Welcome IEEE Members and Guests Sept 21, 2015 – Calgary Sept 22, 2015 – Edmonton Sept 30,2015 – Fort McMurray Medium Voltage Distribution

Medium Voltage Distribution By Sharif Ahmed of Siemens Canada Senior Member IEEE Rotary Scholar

Generation to MV Distribution

Advancing Technology for Humanity

History of Electricity

- -In the beginning Electricity was produced in direct current (DC)
- -The Generation was done on the same voltage as it was consumed
- There was no way of changing the voltage level as the generation was in DC
- -Then came the Alternating current and it became possible to transmit Electricity on higher voltages.

Medium Voltage Distribution Generation

The initial generation was water power or coal

Today the Generation is done through following:-

- 1. Generation by Water Power (Hydro)
- 2. Generation by Coal
- 3. Generation by Nuclear Energy
- 4. Generation by Natural Gas
- 5. Generation by Wind Generators
- 6. Generation by Solar Power
- 7. Generation by Tidal Power
- 8. Generation by Geo Thermal
- 9. Generation by Petroleum

10. Generation by Biomass Waste

Medium Voltage Distribution Electricity Generation by Hydro Power

Medium Voltage Distribution **Electricity Generation by Hydro**

Senior Member IEEE

for Humanity

Medium Voltage Distribution Electricity Generation by Coal

Medium Voltage Distribution Electricty Generation by Coal

September 21, 2015 Sharif Ahmed Senior Member IEEE

Advancing Technology

for Humanity

Medium Voltage Distribution Generation by Nuclear energy

Advancing Technology for Humanity

IEEE

Medium Voltage Distribution Generation by Nuclear Energy

Medium Voltage Distribution Turbo Generators

Medium Voltage Distribution Electricity Generation by Wind Power

Medium Voltage Distribution Electricity Generation by Wind Energy

Substation

2

Electricity transmission (power lines)

Consumer homes and businesses

Medium Voltage Distribution Generation by Solar Energy

Medium Voltage Distribution Generation through tidal waves

Medium Voltage Distribution Electrcity Generation by tidal waves

for Humanity

Medium Voltage Distribution Generation by Geothermal energy

Medium Voltage Distribution Generation by Geothermal Energy

-As per the data collected in the year 2015 the total worldwide Geothermal Generation capacity in the world is 12.8 Giga watts

-Out of this total capacity USA generates 3,548 MW

-- The Geothermal capacity is expected reach 14.5 – 17.6 Giga watts by the year 2020.

-- According to a report released by MIT says an investment of 1\$billion in R&D in next 15 years would allow generation of 100 GW by the year 2050.

Medium Voltage Distribution World's biggest Geothermal Plant in California, USA

Medium Voltage Distribution **Electricity Generation by Oil**

Senior Member IEEE

for Humanity

Medium Voltage Distribution Electricity Generation by Gas

Medium Voltage Distribution Electricity produced by Biomass

Medium Voltage Distribution One of the Biomass Fuels

Medium Voltage Distribution Electricity Generation by Biomass

Electricity Generation Powered by Biomass

Medium Voltage Distribution Electricity Generation by Biomass

Generation Capacity in various provinces in Canada

Alberta 14,598 MW Saskatchewan 3,902MW British Columbia 11,000MW Ontario 35,163MW Manitoba 5,511MW Quebec 35,829MW Nova Scotia 2,293MW Newfoundland & Labrador 7,289MW

Generation Capacity in Alberta as of 2014

Generating Capacity	Megawatt (MW)
Coal	6,258
Natural Gas	5,812
Hydro	900
Wind	1,113
Biomass	417
Waste Heat*	86
Fuel Oil	12

Total Generating Capacity

14,598 MW

Medium Voltage Distribution **US Electricity Generation** U.S. 2014 Electricity Generation By Type Other 1.2% 13.2% Renewables 13.2% Coal 38.8% 38.8% Nuclear 19.5% 19.5% Natural Gas 27.4% 27.4% EEE September 21, 2015 Sharif Ahmed Advancing Technology Senior Member IEEE for Humanity

Medium Voltage Distribution Electricity Production in France

Canada had 130.5 million kilowatts of electrical generating capacity in 2010

Most of Canada's electrical capacity in 2010 was from hydraulic- and thermal-powered turbines, which produced 75.1 million kilowatts (57.5%) and 51.4 million kilowatts (39.3%), respectively. Quebec accounted for 51.2% of Canada's hydraulic power in 2010, with a capacity of 38.4 million kilowatts. Ontario (25.5 million kilowatts) and Alberta (11.1 million kilowatts) provided most of Canada's thermal capacity; 47.0% of Ontario's thermal capacity was from nuclear steam turbines

Medium Voltage Distribution Generation Capacity in Canada

Source: Statistics Canada, CANSIM table 127-0009.

Medium Voltage Distribution Power Transformers

Medium Voltage Distribution Power Transformers

The Transformers used for stepping up the Voltage are selected on following:

- 1. The MVA Rating is selected on the basis of the Power to be transmitted.
- 1. The Transformer Losses are to be defined or a capitalization of Losses formula is to be given while procuring a Transformer in order to be sure to buy the right Transformers with optimum Losses as this is money you lose over the life time of the Transformer if you buy a transformer with higher losses. A transformer with higher losses is cheaper in price but you lose money over the period of time.
- 1. The impedance of a Transformer is calculated after the short circuit calculation of a net work. Lower the impedance higher the sort circuit capacity in a Transformer.

Medium Voltage Distribution Transformer Impedance

The Impedance of a Transformer is the ratio of transformer normal full load current to the current available under short circuit conditions.

Three phase full load current IFL = Root 3xKVAX1000/ Voltage

Short Circuit Current Isc = IFL / Z

Where *Z* = *Impedance*

IFL = Full Load Current

Isc = Short Circuit Current

Medium Voltage Distribution Transmission

The Electricity transmission is done at different Voltages in different countries.

In Canada the transmission Voltages are 72kV, 138kV, 240kV, 500kV & 735kV. In US the max Transmission Voltage is 800kV.

The transmission network in US is 164,000 Miles Linking over 75,000 MW of Generation to Millions of customers by 3,000 Utilities

BCTC in Canada manages over 300 substations of transmission lines throughout the province of British Columbia .

Medium Voltage Distribution Power Factor

Power Factor: Power factor compares the real power (watts) being consumed to the apparent power (Volts-Amps) of the load. A purely resistive load (incandescent lights, electric heating elements.) would have a power factor of 1.0. All current will cause losses in the supply and distribution system. A load with a power factor of 1.0 will result in the most efficient loading of the supply.

Medium Voltage Distribution Power Factor Improvement

Oscillations (resonances): The flow of electrical energy, e.g. between the magnetic field of an inductor and the electric field of a capacitor, changes direction periodically.

Reactive power:

The phase angle between the current and voltage waveforms in an AC system. Used to develop magnetic field in motors, causes low power factor.

Flicker: Random or repetitive variations in the voltage.

Caused by e.g. mills, EAF operation (arc furnaces), welding equipment and

shredders.

<u>Voltage variations (dips, sags, swells,</u> <u>brown-outs):</u>

The line voltage is higher or lower than the nominal voltage for a shorter period. Caused by e.g. network faults, switching of capacitive loads and excessive loading.

Transients (fast disturbances):

Rapid change in the sine wave that occurs in both voltage and current waveforms. Caused by switching devices, start- and stop of high power equipment.

Harmonics:

Multiples of the supply frequency, i.e. the fifth harmonic would be 250 Hz if the supply frequency is 50 Hz. Caused by e.g. power electronic loads such as variable speed drives and UPS systems.

Network unbalanced

Network unbalance:

Different line voltages. Caused by singlephase loads, phase to phase loads and unbalanced three-phase loads like welding equipment.

Medium Voltage Distribution **Power factor Improvement**

Advancing Technology for Humanity

E

Senior Member IEEE

Medium Voltage Distribution 75MVar Capacitor Bank in 150kV Substation

For Medium Voltage Distribution the primary Voltage Levels are 5kV, 15kV, 25kV & 35kV in Canada

Sept 21, 2015 Sharif Ahmed Senior Member IEEE

Advancing Technology for Humanity

Generation level and highvoltage system

Primary distribution level

Secondary distribution level

Utilities in Alberta are the following:

AltaLink Enmax ATCO EPCOR Utility of City of Red Deer Utility of City of Medicine Hat Utility if City of Lethbridge

AltaLink, L.P. is one of Canada's largest transmission companies. **Based in Alberta, AltaLink is** maintaining and operating approximately 12,000 kilometers of transmission lines and 280 substations in Alberta.

Switchgear is designed to the Following Standards for North America

- ANSI/IEEE C37.20.2-1999 Metal-Clad Switchgear
- ANSI/IEEE C37.04-1999 Standard Rating Structure for AC High-Voltage Circuit Breakers
- ANSI/IEEE C37.06-2009 AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis - Preferred Ratings and Related Required Capabilities for Voltages Above 1,000 Volts
- ANSI/IEEE C37.09-1999 Standard Test Procedure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis
- ANSI/IEEE C37.010-1999 Application Guide for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis
- ANSI/IEEE C37.20.7, Up To 50 kA, 0.5 sec, Accessibility Type 2B Arc-Resistant

Both ANSI C84.1 and IEEE 141 divide system voltages into classes

VOLTAGE CLASS	VOLTAGE RANGE (AC)
Low voltage	Below 1,000 V
Medium voltage	1,000 V to 100 kV
High voltage	100 kV to 230 kV
Extra-high voltage	230 kV to 1,000 kV
Ultra-high voltage	Above 1,000 kV

The price of copper is increasing day by day. Over the past 10 years, the cost of copper has increased more than a 400% . As this cost continues to increase, contractors, design engineers, and facility owners are trying to find ways to reduce the amount of copper in the distribution system. One method is implementing medium-voltage distribution systems. In this case, the goal of using medium-voltage distribution is to move the transformation to utilization voltage closer to the load to take advantage of the reduced current at higher voltages. Lower current means smaller or fewer conductors to distribute power. Using smaller or fewer conductors decreases the amount of copper and therefore reduces cost. Conduit and installation costs are also lower.

Medium-voltage distribution helps to minimize voltage drop. The National Electrical Code (NEC) Article 215.2 recommends a voltage drop of 5% or less from the utility service to the load.

The larger the load current and the larger the conductor impedance, the larger the voltage drop.

Today about 80 percent of power network operators decide in favor of vacuum switching technology The market share of vacuum circuit-breakers is more than 99 % in Germany. The core component of this switching principle is the vacuum interrupter.

Medium Voltage Distribution Vacuum Interrupters

Circuit breakers must make and break all currents within the scope of their ratings, from small inductive and capacitive load currents up to the short-circuit current, and this under all fault conditions in the power supply system such as earth faults, phase opposition and so on.

Rated peak and/or making current

The decisive advantage of the vacuum interrupter is that its properties remain constant throughout the entire life cycle, due to the hermetically tight vacuum interrupter which eliminates any external influences

Medium Voltage Distribution Medium Voltage Breaker Operating Mechanism

The Breaker operating Mechanism for - 5-cycle interrupting time (standard) - 3-cycle interrupting time (optional) 1,200 A-3,000 A continuous current (selfcooled) Up to 4,000 A continuous current with fan-cooling in cubicle.

Medium Voltage Distribution Medium Voltage Circuit Breaker

Rating interlock (universal spare circuit breaker)* Rated for 10,000 operations prior to maintenance Up to 100 full-fault operations (depending upon rating) Spring-loaded fingers for secondary disconnect Outer phase barriers for easy access

* Circuit breaker fits any cell up to 50 kA provided rated voltage, continuous current and interrupting current equal or exceed requirements of the cell

- 5 Operations counter
 - Manual open/trip button

Medium Voltage Distribution Medium Voltage Circuit Breaker Racking mechanism

- White interior device panels improve visibility
- Floor-mounted racking mechanism
- Glass-polyester CT safety barrier
- Secondary disconnects automatically engage in both TEST & CONNECTED positions
- 1. Secondary disconnect
- 2. Current transformer barrier
- 3. Shutters, primary disconnects & current transformers (behind shutters)
- 4. Truck-operated cell switch (TOC) (optional)
- 5. White interior device panel
- 6. Mechanism-operated cell switch (MOC) (optional) (cover removed for photo)
- 7. Shutter operating linkage
- 8. Ratings interlock
- 9. Trip-free padlock provisions
- 10. Racking mechanism padlock provisions
- 11. Racking mechanism
- 12. Ground bar
- 13. MOC terminal blocks
- 14. TOC terminal blocks

Medium Voltage Distribution MV Circuit Breakers for AIS

Medium Voltage Distribution MV Circuit Breakers

Finger Cluster

Compatible configuration for all ratings enables universal spare concept

1" uniform gap between fingers for all ratings enables universal spare concept (up to 50 kA)

Medium Voltage Distribution Air Insulated Switchgear

Medium Voltage Distribution Medium Voltage Switchgear Panel arrangements

Medium Voltage Distribution Medium Voltage Circuit Breaker racking mechanism

TOC switches & TOC terminal blocks MOC switches & MOC terminal block Secondary customer terminal blocks Secondary wire guard

Medium Voltage Distribution Medium Voltage Air Insulated Switchgear

5 kV, 7.2 kV & 15 kV rated metal-clad switchgear 25 kA, 40 kA, 50 kA & 63 kA interrupting ratings 1,200 A, 2,000 A, 3,000 A & 4,000 A main bus ratings (self-cooled) 1,200 A, 2,000 A & 3,000 A (self-cooled) plus 4,000 A fan-cooled circuit breaker ratings 5-cycle interrupting time (standard) 3-cycle interrupting time (optional)

Universal spare circuit breaker up to 50 kA & lower ratings Universal spare circuit breaker for 63 kA ratings

Medium Voltage Distribution Medium Voltage Arc Resistant Switchgear

5 kV, 7.2 kV & 15 kV rated metal-clad switchgear 25 kA, 40 kA & 50 kA interrupting ratings 1,200 A, 2,000 A, 3,000 A & 4,000 A main bus ratings (self-cooled) 1,200 A, 2,000 A & 3,000 A (selfcooled) plus 4,000 A fan-cooled circuit breaker ratings 5-cycle interrupting time (standard) 3-cycle interrupting time (optional) Universal spare circuit breaker up to 50 kA & lower ratings

Arc Resistant to ANSI/IEEE C37.20.7, Up To 50 kA, 0.5 sec, Accessibility Type 2B

Medium Voltage Distribution Medium Voltage Gas Insulated Switchgear Switchgear

Today's state of the art is gas-insulated switchgear with the following main benefits:

- Small, compact dimensions
- Independent of environmental effects and climate
- Widely maintenance-free
- Maximum safety for staff
- Low fire risk
- Arc-fault tested

Advantages:

- Low invest for buildings due to compact dimensions and climate-independent design
- Maximized power supply reliability
- Maximum personal safety
- Lowest life cycle costs
- Reduced operational costs

Medium Voltage Distribution Medium Voltage Gas Insulated Switchgear

Three phase encapsulation

Single Phase encapsulation (W600mmxD1625mmxH2350mm)

Medium Voltage Distribution

Medium Voltage GIS Mode of operation The role of Three Position Selector Switch

Medium Voltage Distribution Medium Voltage GIS

GIS is Arc Fault Tested AS PER ANSI 37.20.7-2007 (Personal Protective Equipment) PPE Level required is HRC0

For Major Operational Activities, Reduced Level Of PPE Can Be Used For MV GIS

Comparison of PPE ³ level required for operations		
Activity	MV Air-Insulated Switchgear (AIS) ¹	MV GIS
Open/close circuit breaker	HRC 2 (door closed) ² HRC 4 (door open)	HRC 0
Isolate circuit	HRC 4 (racking, door open or closed) (Note: isolation in metal- clad requires racking to test or disconnect position)	HRC 0 (operation of three-position switch to open position)
Application of safety grounds	HRC 4	HRC 0

Medium Voltage Distribution A Closer Look at GIS vs AIS Much smaller in size

GIS Requires 20% of space needed for air- insulated designs

Medium Voltage Distribution MV Outdoor Breakers These outdoor Breakers are used in remote places for MV Distribution

Questions

References

- -Wikipedia
- -Siemens Publications
- -Consulting specifying Engineers
- -Work nuclear Association

