Machine Learning on Quantum Computing: From Classical to Quantum

(Week 4 – Session 1)

Weiwen Jiang, Ph.D.

Postdoc Research Associate

Department of Computer Science and Engineering

University of Notre Dame

wjiang2@nd.edu | https://wjiang.nd.edu

NOTRE DAME | COLLEGE OF ENGINEERING

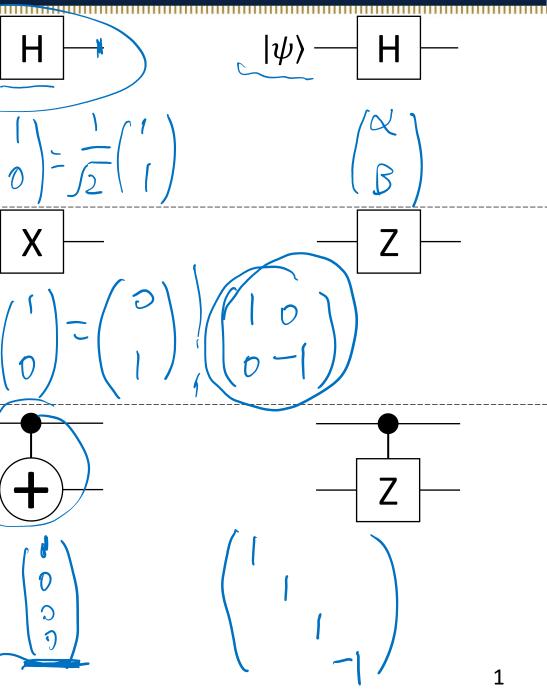
Review of Previous Sessions

- Single-Qubit Gates
 - Hadamard gate: H Gate
 - Pauli operators: X, Y, Z Gates
 - General gate: U Gate
- Multi-Qubit Gates
 - Controlled-Pauli gates
 - Controlled-Hadamard gate

0)

 $|0\rangle$

- Controlled-Phase gates
- SWAP gate
- Toffoli gate or CCNOT
- Fredkin gate or CSWAP



Organization of Quantum Machine Learning Sessions

- Background and Motivation [w4s1]
 - What is machine learning and neural network
 - Why using quantum computer
 - Our goals 🦾
- General Framework and Case Study² (Tutorial on GitHub³) [w4s1- w4s2]

ANN7ST

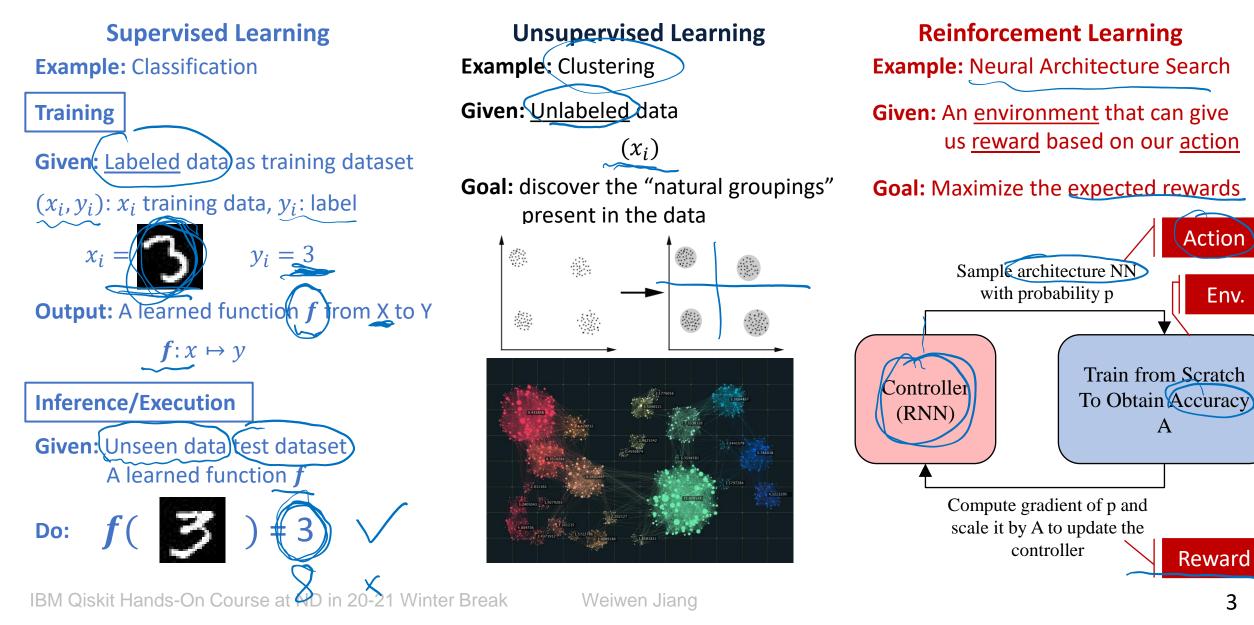
- Implementing neural network accelerators: from classical to quantum
- A case study on MNIST dataset
- Optimization towards Quantum Advantage¹ (Nature Communications) [w4s2]
 - The existing challenges
 - The proposed co-design framework: QuantumFlow

References:

[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications
 [2] W. Jiang, et al. <u>When Machine Learning Meets Quantum Computers: A Case Study</u>, ASP-DAC'21

[3] W. Jiang, Github Tutorial on Implementing Machine Learning to Quantum Computer using IBM Qiskit

What is Machine Learning?



What is Machine Learning? --- Our Focus

Supervised Learning

Example: Classification

Training

Given: <u>Labeled</u> data as training dataset

 (x_i, y_i) : x_i training data, y_i : label

 $x_i =$

 $y_i = 3$

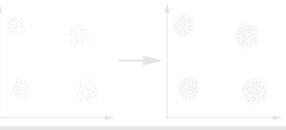
Output: A learned function *f* from X to Y

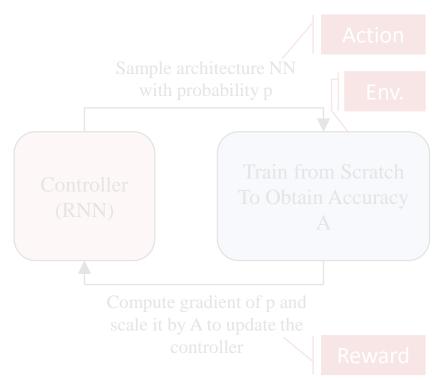
 $f: x \mapsto y$

Inference/Execution

Given: Unseen data test dataset A learned function **f**

Do:





What is Neural Network?

Supervised Learning

Example: Classification

Training

Given: <u>Labeled</u> data as training dataset

 (x_i, y_i) : x_i training data, y_i : label

 $x_i =$

 $y_i = 3$

Output: A learned function *f* from X to Y

 $f: x \mapsto y$

Inference/Execution

Given: Unseen data test dataset A learned function **f**

Do:
$$f(3) = 3$$

IBM Qiskit Hands-On Course at ND in 20-21 Winter Break

Weiwen Jiang

An unknown classification function:
$$g$$

 $y = g(x)$; $s.t. y_i = g(x_i)$
Learn a function f with parameters θ, b to approximate g :
 $\widehat{y} = f(x, \theta, b)$

Training is to minimize the loss function by adjusting parameters θ , b

$$min: \underbrace{\mathcal{L}(f)}_{i} = \sum_{i} (\underbrace{f(x_{i}, \theta, b)}_{i} - \underbrace{y_{i}})$$

Perceptron model, where
$$\sigma$$
 is a non-linear function:

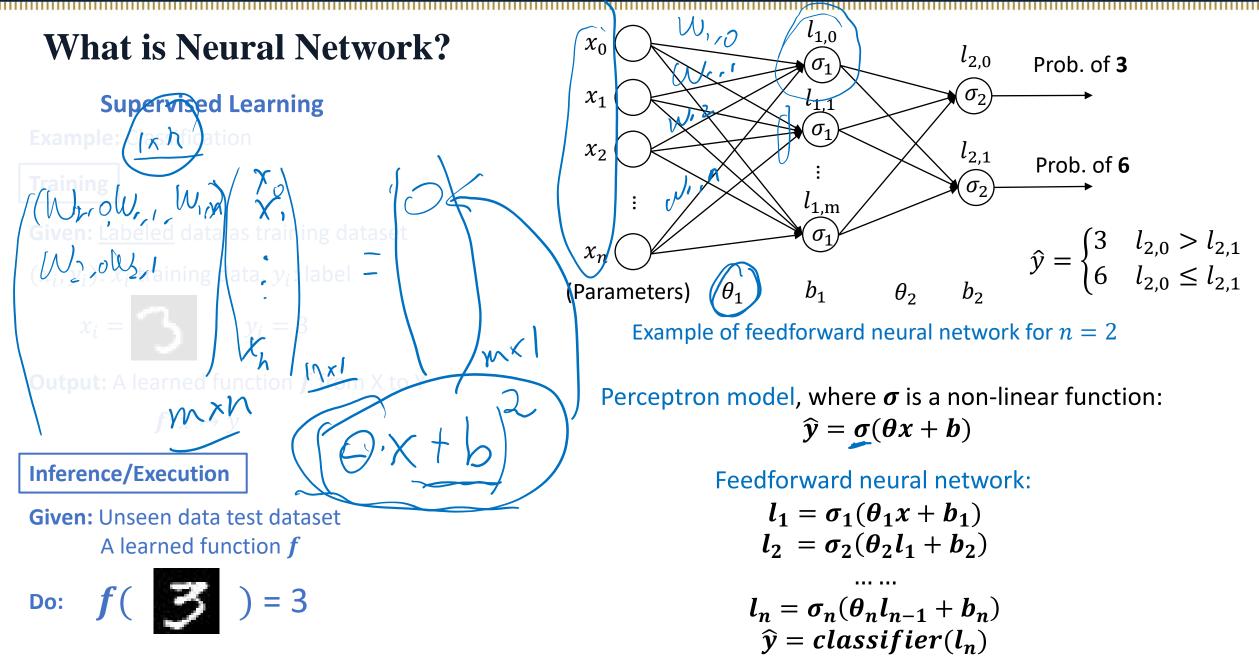
$$\widehat{y} = \varphi(\theta x + b)$$
Feedforward neural network:

$$l_1 = \sigma_1(\theta_1 x + b_1)$$

$$l_2 = \sigma_2(\theta_2 l_1 + b_2)$$
.....

$$l_n = \sigma_n(\theta_n l_{n-1} + b_n)$$

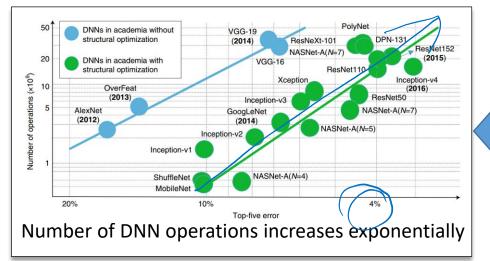
$$\widehat{y} = classifier(l_n)$$



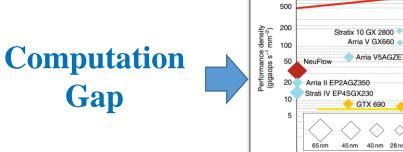
Why Using Quantum Computer for Machine Learning?

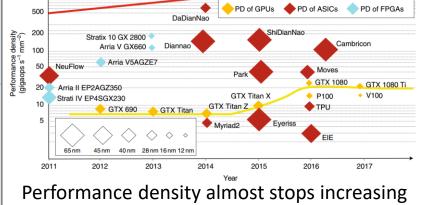
- Imbalanced "demand and supply" of NN on classical computing
- The growing power of quantum computing
- Linear algebra is central for both quantum computing and machine learning

NN on Classical Computer: Computation & Storage Demand > Supply



Neural Network Size





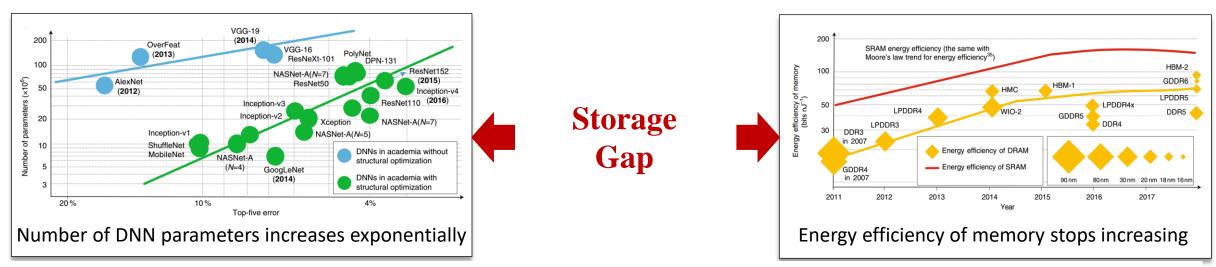
Moore's law trend for

1,000

performance according to ref. 35

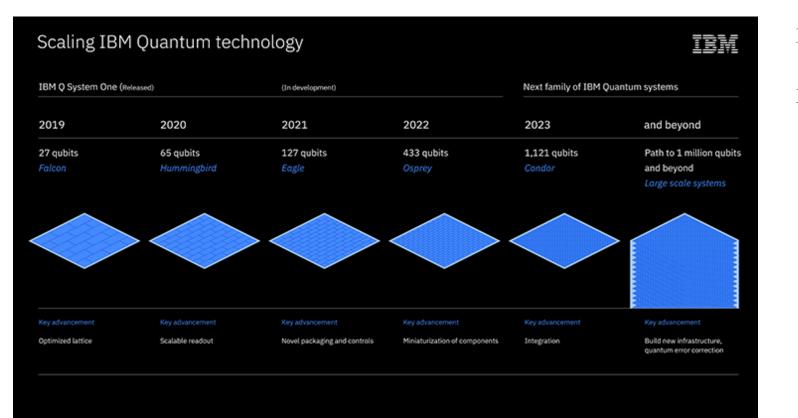
Moore's law end

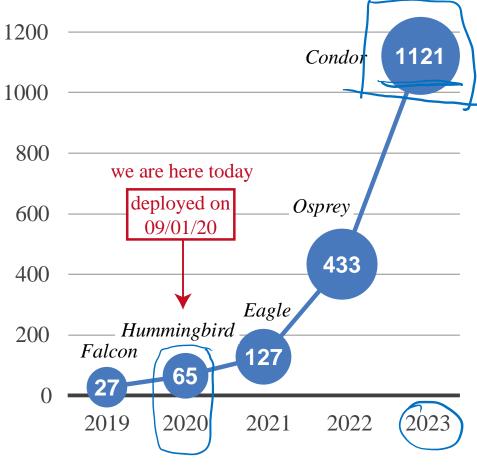
Traditional Hardware Capability



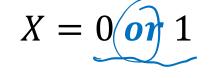
[ref] Xu, X., et al. 2018. Scaling for edge inference of deep neural networks. Nature Electronics, 1(4), pp.216-222. 8

Consistently Increasing Qbits in Quantum Computers





The Power of Quantum Computers: Qubit



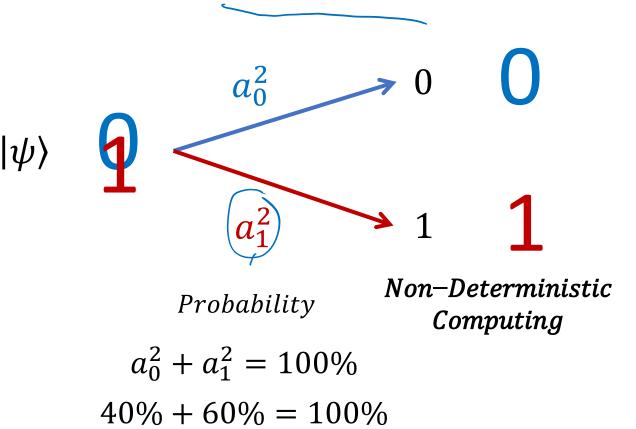
Quantum Bit (Qubit)

$$|\psi\rangle = |0\rangle$$
 and $|1\rangle$

$$|\psi\rangle = \underline{a_0}|0\rangle + \underline{a_1}|1\rangle \checkmark$$

s. t.
$$a_0^2 + a_1^2 = 100\%$$

Reading out Information from Qubit (Measurement)



UNIVERSITY OF NOTRE DAME

The Power of Quantum Computers: Qubits

2 Classical Bits 00 or 01 or 10 or 11

for 1 value

2 Qubits

 $c_{00}|00\rangle$ and $c_{01}|01\rangle$ and $c_{10}|10\rangle$ and $c_{11}|11\rangle$

for 2^n values $a_{00}, a_{01}, a_{10}, a_{11}$ Qubits: q_0, q_1 $|q_0\rangle = a_0|0\rangle + a_1|1\rangle$ $|q_1\rangle = b_0|0\rangle + b_1|1\rangle$ $|q_0, q_1\rangle = |q_0\rangle \otimes |q_1\rangle$

• 115GB data

- $3 imes 10^{10}$ numbers
- 35 qubits
- $= c_{00} |00\rangle + c_{01} |01\rangle + c_{10} |10\rangle + c_{11} |11\rangle$
- $|00\rangle$: Both q_0 and q_1 are in state $|0\rangle$
- c_{00}^2 : Probability of both q_0 and q_1 are in state $|0\rangle$

•
$$c_{00}^2 = a_0^2 \times b_0^2$$

•
$$c_{00} = \sqrt{a_0^2 \times b_0^2} = a_0 \times b_0$$

Linear Algebra is also Central for Quantum Computing

Matrix multiplication on classical computer using 16bit number

 $A_{N,N} \times B_{N,1} = C_{N,1}$ Operation: Multiplication: $M \times M$ Accumulation: $M \times (M - 1)$

Special matrix multiplication on quantum computer

q0 |0]

q1

Operation: logM Hadamard (H) Gates

$$|q_{0}, q_{1}\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$$

$$\rightarrow \begin{bmatrix} c_{00} \\ c_{01} \\ c_{10} \end{bmatrix} \text{ (vector representation)}$$

1 гл

1

$$H \otimes H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = A_{N,N}$$
$$H \otimes H|q_0, q_1\rangle$$
$$= d_{00}|00\rangle + d_{01}|01\rangle + d_{10}|10\rangle + d_{11}|11\rangle$$

1]

*C*₁₁

1 гл

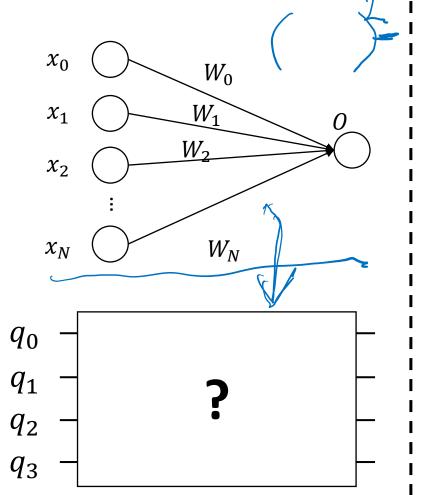
NOTRE DAME

Goals

IBM Qiskit Hands-On Course at ND in 20-21 Winter Break Weiwen Jiang

3 Goals to Have an End-to-End Implementation and Quantum Advantages!

Goal 1: Correctly Implement!



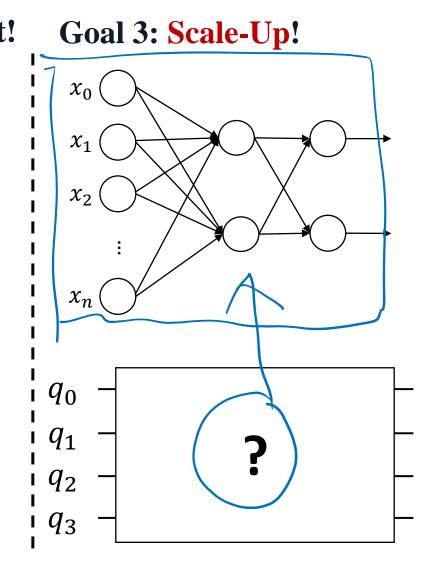
Goal 2: Efficiently Implement!

$$O = \delta\left(\sum_{i \in [0,N)} x_i \times W_i\right)$$

where δ is a quadratic function

Classical Computing: Complexity of **O**(**N**)

Quantum Computing: Can we reduce complexity to *O(ploylogN)*, say *O(log²n)*?



Organization of Quantum Machine Learning Sessions

- Background and Motivation [w4s1]
 - What is machine learning and neural network
 - Why using quantum computer
 - Our goals
- General Framework and Case Study² (Tutorial on GitHub³) [w4s1- w4s2]
 - Implementing neural network accelerators: from classical to quantum
 - A case study on MNIST dataset
- Optimization towards Quantum Advantage¹ (Nature Communications) [w4s2]
 - The existing challenges
 - The proposed co-design framework: QuantumFlow •••

References:

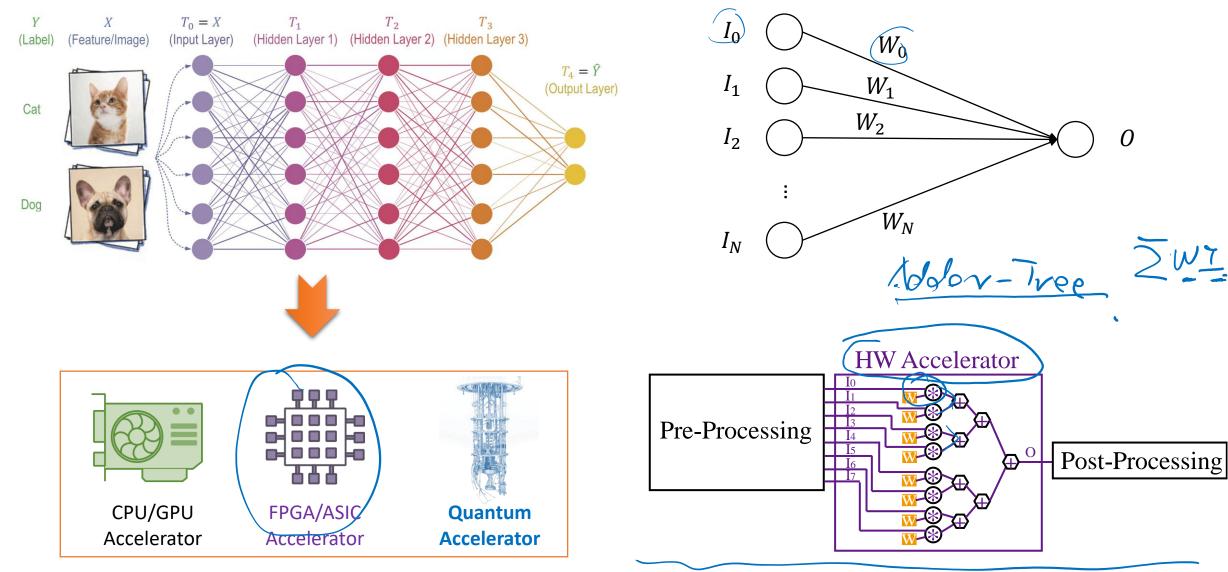
[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications

[2] W. Jiang, et al. <u>When Machine Learning Meets Quantum Computers: A Case Study</u>, ASP-DAC'21

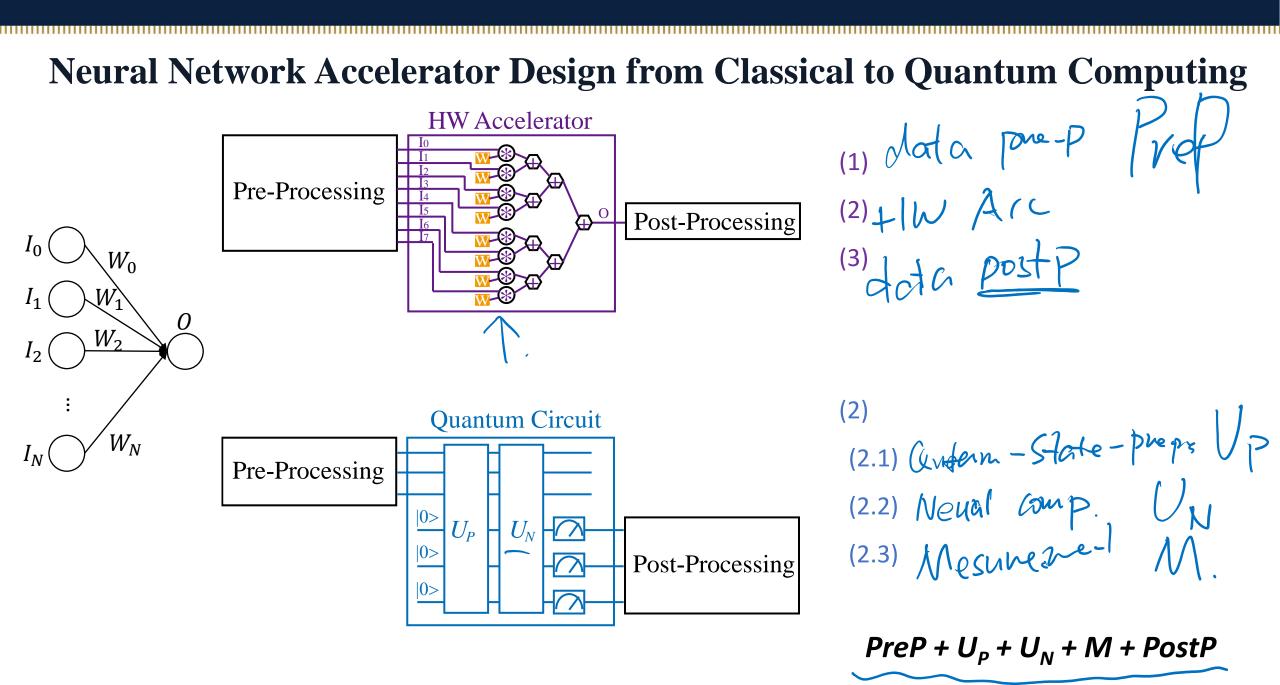
[3] W. Jiang, <u>Github Tutorial on Implementing Machine Learning to Quantum Computer using IBM Qiskit</u>

G1

Neural Network Accelerator Design on Classical Hardware

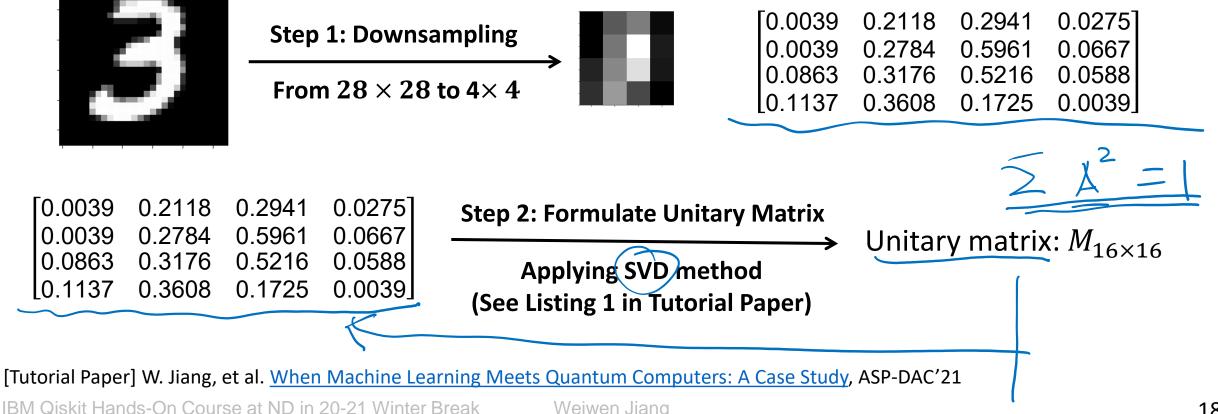


IBM Qiskit Hands-On Course at ND in 20-21 Winter Break



PreP + $H + U_N + M + PostP$: Data Pre-Processing

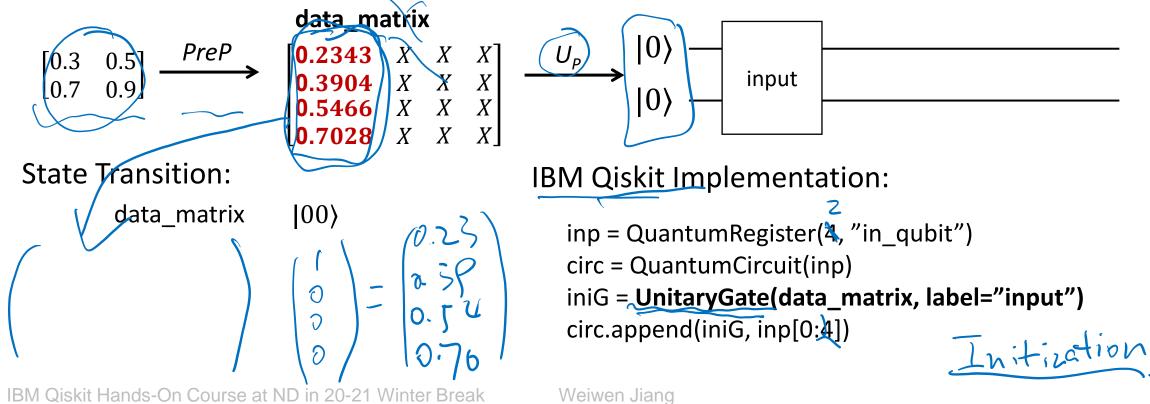
- Given: (1) 28×28 image, (2) the number of qubits to encode data (say Q=4 qubits in the example)
- **Do:** (1) downsampling from 28×28 to $2^Q = 16 \neq 4 \times 4$; (2) converting data to be the state vector in a unitary matrix
- **Output:** A unitary matrix, $M_{16 \times 16}$



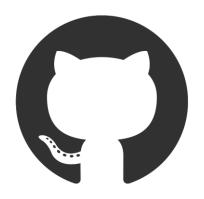
$PreP + U_P + U_N + M + PostP$ ---- Data Encoding / Quantum State Preparation

- **Given:** The unitary matrix provided by *PreP*, $M_{16\times 16}$
- **Do:** Quantum-State-Preparation, encoding data to qubits
- Verification: Check the amplitude of states are consistent with the data in the unitary matrix, $M_{16\times 16}$

Let's use a 2-qubit system as an example to encode a matrix $M_{4\times 4}$



Tutorial 1: $PreP + U_P + U_N + M + PostP$



https://github.com/weiwenjiang/QML_tutorial/blob/main/Tutorial_1_DataPreparation.ipynb

 $x_{0} \qquad W_{0} \qquad + ($ $x_{1} \qquad W_{1} \qquad 0$ $x_{2} \qquad W_{2} \qquad 0$ \vdots

 W_N

 χ_N

- **Given:** (1) A circuit with encoded input data x; (2) the trained binary weights y for one neural computation, which will be associated to each data.
- **Do:** Place quantum gates on the qubits, such that it performs $\frac{(x*w)}{\|x\|}$
- Verification: Whether the output data of quantum circuit and the output computed using torch on classical computer are the same.

binary XIC.

Target:
$$O = \begin{bmatrix} \sum_{i} (x_i \times w_i) \end{bmatrix}^2$$

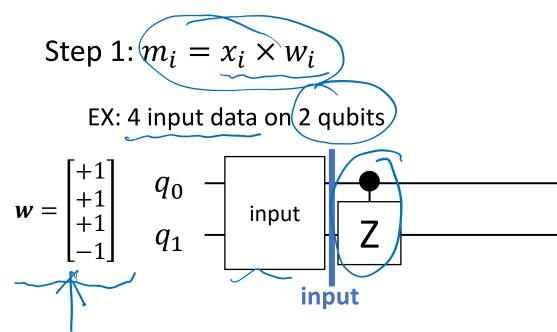
- Assumption 1: Parameters/weights ($W_0 \rightarrow W_N$) are binary weight, either +1 or -1
- Assumption 2: The weight $W_0 = +1$, otherwise we can use -w (quadratic func.)

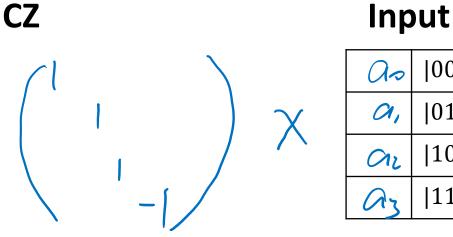
Step 1:
$$m_i = x_i \times w_i$$

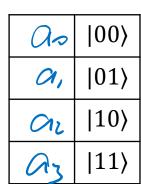
Step 2:
$$n = \begin{bmatrix} \sum_{i}(m_{i}) \\ \sqrt{\|x\|} \end{bmatrix}$$

Step 3: 0

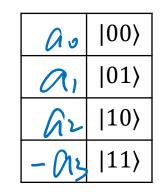
80





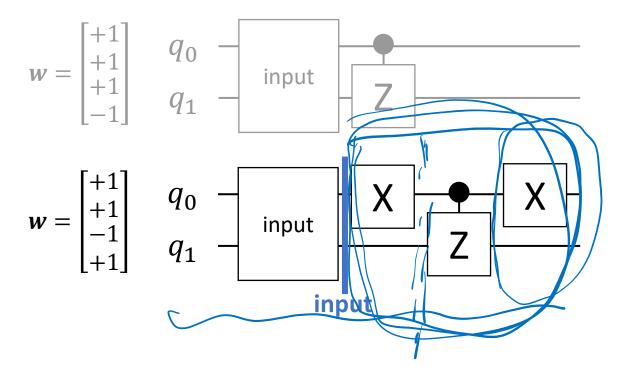


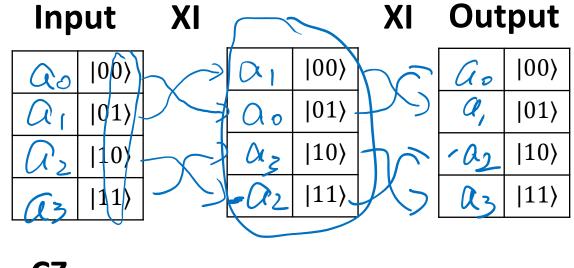
Output

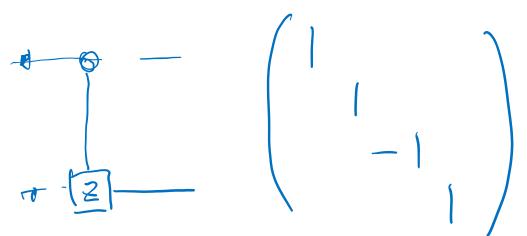


Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

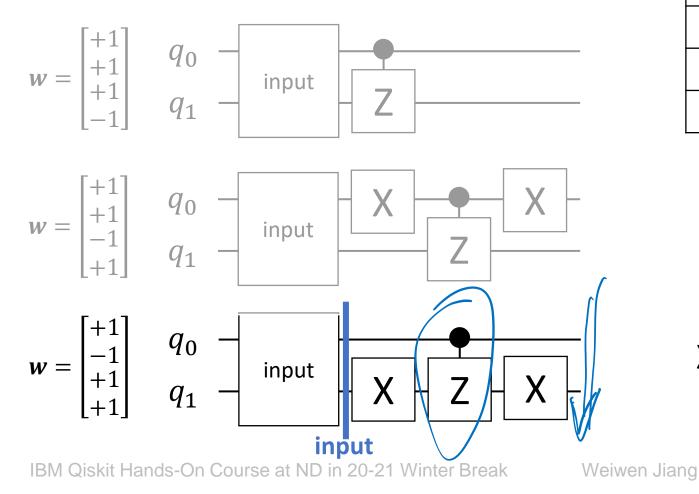




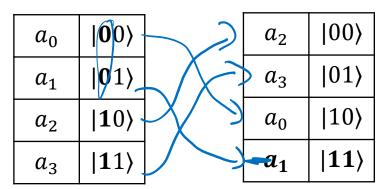


Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

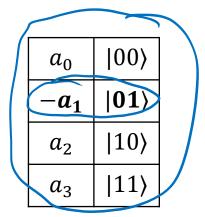


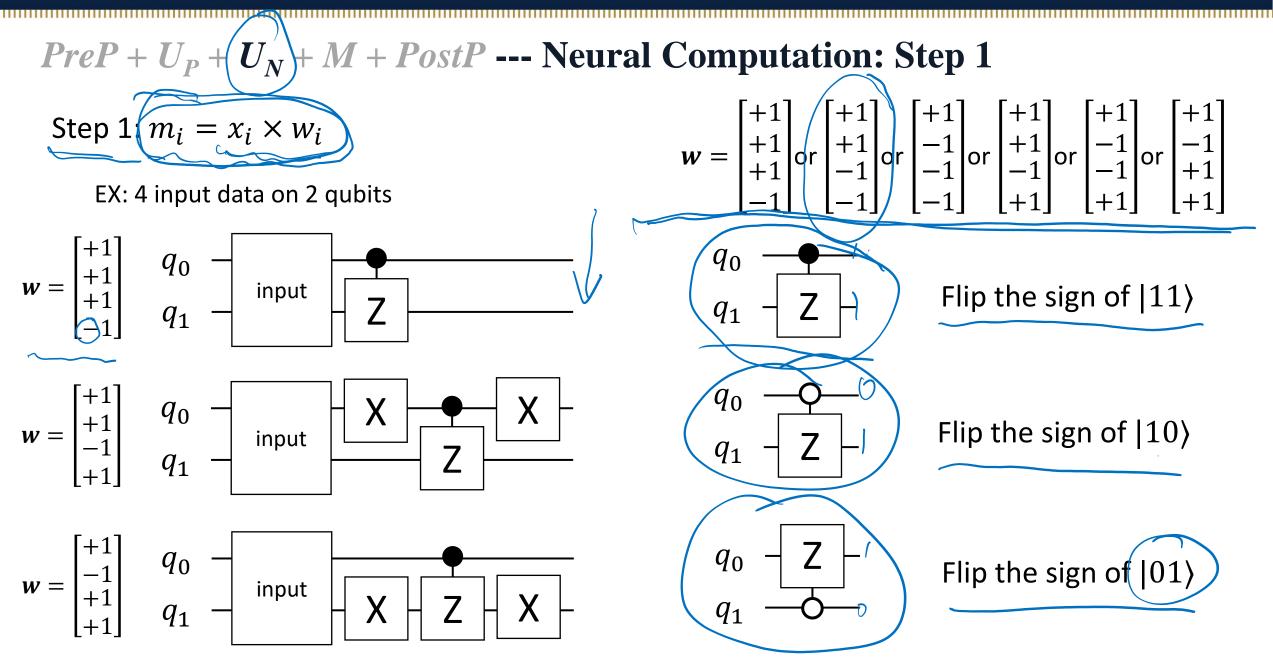
Input XI



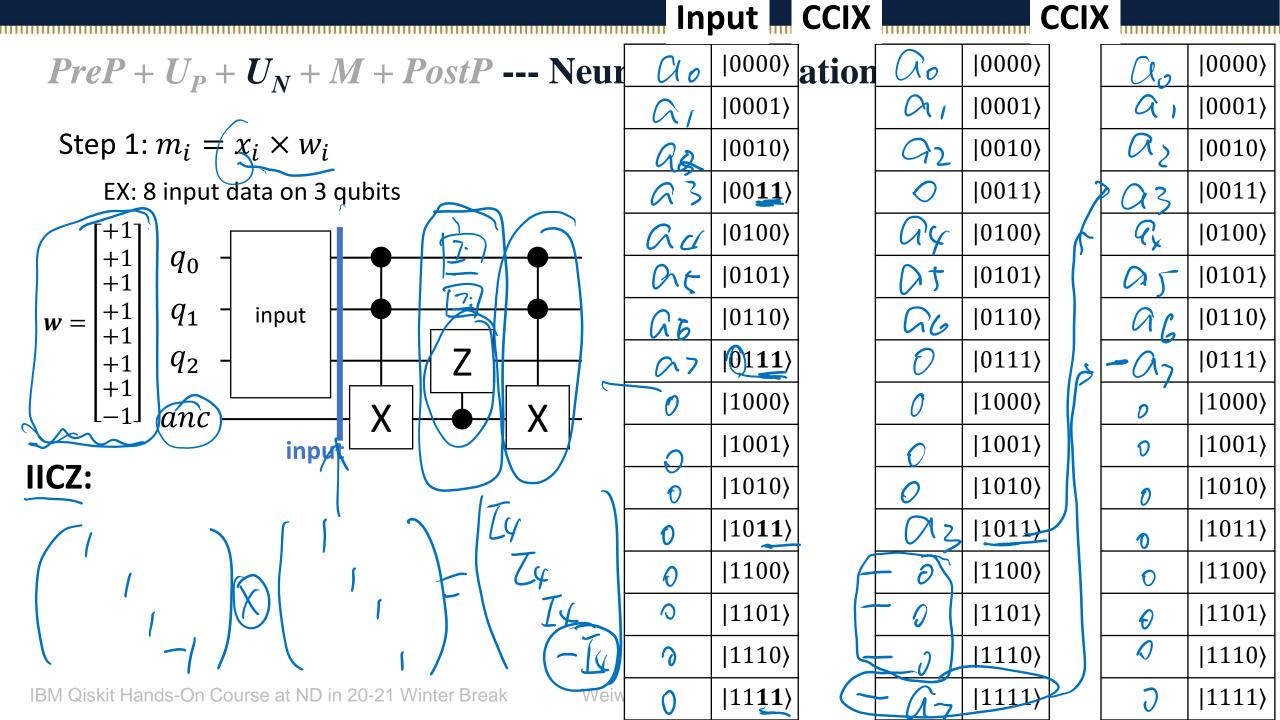
$$\begin{array}{c} \mathbf{CZ} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \times \begin{bmatrix} a_2 \\ a_3 \\ a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} a_2 \\ a_3 \\ a_0 \\ -a_1 \end{bmatrix}$$

XI Output

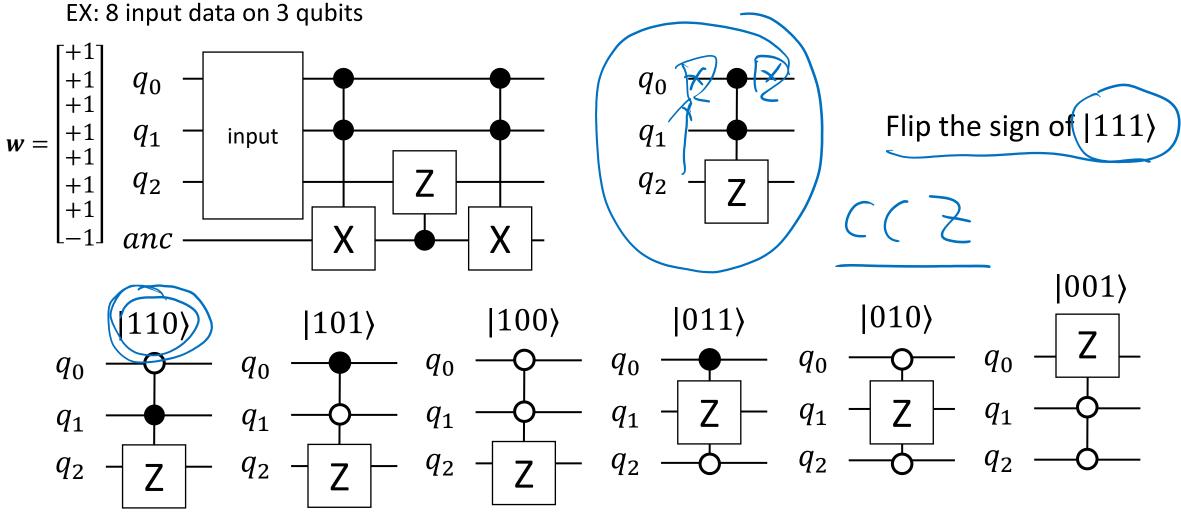




IBM Qiskit Hands-On Course at ND in 20-21 Winter Break



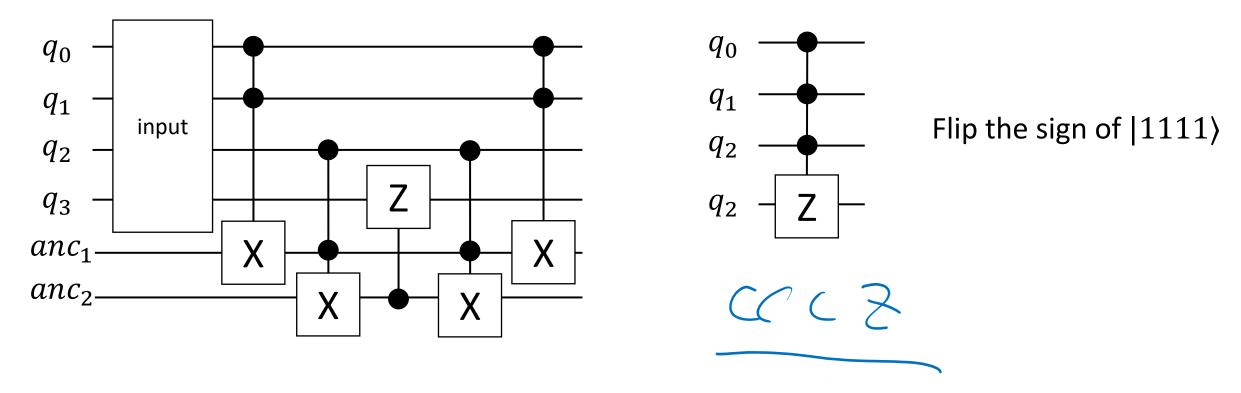
Step 1: $m_i = x_i \times w_i$

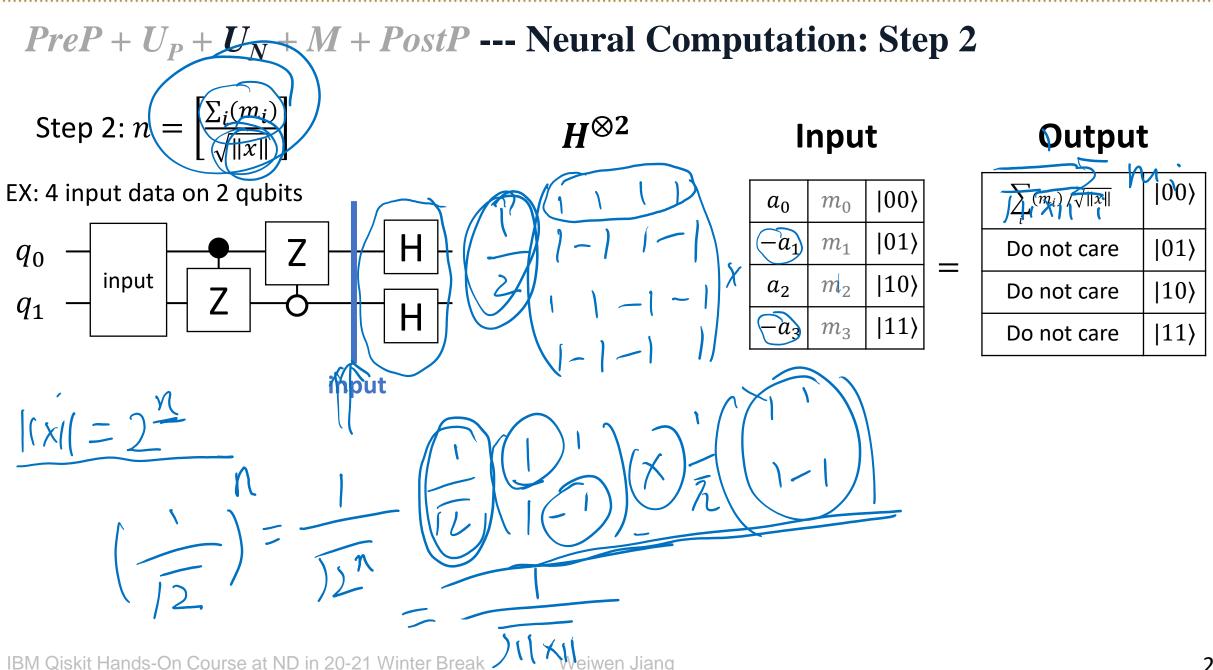


IBM Qiskit Hands-On Course at ND in 20-21 Winter Break

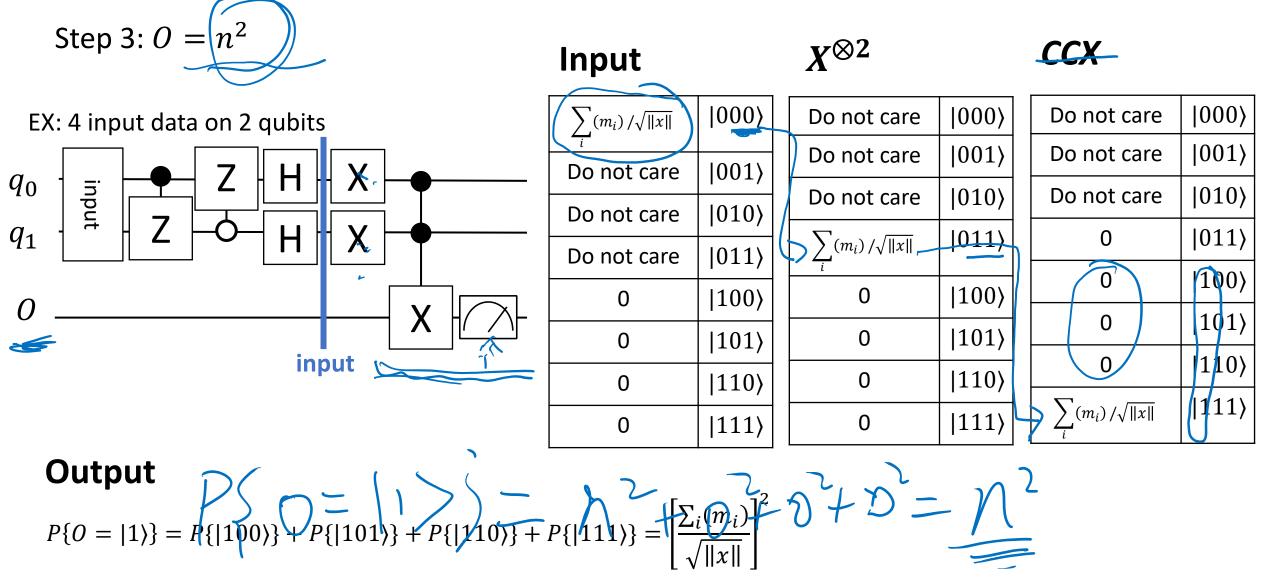
Step 1: $m_i = x_i \times w_i$

EX: 16 input data on 4 qubits





PreP + U_P + U_N + M + **PostP** -- Neural Computation (Step 3) & Measurement



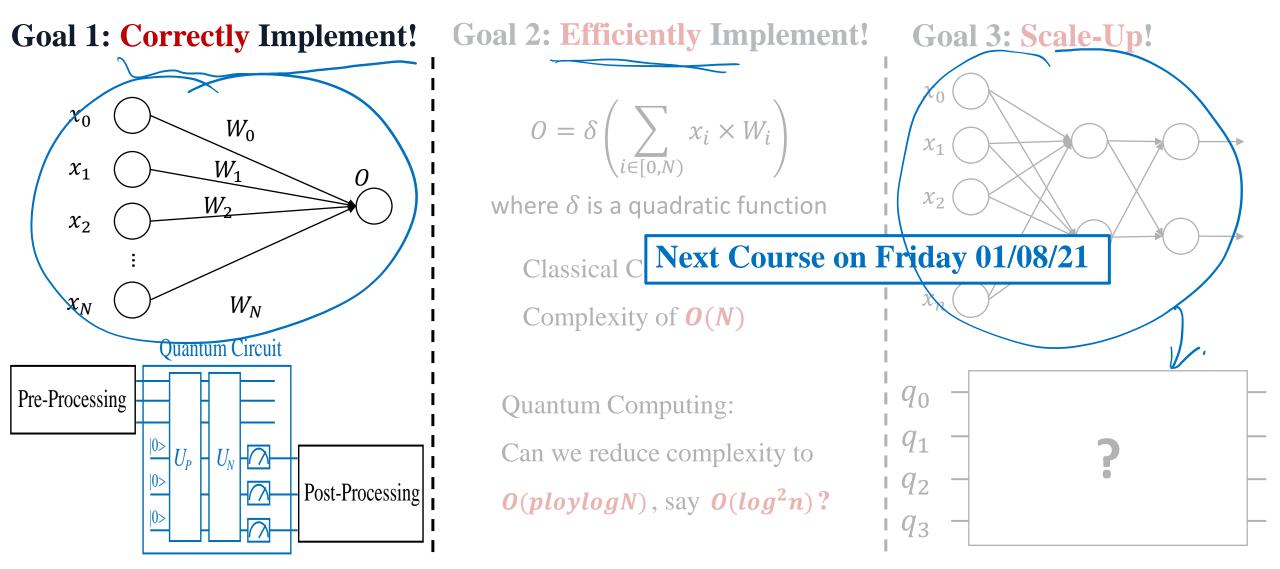
IBM Qiskit Hands-On Course at ND in 20-21 Winter Break

Tutorial 2: $PreP + U_P + U_N + M + PostP$



https://github.com/weiwenjiang/QML_tutorial/blob/main/Tutorial_2_Hidden_NeuralComp.ipynb

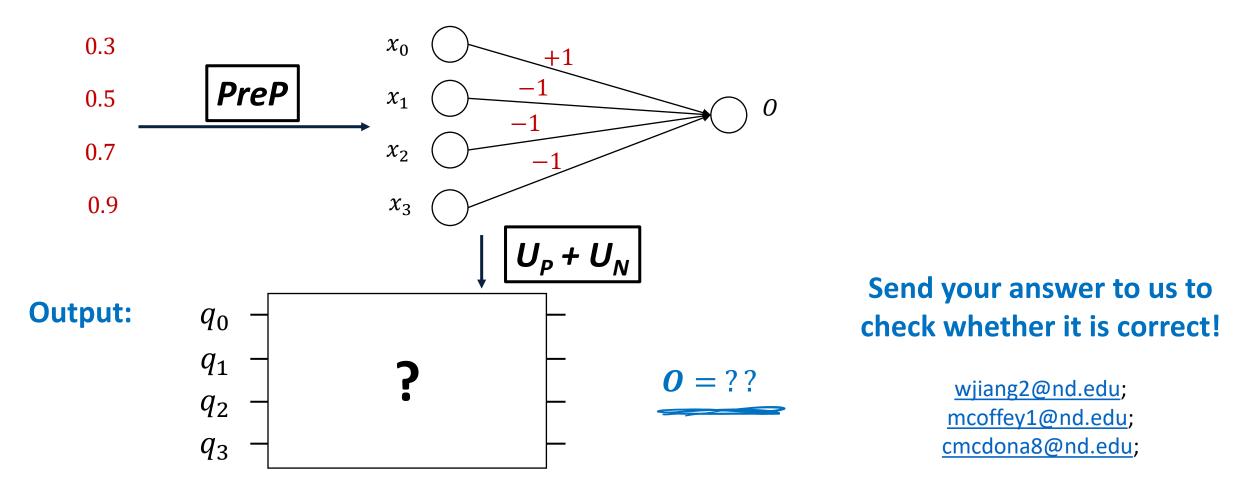
Takeaway: A Framework and Detailed Design for Goal 1



IBM Qiskit Hands-On Course at ND in 20-21 Winter Break

Have a Try on $PreP + U_P + U_N + M + PostP$!

Given inputs and weights



Thank You!

wjiang2@nd.edu

