

Weld Inspection of Transmission Tubular Steel Structures

Ed Jacobs, Director of Quality, R&D, Solid Modeling Al Clare, NDT Manager Paul Cameron, Quality Manager & AWS-CWI

Objectives

- Framework and shortcomings of AWS D1.1
- Repeatable UT inspection
- NDE metallurgical examinations & validations
- Recommend a standard

History of AWS & D1.1

- 1928- Published First Edition
 - Code for Fusion Welding and Gas Cutting in Building Construction, Code 1 Part A
- 1930, 1937 & 1941 Revised
 - Given AWS-D1.0 designation
- 1936- Published First Edition of Bridge D2.0
- 1972- D1.0 & D2.0 combined to form AWS D1.1
 - Section 8: Buildings, Section 9: Bridges, Section 10
 Tubular

History of AWS & D1.1 cont.

- 1988- Bridges group separated
 - Formed AASHTO/AWS D1.5 Bridge Welding Code
- 1990's- Section 8 Tubular removed
 - All inspection condensed into Section 6
 - Now Clause 6
 - Change was significant to Pole Structures industry
- Currently- AWS D1.1/D1.1M:2010
 - 5 year rev. cycle

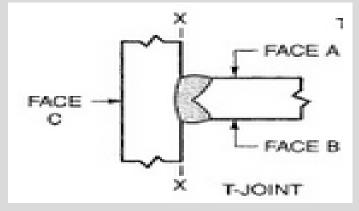
Framework of AWS D1.1

- Known throughout the industry
 - "All Welding per AWS D1.1"
- Qualifies process and people
 Clause 3 & 4
- Discusses alternative means of UT inspection – Annex S
- Inspector Qualification

 AWS QC1 & ASNT SNT-TC-1A
- Calibration of UT equipment
 - Clause 6 Part F
 - Based on CRT technology

Shortcomings of AWS D1.1

- Very broad; not specific to our industry
 - Pre-Qualified Joints not geared to Pole Industry
- No UT acceptance criteria for CJP's under 5/16"
- Clause 6.8 offers alternative acceptance with very little info on how to document that
- No mention of Galvanizing (& UT)
 - UT is common and necessary on galvanized structures
- Doesn't account for modern technology



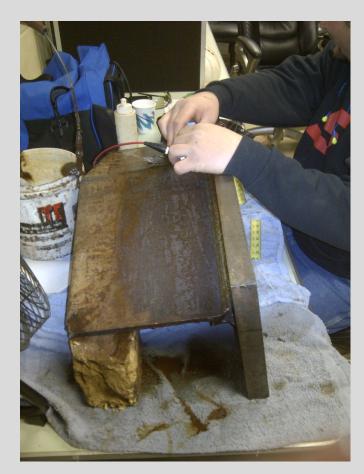
Shortcomings of AWS D1.1 cont.

- Evaluation from 1 face (UT)
 − Corner or T- Joint ≤ 1.5 inch
- Needs more consideration

 CVN
- Identifies all defects
 - Finite Element Analysis (FEA)
 - Should concentrate on critical defects
- Frequency of CJP UT inspection
 - 10% vs. 100%

A Proper Inspection Program

- A good program starts with good VT
- Welding variables defined
 WPS, Work Instruction, Print
- Inspection before, during, and after
- Inspector qualification
 AWS, ASNT, CWB, ACCP



A Proper Inspection Program cont.

- If more than VT required
 VT then UT
- Minimize variation between inspectors (VT & UT)

T&B Destructive Testing Results and Validation of NDE

Figure 1.

A single indication was reported by UT. It was characterized as 2.0"L x 0.12"D. The section containing the defect was sent for metallurgical analysis.

T&B Destructive Testing Results and Validation of NDE cont.

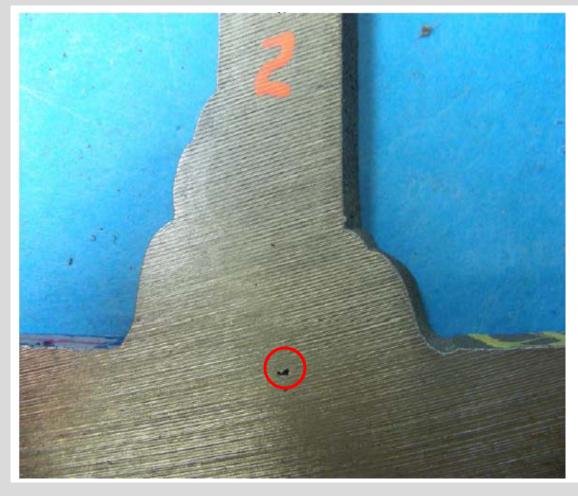


Figure 2. Examination of the cut slices revealed a defect.

T&B Destructive Testing Results and Validation of NDE cont.

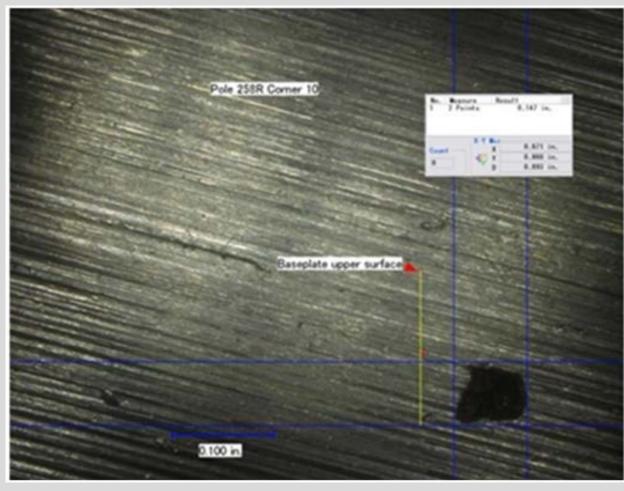
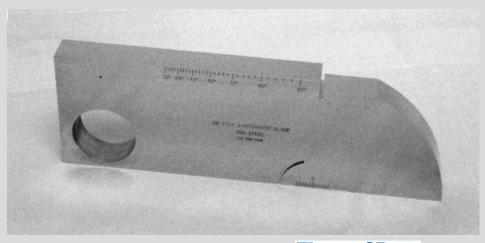


Figure 3.

Under 20X Magnification, the indication exhibited a small slag defect in the center of the weld at the base of the weldment. Actual flaw was less than 0.5"L X 0.1" D.

Results

- Indication rejectable by UT (AWS D1.1)
- Major reduction in size and geometry reported (UT 2.0"L x 0.12"D vs. Actual 0.5"L x 0.1"D)
- No effect on structural integrity of pole



T&B Enhanced Method

- Calibrate to IIW Block
 - 0.060 Side Drilled Hole to 80% FSH
 - Add 7db
 - Previously add 6db
 - Evaluate at this level

AWS D1.1 Method

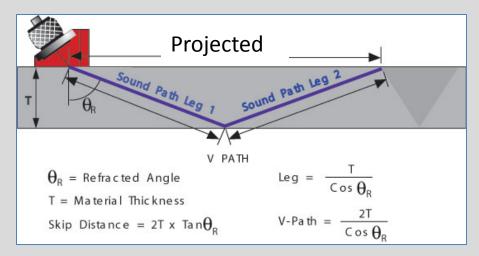
- Calibrate to IIW Block
 - 0.060 Side Drilled Hole
 between 50% to 75% FSH
 - Evaluate at 5-7db's

T&B Enhanced Method

- Evaluate from Scan Level
 - 80% FSH for 0.060 Hole plus
 7db
- 80% FSH Reject Regardless of Length
- 40% <80% FSH Reject after 1 inch of Length
- 20% <40% FSH Reject after 2 inches of length

AWS D1.1 Method

- Indication level (a) –
 Reference Level (b) –
 Attenuation Factor (c) =
 Indication Rating
- Compare Rating to Table 6.2
 - Determine Acceptance



T&B Enhanced Method

- Add 2db per inch after 2 Inch of Sound Path
 - Was "Add 2db per inch after 5 Inch of Sound Path"
 - Added "Skip Charts" to Standard for easy reference.

AWS D1.1 Method

• Calculated using Sound Path

T&B Enhanced Method

- Length Evaluation
 - Measured from Center of Transducer
- From Max Indication:
 - Scan Left and Right until indication drops below 10%

AWS D1.1 Method

- Length Evaluation
 - Measured from Center of Transducer
- From Max Indication:
 - Scan Left and Right until indication drops by 50% (6db)
 - This could still be 37.5% FSH
 - This would not be less than 25% FSH

T&B Advantage

- Meets
 - AWS Requirements
- Exceeds
 - More Critical on Longer Indications
 - Allows Evaluations after 2nd
 Leg
 - Allows Evaluation with Both a 70° and 45° Transducer

D1.1 Disadvantage

- No Acceptance Criteria for Material Under 5/16 inch
- No Criteria for Coated Material
 - Galvanized
- Evaluation in the 1st and 2nd Legs Only
 - On thinner material the 2nd
 Leg may not be out from under the transducer

Considerations for a New Standard

API 2X

- Off-Shore Structures
- Same idea as Annex S
- DAC curve; includes Coatings
- Recognize
 - FEA/Fracture Mechanics
 - Certain flaws better left

D1.8 Seismic Supplement

- Designed for strain
- Adequate strength
- Certain defects more critical
- Repairs may result in more harm than good (Example: Figure 1-3)

Conclusions

- The long-term approach for the industry is to work within our industry committees to collectively develop, as AWS D1.1 recommends, a standard suitable specifically for tubular steel transmission structures.
- Refer to Paper, "Baseplate and Flange Weld Inspection of Tubular Steel Transmission Structures"

