Stage 3 Maths Program Term 2 Week 8

NSW K-IO Mathematics Syllabus Outcomes

Fractions and Decimals (relate to Addition and Subtraction) (1) MA3-7NA - Compares, orders and calculates with fractions, decimals and percentages

- Model and represent strategies to add and subtract fractions with the same denominator
- Write fractions in their 'simplest form'
- Add and subtract fractions, included mixed numerals, with the same or related denominators

Mass (1) (relate to Fractions and Decimals)

MA3-12MG - Selects and uses the appropriate unit and device to measure the masses of objects, and converts between units of mass
Recognise the need for tonnes to measure mass
Record masses using the abbreviations t , kg and g
Select and use appropriate instruments and units to measure mass

Learning Goal - Fractions and Decimals (refer to outcome)

Success Criteria - (refer to indicators)

TIB

Learning Goal - Mass (refer to outcome)
Success Criteria -Mass (refer to indicators)
TIB
Solve problems involving mass

Working Mathematically

- MA3-1WM - Describes and represents mathematical situations in a variety of ways using mathematical terminology and some conventions
- MA3-2WM - Selects and applies appropriate problem-solving strategies, including the use of digital technologies, in undertaking investigations
- MA3-3WM - Gives a valid reason for supporting one possible solution over another

Mathematics Weekly Plan

		Monday	Tuesday	Wednesday	Thursday	Friday
Key Ideas:		Fractions and Decimals			Mass	
$\frac{\varepsilon}{n_{n}^{0}}$	Additional warm up activities: TEN: Using your PLAN Data, students will work on TEN based activities for 10 minutes. Activities are differentiated based on group needs (view PLAN Data/Clusters).	Mark Pre-test as a whole class and provide immediate feedback.	TEN/ Ninja Numeracy/ Quick Revision Mentals	TEN/ Five Minute Frenzy/ Quick Revision Mentals	TEN/ Five Minute Frenzy/ Quick Revision Mentals	Mark Post-test as a whole class and provide immediate feedback.
		Pre-Test: Fractions \& Decimals and Mass.	Planet X is $11 / 12$ of a light-year away from Earth. Planet Y is 1/12 of a light-year away from Earth. How much farther away is Planet X ? Planet X is 10/12 of a light-year farther away than Planet Y.	When Susan looked at her mobile phone bill for the month, she saw that she had spent $3 / 5$ of her minutes talking to her mother and 1/5 of her minutes talking to her best friend. What fraction of the minutes did Susan spend talking to either her mum or her best friend? Susan spent $4 / 5$ of the minutes talking to either her mum or her best friend.	There are 64 passengers on a bus. If the average weight of a passenger is 60 kilograms, what is the total weight of the passengers in tonnes? 3.84t	Post-Test: Fractions \& Decimals and Mass.

Main Focus + Language

factions.

What do you remember about fra;
What are some of the rubsut fractions? fractions? Get feedback
more help?
General rules: if the denominators are the same, you simply add or subtract he two numbers at the top (the
numerators; the top number says how many slices we have). You MUST NOT add the denominators (The bottom number says how many equal slices the whole was cut into). To ADD fractions with like or the same denominator, simply add the numerators then copy
he common denominator. Always reduce your final answer to its lowest term (simplest form). similarly, to SUBTRACT fractions with like or the same
denominator, just subtract the numerators the cop denominator, just subtract the numerators then copy
the common denominator. Always reduce your final answer to its lowest term (simplest form).
Explicitly review how to add and subtract like fractions':
Example $:$
$\frac{3}{7}+\frac{2}{7}$
Explain: the denominators of the two fractions are both 7 . By having the same denominators, we can
easily add these fractions by adding their numerators and copying the common denominator which is 7 .

$$
\begin{aligned}
\frac{3}{7}+\frac{2}{7} & =\frac{3+2}{7} \\
& =\frac{5}{7}
\end{aligned}
$$

This is the simplest form this fraction can be as nothing can equally go in to 5 or $7.5 / 7$ is the nswer.
Additional examples (adding like fractions): Students can complete these in their books or need additional support. Fractions should be simplified if possible.
$3 / 12+6 / 12$
$4 / 8+3 / 8$
$2 / 5+2 / 5$
$26 / 45+16 / 45$
$13 / 50+32 / 50$
$15 / 25+7 / 25$
$31 / 84+29 / 84$
Example 2: Subtracting fraction $\frac{10}{27}-\frac{4}{27}$
he two fractions have the sam denominators which mean we should be able o easily subtract

$$
\begin{aligned}
\frac{10}{27}-\frac{4}{27} & =\frac{10-4}{27} \\
& =\frac{6}{27}
\end{aligned}
$$

Model: The answer to this fraction problem can still be further simplified using a common divisor. To find a common divisor we need to use our multiplication knowledge to determine what number can go equally into 6 and 27. The rwer 3 . So, d 3 do teduce the fraction to simplest form.

Acess p

 When you hear people talk about writing fractions mallest, easiest way to represent a freationg wh you are asked to simplify a fraction thation is the same as writing it in simplest form.as writitng it in simplest form.
A fraction is a part of a whole. It is represented by two numbers: one on top of the other with a line between. The top number, or the numerator, referring to, and the bottom number, or
the denominator, represents how many pieces th whole has been broken into.
there are two rules we sust follow: of a fraction Ask if the numerator and the de divided by the same number, which is called a divided by the sa
common factor.
2 See if lat least
number is. A prime number in the fraction a prime beter and canne number is a number that is 1 or breater and cannot be divided nu any number other simplified.
Hint: Try to exactly divide (only whole number answers) both the top and bottom of the fraction

Explicit modelling:

Example 1: Simplify the fraction 24/10
As 24 and 108 are both even numbers, I know tha hey can be simplified by dividing by 2 :

$\frac{24}{108}=\frac{12}{54}$

ain, looking at the 12 and 54 , they both end in an
sain, looking at the 12 and 54 , they both end in make it smaller (divide by 2).

Now our fraction is simplified to $6 / 27$. Ask students whether that these numbers can be divided by the
same. Return to the hint note above. Go through the same. Return to the hint note above. Go through the hole numbers untily you can't go any further e.g. can we divide these numbers by 1 ? Yes, however our
fraction will be the same, we want to make it smaller. fraction wil be the same, we want to make it smaller.
Can we divide the numbers by 2 ? We can only divide 6 by 2 but not 27 as it is an odd number. Can we divide the numbers by 3 ? Yes. 6 can be equally
divided by 3 and 27 can equally be divided
vided by 3 and

That is
to $2 / 9$
Example 2: Simplify the fraction $10 / 35$ Dividing by 2 doesn't work because 35 can't be
exactly divided by $2(35 / 2=17 / 2)$ Likewise, we can't divide exactly by $3(10 / 3=3$ $1 / 3$ and also $35 / 3=112 / 3$) No need to check 4 (we checked 2 already, and 4 is
just 2×2).
mproper to Mixed Numeral
What is an Improper Fraction? Access student's prior knowledge and ask them to provide answers to the question.
An improper fraction is any fraction where the umerator is greater than the denominator. Examples.
ow to Conven mpoper fraction to a Mixe
Number
e numerator by the denominator
2. Write down the whole number result
3. Use the remainder as the new numerator over
his is the fraction part of the

mixed number. Explicit modelling

Example 1:Conver

mixed number.

1. The denominator will remain the same (3). $16 \div 3=5$ with remainder of 1 .
2. The whole number now becomes 5 .
3. The eremainder is 1 . This 1 will become the new
4. The
numerator and 3 stays as the fraction part of the mixed number is $1 / 3$, 5. The mixed number altogether now is $51 / 3$. So, $16 / 3=51 / 3$.
Example 2: Convert the improper fraction 45/10 to a mixed number.
Simplify the fraction first to its simplest form. The only number that can equally go into 45 and 10 is 5. $45 \div=9$ and $10 \div 5=2$.
o, our new fraction will

Se much easier to turn into become $9 / 2$ which will 2. The denominator stays the same (2).
D. Divide the numerator 9 by t,
$2=4$ with remainder of 2
4. The whole number now becomes 4
5. The remainder is 1 . The 1 will become the new numerator and 2 stays as the denominator, the fraction part of the mixed number is $1 / 2$. $45 / 10=41 / 2$.
Mixed Numeral to Improper Fractio What is a Mixed Numeral? Access student's prior knowledge and ask them to provide answers to the question. An Improper Fraction has a top number numerator) larger than (or equal to) the bottom number (denominator)

Fraction:
Eraction:
Explicit Modelling
Multiply the whole number part by the fractions
denominator.
denominator.
Add that to the numerator
Then write the results on
Then write th
Example 1 :
Example 1
Convert $2 / 5$ to an improper fraction. . First, multiply the whole number by the 2. Add that to the $3 \times 5=15$
2. Add that $15+2$.
3. The denominator will stay the same $=5$. 4. Then write that results above the denominato
$17 / 5-$ that xample 2:
xample 2:
Convert $21 / 9$ to an improper fraction 1. First, multiply the whole number by the denominator: $2 \times 9=18$.
2. Add that to
$18+1=19$

The denominator will stay the same $=9$.
3. Then write that result above the denominator $=$
$19 / 9-$ that is now the improper fraction.

Mass: What is Mass? Mass is the amount of kilograms and, tonnes (Metric units of measurements).
Explain each measurement and provide/ask for an example of each measurement: Grams: are the smallest, Tonnes are the how heavy each of these are. A paper clip weights about 1 g Grams are often written as (for short), so $1 \mathrm{~g}=1 \mathrm{gram}$.
Kilograms: are great for measuring things that can be lifted by people. Kilograms are often written as kg. Once we h $1 \mathrm{kg} 1 \mathrm{~kg}=.1000 \mathrm{~g}$.
Tonnes: are used to
very heavy. Things like cars, trucks and large cargo boxes are weighed using the tonne. Tonnes are often written as t) for short). Once we have 1000 kg we will have 1 tonne. $1 \mathrm{t}=$ 1000 kg .
must note the following conversions: kilogram $=1,000$ grams

Using scales and a variety of objects within the classroom (or various items brought in for measuring) model how to estimate the weight of the object before calculating the exact weight.

Ask students if the items will be measured in tonnes? Why/why not? Ask students why the might think that measuring in tonnes is mportant? Tonnes is only used to measure hings that are tremendously heavy. It it
extremely important, particularrly in the fields of building, engineering and transport. Measuring in tonnes is useful for calculating load limits on aircraft safety and shipping purposes also rely on measurement in tonnes.

Using scales e.g. kitchen scales, measure items sung wish the then scales, measure items thick dictionary may be estimated around 1 kg . On the board, model how to set up a measuring table for the students to copy into their work books and select various items from around the nom or bring in virus of can investigate the mass of
possible, provide students with a 500g, 100g and Ig weights to get the feel of each measurement so that their estimations are fairly reasonable. Note: Checking if an answer an answer is a good approximation or estimate to the question. This is really important because it allows us to check whether our calculations make sense.
evise measuring and weighing objects usin differences between 'gross mass' and 'net mass': Gross mass: The total weight, including the contents and the packaging. Net mass: The total
weight, not including the packaging

Explicitly model how to measure the gross and net mass of various packaged them. Model the activity to the students, a contaner/bag of jellybeas of ontainer + mass of contents).
Measure the entire contents which would equal 65 g . Now, take out the jellybeans and measure the net mass and record. For example; if the jellybeans on their Weighed a net mass of 60 g, then the Calculate the mass of the container the jellybeans were in to see if this statement is true. Create a word problem for the experiment:
Example: The jellybean bag weighs $65 g$.If he 15 jellybeans weighed 60 g , how much did the container weight? 59 Model additional examples using different items.

Additional Activities to model (Note: this oes not need to all be taught in one lesson

 These could be used withdifferentiated/extension groups or as an dditional activity while students measure using weights or as a fast t inisher activity):
Explicitly model how to solve problems inolving mass. Model problems that contain/don't contain decimals Students should use the strategies previously learned to help solve word problems. int: When multiplying with decimals, point. Then put the decimal point in the answer - it will have as many decimal places as the two original numbers combined.

Examples of word problems to explicitly model. As students begin to understanc students to attempt on their own: If a pencil weighs 10 g , how much would five pencils weigh? This is a multiplication roblem.
If a sandwich roll weighs 500 g , how much would two sandwich rolls weigh? This is an addition problem.
Answer: $1000 \mathrm{~g}=1 \mathrm{~kg}$
A 5 t truck can carry a load of 5t. How many 5t trucks are needed to deliver 65t of steel to a building site?

How many tonnes of sand can be transported if a $9 t$ truck makes 8 trips?

Mel Reskic Shell Cove Public School - 2018

		$\begin{aligned} \frac{10}{27}-\frac{4}{27} & =\frac{10-4}{27} \\ & =\frac{6}{27} \\ & =\frac{6+3}{27+3} \\ & =\frac{2}{9} \end{aligned}$ 2/9 is the simplest form this fraction problem can be simplified to. NOTE: Explicit modelling of simplifying will be viewed in tomorrow's session so depending on your class, you may want to only focus on adding and subtracting like fractions. Additional examples (subtracting like fractions): Students can complete these in their books or on whiteboards. Work with students who may need additional support. Fractions should be simplified if possible. 7/11-4/11 12/25-8/25 17/30-15/30 14/15-9/15 6/9-5/9	But 5 does work! It goes evenly into both numbers. Explain to the students that this is the process of elimination with whole numbers as you want to be able to make the smallest fraction possible. That is as far as we can go. The fraction simplifies to $2 / 7$. Additional examples: Encourage students to come and work out the following examples on the board using the previous taught strategies. Students may work these out in their books or on whiteboards. Offer support to students who may need it. 74/10 35/5 31/5 19/5 35/8 45/6 26/7	Additional examples: 23/3 34/5 52/8 15/6 14/4 65/10	Once you have modelled a few items, invite a student to estimate and measure an item. Example items to measure: - Paper clips - Pencil cases - Books - Glue sticks - Water bottles - Lunchboxes - Weights-unidentified - Pin containers	Answer: 72t Adam weighs 37.5 kg , Jack weighs 34.56 kg , and Laura weighs 35.65 kg . What is their combined weight? This is an addition problem. Answer: 107.71 kg The mass of a jar of sweets is 1.4 kg . What is the total mass of 7 such jars of sweets? This is a multiplication problem. Answer: 9.8 kg The watermelon bought by Peter is 3 times as heavy as the papaya bought by Paul. If the watermelon bought by Peter has a mass of 4.2 kg , what is the mass of the papaya? This is a division problem. Answer: 1.4kg
$\begin{array}{ll} \text { 을 } \\ 0 \\ \text { 읓 } \\ \text { 둔 } \end{array}$	Revision Group - Names	Work with these students to solve a variety of like fractions that need to be added or subtracted. Create these as task cards or use dice or decks of cards to create. If students need to, encourage them to draw models of their problems then solve e.g. $+$ $=$ $\frac{2}{9}$ $\frac{4}{9}$ $\frac{6}{9}$	Simplifying fractions game: Play the following bingo game with this group following the link below. Once students have a better understanding how to simplify fractions, create more challenging ones for them using decks of cards or already made fraction cards: https://youvegotthismath.com/2017/10/09/ simplifying-fractions-game/	Work with this group and solve improper fractions to mixed numerals and vice versa. Use whiteboards during this session as well as math books. Use the following links to model examples with the students: http://www.k5learning.com/worksheets/m ath/grade-5-mixed-numbers-to-improper-fractions-a.pdfc http://www.k5learning.com/worksheets/m ath/grade-5-improper-fractions-to-mixed-numbers-b.pdf	5/6M Town Groups Based on Continuum Clusters	Students get into mixed groups (6 groups of 5) and complete 2 10-15-minute activity rotations. 3 groups will be provided with various packaged items to measure the gross and net weight and record in their books. The other 3 groups will be provided with various word problems (as above) and complete in their books. This can be provided as a worksheet or task cards. Monitor around the classroom. Ensure to place at least one Main (thumbs up student) in all groups.
$\begin{array}{ll} \text { 을 } \\ \text { O } \\ \text { 읓 } \\ \text { 둔 } \end{array}$	Middle Group- Names	Provide task cards for these students with like fractions to add and subtract. To extend these students by including fractions with whole numbers to add and subtract. Alternatively, students can create their own fractions using dice or decks of cards.	Use the following link to create a variety of task cards for the students to complete. After 15 minutes, go through the answers with the group. https://nzmaths.co.nz/sites/default/files/Sim plifyingFractions 0.pdf	Students complete the following task questions as a group: http://www.k5learning.com/worksheets/m ath/grade-5-improper-fractions-to-mixed-numbers-harder-b.pdf http://www.mathaids.com/cgi/pdf viewer 3.cgi?script name =fractions improper.pl\&difficult=2\&languag e=0\&memo=\&answer $=1 \& x=178 \& y=20$ After 15 minutes, go through the answers with the students.	5/6M Town Groups Based on Continuum Clusters	

Mel Reskic Shell Cove Public School - 2018

	Main Group - Names	Extend this group by providing them with task cards that involve adding and subtracting fractions with whole numbers. Ensure that these fractions have 'unlike' denominators for students to turn into 'like' fractions. Example: $143 / 8+171 / 4=315 / 8$ Example: http://www.math- aids.com/cgi/pdf viewer 3.cgi?script name=a dding mixed numbers.pl\&difficult=4\&probs= 15\&language $=0$ \&memo $=\&$ answer $=1 \& x=131$ \& $y=24$	Extension: simplifying complex fractions. Using the following link, create task cards for students to solve. Model an example to the group: Example: Simplify. Write your answer as a proper or improper fraction in simplest form. $\begin{array}{ll} \frac{\frac{7}{9}}{\frac{2}{5}} & \\ \frac{7}{9} \div \frac{2}{5} & \text { Rewrite as division } \\ \frac{7}{9} \cdot \frac{5}{2} \quad \text { To divide, multiply by the reciprocal } \\ \frac{35}{18} & \\ \hline \end{array}$	Students independently complete the following task questions: http://www.math- aids.com/cgi/pdf viewer 3.cgi?script name =fractions improper.pl\&difficult=3\&languag $\mathrm{e}=0 \& \mathrm{memo}=\& a n s w e r=1 \& \mathrm{x}=101 \& \mathrm{y}=5$ After 15 minutes, go through the answers with the students.	5/6M Town Groups Based on Continuum Clusters	
	Feedback - Use the thumb method after explicit modelling to determine students understanding and where they will be placed for group activities. Marking Exit Slips - Next to each students Exit Slip, the teacher will check students answers and will either write an: A = Achieved $\mathrm{N} / \mathrm{Y}=$ Not Yet N / Y students will become your target group.	Revision: 2/9 + 5/9 12/20-9/20 Middle: 3 12/20 + 5 5/20 14 16/20-98/20 Main: 4 11/12 + 5 20/24 83/8-2 6/11	Simplify fraction's: Revision: 4/8 8/16 Middle: 52/80 7 26/54 Main: 4 15/27 19 18/56	$\begin{aligned} & \hline \text { Revision: } 9 / 6 \\ & 31 / 4 \\ & \\ & \text { Middle: } 32 / 18 \\ & 73 / 7 \\ & \text { Main: } 72 / 58 \\ & 238 / 12 \end{aligned}$	Revision: Peter had 1,000 grams of chocolate. If he ate 360 grams, how much chocolate did he have left? 640 g Middle: Yesterday I bought 3.2 kilograms of grapes and ate half of it. How many grams of grapes did I have left? $1.6 g$ Main: A forklift is carrying a box that weighs 2.4 tonnes and a box that weighs 1.8 tonnes. If the forklift's maximum load is 5 tonnes, should another 1.8 tonne box be added? No - it will weigh $6 t$	Students answer the following word problems related to 'gross' and 'net' mass. Revision: If the gross mass is 320 g and the net mass is 300 g . What is the mass of the packaging? Middle: A bag of rice has a net mass of 1 kg . The packaging has a mass of 80 g . What is the gross mass? Main: The total mass of 4 identical toy cars is 2.4 kilograms. What is the mass of 12 such toy cars in grams?
	https://au.ixl.com/math/year-6/add-and-s https://au.ixl.com/math/year-6/add-and-s Using the above links, create as word prob Students work in pairs and create/practice Students complete Mathletics or iMaths w Allow the students to use the fractions car pair), 'Snap' (students must snap when eq select their fraction, they are required to Students use decks of cards and select 2 di subtract these fractions OR create improp Students create their own Match the Fract	tract-fractions-with-like-denominators-word-p tract-mixed-numbers-with-like-denominatorsm task cards for the students to solve. eir fractions knowledge by having to add, subt ksheets. to play a variety of card games in pairs. Some lent fractions appear on top of one another) e it down with the equivalent fraction card e.g by 2 digits. They turn these into the numbers ractions and work out the mixed numerals. Pair card game. They will need to create the	ms problems simplify or turn into mixed numeral or improp les of such games include 'Memory' (student ' Fish' (students must ask their partners for = 4/6 - https://www.teachstarter.com/teachi will use to create fractions. Depending on wh m and answer cards.	fractions using whiteboards. st match equivalent fractions to win a alent fractions to make a pair). As students source/equivalent-fractions-cards/ tudents are up to, they can add and	Use the following links to create word proble range from whole number or decimal problem https://www.mathinenglish.com/worksheetv http://www.math-only-math.com/worksheet https://www.tes.com/teaching-resource/diff Students continue measuring items using sca Students complete Mass activities in Mathletics Students create their own word problems ba Students complete work tasks (similar to abo Provide students with a range of gross mass create the exact measurements on their card containers.	task cards for students to solve. These can involving mass: w.php?id=1058\&stid=230030 n-word-problem-on-measuring-mass.htm ntiated-weight-word-problems-6324812 and iMaths books. on the items that they have measured. asurement cards. Students will need to sing pebbles or jellybeans in bags or

Mel Reskic Shell Cove Public School - 2018

