

Shrinkage and Cracking: Test Methods, Materials Innovations and Improved Specifications

Jason Weiss, Oregon State University jason.weiss@oregonstate.edu 765-412-8358

The 1980-90's usher in Higher Strength

- "High-strength concrete is one of the most significant new materials available to federal, state, and local highway agencies....... With its improved impermeability, durability, and accelerated strength gain an ideal material"
- HSC may be slightly more expensive than normal concrete initially, but its greater strength means that HSC bridges may require fewer supports, which could reduce overall costs.

Benefits of High Strength Concrete

Advantages

- Higher Strength
- Rapid Strength Gain
- Low Permeability
- Improved Durability
- Costs
- Less Members
- Ease of Placement
- Volume Stability
- Toughness
- Higher Modulus
- Lower Creep

Disadvantages

Costs

Benefits of High Strength Concrete

Advantages

- Higher Strength
- Rapid Strength Gain
- Low Permeability
- Improved Durability
- Costs
- Less Members
- Ease of Placement
- Volume Stability
- Toughness
- Higher Modulus
- Lower Creep

Disadvantages

Costs

It'll knock your socks off.. And it'll get'em whiter

Asking for Higher Strength with the Best of Intentions....

True or False: Increasing Strength Improves Performance

Asking for Higher Strength with the Best of Intentions....

True or False: Increasing Strength Improves Performance

.....Misconceptions of Using Lower W/C, Higher Strength Concrete

Photo http://www.aggregateresearch.com/caf/file/newdeckcracking.pdf

Motivation

- Transverse cracking in 100,000+ bridges
- 62% of DOT's consider cracking as a problem
- Cracks shorten service life, increase maintenance cost, and accelerate corrosion

Here we see cracks spaced at 0.8 m On the approaches to a bridge

Lets Look at the Fundamentals

• What causes cracking?

Initial Specimen

Initial Pavement Bridge Deck or Industrial Floor

Conceptual View of Stress Development

Condition for Cracking

Reality is a Bit More Complex

Lets Look at the Fundamentals

 What causes cracking? - Concrete Shrinks, Stress Develops if Restrained

• Why does concrete shrink ?

Shrinkage of Different Cement Based Materials

 Shrinkage -Volumetric Change Associated With A Loss Of Water

Shrinkage of Different Cement Based Materials

- Shrinkage -Volumetric Change Associated With A Loss Of Water
- Aggregate Generally Does Not Shrink (In the US)

Shrinkage of Different Cement Based Materials

- Shrinkage -Volumetric Change Associated With A Loss Of Water
- Aggregate Generally Does Not Shrink (In the US)
- It's the Paste That Shrinks

Shrinkage is a Paste Property

Stiffer Aggregate More Effective In Restraining Paste Shrinkage

A Look at Shrinkage and Paste Volume

Lets Look at the Fundamentals

- What causes cracking? Concrete Shrinks
- Why does concrete shrink ? Loss of water from the paste (we will come back to this)
- More Importantly, Controlling Aggregate Volume is the First Key Step not w/c
- Loss of water from the paste you say.... Lets talk theory

Kelvin-Laplace-Young-Gauss

• Some insights on the factors influencing shrinkage

$$p_{cap} = -\frac{2\gamma \cdot \cos\theta}{r}$$

Thomas Young (1773 – 1829) Carl F. Gauss Marquis de Laplace Lord Kelvin (1777 - 1855) (1749 - 1827) (1824 - 1907)

$$\ln\left(\frac{p}{p_0}\right) = \ln(RH) = -\frac{2\gamma \cdot \cos\theta \cdot V_W}{r} = p_{cap} \frac{V_W}{RT}$$

Lets Make This Useful

- Concrete is Made of Little Tiny Holes, Called Pores
- Size of the Pore Matters

$$p_{cap} = -\frac{2\gamma \cdot \cos\theta}{r}$$

- Pressure (p_{cap}) is related to surface tension (γ) and inversely related to radius of the meniscus that forms (r)
- Big Pores Low Pressure, Low Shrinkage
- Water is a clingly material High Shrinkage

Lets Look at the Fundamentals

• What causes cracking? - Concrete Shrinks

• Why does concrete shrink ? Loss of water from the paste, but the size of the pores matters

• Can I Reduce Shrinkage by knowing KLYG

Using the KLPG Theory For Good

• To reduce shrinkage we reduce pressure, this means we either... reduce surface tension

- 1983 Japan
- 1997/99 Weiss
- US Commercial Product in 1999 from Grace

$$p_{cap} = -\underbrace{\frac{2\gamma}{r}}_{r}$$

Shrinkage Reducing Admixtures

Using the KLPG Theory For Good

 To reduce shrinkage we reduce pressure, this means we either... reduce surface tension and/or we increase the size of the pore

- Not really impacted by w/c .. Long story
- We want to keep pores filled up

Internal Curing

Things Professors Think About

Dry LWA Absorbs Water Wet LWA Gives off 03h08 07h17 water 00h31 07h17 11h11 03h08 11h11 00h31 14h22 14h22 20h21 20h2

What is Internal Curing?

- Its Concrete 101 with a twist
- Add water to cure concrete properly
- The twist... the water comes from inside the concrete
- Water held in LWA or SAP
- Magically released

Initial specimen

After curing

Normal aggregate

Is This Practical ?

Lots of Confusion Around Proportioning – Its Really This Simple

- Based on theory
- Need a current set of mixture proportions you really like
- Enter them in orange
- Enter an aggregate's properties you really like, in green
- Wait 1 second voila

	-				•		
Project:			Date:				
Misture ID							
wixture ib							
Operator:							
	Plain Mixture Design			Legend			
	Target Air, %	6.5%		Ready Mix Input			
	w/c	0.421		LWA Input			
	Materials	Weight	SG (SSD)	Volume, ft ³			
	Cement	455	3.15	2.315			
	GGBFS	130	2.99	0.697			
	Fly Ash	0	2.64	0.000			
	Silica Fume	25	2.2	0.182			
	Sand	1231	2.623	7.521			
	Coarse Aggregate 1	1795	2.763	10.411			
	Coarse Aggregate 2	0	2.763	0.000			
	Water	257	1	4.119			
	Air	0	0	1.755			
	Σ	3893	-	26.999			
	Internal Curing Properties						
	LWA Absorption:	15.0%	←This is	24 hour design at	sorption		
	LWA Desorption:	85.0%	←If unknown, use 85%				
	LWA PSD Specific Gravity	LWA PSD Specific Gravity 1.750			←This is 24 hour pre-wetted surface-		
	Cement Factor	610	dry speci	fic gravity for preli	iminary		
	Chemical Shrinkage:	0.07					
	Degree of Hydration	1					
	PSD LWA Replacement	385					
	SSD Sand Replaced	577					
	% Volume Replacement	46.9%					
	IC Misture Design						
	Net solela	144-1-1-1	00 (000)				
	Wateriais	weight	2 15 2 15	Volume, ft ²			
	CORES	455	2.00	2,313			
	ElyAch	130	2.99	0.097			
	Fily ASII Silica Europ	25	2.04	0.000			
	Sand	654	2.2	3 004			
	Lightweight Aggregate	385	1 750	3,554			
	Coarse Aggregate	1705	2 763	3.32/			
	Coarse Aggregate 1	1/95	2.703	0.000			
	Water	257	2.705	0.000			
	Air	257	0	4.119			
	All	U	U	1./33			
	Σ	3701	-	26.999			

Volumetric Proportions

How Do I know If It Works

- Compressive Strength Generally no change, especially if water cured
- Slump Generally no change (depends on aggregate FM and angularity)
- Air Content Generally no change
- Transport Properties Generally no change or a slight reduction

Shrinkage Cracking Reduced

Bloomington Indiana Decks - 2010

- At 18 months Plain (3 cracks) IC (none)
- At Year three very small crack in the IC

Internal Curing in Indiana 2013-15

- 10+ ICHPC Bridge Decks (All specs achieved)
- Very limited cracking (at most negative moment region due to settlement – construction Issue)
- Typical INDOT design 18 years
- ICHPC
 60-90 yrs

Internal Curing in New York

- NYDOT using internal curing in bridge decks (map showing bridges as of 2012)
- General experience is positive
- Reduced cracking with no problems to contractor or supplier

Streeter et al. 2012

Internal Curing in Colorado

- Building large slabs is complex
- Denver Water 10-Million
 Gallon Lone Tree Tank No. 2
- Negligible differences in placing & finishing
- Opinion less cracking and maintenance

Bates et al. 2012

Internal Curing in Texas

• RR intermodal facility

Friggle et al. 2008

- 250,000 yd³ of low slump IC material
- CRC Paving for TxDOT
 - 6 months 1 crack, 5.5 years minor drying or plastic shrinkage cracking

Internal Curing in Illinois

- Tollway has used a SRA or IC Option
- Very happy with current experience and
- reduced cracking
- A neighboring states photo to fill the page ...
- No change in construction

Cost Implications

- 1 bridge not three, 5% materials, 1% project
- Sustainable, Safety, Public Benefits

Lets Look at the Fundamentals

- What causes cracking? Concrete Shrinks
- Why does concrete shrink ? Loss of water from the paste, but the size of the pores matters – Kelvin Equation
- Shrinkage Reducing Admixtures (γ)
- Internal Curing Supplies Water to increase r
- What Tests Should I Do?

Laboratory Tests to Measure Shrinkage

• ASTM C-157

• ASTM C-341

 Λl ${\cal E}$ l_0

Measuring Shrinkage Starting Time is Critical

Measuring Shrinkage Starting Time is Critical

Stress Development Approach

- Using an Instrumented Ring
- Measure Strain that Develops in Steel
- Determine the Pressure Required to Obtain that Strain
- Apply Pressure to Concrete and Obtain Tensile Stress

Hossain and Weiss, 2003

The Dual Ring Test

What Does Concrete Data Look Like

Lets Look at the Fundamentals

- What causes cracking? Concrete Shrinks
- Why does concrete shrink ? Loss of water from the paste, but the size of the pores matters – Kelvin Equation
 - Shrinkage Reducing Admixtures
 - Internal Curing
- What Tests Should I Do? Ring, 1698, Dual Ring
- Thoughts on Prediction/Specification

A Simple Model

Prediction of Stress Development

$$\varepsilon_{Permit}(t) = \int_{0}^{t} \left[\left(\frac{1}{E_{\sigma}(\xi)} + \frac{1}{E_{c}} \phi(t,\xi) \right) \frac{d\sigma(\xi)}{d\xi} + \frac{d\varepsilon_{Shr}(\xi)}{d\xi} \right] \cdot d\xi$$

(Weiss, 1997)

Age/Time Dependent Material Properties

$$E_{c}(t) = E_{\infty} \frac{C_{1}(t - t_{s})}{1 + C_{1}(t - t_{s})} \qquad f_{ten(t)} = f_{ten-\infty} \frac{C_{2}(t - t_{s})}{1 + C_{2}(t - t_{s})}$$
(McIntosh, 1956)

Including 'Random Variation'

Specimen Age (Days)

Stress or Strength (MPa)

Results Of An Alternative Approach to Consider Variability in Shrinkage

- Plotted the percentage of specimens cracked by a specific age
- Results of 10,000 simulations
- Can quantify risk or total probability

Toward a Shrinkage Specification

 Shrinkage can be related to cracking potential and this simple approach begins to relate a simple test to performance

A Summary of Thoughts

- Concrete Shrinks but We Have Three Defenses
 - Aggregate Volume Change Shrinking Proportion
 - Shrinkage Reducing Admixtures Change Fluid
 - Internal Curing Change Pore Emptying
- Current Tests are Lacking However
 - New Tests Exists 4+ New Shrinkage Tests
 - Dual Ring Test Has Merit and is Fast
- Specifications can Be Performance Based
 Model Based on Risk of Cracking

Eager Beavers

- OSU strong materials group wanting to help improve concrete performance
- Early age/shrinkage mitigation expertise (SRA, IC)
- SCM/Limestone/
- Durability Testing and Prediction
- Sustainability Related Research
- Non Destructive Testing
- Mechanical Properties and Reinforced Concrete
- Service Life Modeling Corrosion, Freeze-Thaw
- Fluid Movement

Thank you Are There Any Questions

Jason Weiss, Edwards Distinguished Professor jason.weiss@oregonstate.edu