Chem 253, UC, Berkeley 🌑 🌑 🥒

Welcome to Chem 253

http://www.cchem.berkeley.edu/pdygrp/chem253.html

Chem 253, UC, Berkeley 🌑 🌑 🌑

Chemistry 253 A & B Materials & Solid State Chemistry

Lecture: Tu. Thurs. 12:30-2:00 pm @ 425 Latimer

Instructor:

Professor Peidong Yang, B68 Hild., Office Hours:Friday 10:00-12:00pm or by appointment p yang@berkeley.edu

TA:

Michael Moore michael.moore@berkeley.edu

Chong Liu chongliu@berkeley.edu

Chem 253, UC, Berkeley 🌑 🌑 🥒

Grading:

Problem sets (2) 40% Final 60%

Description:

Structure and structure determination of crystalline solids; Solid State Synthesis Solid State Characterization Electronic band structure; Chemical bonding in solids; Structure-property relationships.

Chem 253, UC, Berkeley 🌑 🌑 🌑

Main Reference Books

West: Basic solid state chemistry (Wiley, 1999).
West: Solid State Chemistry and its Applications (Wiley, 1988)
Gersten and Smith: The Physics and Chemistry of Materials (Wiley, 2001)

Hoffmann: Solids and Surfaces (VCH, 1988)
Burdett: Chemical Bonding in Solids (Oxford 1995)
Kittel: Introduction to solid State Physics (Wiley, 1996)
Ashcroft and Mermin: Solid State Physics (Saunders College, latest edition)

Cheetham and Day: Solid State Chemistry: Techniques (Oxford, 1987)
Cheetham and Day: Solid State Chemistry: Compounds (Oxford, 1992)
Cox: The Electronic Structure and Chemistry of Solids (Oxford, 1987)
Wells: Structural Inorganic Chemistry (Clarendon Press, 1984)
Wold and Dwight: Solid State Chemistry (Chapman Hall, 1993)

Chem 253, UC, Berkeley 🌑 🌑 🌘

Materials Chemistry I

1).	No Lecture	
2).	Bravais Lattice, Reciprocal Lattice	Ashcroft: 4-7
3).	XRD, Structural Factor	Ashcroft: 4-7
4).	Diffraction	West: 5
5).	Descriptive crystal chemistry	West: 7,8
6).	Descriptive crystal chemistry	
7).	Crystal Chemistry, Phase diagrams	West: 11, 12
8).	Phase Diagram	Callister 9
9).	Phase Diagram	
10).	Final	

Chem 253, UC, Berkeley 🌑 🌑 🥒

Materials Chemistry II

- 11). Free Electron Model Ashcroft/Mermin: 1-3, 8-10, Kittel: 6-9
- 12). Nearly free electron model, Fermi surface, Effective Mass, Exciton.
- 13). Fermi's Golden Rule, Optical Transition
- 14). Quantum well/wire/dot
- 15). Tight Binding Model MO Theory
- 16). Tight Binding Model
- 17). Tight Binding Model
- 18). Final

Gersten, 7,11 Hoffmann,Burdett 1-3 Chem 253, UC, Berkeley 🌑 🌑

Solid State and Materials Chemistry

Synthesis, structure, properties, applications of solid materials

Inorganic, organic, biological

Chem 253, UC, Berkeley 🌑 🌑 🥒

Materials by Design

Theoretician: predict structure/composition with particular properties

Chemist/Physicist: Make/measure/characterize

Materials Genome Initiative

http://www.whitehouse.gov/mgi

Chem 253, UC, Berkeley 🌑 🌑 🥒

Characterization Techniques:

Organic/Organometallic: NMR, IR, crystallography

Solid state: X-ray powder diffraction,

Electron microscopy

Physical property characterization

Chem 253, UC, Berkeley 🌑 🌑 🥒

Superconductivity

1908, Kammerlingh-Onnes experiments on liquid He (a few ml)

Hg resistance: 0.08 ohm @ 5K to 0.000003 ohm @ 4.2 K

1986, J. G. Bednorz, K. H. Muller (IBM)

La-Ba-Cu-O

Oxide: Tc = 35 K

1997 Nobel prize in Physics

French Group (B. Raveau)

Chem 253, UC, Berkeley 🌑 🌑 🌑

Crystal Structure

Reading: Ashcroft 4-7

Ideal Crystal: Contain periodical array of atoms/ions
Represented by a simple lattice of points
A group of atoms attached to each lattice points

Basis

LATTICE = An infinite array of points in space, in which each point has identical surroundings to all others.

CRYSTAL STRUCTURE = *The periodic arrangement of atoms in the crystal.*

It can be described by associating with each lattice point a group of atoms called the **MOTIF** (**BASIS**)

UNIT CELL = The smallest component of the crystal, which when stacked together with pure translational repetition reproduces the whole crystal

Primitive Cell: simplest cell, contain one lattice point

Not necessary have the crystal symmetry

Square	a=b	γ =90
ectangular	a≠ b	γ=90
Centered Rectangular	a ≠b	γ=90
exagonal	a=b	γ =120
Oblique	a ≠b	γ ≠90

Chem 253, UC, Berkeley 🌑 🌑

3D: 14 Bravais Lattice, 7 Crystal System

Name	Number of Bravais lattices	Conditions
Triclinic	1 (P)	$\mathbf{a}_1 \neq \mathbf{a}_2 \neq \mathbf{a}_3$ $\alpha \neq \beta \neq \gamma$
Monoclinic	2 (P, C)	$a_1 \neq a_2 \neq a_3$ $\alpha = \beta = 90^{\circ} \neq \gamma$
Orthorhombic	4 (P, F, I, A)	$a_1 \neq a_2 \neq a_3$ $\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	2 (P, I)	$a_1 = a_2 \neq a_3$ $\alpha = \beta = \gamma = 90^{\circ}$
Cubic	3 (P, F, I)	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 90^{\circ}$
Trigonal	1 (P)	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma < 120^\circ \neq 90^\circ$
Hexagonal	1 (P)	$a_1 = a_2 \neq a_3$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$

1, 2, 3, 4, 6

NOT 5, > 6

Quasicrystal: AlFeCu

Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. *Phys. Rev. Lett.* **53**, 1951-1953 (1984).

The Nobel Prize in Chemistry 2011

Dan Shechtman

em 253, UC, Berkele	y • • •		
Atoms corner face center body center edge center		Each atom counts: 1/8 1/2 1 1/4	
lattice type	cell contents		
Р	1	[=8 x 1/8]	
I	2	$[=(8 \times 1/8) + (1 \times 1)]$	
F	4	$[=(8 \times 1/8) + (6 \times 1/2)]$	
С	2	$[=(8 \times 1/8) + (2 \times 1/2)]$	

Density Calculation

n: number of atoms/unit cell A: atomic mass

 V_C : volume of the unit cell

Calculate the density of copper.

 $R_{Cu} = 0.128$ nm, Crystal structure: FCC, $A_{Cu} = 63.5$ g/mole

$$n = 4 \text{ atoms/cell}, \quad V_C = a^3 = (2R\sqrt{2})^3 = 16\sqrt{2}R^3$$

$$\rho = \frac{(4)(63.5)}{[16\sqrt{2}(1.28\times10^8)^3\times6.023\times10^{23}]} = 8.89 \, g \, / \, cm^3$$

 $8.94 \ g/cm^3$ in the literature

Lattice planes

◆ It is possible to describe certain directions and planes with respect to the crystal lattice using a set of three integers referred to as Miller Indices

Chem 253, UC, Berkeley 🌑 🌑

Miller Indices:

- 1. Find the intercepts on the axes in terms of the lattice constant a, b, c
- 2. Take the reciprocals of these numbers, reduce to the three integers having the same ratio (hkl)

Set of symmetry-related planes: {hkl}

Families of planes

- Miller indices describe the orientation a spacing of a family of planes
 - The spacing between adjacent planes in a family is referred to as a "d-spacing"

Three different families of planes d-spacing between (300) planes is one third of the (100) spacing (100) (200) (300)

d-spacing formulae

• For a unit cell with orthogonal axes

$$- (1 / d^2_{hkl}) = (h^2/a^2) + (k^2/b^2) + (l^2/c^2)$$

Hexagonal unit cells

$$- (1 / d^{2}_{hkl}) = (4/3)([h^{2} + k^{2} + hk]/a^{2}) + (l^{2}/c^{2})$$

Chem 253, UC, Berkeley 🌑 🌑 🥒

Crystal Structure Analysis

X-ray diffraction

Electron Diffraction

Neutron Diffraction

Essence of diffraction: Bragg Diffraction

