERS=10
- DDNAME=MMQD
- OPENTIME=INITIAL
- TYPEFILE=OUTPUT

 z/OS Batch. The filename associated by the DMPFILENAME field refers to a DD
name in your JCL. Therefore, the naming restrictions of a DD Name apply. A
dataset with 100 byte records and blocked accordingly would be sufficient.

 z/VSE Batch. The filename associated by the DMPFILENAME field refers to a DLBL
name in your JCL. Therefore, the naming restrictions of a DLBL Name apply. A
dataset with a block size of 4096 would be sufficient.

Dump length
The Interface type determines the dump length. Once an Interface has been used, the
IDENT field in the Interface layout is set internally to signify Interface type. An attempt
to dump this Interface before the Interface is used internally will generate an error
code in the REASON field of that view.

WebSphere® MQ Programming, P39-1365 75
Chapter: 9. MQSeries/MANTIS diagnostic considerations
Section: Dumping MQSeries Interface views

Overriding the dump length with DMPLENGTH

You can override the dump length by entering a numeric size in the DMPLENGTH field.
However, do not specify a size larger than the Interface itself; if you do, MANTIS may
end prematurely. You must set DMPLENGTH for any dumps of MQGET and MQPUT
Interfaces that include user data fields, because the dump routine does not know the
exact size of the Interface layout (including the user data fields).

WebSphere® MQ Programming, P39-1365 76
Chapter: 10. General UNIX and Mainframe considerations
Section: Dumping MQSeries Interface views

10. General UNIX and Mainframe
considerations

WebSphere® MQ Programming, P39-1365 77
Chapter: 10. General UNIX and Mainframe considerations
Section: MQSeries Client Configuration for UNIX MANTIS

MQSeries Client Configuration for UNIX MANTIS
For UNIX only, MQSeries applications can be built and then linked to client or server
runtime libraries. The MQSeries support for UNIX Mantis has been built and linked to
the client libraries. Whether the application has been linked with client or server
libraries has little or no impact on the application API. However, it does have an
impact on administering MQSeries and MQSeries-enabled applications.

To enable messaging between an MQSeries client (MANTIS) and server, an MQI Channel
must be created. The MQ API makes no reference to this channel in any way; it’s
strictly an MQSeries administrative issue. Based on many factors, there are several
ways to set up channels in an MQSeries client/server environment. Because of these
factors, and also because of possible variations between customer environments,
channel configuration recommendations are beyond the scope of this document.
However, the creation of channels, as well as a properly configured MQSeries
client/server environment, are absolute requirements for using the MANTIS/MQSeries
interface.

For information on properly configuring an MQSeries client environment, refer to WebSphere
Clients, GC34-6058.

WebSphere® MQ Programming, P39-1365 78
Chapter: 10. General UNIX and Mainframe considerations
Section: Installation considerations

Installation considerations

UNIX
Consider the following for MQSeries installation on the UNIX platform:

 Things to verify after MQSeries is installed. After MQSeries has been installed and
is running properly, verify the following:
- MANTIS is in proper working order.
- The UNIX environment variable MANTIS_SHRLIB is pointing to

$MANTIS_ROOT/libmqs. This enables MANTIS to load the MQSeries internal
Interface.

For information on setting MANTIS_SHRLIB, refer to the "Logical names" topic in MANTIS
Administration, P39-1321.

 Enabling appropriate patches. To authorize the use of MQSeries, enable the
MANTIS Security patch (Option, Product 13). Before developing applications using
MQSeries, consult Cincom’s MANTIS technical support in order to get the MANTIS
Security patch and any additional updates.

 Installing and running MQSeries. You must install and run MQSeries before MANTIS
can communicate with the Queue Manager.

 Other installation considerations. If you followed the documented installation
procedure, no other installation considerations are required. To find the
documented installation procedure to follow, refer to the version of MQSeries
Quick Beginning Guide for the appropriate platform.

Mainframe
Consider the following for MQSeries installation for Mainframe:

 Enabling the MQSeries feature. In the Mainframe environment, you must enable
the MQSeries feature in order to run it.

 Authorization error with MQSeries Interfaces. If you ever receive an authorization
error when you attempt to use any of the MQSeries Interfaces, consult your Mantis
Administrator.

 Under the z/OS operating system:
a. Make sure that the “C” runtime library is in your CICS start JCL, under the

DFHRPL DD statement:
// DD DISP=SHR,DSN=CEE.SCEERUN 'C' Runtime

b. Add the MQSeries runtime to the CICS start JCL, under the DFHRPL DD
statement:
// DD DISP=SHR,DSN=CSQ.V5R2M0.SCSQANLE

// DD DISP=SHR,DSN=CSQ.V5R2M0.SCSQCICS

// DD DISP=SHR,DSN=CSQ.V5R2M0.SCSQAUTH

// DD DISP=SHR,DSN=CSQ.V5R2M0.SCSQLOAD

 Under the z/VSE operating system. Make sure that the “C” runtime and MQSeries
library are already allocated to your partition. If not, your CICS start JCL should
reference them in the LIBDEF search chain statement:
PRD2.SCEEBASE

PRD2.MQSERIES

WebSphere® MQ Programming, P39-1365 79
Chapter: 10. General UNIX and Mainframe considerations
Section: Installation considerations

If you followed the documented installation procedure, no other installation considerations are
required. To find the appropriate installation procedure, refer to the following:

 MQSeries for z/OS and Planning Guide, GC34-5650
 MQSeries for z/OS System Setup Guide, SC34-5651
 MQSeries for z/OS System Administration Guide, SC34-5652
 MQSeries for VSE/ESA V2.1.1 System Management Guide, GC34-5364

WebSphere® MQ Programming, P39-1365 80
Chapter: 10. General UNIX and Mainframe considerations
Section: MQCONNECT

MQCONNECT

UNIX
Consider the following for the UNIX implementation of the MQCONNECT Interface:

 It has no restrictions.
 It conforms to the routine requirements for:

- MQSeries MQI mqconn
- MQSeries MQI mqopen
- Multiple connections can be made to:
- The same object
- Different objects
- Multiple Queue Managers

Mainframe
Consider the following for the Mainframe implementation of the MQCONNECT
Interface:

 Connections under CICS. Consider the following restrictions:
- Only one Queue Manager may be connected to at one time. However, multiple

objects controlled by that queue manager may be connected to concurrently.
- Under Mainframe CICS only—MANTIS imposes a restriction of 50 concurrent

connections. Attempting to execute more than 50 concurrent connections
results in an error -43 in the RESULT field of the MQCONNECT interface.
Consider the following:

- In CICS Conversational Mode—During testing of your MQSeries MANTIS program,
if you repeatedly execute a program containing MQCONNECT without
successfully calling MQEXIT or MQDISCONNECT, MANTIS will probably produce
error -43.

- In CICS Pseudo-Conversational mode—You would have to specifically call
MQCONNECT 50 times in a row, without performing a screen converse, in order
for MANTIS to produce error -43.

- If error -43 is generated, perform one of the following:
o Reduce the number of calls to MQCONNECT.
o Issue the MQDISCONNECT interface call.
o Issue the MQEXIT interface call.

 CICS Pseudo-Conversational Mode restrictions. Consider the following restrictions
for this terminal mode:
- When the user performs a MANTIS CONVERSE, MQSeries connections are lost

and MQSeries connections are not maintained.
- The user is responsible for reconnecting to the MQSeries Object after each

CONVERSE.
- Retaining a connection handle across a CONVERSE does not maintain the

connection. If the user uses the connection handle after a CONVERSE, an
Invalid Handle Error results.

 CICS Conversational Mode restrictions. CICS Conversational Mode does not have
the same restrictions as CICS Pseudo-Conversational Mode. All connections are
maintained across a CONVERSE.

 MQCONNECT conforms to the requirements of the following routines:
- MQSeries MQI mqconn

WebSphere® MQ Programming, P39-1365 81
Chapter: 10. General UNIX and Mainframe considerations
Section: MQCONNECT

- MQSeries MQI mqopen

WebSphere® MQ Programming, P39-1365 82
Chapter: 10. General UNIX and Mainframe considerations
Section: MQDISCONNECT

MQDISCONNECT

UNIX
Consider the following for the UNIX implementation of the MQDISCONNECT Interface:

 It has no restrictions.
 It conforms to the routine requirements for the following:

- MQSeries MQI mqclose
- MQSeries MQI mqdisc

Mainframe
Consider the following for the Mainframe implementation of the MQDISCONNECT
Interface:

 It has no restrictions.
 It conforms to the routine requirements for the following:

- MQSeries MQI mqclose
- MQSeries MQI mqdisc

WebSphere® MQ Programming, P39-1365 83
Chapter: 10. General UNIX and Mainframe considerations
Section: MQGET

MQGET

UNIX
Consider the following for the UNIX implementation of the MQGET Interfaces:

 It has no restrictions
 It conforms to the routine requirements for MQSeries MQI mqget

Mainframe
Consider the following for the Mainframe implementation of the MQGET Interface:

 MQMD fields not used by the MQGET Interface. Consider that for the Mainframe,
several MQMD (Message Descriptor) fields do not exist. Although these fields appear
in the MQGET Interface layout for the Mainframe, the MQSeries Interface does not
use them. These fields are:
- MsgSeqNumber
- MsgFlags
- OriginalLength
- GroupId

 MQGET conforms to the requirements of the MQSeries MQI mqget routine.

WebSphere® MQ Programming, P39-1365 84
Chapter: 10. General UNIX and Mainframe considerations
Section: MQPUT

MQPUT

UNIX
Consider the following for the UNIX implementation of the MQPUT Interface:

 It has no restrictions.
 It conforms to the routine requirements for MQSeries MQI mqput.

Mainframe
Consider the following for the Mainframe implementation of the MQPUT Interface:

 MQMD fields not used by the MQSeries Interface. For the Mainframe, four MQMD
(Message Descriptor) fields do not exist. Although these four fields appear in the
MQPUT Interface layout for the Mainframe, the MQSeries Interface does not use
them. These fields are the following:
- MsgSeqNumber
- MsgFlags
- OriginalLength
- GroupId

 MQPMO fields not used by the MQSeries Interface. For the Mainframe, two
MQPMO (Put Message Options) fields do not exist. Although these two fields appear
in the MQPUT Interface layout for the Mainframe, they are not used by the
MQSeries Interface:
- RecsPresent
- PutMsgRecFields

 MQPUT conforms to the requirements of the MQSeries MQI mqput routine.

WebSphere® MQ Programming, P39-1365 85
Chapter: 10. General UNIX and Mainframe considerations
Section: MQROLLBACK

MQROLLBACK

UNIX
Consider the following for the UNIX implementation of the MQROLLBACK Interface:

 It has no restrictions.
 It conforms to the routine requirements for MQSeries MQI mqback.

Mainframe
Consider the following for the mainframe implementation of the MQROLLBACK
Interface:

 MQSeries MQI mqback is not supported in CICS. Using this Interface in CICS will
generate a REASON code error of (-29) in the interface.

 To rollback a logical unit of work containing MQSeries updates, use MANTIS RESET.
For more information on MANTIS RESET, refer to MANTIS Language for z/OS and
z/VSE, P39-5302.

 For more information on COMMITting transactions and units of work, refer to
MQSERIES Application Programming Guide, SC33-0807.

WebSphere® MQ Programming, P39-1365 86
Chapter: 10. General UNIX and Mainframe considerations
Section: MQCOMMIT

MQCOMMIT

UNIX
Consider the following for the UNIX implementation of the MQCOMMIT Interface:

 It has no restrictions.
 It conforms to the routine requirements for MQSeries MQI mqcmit.
 A CONVERSE on UNIX does not COMMIT the outstanding UNIT of WORK. Therefore,

the MANTIS program must handle all COMMITs manually.

Mainframe
Consider the following for the Mainframe implementation of the MQCOMMIT Interface:

 MQSeries MQI mqcmit is not supported in CICS. Using this Interface in CICS will
generate a REASON code error of (-22) in the interface.

 To commit a logical unit of work containing MQSeries updates, use MANTIS COMMIT.
For more information on MANTIS COMMIT, refer to MANTIS Language for z/OS and
z/VSE, P39-5302.

 If the MANTIS application is running in Pseudo-Conversational Mode, a CONVERSE,
by default, performs the following:
c. Ends the MANTIS transaction.
d. Commits the Logical Unit of Work.

 For more information on Committing transactions and units of work, refer to
MQSERIES Application Programming Guide, SC33-0807.

WebSphere® MQ Programming, P39-1365 87
Chapter: 10. General UNIX and Mainframe considerations
Section: MQBEGIN

MQBEGIN

UNIX
Consider the following for the UNIX implementation of the MQCOMMIT Interface:

 It has no restrictions.
 It conforms to the routine requirements for MQSeries MQI mqbegin.

Mainframe
Consider the following for the Mainframe implementation of the MQCOMMIT Interface:

 The MQSeries MQI mqbegin is not supported in any Mainframe environment. Using
this Interface on the Mainframe will generate a REASON code error of (-19) in the
interface.

 Since, under CICS, all updateable MQSeries transactions are logged by default, an
MQBEGIN is not required.

 For more information on COMMITting transactions and units of work, refer to
MQSERIES Application Programming Guide, SC33-0807.

WebSphere® MQ Programming, P39-1365 88
Chapter: 10. General UNIX and Mainframe considerations
Section: MQEXIT

MQEXIT

UNIX and Mainframe
Consider the following for the implementation of the MQEXIT Interface:

The MQEXIT Interface is an add-on feature that enables MANTIS programmers to close
all open connections with one call. It performs an mqclose and mqdisc on all
connection handles.

WebSphere® MQ Programming, P39-1365 89
Chapter: 10. General UNIX and Mainframe considerations
Section: MQTM

MQTM

UNIX
Consider the following for the UNIX implementation of the MQTM Interface:

 For triggering, the MQTMC2 record is passed to UNIX MANTIS. Because the MQTM
Interface contains all MQTMC2 fields, there are no restrictions.

 The TM_MEMADDR field is only used for Mainframe.

Mainframe
 Consider the following for the Mainframe of the MQTM Interface:
 For triggering, the MQTM record is passed to CICS MANTIS. The MQTM Interface

layout contains all MQTMC2 fields. The only field in the Interface layout that is not
usable by the Mainframe is TM_QMGRNAME. Although using this field does not
generate an error, the MQSeries Interface does not use it. It exists only for
compatibility with the UNIX version of MANTIS.

 TM_MEMADDR is a Mainframe-only field. It serves as a storage address of the MQTM
record that CSOXTRIG passes to MANTIS. For more information, see 7.
MQSeries/MANTIS triggering.

WebSphere® MQ Programming, P39-1365 90
Index

Index
B

BPSW 62
BTRANID 62
BTRIG 62
BUID 62

C

CALL and INTERFACE statements
reference materials 12

CLEAR statement 40
constants 33
CSOXTRIG example program for

trigger handling 62

D

Design an Interface option 39
diagnosing MANTIS program errors

72
DMPLENGTH 75
DUMP 73
dumping MQSeries Interface views

introduction 73
dump 74
procedure 73
system-specific descriptions 74

E

errors
categories 23
diagnosing 72
negative reason codes 24

F

field prefixes
and automatic mapping feature

20
description 20

fields
Inbound 21
Inbound/Outbound 21
Outbound 21

G

GET_FUNCTION 51
GET_HANDLE 51
GETERR(2033) error message 69

I

initializing interfaces
not requiring special

initialization 40
requiring special initialization 41

sample code 41
INITPUT 41
Interface design reference

materials 12
internal Interfaces location 13

M

Mainframe considerations
implementation of MQBEGIN 87
implementation of MQCOMMIT 86
implementation of MQCONNECT

80
implementation of

MQDISCONNECT 82
implementation of MQEXIT 88
implementation of MQGET 83
implementation of MQPUT 84
implementation of MQROLLBACK

85
implementation of MQTM 89
MQSeries installation 78

MANTIS
using as MQSeries trigger handler

general considerations 58
procedure 58
programs that illustrate 58
writing program to handle

triggered event 58
MANTIS/MQSeries example

programs
location 65
MQ_HANDLER 68
MQ_INIT 66
MQ_SAMPLE 67
MQ_TRIGGER 69
overview 65

MASTER user library 13
message queue

creating a program to read 38
creating a program to write 39

MQ_INIT
categories of constants 35
description 33
including in a program 34

MQBEGIN Interface
changing 43
description 43
initializing 43
layout 43
operating system considerations

87

WebSphere® MQ Programming, P39-1365 91
Index

MQCOMMIT Interface
changing 44
description 44
initializing 44
layout 44
operating system considerations

86, 88
MQCONNECT Interface

changing 45
description 45
initializing 46
layout 45
operating system considerations

80
using to open multiple objects 46

MQDISCONNECT Interface
changing 47
description 47
initializing 48
layout 47
operating system considerations

82
MQEXIT Interface

changing 48
description 48
initializing 48
layout 48

MQGET Interface
changing 49
changing to receive a message 51
description 49
initialization 50
layout 49
operating system considerations

83
MQPUT Interface

changing 51
changing to send a message 53
description 51
initialization 52
layout 52
operating system considerations

84
MQROLLBACK Interface

changing 54
description 53
initializing 54
layout 54
operating system considerations

85

MQSeries
constants 33
interfaces to 13

MQSeries Interface
common fields in views 16
development cycle 8

MQTM Interface
changing 55
description 54
initializing 55
layout 55
operating system considerations

89

R

REASON field diagnosing errors 72

T

trigger handling
CSOXTRIG example program 62
trigger.sh example program 60

trigger.sh example program for
trigger handling 60

U

UNIX considerations
implementation of MQBEGIN 87
implementation of MQCOMMIT 86
implementation of MQCONNECT

80
implementation of

MQDISCONNECT 82
implementation of MQEXIT 88
implementation of MQGET 83
implementation of MQPUT 84
implementation of MQROLLBACK

85
implementation of MQTM 89
MQSeries applications 77
MQSeries installation 78

W

WebSphere MQ Programming
and MQI 11
description 8
generalized interface program 10
interface layouts 9

	1. Overview
	Description of WebSphere MQ Programming
	Development cycle figure

	Using an Interface layout as a template for your Interface
	Generalized Interface program
	MQI and WebSphere MQ Programming
	Reference materials
	Internal Interfaces for MQSeries support

	2. Fundamental usage
	Common fields in MQSeries Interface views

	3. Field naming conventions
	Field prefixes
	Adding another level of prefixing

	Different kinds of fields, requiring different actions

	4. Errors
	General error categories
	Negative REASON codes

	5. Constants
	Including MQ_INIT in a user program
	Categories of MQSeries constants in MQ_INIT

	6. Building a MANTIS MQSeries application
	Creating a program that reads a message queue
	Creating a program that writes to a message queue
	Initializing Interfaces that do not require special initialization
	How to use the CLEAR statement to initialize an Interface
	What the CLEAR statement does

	Initializing Interfaces that require special initialization
	Sample code for initializing an Interface that requires special initialization

	Using the MQSeries Interface layouts
	Using the MQBEGIN Interface to start a unit of work
	Changing the MQBEGIN Interface layout
	MQBEGIN Interface layout figure
	Initializing the MQBEGIN Interface
	MQBEGIN Interface and Transaction Server

	Using the MQCOMMIT Interface to establish a sync point and commit all previous message GETs and PUTs
	Changing the MQCOMMIT Interface layout
	MQCOMMIT Interface area layout figure
	Initializing the MQCOMMIT Interface
	MQCOMMIT and Transaction Server

	Using the MQCONNECT Interface to open and connect to an MQSeries object
	Changing the MQCONNECT Interface layout
	MQCONNECT Interface layout figure
	Initializing the MQCONNECT Interface
	Connecting to the MQSeries object
	Using the same MQCONNECT Interface to open multiple objects

	Using the MQDISCONNECT Interface to close and disconnect from an MQSeries object
	Changing the MQDISCONNECT Interface layout
	MQDISCONNECT Interface area layout figure
	Initializing the MQDISCONNECT Interface

	Using the MQEXIT Interface to close all open handles
	Changing the MQEXIT Interface layout
	MQEXIT Interface layout figure
	Initializing the MQEXIT Interface

	Using the MQGET Interface to read an MQSeries message
	Changing the MQGET Interface layout
	MQGET Interface layout figure
	Initializing the MQGET Interface to its default usable state
	Changing the initialized Interface in order to receive a message

	Using the MQPUT Interface to send an MQSeries message
	Changing the MQPUT Interface layout
	MQPUT Interface layout figure
	Initializing the MQPUT Interface to its default usable state
	Changing the initialized Interface in order to send a message

	Using the MQROLLBACK Interface to rollback to a previous sync point and reverse all previous message GETs and PUTs
	Changing the MQROLLBACK Interface layout
	MQROLLBACK Interface layout figure
	Initializing the MQROLLBACK Interface
	Transaction Server and MQROLLBACK

	Using the MQTM Interface to map the MQSeries trigger data to the MANTIS MQTM Interface
	Changing the MQTM Interface layout
	MQTM Interface layout figure
	Initializing the MQTM Interface

	7. MQSeries/MANTIS triggering
	General MANTIS trigger considerations
	Procedure for using MANTIS as a trigger handler
	Programs that illustrate the trigger-handling process
	Writing a MANTIS application program to handle the triggered event
	Sample program for sending a message to a trigger queue
	Sample program for handling an MQSeries trigger event

	UNIX MQSeries/MANTIS trigger considerations
	The trigger.sh script as a model for your trigger handler
	Steps required for trigger handling
	Procedure for constructing a trigger handler
	MQSeries and MANTIS procedure for handling the triggered event
	Description of the procedure for handling the triggered event
	Figure depicting the procedure for handling the triggered event

	Mainframe MQSeries/MANTIS trigger considerations
	The CSOXTRIG front-end application as a model for your trigger handler
	Steps required for trigger handling
	Procedure for constructing a trigger handler
	MQSeries and MANTIS procedure for handling the triggered event
	Description of the procedure for handling the triggered event
	Figure depicting procedure for handling the triggered event

	8. MQSeries/MANTIS example programs
	MQ_INIT
	MQ_SAMPLE
	Uses for MQ_SAMPLE
	Queue used for sending and receiving messages
	UNIX screen shot of MQ_SAMPLE
	MQ_SAMPLE’s errors for COMMIT and ROLLBACK functions under mainframe CICS

	MQ_HANDLER
	Abilities necessary for any handler to possess
	MEMADDR argument to MQ_HANDLER
	Running MQ_HANDLER interactively vs. running it automatically

	MQ_TRIGGER
	MQ_TRIGGER
	MQ_TRIGGER sample output screen
	GETERR(2033)

	9. MQSeries/MANTIS diagnostic considerations
	Diagnosing a MANTIS program error
	Dumping MQSeries Interface views
	UNIX sample of a dumped MQCONNECT Interface
	Procedure for dumping the failing Interface layout
	System-specific dump file descriptions
	Dump length
	Overriding the dump length with DMPLENGTH

	10. General UNIX and Mainframe considerations
	MQSeries Client Configuration for UNIX MANTIS
	Installation considerations
	UNIX
	Mainframe

	MQCONNECT
	UNIX
	Mainframe

	MQDISCONNECT
	UNIX
	Mainframe

	MQGET
	UNIX
	Mainframe

	MQPUT
	UNIX
	Mainframe

	MQROLLBACK
	UNIX
	Mainframe

	MQCOMMIT
	UNIX
	Mainframe

	MQBEGIN
	UNIX
	Mainframe

	MQEXIT
	UNIX and Mainframe

	MQTM
	UNIX
	Mainframe

	Index

