
Welcome to CSE 332!
Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:
Alena Dickmann Arya GJ Finn Johnson
Joon Chong Kimi Locke Peyton Rapo
Rahul Misal Winston Jodjana

Lecture Outline

• About This Course
• Learning Objectives
• People
• Policies

• Abstract and Concrete Data Types

• ADTs & Data Structures you’ve already learned

2

Learning Objectives
• Learn fundamental, “classic”, data structures and algorithms
• Learn thought processes/patterns for organizing and processing

information
• Understand how to analyze a program’s efficiency
• Learn how to analyze tradeoffs and pick “the right tool for the job”
• Learn about how programs work in parallel and the related concurrency issues

• Learn to communicate about these ideas
• Explaining your reasoning to others
• Working with a partner on code

• Learn to read and understand code you didn’t write
• This isn’t a “how to program” or “software engineering” class!

• We will practice design, analysis, and implementation
• Witness elegant interplay of “theory” and “engineering” at the core of computer

science

• Crush your technical interviews this fall!
3

Course Content

• What do we mean by “Data Structures and Parallelism”?

• About 70% of the course is a “classic data-structures course”
• Timeless, essential stuff
• Core data structures and algorithms that underlie most software
• How to analyze algorithms

• About 30% is programming with multiple executors
• Parallelism: Use multiple executors to finish sooner
• Concurrency: Correct access to shared resources
• Will make many connections to the classic data structures material

4

In Other Words …

• This is the class where you begin to think like a computer scientist
• You stop thinking in Java code
• You start thinking that this is a hashtable problem, a stack problem, a sorting

problem, etc.
• You recognize tradeoffs

• Time vs. space
• One operation more efficient if another less efficient
• Generality vs. simplicity vs. performance

• We are filling your “toolbox” with tools (data structures and
algorithms) and a methodology for selecting the right one
• Eg, logarithmic < linear < quadratic < exponential

5

Why take this course?

• Macro:
• Want to revolutionize some part of the tech industry?
• Self-driving cars
• Fake news detection

• Micro:
• Get everyone on the same page
• Get internships!
• Be prepared for industry

6

Lecture Outline

• About This Course
• Learning Objectives
• People
• Policies

• Abstract and Concrete Data Types

• ADTs & Data Structures you’ve already learned

7

Introductions: Me

• Kristofer Wong (he/him)
• Graduated UW CSE last week
• First time instructor, but 7x TA

• Interests
• Music
• Swimming, IMA sports w friends
• Boba
• Please dear god no Loki spoilers

• No computer science in high school
• No experience is ok! (That’s why we’re here)

• Brain damage in sophomore year: CSE 332???
• I promise: grades don’t matter.

• Industry experience
• Future plans

• More school :’)

8

Introductions: TA’s
• TAs:

• Alena, Arya, Finn, Joon, Kimi, Peyton, Rahul, Winston
• Available in section, office hours, Ed, and 1-on-1’s
• An invaluable source of information and help (!!)

•Please get to know us
• We are excited to help you succeed!
• Schedule time for a virtual one-on-one to discuss anything

• A couple promises:
• To do our best to be as inclusive of every student as possible
• To

9

Introduction: You

• ~55 students registered
• All different experience levels

• You are never alone

• Toward the end {don’t jinx it} of
the pandemic, but it’s still
affecting us.

• “Nearly 70% of individuals will
experience signs and symptoms
of impostor phenomenon at
least once in their life.”

• https://en.wikipedia.org/wiki/Impost
or_syndrome

10

https://xkcd.com/1954

https://en.wikipedia.org/wiki/Impostor_syndrome

Lecture Outline

• About This Course
• Learning Objectives
• People
• Policies

• Abstract and Concrete Data Types

• ADTs & Data Structures you’ve already learned

11

Communication
• Website: http://cs.uw.edu/332

• Schedule, policies, materials, assignments, etc.

• Discussion: https://edstem.org/us/courses/6530/discussion/
• Announcements made here
• Ask and answer questions – staff will monitor and contribute

• Office hours: spread throughout the week
• Can e-mail or private Ed post to make individual appointments

• Feedback:
• Anonymous feedback goes to Kris, but he can’t respond directly
• cse332-staff@cs goes to the entire staff

12

http://cs.uw.edu/332
https://edstem.org/us/courses//discussion/

Course Components

• Lectures
• Introduces the concepts (but rarely covers coding details)
• Try to stay engaged!

• Why??
• Slides posted after class
• Lectures are recorded

• Sections
• Practice problems and concept application
• Review materials (occasionally introduces new materials)
• Answer Java/project/homework questions

• Office Hours
• Come to these, even if you don’t know what you’re confused about

13

Materials

• Textbook:
• Data Structures & Algorithm Analysis in Java, Mark Allen Weiss
• 3rd edition, 2012 (but 2nd edition ok)

• Parallelism/concurrency units in separate free resources specifically
designed for 332

• Readings are not required, but heavily encouraged.
• I didn’t do them
• I wish I did them

14

Evaluation & Grading

• 14 total homework exercises + 1 EC exercise (35%)
• 9 individual (+1 EC)
• 5 communication / group based (look out for an announcement with further explaination)

• 3 partner-based multi-phase programming projects (35%)
• Use Java 11, IntelliJ, Gitlab
• Partner programming

• 2 assessments (20%)
• No traditional assessments
• 1 midterm, self graded, out for a whole week
• 1 five minute oral ”final”

• Participation (10%)
• 5%: In class activities

• due 11:59 PM before the next class
• 5%: course engagement

• Asking / Responding on Ed
• Participation in quiz sections
• Office Hours
• Providing course feedback (Private Ed posts, google docs comments, anonymous feedback)
• Generally helping your peers succeed

15

Deadlines and Student Conduct

• Late policies
• Exercises & Assessments: No late submissions accepted
• Projects: 4 late days for the entire quarter, max 2 per assignment

• If you have extenuating circumstances, reach out to the course staff and we’ll try to
accommodate.

• Academic Conduct (read the full policy in the syllabus)
• In short: don’t attempt to gain credit for something you didn’t do and don’t

help others do so either
• This does not mean suffer in silence!

• Attempt a problem on your own first, but then…
• Learn from the course staff and peers, talk, share ideas; but don’t share or copy work

that is supposed to be yours
• Collaboration is strongly encouraged! Discuss confusing points with each other,

because organizing your thoughts is the best way to learn!

16

Lecture Outline

• About This Course
• Learning Objectives
• People
• Policies

• Abstract and Concrete Data Types

• ADTs & Data Structures you’ve already learned

17

Terminology: Data Structures vs Algorithms

• Data Structures:
• A way of organizing, storing, accessing, and updating a set of data
• Examples from 14X: arrays, linked lists, trees

• Algorithms:
• A series of precise instructions guaranteed to produce a certain answer
• Examples from 14X: binary search, merge sort, recursive backtracking

18

Terminology: ADTs vs Concrete Data
Structures

• Abstract Data Types (ADTs):
• Mathematical description of a “thing” and its set of operations

• Data Structures:
• A way of organizing, storing, accessing, and updating a set of data

• Implementations:
• An implementation of an ADT is a data structure
• An implementation of a data structure are the collection of methods and

variables in a specific language

19

Analogy from 143

• In Java, an interface is a data type
that specifies what to do but not
how to do it

• List: an ordered sequence of elements.

• A subtype implements all methods
required by the interface
• ArrayList: Resizable array

implementation of the List interface
• LinkedList: Doubly-linked

implementation of the List interface

20

List

ArrayList LinkedList

A Java interface is to a Java subtype, as an ADT is to a data structure!

Lecture Outline

• About This Course
• Learning Objectives
• People
• Policies

• Abstract and Concrete Data Types

• ADTs & Data Structures you’ve already learned

21

Data Structures from 143

• Arrays

• Linked Lists

• Trees

22

0 1 2 3

Bfront A

List Functionality
• Possible Implementations:

• ArrayList
• LinkedList

23

List ADT. A collection storing an
ordered sequence of
elements.

• Each element is accessible by a
zero-based index

• A list has a size defined as the
number of elements in the list

• Elements can be added to the
front, back, or any index in the list

• Optionally, elements can be
removed from the front, back, or
any index in the list

List Performance Tradeoffs

24

ArrayList LinkedList

addFront linear constant

removeFront linear constant

addBack constant* linear

removeBack constant linear

get(idx) const linear

put(idx) linear linear
* constant for most invocations

Stack and Queue ADTs

25

Queue ADT. A collection storing an
ordered sequence of elements.

• A queue has a size defined as the
number of elements in the queue

• Elements can only be added to
one end and removed from the
other (“FIFO”)

Stack ADT. A collection storing an
ordered sequence of elements.

• A stack has a size defined as the
number of elements in the stack

• Elements can only be added and
removed from the top (“LIFO”)

Stack ADT

• Stack: an ADT representing an ordered sequence of elements whose
elements can only be added/removed from one end.

• Corollary: has “last in, first out” semantics (LIFO)
• The end of the stack that we operate on is called the “top”
• Operations:

• void push(Item i)
• Item pop()
• Item top()/peek()
• boolean isEmpty()
• (notably, there is no generic get() method)

26

A
B
C
D
E

D C B A

E

Terminology Example: Stack

• The Stack ADT has the following operations:
• push: adds an item
• pop: raises an error if isEmpty(), else removes and returns most-

recently pushed item not yet returned by a pop()
• top or peek: same as pop, but doesn’t remove the item
• isEmpty: initially true, later true if there have been same number

of pop()’s as push()es’es

• A Stack data structure could use a linked-list or an array or
something else.

• There are associated algorithms for each operation

• One implementation is in the library java.util.Stack

27

28

• We can communicate in shorthand and high-level terms
• “Use a stack and push numbers”
• Rather than: “create a linked list and add a node when you see a …”

Why care about ADTs?

Stack Data Structure: Array
• State
Item[] data;
int size;

• Behavior
• push()

§ Resize data array if necessary
§ Assign data[size] = item
§ Increment size
§ Note: this is ArrayList.addBack()

• pop()
• Return data[size]
• Decrement size
• Note: this is ArrayList.removeBack()

29

0 1 2 3
push

pop

C E

size 2

push(‘C’);
push(‘D’);
pop(); // ‘D’
push(‘E’);

Stack Data Structure: Linked List
• State
Node top;

• Behavior
• push()

§ Create a new node linked to top’s current value
§ Update top to new node
§ Increment size
§ Note: this is LinkedList.addBack()

• pop()
• Return top’s item
• Update top
• Decrement size
• Note: this is LinkedList.removeBack()

30

push

pop

size

C

2top

E

push(‘C’);
push(‘D’);
pop(); // ‘D’
push(‘E’);

Queue ADT

• Queue: an ADT representing an ordered sequence of elements,
whose elements can only be added to one end and removed from
the other end.

• Corollary: has “first in, first out” semantics (FIFO)
• Two methods:

• void enqueue(Item i)
• Item dequeue()
• boolean isEmpty()

• (notably, there is no generic get() method)

31

F E D C Benqueue dequeueG A

Queue Data Structure: Simple Array

32

0 1 2 3

D E

enqueue

dequeue

v State
Item[] data;
int size;

v Behavior
§ enqueue()

§ ArrayList.addBack()

§ dequeue()
§ ArrayList.removeFront()

enqueue(‘C’);
enqueue(‘D’);
dequeue(); // ‘C’
enqueue(‘E’);

size 2

Queue Data Structure: Circular Array

• The front of the queue does not need to be
the front of the array!

• This data structure is also known as a circular
array

• Removing items increments front

• Adding items increments back

• back “wraps around” to the front of the array
if there’s capacity

• No longer need to shift elements down
during dequeue()s

33

enqueue(‘C’);
enqueue(‘D’);
dequeue(); // ‘C’
enqueue(‘E’);

0 1 2 3

C D E

enqueue

dequeue
front 1

back 3

Queue Data Structure: (Singly) Linked List

34

enqueue

dequeue

qback

DE

v State
Node qback; // front of

// list is the
// logical back
// of the queue

v Behavior
§ enqueue()

§ LinkedList.addLast()

§ dequeue()
§ LinkedList.removeFront()

How does our linked list know
where the last element is?

enqueue(‘C’);
enqueue(‘D’);
dequeue(); // ‘C’
enqueue(‘E’);

Queue Data Structure: Doubly Linked List

• What if we:

• made the list doubly-linked

• added a pointer representing the
front of the queue

• How do I decide which structure
to back my queue??

• Time constraints

• Space constraints

• Potential need for operations not in
the ADT?

35

enqueue

dequeue

qback

qfront

E D

enqueue(‘C’);
enqueue(‘D’);
dequeue(); // ‘C’
enqueue(‘E’);

Dictionary ADT
• Also known as: “Map ADT”

• add(k,v)
• contains(k,v)
• find(k)
• remove(k)

• Naïve implementation: a list of
key/value pairs:

36

Dictionary ADT. A collection keys,
each associated with a value

• A dictionary has a size defined by
the number of elements in the
dictionary (key/value pairs)

• You can add and remove key/value
pairs, but the keys must be unique

• Each value is accessible by its key
via a “find” or ”contains” operation class KVPair<Key, Value> {

Key k;
Value v;

}

LinkedList<KVPair> dict;

Terminology: a dictionary
maps keys to values; an item
or data refers to the key/value
pair.

Dictionary ADT

• We tend to emphasize keys in this class, but don’t forget about the
associated values!
• Quick example using add and find:

• Dictionaries are everywhere
• Any time you want to store information according to some key and retrieve it

efficiently, you want a dictionary!
• In upper level CS: Networks, OS, Compilers, Databases
• In the real world: UW NetIDs, Google’s indexing, Biology Genome mapping

37

kwong272 à Kris Wong
add(kwong272, Kris Wong) rea à Ruth Anderson

hctang à Hannah Tang

rjiang98 à Richard Jiang

CSE 332 Instructors

find(rea)
Ruth Anderson

Set ADT

38

Set ADT. A collection keys.

• A set has a size defined by the
number of elements in the set

• You can add and remove keys, but
the keys must be unique

• Each value is accessible by its key
via a “find” or ”contains” operation

• Operations
• add(v)
• contains(v)
• remove(k)

• Naïve implementation: a list of
key/value pairs:

class Item<Key> {
Key k;

}

LinkedList<Item> set;
Look familiar…?

Homework for TODAY!!

• By 11:59 TOMORROW:
• P1 Partner Matching Survey (Google Forms)
• Pre-Course Check-In Survey
• Previous Experience & Course Related Survey

• Due Friday, 11:59:
• Exercise 1 (Warmup / Java review)

Everything linked on the website!

39

