Welding and PWHT of P91 Steels

7-8 March , 2013

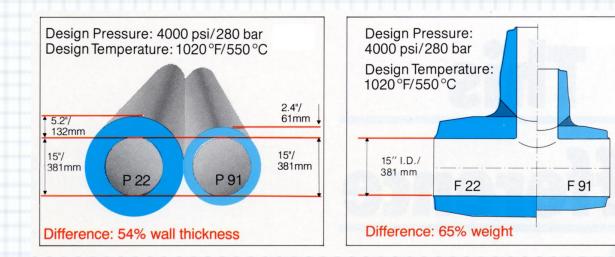
William F. Newell, Jr., PE, PEng, IWE

EUROWELD, Ltd. 255 Rolling Hill Road Mooresville, NC 28117 USA

Nowhere Near A Weld !

Items in Common ?

- P91
- Less than 2 years of service
- Require Weld Repair
 - Permanent (?)
 - Temporary

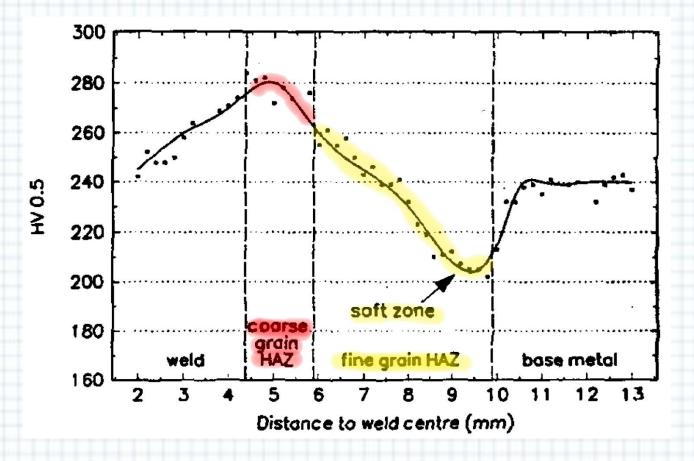

Creep Strength-Enhanced Ferritic Steels (CSEF)

CSEF's are a family of ferritic steels whose creep stength is enhanced by the creation of a precise condition of microstructure, specifically martensite or bainite, which is stabilized during tempering by controlled precipitation of temper-resistant carbides, carbo-nitrides, or other stable phases.

> ... i.e., unlike other CrMo's, <u>microstructure</u> rules!

Why P(T)91?

- Better Thermal Conductivity
- Lower Coefficient of Linear Expansion
- Strength !


P(T)91 is...

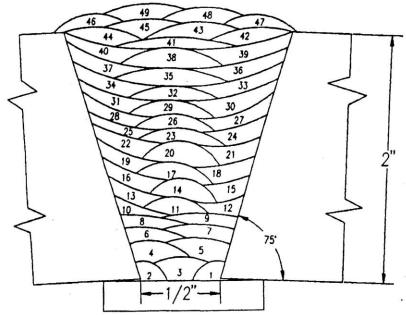
<u>NOT</u> just another CrMo !

Challenges

- Welding
- Design
- Heat Treatment
- Lowest Bidder

P91 HAZ is Different !

Welding: P(T)22 v. P(T)91


	T/P 22	T/P 91			
Preheat	Always ?	Always !			
PWHT	Sometimes	Always !			
N & T (after cold work or forming)	Sometimes	Always !			
CMTR	Rarely	Always !			
Toughness	Rarely (Power Industry)	Not Req'd, but			
Post Bake	Rarely	Optional (except none for GTAW ?)			
Cool to <100C	No	Yes!(?)			
Bead Sequence	Rarely	Always !			
Inert Gas Purge	No	Always ! (?)			

Welding is the easy part !

1	Spec	ifications	S	Size		Heat	t/Lot No.			Manufac	turer					Hai	rdness
Base Metal	SA 38	7. Grade9	11	2	9. 		R9332-2A	Lu	kens					Bas	Metal		N/A
Weld Metal	EB9			2.4m	n		V411/3 Euroweld				Metol		N/A				
Flux	WP 38	10					238	Bo	vorio Sch	weisstech	nik				HAZ		N/A
Process		T	SAW		Т			Pa	ameters			• • • • • •		Side	Bends	N/A	N/A
Preheat/Inte PWHT	erpass		50°F/600		Amps: WFS:	400 100	Volts: 29 Flux Burg		avel: 15ip Wi	m Ku re Extensi	1/in: 47.04 ion: 1"	f .				aphic R	
Specimen	Ultim	nate, ksi	Y	'ield, ksi		Elongo	tion, In2"	,%		Failure L	ocation				-A-5.1		TM-E14
TÎ	1	00.9		84.2			1.5			Weld M	letol			Test:	Accepted		
C	Mn	P	S	Si	Ni	Cr	Mo	V	Nb	Ti	Co	Cu	A	As	Sn	N	0
B.M09	.44	.012	.002	.35	.17	8.66	.94	.231	.087	NA	NA	,13	.036	NA	NA	.055	NA
Wire 0.10	.56	.002	.002	.27	.69	9.02	1.01	.21	.06	<.004	NA	.01	<.005	<80ppm	<.003	.036	<50ppm
W.M. 0.078	0.39	0.005	0.003	0.58	0.70	8.39	0.97	0.20	0.037	0.001	0.003	0.04	0.006	<0.001	0.004	0.042	0,055
						1.51								Import	Test D	oto	

49 Beads !



72	Impact Test Data					
Location (1/4t)	Foot-Lbs.					
	Specimen	Average 50.3				
Base Metal 04°C/40°F	44,53,54					
Weld Metal ©24°C/75°F	Cooled to RT then Pt 46,53,52,46,54,45	VHT 1400±25 49.3				
	Extended Preheat 500°F then PWHT 1400°± 25					
	46,45,40,41,37,49	43				
HAZ	N/A					

SPECIALTY WELDING & MACHINING INC.

	9304 BIRCHV	ODD PIKE,	HARRIS	ON TN 3	7341-9381
		3) 344-487			
	THIS DRAINING IS THE	SWIN ALL RIG	TO BE DIST	REWIED WITH TO	E AUTHORIZATION
		ON TEST			Dr SAW
_	DATE: Novembe DRAWN BY: 1.		FILE N	AME: EUS	CRSAW
-	APPROVED BY: \$.W. Kalu	SCALE	NONE	
-		ANGLI	SX	DRAWING 99030	No.: RE
±	.100 ±±	- ± 1/	2	SHEET	1 OF 1

Fit-up !

Purging the root is NOT an option !

-99.997% Ar (Welding Grade ?)

-N, satisfactory, but...

GMAW & B9

NOT Recommended !

To achieve high temperature creep properties, deoxidizers (Si, Mn, Zr, etc.) are intentionally kept low in the base metal and weld metal, which prevent proper wetting action and tie-in of the molten weld puddle.

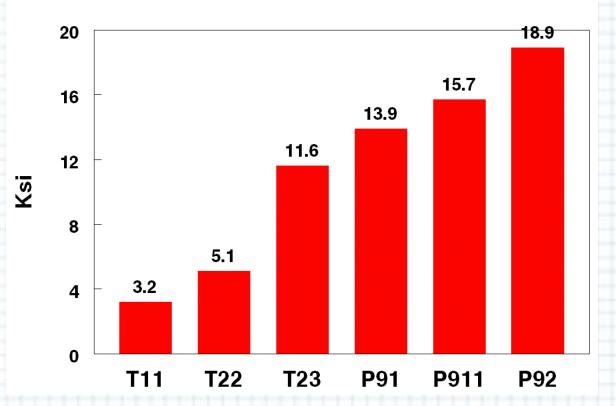
Using 5/32" GTAW Wire Doesn't Help !

Design

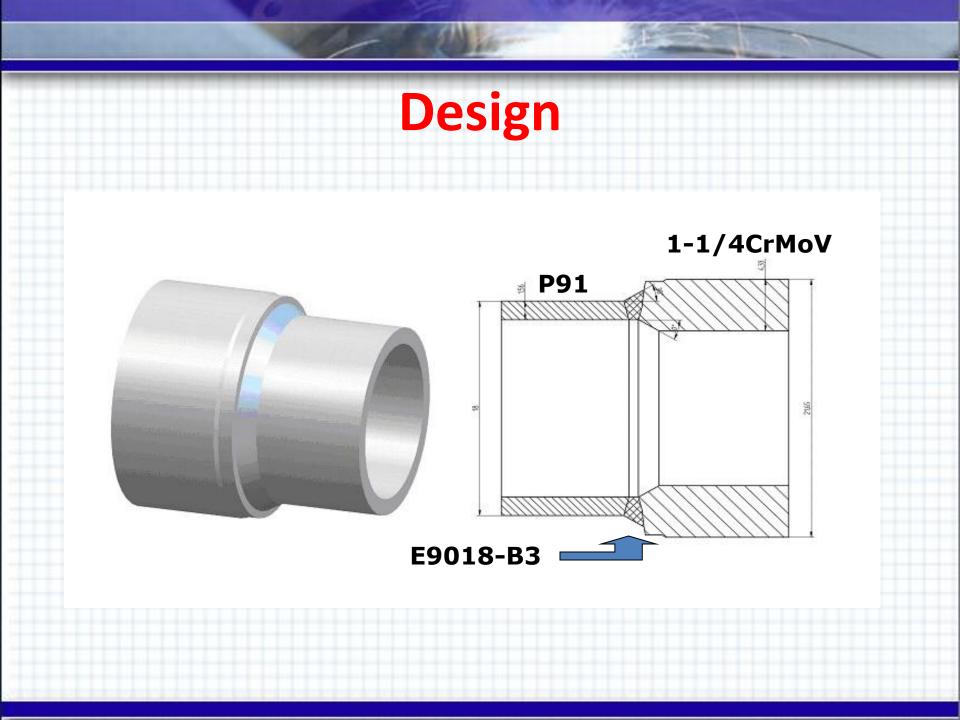
- Problems in less than 1000 hours!
 Dissimilar Welds & Transitions
- Problems in less than 5,000 hours!
 - Weld Geometry
 - Process Selection
 - ... Use of P(T)91 where it isn't needed ????

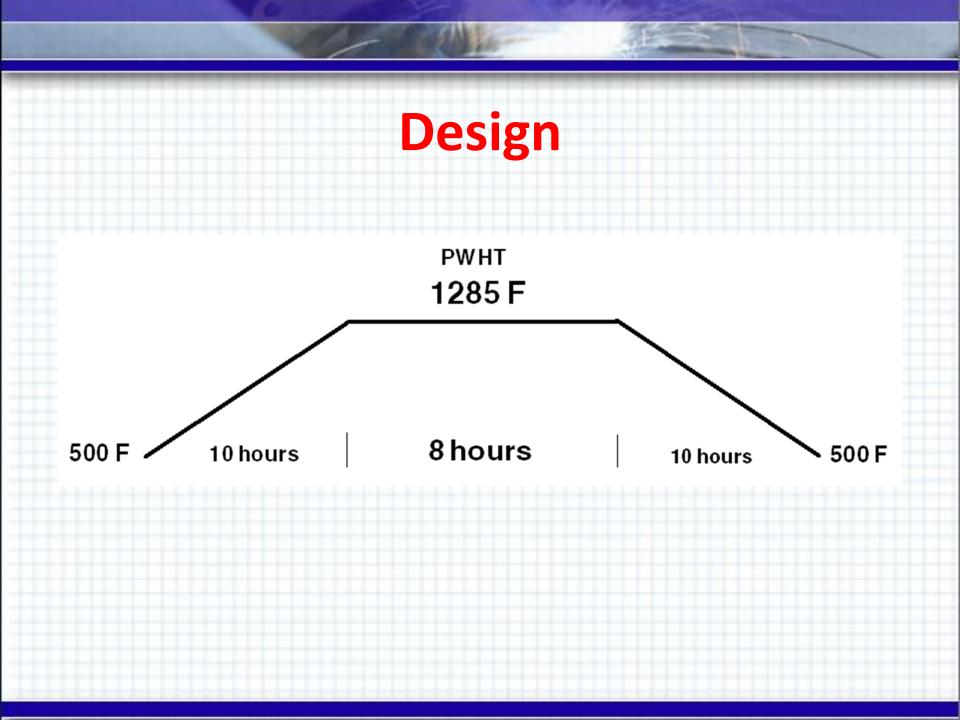
Design

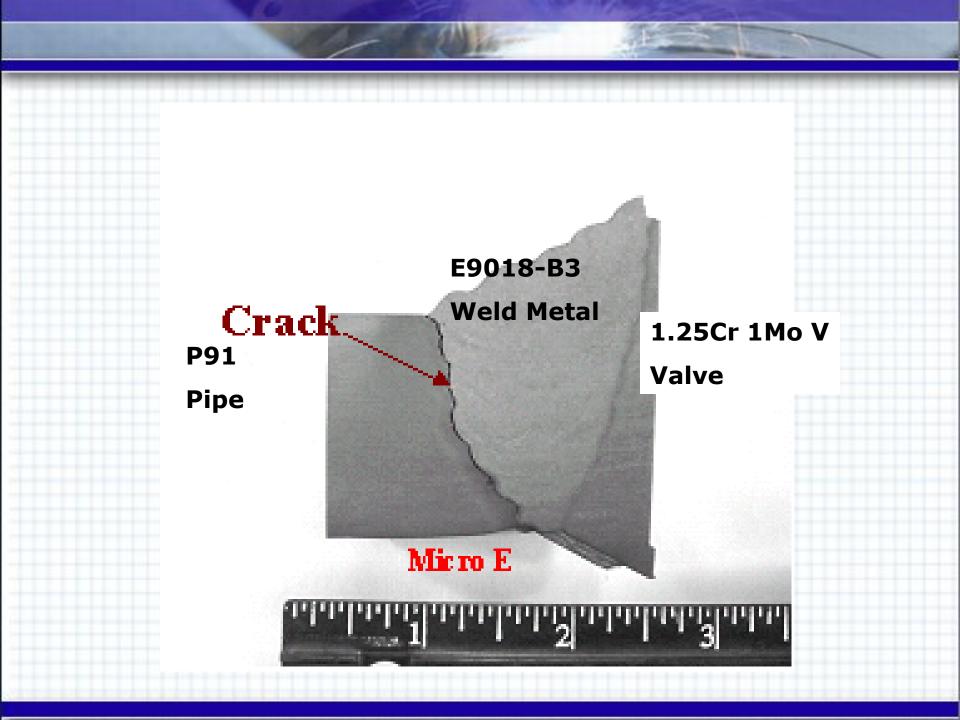
- In many cases, P(T)91 does <u>NOT</u> relax during operation...
 - At 1050F, Very Conservative, if thicknesses were not designed too close to the allowables....
 - Major consideration for dissimilar weldments
 - P(T)91 to P(T)22; or worse, to P(T)11 or CS!

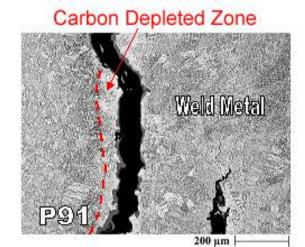

Design

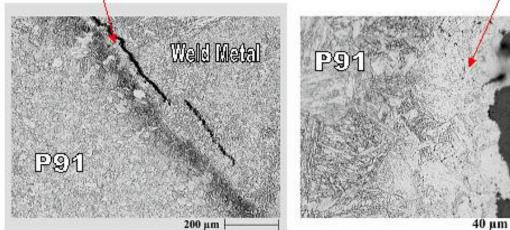
- Why have some of the early installations given great service?
 - The designers, fabricators & installers followed <u>ALL</u> the rules.
 - Operate with conservative design margins (thickness) [AEP & DPL]
 - Operate at ~ 1050F, or lower
 - "Low Bidders" not involved yet


Caution: Dissimilar Welds !


Creep Strength


100,000 Hrs. at 1112°F


But... Strength Difference isn't the only issue!



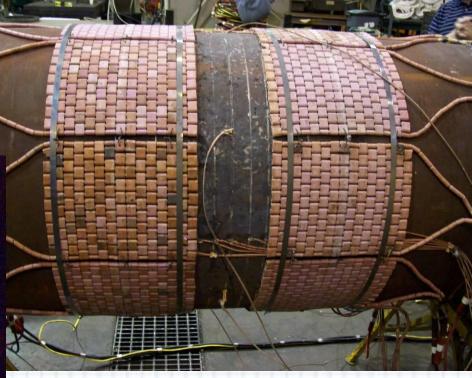
Design & PWHT

Carbon Depleted Zone

Preheat & PWHT

- Expect it !
- Plan on it !
- Get a quality vendor !
- Do it !
- No Exceptions !!!!!!!

Traditional Preheat


NOT Acceptable for P91 !

Preheat/Interpass Temps

- Preheat is somewhat forgiving...
 - ≥ 400F Usually Adequate (less for GTAW)
- Preheat maintenance is NOT forgiving !
- Localized heating with oxy-fuel torches is difficult to control & NOT recommended
- Interpass is usually affected by mass

Preheat - Example

Notice Anything?

Post Baking Prior to PWHT ?

• Practices ...

- Preheat Temperature (~400F) up to 600F
- 15 min. to 4 hrs.
- However, If...
 - Low Hydrogen Welding Consumables
 - Proper Preheat
 - Proper Cleanliness
- Post baking can be optional...but a good idea....

Lower to Room Temp?

- Conventional Metallurgical Wisdom:
 - Cool completed weld (< 200F) prior to PWHT
 - Permit/force complete transformation to martensite
 - Fact: It may never be 100%
- What if I don't?
 - May increase creep strength...
 - But, may lose some service life …

PWHT

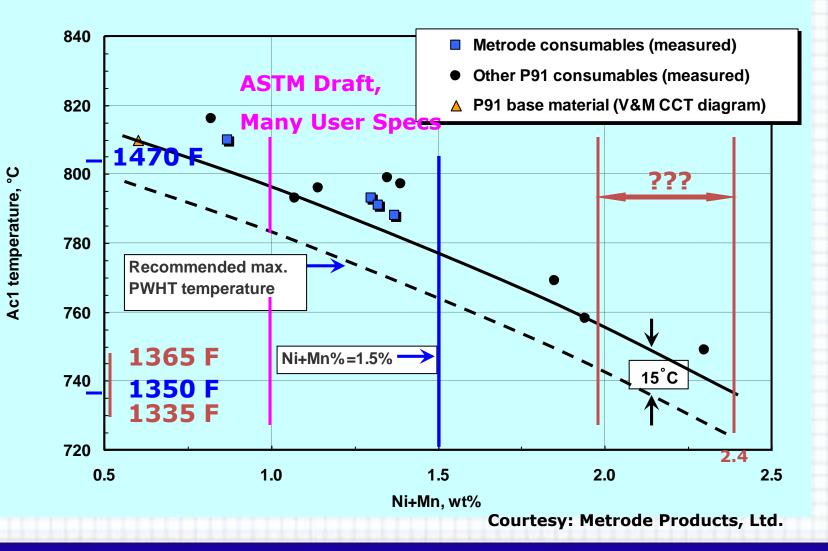
- Base metal isn't the problem
 It's the weld metal!
- Untempered, As-Welded "B9" Welds
 - Up to 210 ksi ultimate strength
 - -~ 50 Rockwell C !
 - Resembles a tool steel
 - May be prone to Stress Corrosion Cracking prior to PWHT

Delay or Omission of PWHT

- Intergranular stress corrosion (IGSCC) possible if exposed to moisture or dampness
- Transgranular stress corrosion (TGSCC) possible if exposed to sulfur species contaminants

PWHT

Temp range limited/affected by Nickel + Manganese content of weld metal.


- Ni + Mn lower the lower critical transformation temperature
- This issue addressed in ASME I, PW-39 & B31.1, Table 132.
- You NEED Actual Composition of Weld Metal; "Typical Test Certs" are <u>Unacceptable!</u>

–Narrow range: 1350 – 1425 F, if you don't know the Ni+Mn %

Ni+Mn Weld Metal Current BPV I & B31.1 Rules

- Don't know? 1350 to 1425F
- <1.5 % but > 1.0%, 1350 to 1450F
- < 1.0%, 1350 to 1470F
- May use 1325F min. if < 0.5" thick

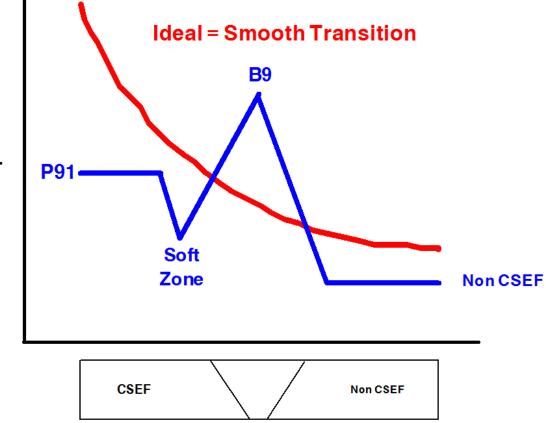
P91 weld metal Ac1 temperature vs Ni+Mn - P92 is about 15 deg C higher

New Issue !

- Many foreign fabricators used weld metal with high Ni+Mn (1.8-2.4%)
- Performing PWHT at "North American" temperature levels on field welds or repairs may induce temperatures on adjacent shop welds above their Ac1.
- PMI of near shop welds advisable.

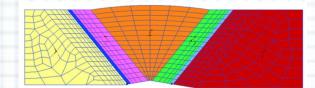
So... new rules in ASME IIA; 1.0 Max !

New Issue – Hi vs. Low Ni



Hi vs. Low PWHT Temperature Practice

PWHT


- Dissimilar Welds Challenging
 - P(T)91 to P(T)22, 11, CS, or SS
 - Must temper the P(T)91 HAZ but not sacrifice the other material
 - Difficult where B9 Weld Metal is Used

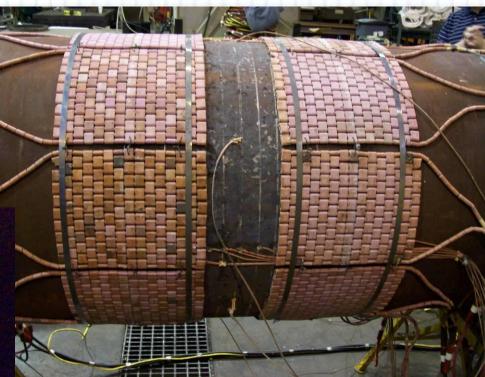
Ideally...

Properties

PWHT Temps (B31.1)

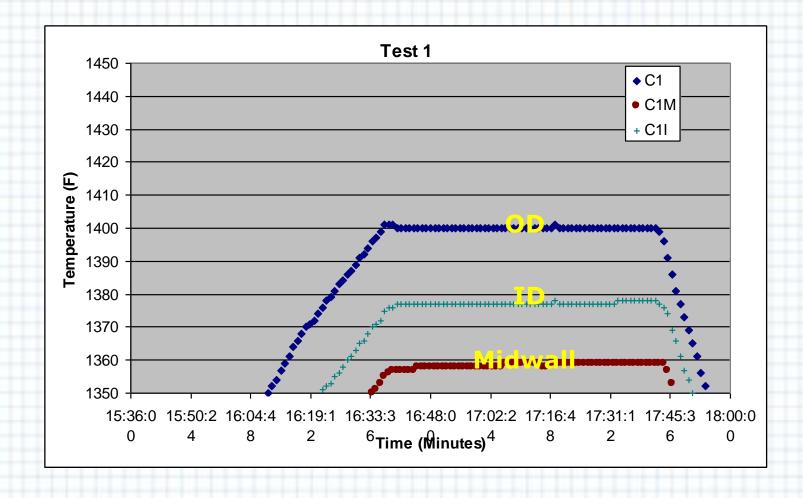
...the other issue.....

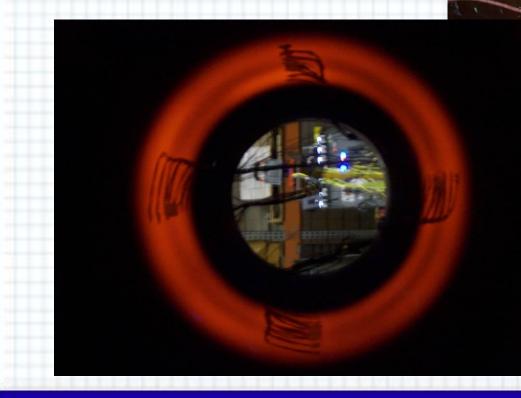
ASME	PWHT Temp, F Ranges							Ac1, F
P-No.								
8								[350]
1	<mark>1100</mark> ·	- <mark>1200</mark>						1340
4			<mark>1200</mark>	<mark>-1300</mark>				1430
5 A&B					<mark>1300 ·</mark>	<mark>–1400</mark>		1480
15E						1350	<mark>-1425</mark>	1475


PWHT

Overtempering

- Heating below the AC1, but for extended time
- Will not cause Type IV Failure
- Not an issue for normal fabrication
- Intercritical Heating (Between Ac1 & Ac3)
 - Promotes Type IV Failures
 - Can Degrade P(T)91 to P(T)9
 - Replace material or N&T ENTIRE Component
- <u>Water flowing</u> in component during PWHT not advisable ...


Preheat ?

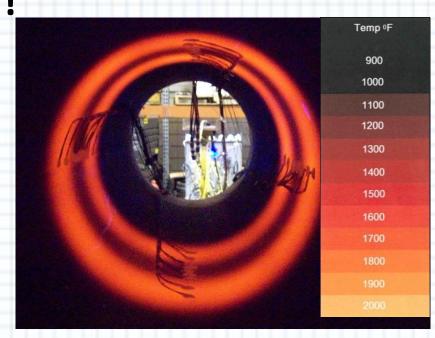


NOT PWHT !

Result of Typical PWHT

Proper PWHT




PWHT Recommendation

- American Welding Society D10.10, *Recommended Practices for Local Heating of Welds in Piping and Tubing ... FYI ...*
- ASME SC I & B31.1 do NOT provide information or criteria to assure a proper PWHT

Soft Spots....

- Why do we sometimes observe soft spots in the base metal 6-8" away from the weld?
- Perhaps, now we know !

Prompted New Rules...

• Scott Bowes' presentation!

New Rules, ASME IIA

- Minimum hardness criteria are being discussed for all P91 base metal product forms
 - Maximum hardness limits exist
 - New Proposal: 190 HBW min.
- Documentation of Repairs for Castings
- 1.0 Ni + Mn Max

Upcoming Code Changes (AWS)

- CrMo Filler Metal Specifications
 - -A/SFA5.5, A/SFA5.23 & A/SFA5.28
 - B9 becomes B91 or B92
 - T23 becomes B23
 - T24 becomes B24

ASME IX; P-Number 15

- 15A- OPEN
- 15B- OPEN
- 15C- 2¼ Cr (up to 3%)
- 15D- OPEN
- 15E- 9% Cr [P91 & P92]
- 15F-12% Cr

Conclusions

- Evaluate the Design
- PWHT is Critical. Not an Option!
 - Require "CMTR" or 3.1 (EN10204)
 - Ni + Mn of Weld Metal Matters for PWHT!
- Follow the rules
 - Beware of the Low Bidder
 - You CANNOT cut corners

Conclusions, cont.

Caution: Dissimilar Connections

PWHT is <u>Key</u> to Success

Given and a constant of a con

P(T)91 is <u>NOT</u> just another CrMo !

Questions?