WestProPlus: A Stochastic Spreadsheet Program for the Management of All-Aged Douglas-fir/Western Hemlock Forests in the Pacific Northwest

Jingjing Liang, Joseph Buongiorno, and Robert A. Monserud

Authors

Jingjing Liang is a Research Associate and Joseph Buongiorno is the Class of 1933 Bascom Professor and John N. McGovern WARF Professor, Department of Forest Ecology and Management, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706; Robert A. Monserud is a research forester, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 620 SW Main St., Suite 400, Portland, OR 97205.

Abstract

Liang, Jingjing; Buongiorno, Joseph; Monserud, Robert A. 2006. WestProPlus: a spreadsheet program for the management of all-aged Douglas-fir/western hemlock forests in the Pacific Northwest.

WestProPlus is an add-in program developed to work with Microsoft Excel® to simulate the growth and management of all-aged Douglas-fir/western hemlock stands in Oregon and Washington. Its built-in growth model was calibrated from 2,706 permanent plots in the Douglas-fir/western hemlock forest type in Oregon and Washington. Stands are described by the number of trees per acre in each of 19 2-inch diameter classes in four species groups: Douglas-fir, other shade-intolerant species, western hemlock, and other shade-tolerant species.

WestProPlus allows managers to predict stand development by year and for many decades from a specific initial state. The simulations are stochastic, based on bootstrapping of the disturbances observed on the permanent plots between inventories. Users can choose cutting regimes by specifying the interval between harvests (cutting cycle) and a target distribution of trees remaining after harvest. A target distribution can be a reverse-J-shaped distribution or any other desired distribution. Diameter-limit cuts can also be simulated. Tabulated and graphic results show diameter distributions, basal area, volumes by log grade, income, net present value, and indices of stand diversity by species and size.

This manual documents the program installation and activation, provides suggestions for working with Excel®, and gives background information on WestProPlus's models. It offers a comprehensive tutorial in the form of two practical examples that explain how to start the program, enter simulation data, execute a simulation, compare simulations, and plot summary statistics.

Keywords: WestProPlus, simulation, growth model, Douglas-fir, western hemlock, management, economics, ecology, diversity, wood quality, risk.

Contents

1. Introduction	1
What Is WestProPlus?	1
Why Simulate This Type of Stand?	2
How Does WestProPlus Work?	3
What Is in This Manual?	3
2. Getting Started	4
System Requirements	4
Loading WestProPlus	4
Unloading WestProPlus	6
3. Using WestProPlus	6
WestProPlus Input	6
BDq Calculator	8
Storing Data and Retrieving Stored Data	9
Running Simulations	9
4. Example: Simulating BDq Management Regimes	10
Simulation Parameters	11
Running Simulations	13
Simulation Output	14
Comparison of BDq Selection Regimes	26
Troubleshooting WestProPlus	29
Acknowledgments	30
Metric Equivalents	31
Literature Cited	32
Appendix 1—WestProPlus Plot Data	36
Appendix 2—Growth-and-Yield Model	42
Appendix 3—Log Grade Equations	45
Appendix 4—Stochastic Stumpage Price and Interest Rate Models	
1) Assumes 0.012 ft3/Mbf.	
Appendix 5—Definition of Diversity of Tree Species and Size	
Glossary	

1. Introduction

The WestProPlus User's Manual is intended to help forest managers predict the effects of management, or lack thereof, on stand growth, productivity, income, wood quality, diversity of species, and diversity of tree size. The WestProPlus User's Manual documents background, instruction, and additional suggestions for using the WestProPlus program. The next section explains how to install WestProPlus on your computer and provides a description of the input data, as well as instructions for loading and saving these data, running simulations, and saving the results. Examples of applications in simulating management regimes are given. If you are new to WestProPlus, it will be useful to run these examples while reading the manual. We included answers to some common questions. Appendices cover the growth equations, volume equations, and log grade equations of WestProPlus, and the data used to calibrate these equations.

The WestProPlus software and all the sample spreadsheets can be downloaded online from http://www.forest.wisc.edu/facstaff/buongiorno/.

What Is WestProPlus?

WestProPlus is a computer program to predict the development of all-aged Douglas-fir/western hemlock forests in the Pacific Northwest. With this program, various management regimes can be considered, and their outcomes can be quickly predicted. WestProPlus is a successor of WestPro (Ralston et al. 2003). WestProPlus has the following features compared to WestPro:

- 1) Extensions of the database from 66 uneven-aged plots to 2,706 all-aged plots, covering most of the Douglas-fir/western hemlock type in Oregon and Washington (App. 1).
- 2) Expansion of species groups from two (softwoods, hardwoods) to four (Douglas-fir, other shade-intolerant, western hemlock, other shade-tolerant).

- 3) Calibration of an improved growth model, with particular attention to the effect of stand diversity on growth, mortality, and recruitment (Liang et al. 2005a).
- 4) Introduction of log grade equations to predict the effects of management on wood quality.
- 5) Recognition of risk and uncertainty in stand growth, timber prices, and interest rates.

Three other deterministic relatives of WestProPlus (CalPro, NorthPro, and SouthPro) already exist for California mixed conifer forests (Liang et al. 2004a), northern hardwoods in Wisconsin and Michigan (Liang et al. 2004b), and for loblolly pine in the Southern United States (Schulte et al. 1998), respectively. We have used our experience with these programs to further simplify the data input and the program output to increase WestProPlus' usefulness for practitioners.

Why Simulate This Type of Stand?

Douglas-fir/western hemlock (*Pseudotsuga menziesii/Tsuga heterophylla*) forests in the Pacific Northwest are very productive. They were harvested heavily during the late 1800s and early 1900s, at an unsustainable rate (Curtis and Carey 1996). Consequently, although they vary highly in composition and structure Douglas-fir/western hemlock forests are mostly in early seral stages (Barbour and Billings 1988).

Douglas-fir wood is valued for its superior mechanical properties, making it most useful in building and construction (Barbour and Kellogg 1990). Western hemlock is another important commercial species. It is shade tolerant yet fast growing, deer and elk browse it, and hemlock trees are a part of the esthetics of western forests (Burns and Honkala 1990).

Even-aged silviculture is prevalent in managed Douglas-fir forests. There has been little tendency to adopt uneven-aged (selection) management (Emmingham 1998) despite its attractive features (Hansen et al. 1991; Guldin 1996). This seems to be due to a lack of experience with unevenaged management, and scarcity of data regarding its effects compared to even-aged systems.

WestProPlus helps predict the development of Douglas-fir-western hemlock stands with various types of silviculture. Some of the examples in this manual suggest that effective uneven-aged management of Douglas-fir/western hemlock forests can be profitable while maintaining stands with high diversity of tree species and size.

How Does WestProPlus Work?

WestProPlus predictions are based on a stochastic version of a multispecies, site- and density-dependent matrix growth model (Liang et al. 2005a, App. 2), coupled with log grade model (App. 3), stochastic stumpage price and interest rate models (App. 4). To run WestProPlus, you specify an initial stand state, define a management policy by target stand state, and cutting cycle. The program predicts economic and ecological effects of the policy, with a sequence of random numbers to simulate stochastic shocks in stand growth, timber prices, and interest rates.

As you change policy, WestProPlus repeats the same sequence of random numbers to simulate stochastic stand growth, timber prices, and interest rates. Using the same string of random numbers facilitates comparison of management policies. A new string of random numbers may also be generated by quitting WestProPlus and loading it again (see section 2).

What Is in This Manual?

The next section explains how to install WestProPlus on your computer and provides a description of the input data, as well as instructions for loading and saving these data, running simulations, and saving the results. Examples of applications in simulating uneven-aged management regimes are given. We included answers to some common questions. Appendices cover the equations involved in WestProPlus, and the data used to calibrate these equations. The manual assumes that you are familiar with the basics of Microsoft Excel®. All the spreadsheets shown in this manual are screenshots from the Excel® 2003.

2. Getting Started

System Requirements

You need the following hardware and software to operate WestProPlus:

A computer (PC) with at least 128 megabytes of random access memory (RAM)

Microsoft® Windows® 98, 2000, Me, XP, or Windows NTTM 41

Microsoft® Excel® 97 or above

A free copy of the WestProPlus software downloaded from

http://www.forest.wisc.edu/facstaff/buongiorno/, or from the authors through

jbuongio@wisc.edu.

Loading WestProPlus

To install the program for the first time:

- 1. Insert the diskette containing **WestProPlus.xla** into your computer, or download it from the Web site to your local disk and go to step 3.
- 2. Select the **WestProPlus.xla** icon and copy it onto your hard disk. For your convenience, you may save it in a new folder named **WestProPlus**, e.g., C:\WestProPlus\WestProPlus.xla.
- 3. Open Microsoft® Excel® and START A NEW WORKBOOK.
- Under the Tools menu, select Add-ins. In the add-ins dialogue box, select Browse and choose
 WestProPlus.xla from its location on your hard disk. Click OK.
- 5. Return to the **Tools** menu. WestProPlus is now the last item in the menu. Select **WestProPlus** and click **OK** in the title box.

¹ The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.

6. The **WestProPlus** menu should now be in the Excel® menu bar.

Until you uninstall it, **WestProPlus** will be a permanent option in the **Tools** menu of Excel[®]. You can load the program by selecting **WestProPlus** in the **Tools** menu. This will add **WestProPlus** to the Excel[®] menu, and the input data worksheet (fig. 1) will appear.

M	licrosoft Excel - Book1																					_ & ×
	WESTPRO+ File Edit View	Ins	ert Fo	rmat <u>I</u>	ools [ata y	<u>V</u> indow	Help										Туре а	questio	n for hel	p 🔻	_ & ×
	□ □ □ □ □ □ × ×	1	® • •	0 0	+ C× -	- 0	Σ - Δ	Z	10a 4] 105	% - (2) .	Arial		19	10	В	Z U	=	憲 温	1.	
	A1 ▼ f ₈					1											1					
	А	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	T	U	٧.
1			1000				Inp	ut Da	ta				File cr	eated I	by Jing	jing Li	ang o	n 1/18	/2006			
2	Wes Wes	tPr	ophus.												25900	30. 30.						
3	Douglas-fir	uı	U																			
4	DBH class (in.)	4			10	12	14	16	18	20		24	26	28	30	32	34	36	38	40+		
5	Initial state (trees/ac)	7			?	?	?	?	?	?		?	?	?	?	?	?	?	?	?		
6	Target state (trees/ac)	7	1	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		
7	Other Shade-intolerant																					
8	DBH class (in.)	4			10	12	14	16	18	20	4 -0000	24	26	28	30	32	34	36	38	40+		
9	Initial state (trees/ac)	7	2.5		?	?	?	?	?	?		?	?	?	?	?	?	?	?	?		
10	Target state (trees/ac)	7	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		
11	Western hemlock																					
12	DBH class (in.)	4			10	12	14	16	18	20		24	26	28	30	32	34	36	38	40+		
13	Initial state (trees/ac)	7	3.		?	?	?	?	?	?	3	?	?	?	?	?	?	?	?	?		
	Target state (trees/ac)	7	2)	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		
100000	Other Shade-tolerant S	_																				
16	The state of the s	4	1 100	4	10	12	14	16	18	20		24	26	28	30	32	34	36	38	40+		
17	Initial state (trees/ac)	7	0) 0.0	1.00	?	?	?	?	?	?	9 5557	?	?	?	?	?	?	?	?	?		
	Target state (trees/ac)	7	? ?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		
19		170										_										
20		7																				
21	Length of cutting cycle		yr								_											
	Length of simulation		yr						-							-			-			
100000			\$/ac		- 20	00 000		202000	10.00			-	_	-		-				-	-	
24	Site Productivity			/yr (a r															_			
25	Site Index		the second second second	50 yea	rs of	age, a	numb	erbe	twee	n 30	and 99	J			_							
26 27	Interest Rate	Y	perc	ent									-						-	-	-	
	Later Brown Barry 14 a	-43.						-					-		-							
28	Initial Timber Prices (\$/1								_	rade	Defin							BDo	Calcu	lator		
29	Log Grade	1	VI 1000		4	5			1		Peele							-	79 P9 I	- F		
	Douglas-fir	7			?	?			2		#1 Sav								5 6			
31	Other Shade-intoleran	- ?			?	?			3		#2 Sav								2 3	mand teamed		
32	Western hemiock	7	7		?	?			4		#3 Sav											
33	Other Shade-tolerant	7	?	?	?	?			5		Other								-			
34																						
95	▶ ► Input Data (Sheet1 /	Sheet:	2 / She	et3 /								- 4										MÉ

Figure 1—Input data worksheet.

There are three sample workbooks at http://www.forest.wisc.edu/facstaff/buongiorno/ with the input data worksheets corresponding to the examples in section 4 of this paper. By copying the data from these worksheets into your input data worksheet you will be able to run these examples with WestProPlus.

Unloading WestProPlus

To finish working with WestProPlus, choose the command **Quit** under the **WestProPlus** menu. The **WestProPlus** menu will disappear, but the current worksheets will stay in the Excel® window until you close them.

To remove the **WestProPlus** menu and uninstall the program:

- 1. **Quit** WestProPlus.
- 2. Under the **Tools** menu, select **Add-ins**. Deselect **WestProPlus** to remove the title from the add-ins list.
- 3. Close the Excel® window.

3. Using WestProPlus

WestProPlus Input

The input data worksheet (fig.1) contains all the information needed by the program. Cells with question marks require numeric entries, except that initial timber prices are optional. WestProPlus converts numeric entries to one or two decimal places. Before running a simulation, WestProPlus checks all your entries and will prompt you to fix any improper input data.

In figure 1, the four rows labeled "**initial state**" contain the initial number of trees per acre in the stand (at time zero), by species groups and by 2-in diameter classes. WestProPlus recognizes four species groups: Douglas-fir, other shade-intolerant species, western hemlock, and other shade-tolerant species (App. 1, table 3).

The four rows labeled "target state" contain the number of trees per acre that should remain after harvest, by species group and diameter class. A target entry of zero instructs WestProPlus to harvest all trees in that category. When the number of trees in the stand exceeds the target value, the

harvest is the difference between the available trees and the target; otherwise the harvest is zero. You can avoid harvesting in any species group and size class by entering a very high target, e.g., 10,000. You can enter the initial and target states by hand or with the BDq calculator described below.

WestProPlus measures time in years. All simulations start at time zero and last for the "Length of the simulation." The "Year of first harvest" may be set at any nonnegative integer value. The "Length of cutting cycle", i.e., the interval between harvests, must be at least 1 year. To simulate stand growth without harvest, set the "Year of the first harvest" to a value greater than the "Length of the simulation."

The "**Re-entry cost**" represents cost of doing a harvest, in dollars per acre, independent of the volume harvested. The cost of timber sale preparation and administration would be part of a typical reentry cost.

The "Site Productivity", measured by mean annual increment, describes the wood-growing capacity of a site. It is defined as the increment in volume of a timber stand averaged over the period between age zero and the age at which mean annual increment reaches its maximum value (Hanson et al. 2002). If you do not enter any value for Site Productivity, WestProPlus assumes that the site productivity is 150 ft³/ac/yr, the average site productivity in the 2,706 permanent plots in Washington and Oregon used to calibrate the growth equations of WestProPlus. The site productivity should be between 10 to 300 ft³/ac/yr, the range of the data.

The "**Site Index**" was measured by the average total height of the dominant and codominant trees at 50 years of age (Hanson et al. 2002). WestProPlus uses site index to predict log grade. The site index should be between 30 and 99, the range of the data.

The "Interest Rate" represents the initial interest rate. Starting from this initial value, WestProPlus generates a sequence of yearly stochastic interest rates. These interest rates are used to calculate the net present value of each harvest, and the cumulative net present value.

The "Initial Timber Prices" are the initial stumpage prices by log grade and species group.

These entries are optional. If you leave these cells blank, WestProPlus will generate random initial prices. Starting from these initial values, WestProPlus generates a sequence of stochastic prices (App. 4).

BDq Calculator

A BDq distribution is a tree distribution, by diameter class, defined by a stand basal area (B), a maximum and minimum tree diameter (D), and a q-ratio (q), the ratio of the number of trees in a given diameter class to the number of trees in the next larger class. You can use the BDq calculator (Schulte et al. 1998) to define the target state or the initial state with a BDq distribution.

To use the BDq calculator, click on the **BDq calculator** icon in the input data worksheet. Use the arrow buttons to set the stand basal area (ft²/ac), the q-ratio, the minimum and the maximum diameters (in); click the **Calculate** button (fig. 2).

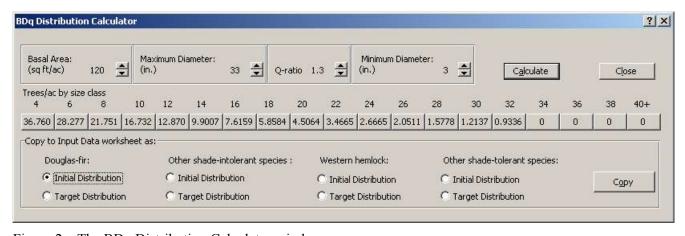


Figure 2—The BDq Distribution Calculator window.

The example in figure 2 shows the number of trees by diameter class that would give a basal area of 120 ft²/ac with trees of diameters from 3 to 33 inches and a q-ratio of 1.3 for the Douglas-fir trees in the initial stand state. You can copy the resulting stand distribution to the input data worksheet

as the initial distribution or as the target distribution for a species group by selecting the destination and clicking the **Copy** button on the BDq calculator (fig. 2).

Storing Data and Retrieving Stored Data

After entering data in the **Input Data** worksheet, you can save this worksheet for later use. You should save your work frequently to avoid losing data. It is advisable to save the work in a particular folder to facilitate locating the file in the future.

To run several simulations (e.g., to examine the effects of changing some of the parameters)
you may find it efficient to work with previously saved input data. To retrieve the data, choose the **File**→ **Open** command in Excel® to open your saved file or double click on the file icon.

Running Simulations

After completing the input data worksheet or retrieving a previously saved one, you are ready to run a simulation. To run WestProPlus, make sure that the WestProPlus menu is in the Excel® menu bar. If not, click **WestProPlus** under the **Tools** menu to activate WestProPlus. You can then run the simulation by choosing **Run** in the **WestProPlus** menu.

Each WestProPlus simulation generates the following worksheets and charts:

A **TreesPerAcre** worksheet: The number of trees by species and diameter class for each simulated year.

A Basal Area worksheet: The basal area by species and timber size, for each simulated year.

A **Volume** worksheet: The volume in stock by log grade, for each simulated year.

A **Products** worksheet: The physical output and the financial return from the harvests throughout the simulation.

A **Diversity** worksheet: Shannon's species diversity indices and size diversity indices for each year of the simulation.

A **Diversity** chart: A plot of Shannon's indices of species and size diversity over time.

A **Species BA** chart: A stacked area chart showing the development of stand basal area by species group over time.

A **Size BA** chart: A stacked area chart showing the development of stand basal area by timber size over time.

A **Volume** chart: A stacked area chart showing the development of volume in stock by log grade over time.

To compare various management regimes, save the output worksheets immediately after running a simulation. Otherwise WestProPlus will overwrite the previous results every time you run a new simulation.

All the data in the output worksheets are protected and you cannot change them. To see how results change with different input data, change the input data worksheet and rerun the simulation.

4. Example: Simulating BDq Management Regimes

In this example, we performed simulations of selection regimes based on the basal-area-diameter-q-ratio (BDq) principle. For a given initial state, we changed the q-ratio of the target stand state, and interpreted the results in terms of effects on economic returns, productivity, tree diversity, wood quality, and stand structure. We concentrate on the q-ratio because it is the main effect in most unevenaged management criteria (Liang et al. 2005b).

Simulation Parameters

The simulations were for 200 years, with cutting cycles of 10 years. The initial stand state was the average distribution of the 2,706 permanent plots used in calibrating the growth equations of WestProPlus (fig. 3). Composition by number of trees was 34% Douglas-fir, 30% other shade-intolerant species, 20% western hemlock, and 16% other shade-tolerant species. The average site productivity was 150 ft³/ac/yr and the average 50-year site index was 90 ft.. The first harvest started at year 1. The fixed cost of re-entry was set at \$254/ac, the estimated cost of preparing and administering timber sales in the state of Washington (Ralston et al. 2003). The initial interest rate was set at 3.8% per year, the yield of AAA bonds net of inflation, from 1970 to 2004 (U.S. Government Printing Office, 2005). The initial stumpage prices came from Oregon stumpage prices in 2005 (Log Lines 2005, table 8).

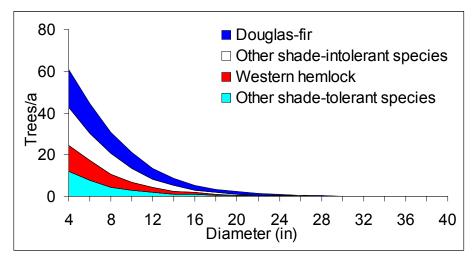


Figure 3—Initial stand state.

The three alternative target distributions are shown in figure 4. They all assumed a maximum diameter of 40 in. for all species. The basal area was kept the same in the three alternatives, 87 ft²/ac in total (Miller and Emmingham 2001), consisting of 30 ft²/ac of Douglas-fir, 26 ft²/ac of other shade-intolerant species, 17 ft²/ac of western hemlock, and 14 ft²/ac of other shade-tolerant species. The q-

ratio was set at 1.2, 1.4, or 1.8. Higher q values kept more trees in the smaller diameter classes relative to the large (fig. 4).

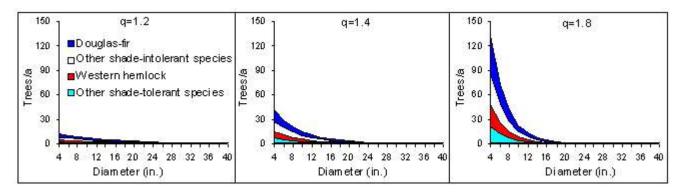


Figure 4—Target distribution of trees by species groups and diameter class for the BDq regime used here.

Figure 5 shows the BDq calculator set to produce the target state for Douglas-fir trees with basal area of 30 ft²/ac, maximum diameter of 40 in., and q-ratio of 1.2. Clicking on the **Calculate** button produces the number of trees by size class.

Basal A (sq ft/	2000	30 🚖	Max (in.)	dmum Di	ameter:	40+ 🕏	Q-r	atio 1.2	· 🛨	Minimui (in.)	n Diamete	er: 3	\$	C <u>a</u>	lculate	1	Cļo	se
rees/a 4	c by size 6	class 8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40+
1.0277	3.3564	2.7970	2.3308	1.9423	1.6186	1.3488	1.1240	0.9367	0.7805	0.6504	0.5420	0.4517	0.3764	0.3137	0.2614	0.2178	0.1815	0.1512
Copy to	o Input D	ata works	neet as			-	21.5	00. 7										
Do	ouglas-fir	r:		Othe	r shade-i	ntolerant	species	, ,	Western	hemlock:		Oth	er shade	-tolerant	species:			
C	Initial Di	istribution		C In	itial Distri	bution		C	Initial 0	Distributio	on	СІ	nitial Dist	ribution			Coj	nv 1
•	Target [Distribution		Ста	rget Dist	ribution		C	Target	Distribut	ion	От	arget Dis	stribution				

Figure 5—BDq Distribution Calculation dialog box.

To copy the distribution of Douglas-fir to the Input Data worksheet, select the option box corresponding to **Douglas-fir Target Distribution** and click on the **Copy** button. Figure 6 shows the Input Data worksheet for the above BDq selection regime with q=1.2.

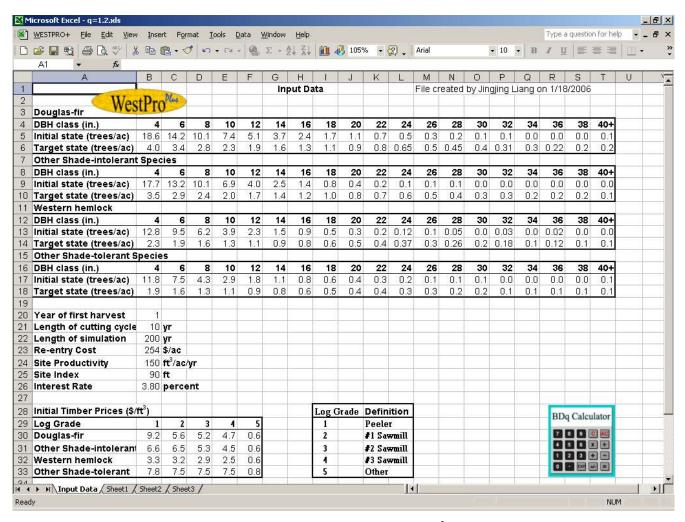


Figure 6—Input Data worksheet for the BDq selection regime with 87 ft²/ac residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

Running Simulations

Upon running a simulation, WestProPlus will replace any old tables and charts with new ones. For this reason, you should save the workbook after each simulation. To run a series of simulations, load the input data for the first management regime, run the simulation, save your outcome, and proceed to load and run the second management regime. You can then compare the data on economic return, various ecological criteria, and wood quality for different regimes. To that end, comparative charts and tables can be built with Excel® from the WestProPlus output worksheets.

Simulation Output

The simulation outcomes of the forgoing BDq selection are displayed in tables and charts. They are located in the same workbook as the Input Data worksheet. The following results are for the initial condition and BDq management specified by the input data in figure 6.

TreesPerAcre worksheet— This worksheet (fig. 7) shows the number of trees per acre, by species and diameter class, for each year of simulation. Scrolling to the right reveals the tree distribution for other species. The underlined numbers are the year of harvest, and the number of trees per acre after the harvest.

Basal Area Worksheet—This worksheet (fig. 8) shows, for each simulated year, the total stand basal area, the stand basal area by species group, and the stand basal area by timber size category: poles (trees from 5 to 11 inches DBH), small sawtimber (trees from 11 to 15 inches DBH), medium sawtimber (trees from 15 to 21 inches DBH), and large sawtimber (trees 21 inches DBH and larger). Underlined numbers show the year of harvest and the basal areas just after harvest, and the first row represents the average basal area.

Volume worksheet— This worksheet (fig. 9) shows the volume in stock by log grade. The log grade equations used by WestProPlus are described in appendix 3. The underlined numbers represent the year of harvest and the volume per acre just after the harvest, and the first row represents the average volume.

Products Worksheet—The upper part of the products worksheet (fig. 10) shows data for each harvest: basal area cut, volume harvested by log grade, gross income, predicted net present value (NPV) of the current harvest, the total (cumulative) NPV, and the initial stock value. The log grade equations, and the stochastic stumpage price model and interest rate model used by WestProPlus are described in appendix 3 and 4.

The lower part of the products worksheet shows the average annual cut and the average stock in terms of basal area and volume by log grade. It also displays the average species diversity and size diversity.

The results show that with this particular BDq selection and a 10-year cutting cycle, the average yield over 200 years would be 71.06 ft³/ac/yr, for a net present value of \$16378.33/ac. This is the value of the land and initial trees, under this management. It suggests that this regime would be economically efficient. Because the value of the initial trees was \$11959.13/ac, the present value of the return from land and initial trees would exceed the initial investment in trees.

Diversity Worksheet—The diversity worksheet (fig. 11) shows Shannon's indices of species group diversity and tree size diversity for each simulated year (see App. 5 for the definitions of Shannon's diversity). The underlined data show the year of harvest and the values of the diversity indices just after harvest. The boldfaced values represent the average diversity indices of all years.

Diversity Chart—The Diversity Chart (fig. 12) displays the evolution of Shannon's indices over time. The results show that the effect of stochasticity in forest growth is greater than the effect of harvests on the species and size diversity.

Species BA Chart—This chart (fig. 13) shows the development of basal area by species throughout the simulation period. The chart shows the sharp decrease of total basal area is due to the periodic harvests. It also suggests that in the long run this management would sustain all four species groups in the stand.

Timber Size BA Chart—This chart (fig. 14) shows the development of basal area by timber size throughout the simulation. It excludes the basal area of trees smaller than poles (less than 5 inches in diameter). The results suggest that all the four size groups would remain present in the stand for 200 years. The basal area of large sawtimber would tend to increase over time with this management.

Volume Chart—This chart (fig. 15) shows the development of volume in stock by log grade throughout the simulation period. The chart suggests that all log grades would continue to be present in the stand. The stock of peeler, and #1 Sawmill logs tended to increase slightly over time under this management.

ľ	WESTPRO+ File F	dit <u>V</u> iew	Insert Fo	ermat <u>I</u> ools	<u>D</u> ata	Window E	<u>l</u> elp						Type a q	uestion for hel	p 🔻 🕳
3		NEC X	B B	o -	C2 - Q	Σ - AL	ZI OU A	100%	? _ Ti	ms Rmn		10 - B	I U	三 章 章	III +
	A1 ▼		created by												
	A	В	C I	D	E	F	G	Н		J	K	L	М	N	0
1	File created by Jing	ing Liang	on 1/18/2006							-		5 111 6			
2	The state of the s														
3	Site productivity	150.0	ft3/ac/yr												
4	Site index	90.0	fi												
5	DBH (in.)	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.0	30.0
6	Target(trees/ac)	4.0	3.4	2.8	2.3	1.9	1.6	1.3	1.1	0.9	0.8	0.7	0.5	0.5	0.4
7	Douglas-fir														
8	Year		Trees/ac												
9	0	17.0	13.7	9.6	7.0	5.0	3.6	2.9	1.7	1.1	0.7	0.5	0.3	0.2	0.1
10	1	4.1	3.3	2.8	2.3	2.0	<u>1.6</u>	1.4	1.1	0.9	0.8	0.5	0.4	0.1	0.1
11	2	4.2	3.3	2.8	2.4	2.0	1.7	1.4	1.2	1.0	0.8	0.6	0.4	0.2	0.1
12	3	4.3	3.3	2.8	2.4	1.9	1.5	1.3	1.7	0.9	0.8	0.6	0.4	0.2	0.1
13	4	4.4	3.4	2.8	2.4	2.0	1.6	1.3	1.6	1.0	0.8	0.6	0.5	0.2	0.2
14	5	3.8	4.3	1.6	3.9	1.6	1.5	1.3	1.6	1.1	0.9	0.7	0.5	0.3	0.2
15	6	3.9	2.4	2.7	0.8	4.6	2.6	1.9	1.4	1.5	0.7	0.9	0.5	0.3	0.2
16	7	3.1	2.0	2.4	0.9	4.1	2.8	2.0	1.4	1.5	0.8	0.8	0.5	0.4	0.2
17	8	3.1	2.0	2.3	1.1	3.7	3.0	2.0	1.5	1.5	0.9	0.8	0.6	0.4	0.2
18	9	3.0	1.0	0.4	2.1	1.7	2.1	2.0	1.2	0.9	1.0	0.7	0.6	0.5	0.3
19	10	3.0	1.1	0.4	1.9	1.7	2.0	2.0	1.3	0.9	0.9	0.8	0.6	0.5	0.3
20	<u>11</u>	0.0	<u>5.7</u>	0.0	0.0	0.8	1.4	1.3	1.1	1.2	0.8	0.7	0.6	0.5	0.3
21	12	0.4	5.1	0.6	0.0	0.7	1.6	1.1	1.1	1.2	0.7	0.6	0.7	0.4	0.4
22	13	0.8	4.6	1.7	0.0	0.3	1.6	1.2	1.1	1.0	0.9	0.6	0.8	0.5	0.3
23	14	0.9	3.9	2.8	0.0	0.4	1.5	1.0	1.0	1.0	0.9	0.6	0.8	0.5	0.4
24	15	20.5	0.1	8.7	5.4	1.0	0.9	1.0	1.0	1.0	0.9	0.7	0.8	0.6	0.4
25	16	18.9	1.7	7.8	5.6	1.3	0.6	1.4	0.7	1.3	0.8	0.7	0.7	0.6	0.4
26	17	16.7	2.1	8.6	6.2	2.3	0.9	1.3	0.9	0.8	1.1	0.8	0.5	0.8	0.4
27	18	14.2	3.6	8.0	6.9	2.4	1.0	1.1	0.9	0.7	1.2	1.1	0.5	0.8	0.5
28	19	13.3	4.3	7.4	6.9	2.8	1.1	1.1	0.9	0.7	1.1	1.1	0.6	0.7	0.5
29 30	20	9.7	8.2	6.6	7.7	3.4	0.7	1.1	1.8	0.3	1.0	1.0	0.8	0.7	0.5
	<u>21</u>	<u>3.4</u>	3.0	2.6	2.3	1.9	0.8	1.0	1.0	0.3	0.9	0.6 0.5	0.5	0.5	0.4
31	22	3.3	2.9	4.4	1.4	2.7	1.4	0.0	1.5	0.1	0.4		0.6	0.4	0.4
32 33	23	11.2	4.2	3.7	1.5	2.4	1.4	0.3	1.1	0.4	0.5	0.4	0.6	0.4	0.4
33 34	24 25	13.1 12.3	6.6 6.9	4.0	2.5 2.2	1.4	1.9	0.0 1.3	1.1	0.6	0.5 0.2	0.3 0.8	0.5 0.4	0.4	0.4
34 35	25 26	19.2	6.5	4.1 3.9	2.2	1.7	0.4 0.5	1.3	1.1	0.2	0.2	0.8	0.4	0.4	0.3
35 36	26 27	19.2	1.3	0.0	2.1	2.6	0.0	0.3	1.1	1.2	0.2	0.7	0.5	0.4	0.3
36 37	28	12.8	2.2	0.0	2.5	2.6	0.0	0.3	1.3	1.2	0.1	0.6	0.5	0.4	0.4
3/	28	11.9	2.2	U.1	1.2	2.6	1.0	0.3	1.1 ts / 1 •	1.2	0.5	0.5	U.5	0.4	U.4

Figure 7—TreePerAcre worksheet for the BDq selection regime with $87~{\rm ft^2/ac}$ residual basal area, $40~{\rm in}$. maximum diameter, q=1.2, and ten years cutting cycle.

	100 100 100 100 100 100 100 100 100 100		/jew Insert Format]	The second second second	ndow <u>H</u> elp				Type a	question for help		6
)	<i>□</i> □ •	∌ □ ♥	X m m - 0 0	- C2 - @ E	- AL AL M. 13	.00% 🕶 👰 🚬 T	ms Rmn	→ 10 →	B / U	三 章 章	⊞ •	
	A1		File created by Jingjing						4)			
I	A	В	С	D	Е	F	G	Н	1	J	K	Ī
	File created	by Jingjing Lia	mg on 1/18/2006									
2			-									
3			Site productivity	150.0	ft3/ac/yr							
4			Site index	90.0	ft							
5				Other Shade-		Other Shade-		Small	Medium	Large		
6		Total	Douglas-fir	Intolerant	Western hemlock	tolerant	Pole	Timber	Timber	Timber		
7							D<11 in.	11≤D<15	15≤D<21	D≥21 in.		
8		В		ft ² /ac								
	Average	77.5	30.8	16.3	16.4	14.1	11.8	7.8	12.5	45.5		
10	Year											
11	0	90.9	36.3	23.7	15.9	15.0	36.2	19.9	18.8	16.0		
12	1	<u>51.3</u>	<u>20.3</u>	12.2	9.0	<u>9.8</u>	<u>9.4</u>	9.4	<u>15.5</u>	<u>16.8</u>		
13	2	53.1	21.4	12.6	9.3	9.9	9.5	9.6	16.4	17.6		
14	3	51.6	22.2	9.1	9.9	10.4	7.4	9.1	15.8	19.2		
15	4	54.6	23.3	10.3	10.3	10.8	9.4	8.3	16.5	20.5		
16	5	55.4	24.1	8.7	10.9	11.7	7.8	7.8	18.1	21.7		
17	6	58.2	25.0	8.9	12.2	12.1	9.0	7.4	18.7	23.2		
18	7	64.7	28.9	9.3	14.0	12.5	8.8	11.1	20.1	24.6		
19	8	66.1	29.5	9.3	14.5	12.8	8.6	11.2	20.0	26.4		
20	9	68.0	30.5	9.2	15.2	13.2	9.2	11.3	19.4	28.1		
21	10	64.3	25.4	9.4	15.8	13.6	9.3	8.8	17.5	28.7		
22	11	<u>55.0</u>	23.5	8.3	12.0	11.2	<u>5.1</u>	8.0	<u>14.3</u>	<u>27.6</u>		
23	12	55.0	22.8	8.5	12.0	11.6	4.8	6.5	14.6	29.1		
24	13	58.7	23.4	10.8	12.5	12.0	6.6	7.3	14.3	30.6		-
25 26	14 15	63.8 65.7	24.4 24.8	12.9 13.2	14.1 15.0	12.4 12.7	8.7 10.1	6.0 6.8	16.2 14.3	32.8 34.5		
26 27	15	70.2	24.8	13.2	15.0	12.7	10.1	6.3	14.3	34.5		
27 28	17	73.3	31.3	13.8	12.2	14.3	13.9	6.6	15.5	36.8		
20 29	18	75.3 75.3	33.5	13.9	13.1	14.3	15.2	7.6	14.3	38.1		
29 30	19	78.9	34.9	14.3	14.3	15.4	16.1	8.5	13.8	40.5		-
31	20	82.5	36.0	15.8	14.8	15.4	16.5	10.1	14.0	41.8		-
32	21	62.4	24.8	11.8	13.0	12.8	8.0	6.9	11.3	36.2		
33	22	63.7	25.3	12.0	13.2	13.1	7.5	7.0	11.3	37.9		
34	23	63.1	24.0	12.3	13.3	13.5	7.7	8.4	9.7	37.3		
35	24	65.5	25.6	11.4	14.2	14.3	7.7	7.7	11.3	38.8		-
36	25	67.7	26.0	12.4	14.6	14.7	10.3	7.2	10.8	39.2		-
37	26	69.0	26.2	12.7	14.9	15.1	10.4	6.2	11.5	40.9		-

Figure 8—Basal Area worksheet for the BDq selection regime with 87 ft 2 /ac residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

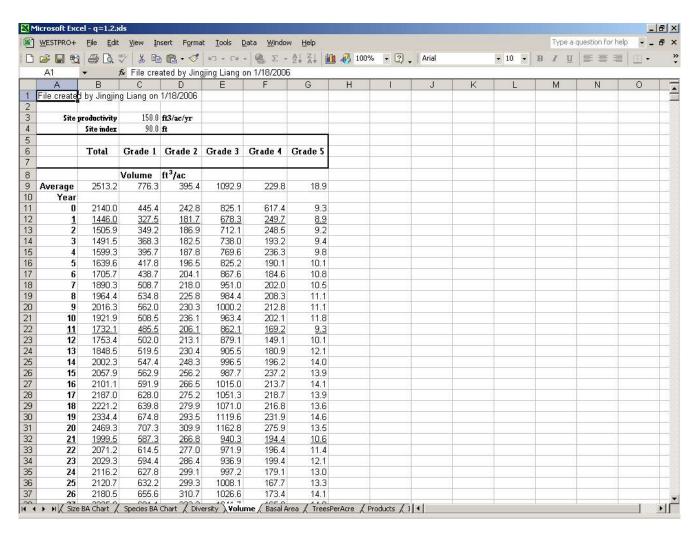


Figure 9—Volume worksheet for the BDq selection regime with 87 ft²/ac residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

WESTI	PRO+ File Edit <u>V</u> iew I	Insert Format	<u>T</u> ools <u>D</u> ata	<u>W</u> indow	<u>H</u> elp						Type a que	stion for help	_ B
		h A - 0	10 + 01 +	Q Σ - /	AT ZI 40	100%	· ?	Tms Rmn	Ţ	10 - B	I U		
A1	▼ f Periodi		-sexus ac-unit	(68)	14 214 25		100 Cart 104 =	pressona var.	881				2 1111 100
	A	В	С	D	E	F	G	H	1	J	K	L	М
1 Perio	dic Cut	1							File creat	ed by Jingji	ng Liang on	1/18/2006	
2 Year		1	11	21	31	41	51	61	71	81	91	101	111
3 Basal	l area (ft²/ac)	41.8	10.4	23.7	12.9	24.3	27.4	30.1	22.0	42.6	58.3	29.4	23.6
4 Grad	e 1 (ft³/ac)	181.4	84.7	161.0	177.5	330.3	312.0	185.0	327.5	398.4	499.5	405.7	346.3
Grad	e 2 (ft³/ac)	85.0	37.8	54.4	50.3	62.8	132.7	153.7	160.3	146.6	124.5	133.5	120.5
Grad	e 3 (ft³/ac)	136.3	77.1	216.8	126.7	233.6	246.7	223.2	277.9	361.7	360.0	303.3	206.2
Grad	e 4 (ft ³ /ac)	300.3	27.0	101.5	14.0	22.5	84.5	262.5	17.7	83.3	88.3	47.6	32.8
Grad	e 5 (ft³/ac)	0.6	2.8	2.5	3.7	4.0	7.8	3.2	7.3	6.3	4.2	3.3	4.4
Gros	s income (\$/ac)	8311.3	8096.6	8267.9	4621.0	6801.5	9275.8	11970.2	13942.5	14155.6	10072.8	9303.7	8786.4
	resent value (\$/ac)	7449.76	4332.10	1905.84	415.92	387.96	497.13	428.34	370.82	271.54	110.33	70.93	42.88
	NPV (\$/ac)	16378.33											
	l stock value (\$/ac)	11959,13											
3													
	age Annual Cut												
	l area		(ft ² /ac/yr)										
6 Grad	e 1		(ft ² /ac/yt)										
7 Grad	e 2		(ft ² /ac/yr)										
8 Grad	e 3	23.0	(ft ² /ac/yr)										
9 Grad	e 4	7.7	(ft ² /ac/yr)										
0 Grad	e 5	0.4	(ft2/ac/yr)										
1 Total	Volume	71.86	(ft2/ac/yr)										
2													
	age Stock												
4 Basal	l area		(ft ² /ac)										
5 Grad	e 1	776.3	(ft ² /ac)										
6 Grad	e 2	395.4	(ft ² /ac)										
7 Grad	e 3	1092.9	(ft ² /ac)										
8 Grad	e 4	229.8	(ft ² /ac)										
9 Grad	e 5		(ft ² /ac)										
	Volume		(ft ² /ac)										
	ies diversity		(Shannon's	index)									
	diversity		(Shannon's										
3													
	th of simulation	200	(yt)										
5			100 101										

Figure 10—Products worksheet for the BDq selection regime with 87 ft 2 /ac residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

		ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert									Type a que	stion for help	·	7 ×
	□ ■ • €	Bark Vale	· 0 10 - 02 - @	Σ - A	ZI M	100%	- 2 . 1	Tms Rmn	•	10 - B	I U	三 臺 温		- 2
	A1 ▼	f _×												
	A	В	С	D	Е	F	G	Н	1	J	K	L	M	
1	<u>l</u> F	ile created by Jingjing Li	ang on 1/18/2006											
2		00 00 00	0.00											
3														
4														
5		Shannon's	Shannon's											
6		Species	Size											_
7		Diversity	Diversity											
В	Average	1.32	2.86											
9	Year	4.22	2.02										+	4
0	0	1.32	2.62	-			_	_				-	+	-
1	<u>1</u> 2	<u>1.33</u> 1.33	2.75 2.74									1	-	-1
3	3	1.33	2.74											
4	4	1.31	2.75									1	-	H
5	5	1.30	2.75											#
6	6	1.30	2.77										_	Ħ
7	7	1.29	2.76									1	1	T
8	8	1.29	2.77											T
9	9	1.28	2.79											
20	10	1.32	2.79											
21	11	1.31	2.77											
2	12	1.31	2.76											
3	13	1.33	2.80											
4	14	1.34	2.81											
25	15	1.35	2.84											
6	16	1.30	2.84											
27	17	1.30	2.86										1	_
8	18	1.30	2.87											
9	19	1.30	2.87									1	1	
80	20	1.30	2.87										-	
31 32	<u>21</u>	1.33	2.86	-										
12	22 23	1.33 1.35	2.86 2.87										-	-
ان ا4	23	1.35	2.88				_					-	+	-
15	25	1.34	2.90				-					-	+	-
16	26	1.34	2.90											
37	27	1.34	2.91											
00		Chart / Species BA Chart	2.01			1							+	-11

Figure 11—Diversity worksheet for the BDq selection regime with 87 ft 2 /ac residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

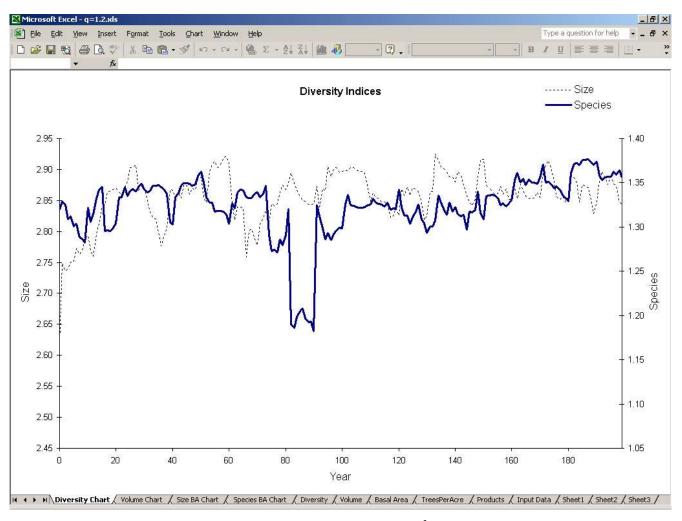


Figure 12—Diversity chart for the BDq selection regime with 87 $\rm ft^2/ac$ residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

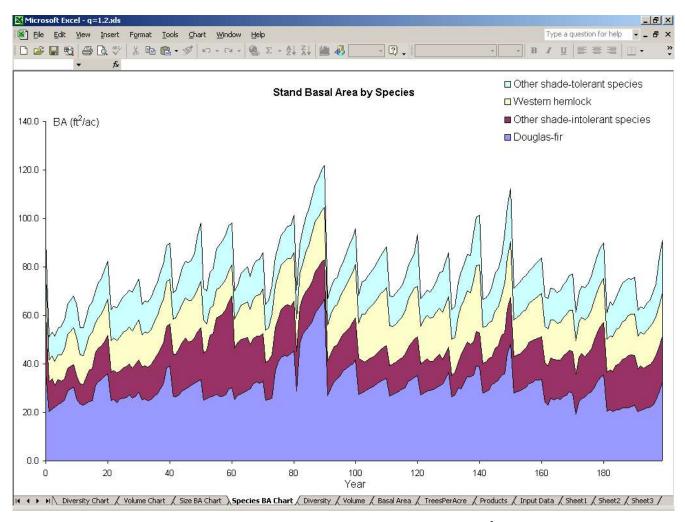


Figure 13—Species Basal Area chart for the BDq selection regime with 87 $\rm ft^2/ac$ residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

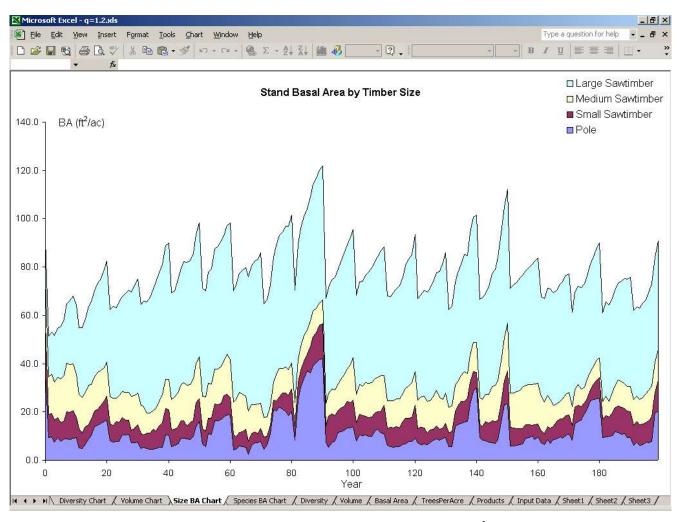


Figure 14—Timber Size BA chart for the BDq selection regime with 87 ft 2 /ac residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

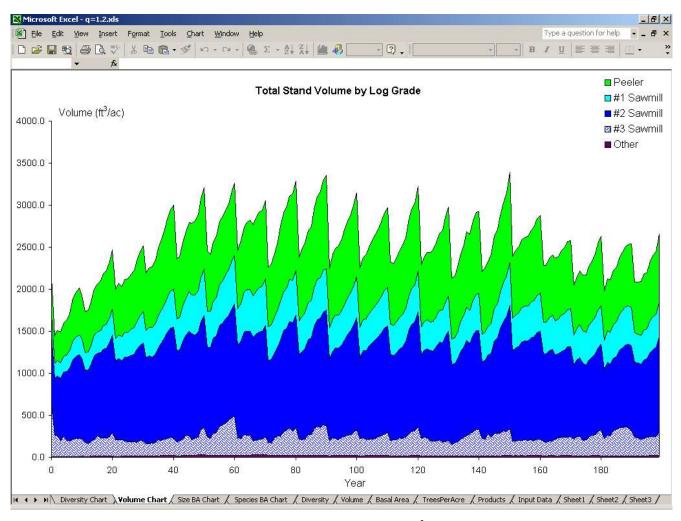


Figure 15—Volume chart for the BDq selection regime with 87 $\rm ft^2$ /ac residual basal area, 40 in. maximum diameter, q=1.2, and ten years cutting cycle.

Comparison of BDq Selection Regimes

As an example of how WestProPlus can be used to compare managements, follow the steps below to compare BDq selection regimes with a ten-year cutting cycle, 87 ft²/ac residual basal area, 40 in. maximum diameter, and a q-ratio of 1.2, 1.4, or 1.8:

- 1) Load WestProPlus, fill in, and save three input data worksheets corresponding to the three q-ratios,
- 2) Run a simulation for each input data worksheet and record the total net present value (\$/ac), productivity (ft³/ac/yr), average stand diversity of tree species and size, average basal area, and average percent of peeler logs from the products worksheet (fig. 10),
- 3) Keep the three input data worksheets active on the desktop and quit **WestProPlus** (see section 2),
- 4) Reload **WestProPlus** (see section 2) and go to step 2 to start a new replication.

WestProPlus did three simulations in step 2 for the three regimes with the same string of random numbers to compare the regimes efficiently, while steps 3 and 4 generate a new string of random numbers for another replication.

An example of ten replications is in table 1. There was a strong positive effect of q-ratio on the productivity (fig. 16), because more large trees were cut with higher q-ratios. As smaller trees were left on the stand, higher q-ratio leads to significantly lower percentage of peelers, and lower tree size diversity. Here, we have detected little or no effect of q-ratio on the other criteria with only ten replications. More replications with more initial states suggest that as the q-ratio increases, NPV increases, species diversity decreases, and basal area increases (Liang et al. 2005b).

Table 1—Simulation results of the three BDq selection regimes with different q-ratios

-	NI	PV (\$/ac)		Product	tivity (ft³/ac/y	yr)
Replication	q=1.2	q=1.4	q=1.8	q=1.2	q=1.4	q=1.8
1	14133	19443	32168	69.25	83.12	117.18
2	10375	12551	21600	80.55	99.61	141.09
3	9572	11049	18441	69.77	92.43	141.28
4	9349	11689	20079	71.76	89.23	129.14
5	9710	13045	21939	73.08	92.42	137.2
6	11153	14463	23201	76.51	90.17	128.73
7	20804	29217	50303	73.6	97.06	155.06
8	5917	7337	14764	66.73	85.69	132.58
9	12656	14459	22195	78.26	96.83	136.24
10	17656	20924	33917	71.53	86.81	127.95
	Speci	ies diversity		Siz	e diversity	
	q=1.2	q=1.4	q=1.8	q=1.2	q=1.4	q=1.8
1	1.33	1.32	1.33	2.85	2.79	2.43
2	1.33	1.34	1.32	2.85	2.78	2.42
3	1.33	1.34	1.34	2.85	2.77	2.39
4	1.32	1.32	1.32	2.85	2.78	2.42
5	1.32	1.32	1.3	2.86	2.78	2.4
6	1.31	1.33	1.32	2.86	2.79	2.42
7	1.32	1.32	1.31	2.86	2.77	2.39
8	1.32	1.34	1.33	2.85	2.79	2.41
9	1.34	1.35	1.35	2.86	2.78	2.42
10	1.33	1.33	1.33	2.85	2.78	2.4
	Percen	tage of peeler	<u>•</u>	Average l	oasal area (ft	² /ac)
	q=1.2	q=1.4	q=1.8	q=1.2	q=1.4	q=1.8
1	0.29	0.23	0.17	75.8	79.2	74
2 3	0.3	0.22	0.17	79.6	88.5	86
	0.3	0.22	0.16	74.4	86.5	85.4
4	0.31	0.22	0.16	74.3	83.8	79.2
5	0.29	0.22	0.16	77.9	86.2	82.9
6	0.32	0.23	0.16	73.4	81.8	79.4
7	0.29	0.22	0.16	76.5	88.7	91.5
8	0.31	0.22	0.17	73.9	83.4	84.5
9	0.29	0.22	0.16	79.6	87.1	81.3
10	0.3	0.22	0.16	74	81.7	79.2
Note: Except for	or NPV, all data	a are averages	over 200 years	· .		_

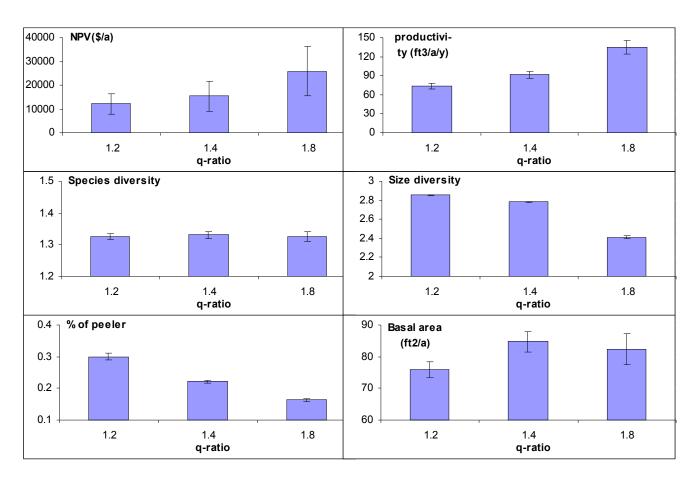


Figure 16—Mean and standard error of the management criteria over 10 replications for different q-ratios, other things being held constant.

Troubleshooting WestProPlus

Why can't I open WestProPlus?

First, make sure you have the latest version of WestProPlus(2005). Check our website:

http://www.forest.wisc.edu/facstaff/buongiorno/ for updates.

Set your Excel[®] macro security level to **Medium**. You can change the level at **Tools**→ **Macro**→ **Security**. After setting the macro security level to **Medium**, each time you load WestProPlus, a security warning message window will pop up, and you should select **Enable Macros** (fig. 17).

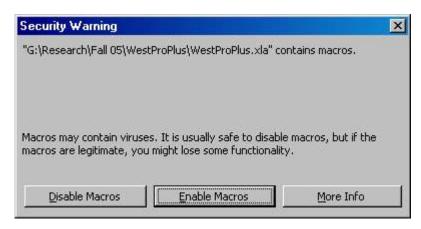


Figure 17—Microsoft® Excel® Security Warning Window against Macro viruses.

WestProPlus does not insert a new input data worksheet. What can I do?

Before inserting a new input data worksheet, WestProPlus checks to see if there is a worksheet named **Input Data** already open. If there is one, WestProPlus will not generate a new input data worksheet. To get a new input data worksheet, close all Excel® windows and reopen WestProPlus.

Why is there no BDq calculator in the example worksheets?

The example workbooks contain only the input data. After you have installed WestProPlus, the BDq calculator icon will appear in the new input data worksheet. At that point, you can copy data from the example workbooks into the input data worksheet.

Why is the BDq calculator not working?

WestProPlus must be open to use the BDq calculator. To use the BDq calculator on a previously saved input data worksheet, **WestProPlus** must be in the Excel® menu bar.

Why can't I copy all the content from the example worksheet to the input data worksheet?

All the cells of the input data worksheet are protected except those that need entries (marked with? marks). Copy only the data from the example worksheet and paste them to the corresponding locations in the input data worksheet.

For further assistance, or to send us your comments, please contact us through *jbuongio@wisc.edu*.

Acknowledgments

We thank Dean Parry, Karen Waddell, and Susan Stevens Hummel for assistance with the data. The research leading to this program was supported, in part, by the USDA Forest Service, Pacific Northwest Research Station, by USDA-CSREES grant 2001-35108-10673, and by the School of Natural Resources, University of Wisconsin-Madison. The authors take sole responsibility for any error or omission.

Metric Equivalents

When you know:	Multiply by:	To find:
inches (in)	0.3937	centimeters (cm)
feet (ft)	0.3048	meters (m)
square feet (ft ²)	0.0929	square meters (m ²)
square feet per acre (ft²/ac)	4.3562	square meters per hectare (m²/ha)
cubic feet (ft³)	35.3147	cubic meters (m³)
cubic feet per acre (ft³/ac)	14.2913	cubic meters per hectare (m³/ha)

Literature Cited

Barbour, M.G.; Billings, W.D. 1988. North American Terrestrial Vegetation. Cambridge University Press, Cambridge, UK. 421p.

Barbour, R.J.; Kellogg, R.M. 1990. Forest management and end-product quality: a Canadian perspective. Can. J. For. Res. 20: 405–414.

Barbour, R.J.; Parry, D.L. 2001. Log and lumber grades as indicators of wood quality in 20- to 100-year-old Douglas-fir trees from thinned and unthinned stands. General Technical Report 510, USDA Forest Service, Pacific Northwest Research Station, Portland. 22 p.

Burns, R.M.; Honkala, B.H. (tech. coords.) 1990. Silvics of North America: 1. Conifers. USDA Agric. Handb. 654. 675 p.

Curtis, R.O.; Carey, A.B. 1996. Managing Economic and Ecological Values in Douglas-Fir Forests. J. For. 94: 1-7, 35-37.

Efron, B.; Tibshirani, R.J. 1994. An Introduction to the Bootstrap. CRC Press, Boca Raton, FL. 456 p.

Emmingham, W. 1998. Uneven-aged management in the Pacific Northwest. J. For. 96(7): 37-39

Guldin, J.M. 1996. The role of uneven-aged silviculture in the context of ecosystem management. W. J. Appl. For. 11(1): 4-12.

Hanson, E.J.; Azuma, D.L.; Hiserote, B.A. 2002. Site index equations and mean annual increment equations for the Pacific Northwest Research Station Forest Inventory and Analysis, 1985-2001. Res. Note PNW-RN-533. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 24 p.

Hansen, A.J.; Spies, T.A.; Swanson, F.J.; Ohmann, J.L. 1991. Conserving biodiversity in managed forests: lessons from natural forests. BioScience 41(6): 382-292.

Hiserote, B.; Waddell, K. 2003. The PNW-FIA integrated database user guide. A database of forest inventory information for California, Oregon and Washington, V 1.3. FIA PNW Station, Portland, Oregon. 10 p.

Liang, J.; Buongiorno, J.; Monserud R.A. 2005a. Growth and yield of all-aged Douglas-fir/western hemlock forest stands: a matrix model with stand diversity effects. Can. J. For. Res. 35(10): 2369-2382.

Liang, J.; Buongiorno, J.; Monserud R.A. 2005b. Bootstrap simulation and response surface optimization of management regimes for Douglas-fir/western hemlock stands. For. Sci. (In review).

Liang, J.; Buongiorno, J.; Monserud R.A. 2004a. CalPro: A spreadsheet program for the management of California mixed-conifer stands. USDA Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-619. 32p.

Liang, J.; Buongiorno, J.; Kolbe, A.; Schulte, B. 2004b. NorthPro: a spreadsheet program for the management of uneven-aged northern hardwood stands. Madison, WI: University of Wisconsin-Madison, Department of Forest Ecology and Management. 36 p.

Miller, M.; Emmingham, B. 2001. Can selection thinning convert even-aged Douglas-fir stands to uneven-aged structures? Western Journal of Applied Forestry 16(1): 35-43.

Northwest Log Rules Advisory Group. 1998. Official log scaling and grading rules. 8th ed. Eugene, OR. 48 p.

Oregon Department of Forestry. 2005. Quarterly Douglas-fir stumpage prices online: http://www.odf.state.or.us.

Ralston, R.; Buongiorno, J.; Schulte, B.; Fried, J. 2003. WestPro: a computer program for simulating uneven-aged Douglas-fir stand growth and yield in the Pacific Northwest. Gen. Tech. Rep. PNW-GTR-574. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 25 p.

Schulte, B.; Buongiorno, J.; Lin, C.R.; Skog, K. 1998. SouthPro: a computer program for managing uneven-aged loblolly pine stands. Gen. Tech. Rep. FPL-GTR-112. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 47 p.

Stevens, J.A.; Barbour, R.J. 2000. Managing the stands of the future based on the lessons of the past: estimating western timber species product recovery by using historical data. USDA For. Serv. Res. Note PNW-RN-528. 9 p.

U.S. Government Printing Office [US GPO]. 2005. Economic report of the President. Washington, DC. 335 p.

Appendix 1—WestProPlus Plot Data

The data to calibrate the stand growth model used by WestProPlus came from the PNW-FIA Integrated Database (Version 1.2) (Hiserote and Waddell, 2003), specifically, the part of the database that combines information from four different forest inventories (FIAEO, FIAWO, FIAEW, FIAWW) conducted by the USDA Forest Service between 1988 and 2000.

The 2,706 plots used in calibrating WestProPlus had all been classified in the Douglas-fir/western hemlock forest type, they had been measured at two successive inventories, and they were located in Oregon and Washington west of 120° in longitude (fig. 18). This area includes the Coast Range and the Cascades Range of western Washington and Oregon, as well as the Klamath region of southwestern Oregon. About 80% of the plots were on private land, and most of the remaining 20% were on lands belonging to the States of Oregon or Washington (table 2). U.S. Federal lands (e.g., National Forests, National Parks, and Bureau of Land Management forests) are not included in this database.

The trees were categorized into four species classes (table 3): Douglas-fir, other shade-intolerant species, western hemlock, and other shade-tolerant species (Barbour and Billings 1988). Red alder (*Alnus rubra*) and ponderosa pine (*Pinus ponderosa*) were the most abundant shade-intolerant species other than Douglas-fir. Western redcedar (*Thuja plicata*) and bigleaf maple (*Acer macrophyllum*) were the most abundant shade-tolerant species other than western hemlock (table 3). Within each species, trees were grouped into nineteen 2 in. diameter classes, from 3 to 5 in. up to 40 in. and above.

The plot characteristics are summarized in table 4. The theoretical maximum species diversity is ln(4)=1.39, and the maximum size diversity is ln(19)=2.94, occurring when all the basal area is equally distributed in all 4 species classes and 19 size classes, respectively. There was a 0.90 correlation between the diversity by species group, used here, and the diversity by individual species. The average recruitment was highest for Douglas-fir and other shade-intolerant trees (table 4).

The individual tree data (table 5) show that, on average, Douglas-fir trees had the highest diameter growth rate, and lowest mortality rate. Other shade-tolerant species had the highest single tree gross volume. Although the time between measurements was short, averaging a decade, there was much difference in trees and stand conditions between plots. It is this cross-sectional variation that allows inferring how stands would grow in very different conditions that might arise in space and over long time periods.

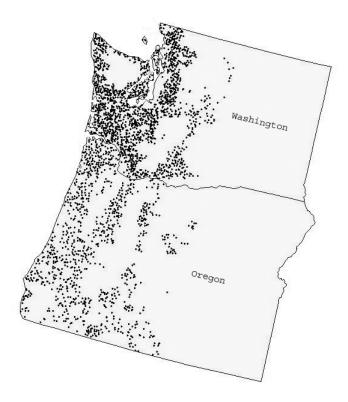


Figure 18—Geographic distribution of the FIA plots used to calibrate the growth and yield model.

Table 2—Distribution of plots by ownership

	E iselia dicioni di pioca aj divinci.	'P'	
Owners	hip	Number of plots	%
Private		2136	78.9
Public			
	State	438	16.2
	Local Government	67	2.5
	Other federal owner	29	1.1
	Bureau of Land Management	20	0.7
	National Park Service	16	0.6
Total		2706	100.0

Table 3—Frequency of tree species in all sample plots

Common Name	Scientific Name	%
Douglas-fir	Pseudotsuga menziesii	41.27
Other Shade-intolerant Species		24.07
Red alder	Alnus rubra	10.85
Ponderosa pine	Pinus ponderosa	7.10
Lodgepole pine	Pinus contorta	1.94
Western larch	Larix occidentalis	0.92
Black cottonwood	Populus balsamifera ssp.trichocarpa	0.72
Pacific madrone	Arbutus menziesii	0.63
Incense-cedar	Calocedrus decurrens	0.44
Oregon white oak	Quercus garryana	0.42
Western juniper	Juniperus occidentalis	0.26
Oregon ash	Fraxinus latifolia	0.25
Noble fir	Abies procera	0.18
Quaking aspen	Populus tremuloides	0.15
Western white pine	Pinus monticola	0.14
Sugar pine	Pinus lambertiana	0.05
Jeffrey pine	Pinus jeffreyi	0.01
Western hemlock	Tsuga heterophylla	18.80
Other Shade-tolerant Species		15.86
Western redcedar	Thuja plicata	5.88
Bigleaf maple	Acer macrophyllum	3.09
Grand fir	Abies grandis	2.09
Sitka spruce	Picea sitchensis	1.44
Pacific silver fir	Abies amabilis	1.32
White fir	Abies concolor	0.94
Mountain hemlock	Tsuga mertensiana	0.42
Engelmann spruce	Picea engelmannii	0.34
Subalpine fir	Abies lasiocarpa	0.17
Port-Orford-cedar	Chamaecyparis lawsoniana	0.12
Pacific yew	Taxus brevifolia	0.03
Alaska yellowcedar	Chamaecyparis nootkatensis	0.02
Redwood	Sequoia sempervirens	0.01
All the species		100.00

Table 4—Summary statistics for plot data

-		-					
		Trees	/ac				
-	Douglas-fir	Other shade	Western	Other shadeS	ite Productivity	Inter inventory	Basal area
	-	intolerant	hemlock	tolerant	$(ft^3/ac/yr)$	(yr)	(ft ² /ac)
Mean	86.38	62.42	56.79	41.24	149.59	10.53	119.01
S.D.	121.74	105.75	119.63	87.59	72.17	0.90	74.23
Max	1246.45	1982.99	1223.36	1056.16	300.00	23.00	418.66
Min	0.00	0.00	0.00	0.00	10.00	9.00	2.40
n	2706	2706	2706	2706	2706	2706	2706
		Recruitment (tree/ac/yr)				
-	Douglas-fir	Other shade	Western	Other shade	Species	Size	
	C	intolerant	hemlock	tolerant	diversity	diversity	
Mean	2.22	1.55	1.34	1.01	0.54	1.65	4733.54
S.D.	7.32	6.35	5.67	4.48	0.39	0.63	3588.06
Max	103.87	165.25	96.76	96.37	1.38	2.76	22122.76
Min	0.00	0.00	0.00	0.00	0.00	0.00	28.15
n	2706	2706	2706	2706	2706	2706	2706

Note: Level variables are at the time of the first inventory, recruitment is between the two inventories.

Table 5—Summary statistics for individual tree data

	Douglas-fir	Other shade-	Western	Other shade-				
		intolerant	hemlock	tolerant				
		Diam	eter (in)					
Mean	15.28	12.01	12.97	16.06				
S.D.	8.39	6.33	7.69	10.69				
Max	81.81	51.42	68.37	119.90				
Min	1.57	1.57	1.57	1.57				
N	23161	11831	11612	8900				
		Diameter g	growth (in/yr)					
Mean	0.28	0.18	0.23	0.23				
S.D.	0.17	0.14	0.15	0.17				
Max	5.50	6.47	3.77	3.33				
Min	0.00	-0.11	0.00	-0.45				
n	23161	11831	11612	8900				
		Mortalit	y Rate (y ⁻¹)					
Mean	0.003	0.006	0.003	0.004				
S.D.	0.016	0.023	0.017	0.019				
Max	0.111	0.111	0.111	0.111				
Min	0.000	0.000	0.000	0.000				
n	23838	12650	12007	9295				
		Volume (ft ³ /tree)						
Mean	77.69	39.55	61.09	83.34				
S.D.	99.59	51.91	90.41	154.33				
Max	1986.80	790.70	1353.26	5826.92				
Min	0.35	0.35	0.35	0.00				
n	23161	11831	11612	8900				

Note: Diameter and volume are at the time of the first inventory, diameter growth and mortality rate are between the two inventories.

Appendix 2—Growth-and-Yield Model

The growth model of WestProPlus has the following form (Liang et al., 2005a):

$$\mathbf{y}_{t \mid 1} \quad \mathbf{G} \mathbf{y}_{t} \quad \mathbf{r} \quad \mathbf{u}_{t \mid 1} \tag{1}$$

where $\mathbf{y}_t = [y_{ijt}]$ is the number of trees per unit area of species group i, and diameter class j, at time t. i=1 for Douglas fir, 2 for other shade intolerant species, 3 for western hemlock, and 4 for other shade-tolerant species. The matrix \mathbf{G} and the vector \mathbf{r} are defined as:

where a_{ij} is the probability that a tree of species i and diameter class j stays alive and in the same diameter class between t and t+1, b_{ij} is the probability that a tree of species i and diameter class j stays alive and grows into diameter class j+1, and r_i is the number of trees of species group i recruited in the smallest diameter class between t and t+1, with a time period of one year. The vector \mathbf{u}_{t+1} represents the stochastic part of growth. \mathbf{u}_{t+1} is bootstrapped each year from the set of vector differences between the observed and the deterministically predicted stand state, for each of the 2,706 plots in Oregon and Washington (Liang et al. 2005b). The b_{ij} probability is equal to the annual tree diameter growth, g_{ij} (in/yr), divided by the width of the diameter class. Diameter growth is a function of tree diameter D_j (in), stand basal area B (ft²/ac), site productivity Q (ft³/ac/yr), tree species diversity H_s , and tree size diversity H_d .

The expected recruitment r_i (trees/ac/yr) of species i is represented by a Tobit model:

$$r_i = (\beta_i \mathbf{x}_i / i) \beta_i \mathbf{x}_i = i (\beta_i \mathbf{x}_i / i)$$

with:

where N_i is the number of trees per acre in species group i; Φ and are respectively the standard normal cumulative and density functions, and the standard deviations of the residuals are, $\sigma_I = 9.5366$, $\sigma_2 = 9.0863$, $\sigma_3 = 11.0664$, $\sigma_4 = 9.3270$.

The probability of tree mortality per year, m_{ij} , is a species-dependent probit function of tree size and stand state:

The probability that a tree stays alive and in the same size class from t to t+1 is, then: $a_{ij}=1-b_{ij}-m_{ij}$

The expected single tree volume v_{ij} (ft³) is a species-dependent function of tree and stand characteristics:

v_{1j}	0.01712	$0.00013D_{j}$	$0.00001D_j^2$	0.00161 <i>B</i>	0.01174Q	$0.00350H_{s}$	$0.00092H_{\scriptscriptstyle d}$
v_{2j}	0.01536	$0.00004D_j$	$0.00000D_j^2$	0.00054 <i>B</i>	0.00691 <i>Q</i>	$0.00038H_{s}$	$0.00100H_d$
v_{3j}	0.01294	$0.00016D_j$	$0.00001D_j^2$	0.00087 <i>B</i>	0.00416 <i>Q</i>	$0.00185H_{s}$	$0.00145H_d$
$v_{_{4i}}$	0.00392	$0.00019D_{i}$	$0.00000D_i^2$	0.00105 <i>B</i>	0.00584 <i>Q</i>	$0.00692H_{s}$	$0.00035H_d$

Appendix 3—Log Grade Equations

The equation to predict log grade were calibrated with data from 3,378 logs in the USFS Product Recovery Database (Stevens and Barbour 2000). The logs are classified into five grade categories, according to their diameter, branch size, growth rate, and minimum length (Barbour and Parry 2001, Northwest Log Rules Advisory Group 1998). For WestProPlus, the logs were divided into the four species groups recognized by the growth model (App. 2).

In addition to the log grade, the diameter of the logs was known for all species groups. The database also contains information on the stands from which the logs were taken. However, for Douglas-fir and western hemlock, only the tree diameter D (in) and the site index S (ft) influenced log grade significantly (Liang et al. 2005b).

The log grade was predicted with a logistic regression and a nominal response variable:

$$\ln \frac{-ijl}{ilm}$$
 il ilD D ilS S

where π_{ijl}/π_{ijm} was the ratio between the probability of log grade l (l=1, 2, ..., m-1), and log grade m, for species i and diameter class j. The parameters, β_{il} , of the log grade equation for Douglas-fir and western hemlock are in table 6. For both species, log grade was higher for larger trees on less productive sites.

There was no data on stand characteristics for other shade-tolerant and shade-intolerant species, and no systematic relation was observed between grade and diameter for these species groups.

WestProPlus uses the observed percentages of total volume by log grade for each diameter class, and assumes that they are constant (table 7).

Table 6—Estimation results of the nominal-logistic equations of log grade

Dependent	Independent	Coefficient	SE	P
variable	variable			
	Do	uglas-fir		
$\pi_{\it l}/\pi_{\it 4}$	Constant	2.91	1.20	0.02
	D	0.02	0.00	0.00
	S	-0.33	0.10	0.00
π_3/π_4	Constant	1.66	1.43	0.25
	D	0.02	0.00	0.00
	S	-0.33	0.13	0.03
	Weste	ern hemlock		
$\pi_{\it I}/\pi_{\it 4}$	Constant	-8.94	4.28	0.04
	D	0.16	0.02	0.00
	S	-1.33	0.50	0.03
π_2/π_4	Constant	-8.37	4.04	0.04
	D	0.14	0.02	0.00
	S	-1.00	0.43	0.07
π_3/π_4	Constant	-5.90	1.59	0.00
	D	0.10	0.01	0.00
	S	-0.43	0.13	0.00
1 1 11	. 01 1	1/ D 1 C	1 1	- 1

 $\overline{\pi_l}$ =probability of log grade l (no Douglas-fir log was observed of grade 2, grade 5 was not observed for both species),

D=tree diameter,

S=site index,

P =level at which the effect of the control variable would be just significant.

Table 7—Percentage of timber volume by log grade (I through V) and size for the shade-intolerant species except Douglas-fir, and the shade-tolerant species except western hemlock.

Diameter	Other shade-intolerant species (%)			Other shade-tolerant species (%			(%)			
(in)	I	II	III	IV	V	I	II	III	IV	V
4	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	30	0	58	12
8	0	0	0	100	0	0	30	0	66	4
10	0	20	0	80	0	0	37	0	61	1
12	0	24	0	76	0	0	35	0	64	1
14	0	23	10	66	0	0	33	12	55	0
16	0	16	59	25	0	0	28	50	20	2
18	0	20	69	7	4	0	36	47	16	1
20	0	16	78	6	0	0	36	48	11	4
22	0	21	79	0	0	0	29	60	9	2
24	0	14	77	4	5	0	37	50	11	2
26	6	27	64	3	0	1	26	66	6	1
28	7	33	58	2	0	1	40	52	6	1
30	19	43	36	2	0	1	32	56	7	4
32	21	43	29	0	7	3	42	50	5	0
34	13	69	13	0	6	0	44	52	4	0
36	0	70	20	0	10	0	44	48	8	0
38	0	40	60	0	0	8	62	31	0	0
40	0	75	25	0	0	0	43	50	0	7

Appendix 4—Stochastic Stumpage Price and Interest Rate Models

The stumpage price model in WestProPlus (Liang et al. 2005b) was calibrated with quarterly stumpage prices of Douglas-fir grade I logs from 1977 to 2003 in Oregon (Oregon Department of Forestry, 2005). The following autoregressive-moving average model was used to represent quarterly price changes:

$$P_{t,1} = 0.60 P_t = 0.05e_t e_{t,1}$$
 (3)

 $0.72 \quad 0.81r_{t}$

where P_t and P_{t-1} were stumpage prices at quarter t and quarter t-1, respectively, and e_t was a white-noise residual error. The parameters were estimated from the data with the Box-Jenkins method. WestProPlus simulates stochastic price series with this model by bootstrapping, i.e., by drawing randomly with replacement at each step t a pair of shocks e_t and e_{t+1} from the residuals obtained by fitting model (3) to the data.

The initial price of Douglas-fir grade I logs is equal to that entered by the user (fig. 1), or lacking this, it is bootstrapped from the prices observed from 1977 to 2003. With bootstrapped initial prices, the mean predicted stumpage prices of Douglas-fir grade I logs and its standard error over 500 replications of 100-year simulations had a slight positive trend over time, but it was not statistically significant.

The price of logs of other grades than grade I is calculated according to the relative prices entered by the user (fig. 1), or lacking this, according to the relative prices in table 8. In either case, the relative prices are constant over time.

The annual rate of return of AAA bonds from 1970 to 2004 (U.S. Government Printing Office, 2005) was used as the interest rate. WestProPlus uses an autoregressive model of interest rates:

(4)

where r_t was the interest rate at year t, and ϵ_t was the white-noise residual. WestProPlus simulates stochastic interest rates by bootstrapping: at each step t, a shock was drawn randomly with replacement from the sample of the residuals obtained by fitting the model to the data. With bootstrapped initial interest rate, the mean predicted interest rate over 500 simulations showed no trend over time.

Table 8—Stumpage prices (\$/ft³)¹ in Oregon by log grade and species group in 2005 (Log Lines 2005)

Log		Other Shade-		Other Shade-
Grade	Douglas-fir	intolerant Species	Western hemlock	tolerant Species
I	9.18	6.60	3.30	7.80
II	5.58	6.48	3.24	7.50
III	5.22	5.28	2.94	7.50
IV	4.68	4.50	2.46	7.50
V	0.60	0.60	0.60	0.78

¹⁾ Assumes 0.012 ft³/Mbf.

Appendix 5—Definition of Diversity of Tree Species and Size

WestProPlus uses Shannon's index to measure the stand diversity in terms of tree species (how uniformly trees are distributed across species groups), and timber size classes. WestProPlus measures the presence of trees in a class by their basal area, which gives more weight to larger trees.

The tree species diversity is defined in WestProPlus as:

$$H_{species}$$
 $\int_{i}^{m} \frac{y_i}{y} \ln \frac{y_i}{y}$

where y_i is the basal area of trees of species group i per acre, and y is total basal area. In WestProPlus, m = 4 (there are four species groups). The tree species diversity has a maximum value of ln(4) = 1.39, when basal area is equally distributed in the four species groups, and a minimum value of zero when all trees are in the same species group.

Similarly, tree size diversity is:

$$H_{size}$$
 $\int_{j=1}^{n} \frac{y_j}{y} \ln \frac{y_j}{y}$

where y_j is the basal area of trees in diameter class j per acre. In WestProPlus, n = 19 diameter classes. The tree size diversity has a maximum ln(19) = 2.94 when basal area is equally distributed in all 19 diameter classes, and a minimum of zero when all trees are the same diameter class.

Glossary

- **BA chart**—A WestProPlus-generated chart showing, for a selected range of years, the per acre basal area of softwoods, hardwoods, and the whole stand.
- **BDq distribution**—A tree distribution, by diameter class, defined by a stand basal area (B), a maximum and minimum tree diameter (D), and a q-ratio (q), the ratio of the number of trees in a given diameter class to the number of trees in the next larger class.
- **bootstrap method**—When used in stochastic simulations, this technique simulates random variables by sampling randomly (with replacement) from actual observations of the variable, rather than from an assumed distribution. See Efron and Tibshirani 1994 for the details.
- **cutting cycle**—The number of years between successive harvests. For two-cut silvicultural systems, this is the number of years between the two harvests.
- **diameter class**—One of 19 2-in diameter at breast height (DBH) categories used by WestProPlus to classify trees by size. Diameter classes range from 4 to 40+ inches, with each class denoted by its midpoint diameter. Diameter class 4 is for trees with diameters from 3 to less than 5 inches. The 40+ inch class is for all trees 39 inches in diameter and larger.
- **Diversity chart**—A WestProPlus-generated chart showing changes in the Shannon index of species or size diversity over a selected range of years.

initial stand state—The number of live trees per acre, by species and size, at the start of a simulation.

input data worksheet—A worksheet to enter the data for running a WestProPlus simulation.

Log grade— An estimate of the type and quality of lumber recovered when the log is sawed.

Microsoft[®] **Excel**[®] **add-in**—A command, function, or software program that runs within Microsoft[®] Excel[®] and adds special capabilities. WestProPlus is an add-in.

net present value (NPV)—The net revenue discounted to the present.

preharvest stand state—The number of live trees per acre, by species and size, immediately before a harvest.

- **Products worksheet**—A WestProPlus output worksheet that shows, for each harvest, the basal area cut, the volume of poles and sawtimber removed by species group, the gross income generated, and the net present value of the harvest, as well as the total net present value of the stand and its mean annual production in terms of basal area cut and volumes harvested, on a per acre basis.
- **pole-size trees**—Trees suitable for the production of poletimber but too small to produce saw logs. In WestProPlus, these include trees from 5 to less than 11 inches.
- **re-entry costs**—Costs per acre associated with each harvest that are not reflected in the stumpage prices. These may include, e.g., the added expense of marking the stand for single-tree selection or controlling hardwood competition.

- **sawtimber**—Trees suitable for the production of saw logs. WestProPlus's marking guides recognize three classes of sawtimber trees:
 - (1) Small sawtimber—Trees with diameters of 11 to less than 15 inches.
 - (2) Medium sawtimber—Trees with diameters of 15 to less than 21 inches.
 - (3) Large sawtimber—Trees with diameters of 21 inches or larger.

Setup File worksheet—A worksheet to store WestProPlus setup files. It is typically hidden.

Setup Files—Collections of related input data that are stored together on a Setup File worksheet. Setup Files may contain data for initial stand states, target stand states, cutting cycle parameters, stumpage prices, or fixed costs, and may be used in varying combinations as input for WestProPlus simulations.

site index—The average height of a stand's dominant and codominant trees at age 50 years.

size diversity—The diversity of tree diameter classes as measured by the Shannon index. With 19 diameter classes, size diversity reaches its maximum value of 2.94 when the basal area or number of trees is distributed evenly among the diameter classes.

species diversity—The diversity of species groups as measured by the Shannon index. With four species classes, species diversity reaches its maximum value of 1.39 when the basal area or number of trees is distributed evenly among the species groups.

species groups—The four categories used by WestProPlus to classify trees by species. For a complete list of species, see Liang et al. 2005a.

Douglas-fir—Pseudotsuga menziesii.

Other shade-intolerant species—Including Alnus rubra, Pinus ponderosa, Pinus contorta, etc.

Western hemlock— Tsuga heterophylla.

Other shade-tolerant species—Including Thuja plicata, Acer macrophyllum, Abies grandis, etc.

stumpage prices—Prices paid to a landowner for standing timber.

target stand state—The desired number of live trees per acre in each species group and diameter class after a harvest.

total net present value—The sum of all discounted revenues minus the sum of all discounted costs.

workbook—The workbook is the normal document or file type in Microsoft® Excel®. A workbook is the electronic equivalent of a three-ring binder. Inside workbooks you will find sheets, such as worksheets and chart sheets.

worksheet—Most of the work you do in Excel® will be on a worksheet. A worksheet is a grid of rows and columns. Each cell is the intersection of a row and a column and has a unique address, or reference.