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Abstract Most of previous work on robust equity portfolio optimization has focused on its
formulation and performance. In contrast, in this paper we analyze the behavior of robust
equity portfolios to determine whether reducing the sensitivity to input estimation errors
is all robust models do and investigate any side-effects of robust formulations. Therefore,
our focus is on the relationship between fundamental factors and robust models in order to
determine if robust equity portfolios are consistently investing more in the factors opposed to
individual asset movements. To do so, we perform regressions with factor returns to explain
how robust portfolios behave compared to portfolios generated from the Markowitz’s mean-
variance model. We find that robust equity portfolios consistently show higher correlation
with the three fundamental factors used in the Fama-French factor model. Furthermore, more
robustness among robust portfolios results in a higher correlation with the Fama-French
three factors. In fact, we show that as equity portfolios under no constraints on portfolio
weights become more robust, they consistently depend more on the market and large factors.
These results show that robust models are betting on the fundamental factors instead of
individual asset movements.
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1 Introduction

Portfolio management is one of the key revenue-generating activities offered by banks. The
importance of this non-interest fee financial activity that banks provide to bank customers,
both retail and institutional, has become increasing important in recent years as interest
income has declined due to the increase in loan defaults. Consequently, banks compete for
client assets based on performance and, in turn, performance depends on a bank’s ability to
develop reliable models for managing assets.

One of the most popular models used in portfolio management is the mean-variance
model by Markowitz (1952). The model has been applied in practice both at the asset level
and asset class level. In this paper, we focus on the latter and take a closer look at equity
portfolios. Although the mean-variance model is extensively employed by practitioners, it
possesses several impractical aspects. Equity portfolios constructed using the Markowitz
model involve very extreme or non-intuitive weights, which forces practitioners to use a
variety of constraints to control the weights. Although the constraints resolve unrealistic
weights, multiple constraints easily result in weights becoming heavily dependent on the
limits. For example, optimization using no-shorting constraints could form a portfolio with
most of its assets having zero weight. In addition to unrealistic portfolio weights, one of
the major problems with the mean-variance model is the high sensitivity of the parameter
estimations to small changes in the inputs. Best and Grauer (1991) reported how much input
parameters affect portfolio performance; they found that portfolio weights show extreme
sensitivity to changes in the inputs. With no definite method to estimate the true input values,
sampling errors in estimates of asset mean and covariance directly affect the calculation of
portfolio weights. By simulation, Broadie (1993) showed that the estimation error can be
surprisingly large when comparing the true efficient frontier with the actual efficient frontier.

In order to address the sensitivity issue, robust portfolio models have been proposed.
Robust models include methods to improve the accuracy of inputs and to apply robust opti-
mization frameworks to portfolio optimization. For example, portfolio resampling, which is
based on resampling from the estimated inputs, is one way to reduce estimation errors. The
Black-Litterman model combines investors’ views with the market equilibrium to improve
the accuracy of the inputs. In addition, worst-case optimization incorporates uncertainty
directly into the optimization process; the uncertainty set for the input parameters in the
mean-variance framework is assumed to be known based on the probability distributions
of the uncertain parameters, and the worst possible scenario from the chosen uncertainty
set is optimized. Among the several frameworks briefly introduced above, we focus on the
worst-case optimization approach in this paper.

Along with the development of various robust models, much effort has been devoted to
test the performance of these robust portfolios. Many researchers have conducted out-of-
sample performance tests to contrast the classical mean-variance model and robust models
but there has not been a dominating conclusion to its performance. For example, Santos
(2010) tested the performance of both robust portfolio optimization and mean-variance op-
timization with empirical and simulated data. Results for simulated data indicate that the
robust portfolio significantly outperforms the mean-variance portfolio. Although statistical
improvement was not detected when testing with empirical data, Santos concluded that the
robust approach would reduce portfolio maintenance cost because the robust portfolio had
more stable weights. In contrast, Scherer (2007) found that based on out-of-sample tests,
the robust model underperformed the mean-variance model. In summary, although robust
models decrease the sensitivity in parameter estimation errors—the principal motivation for
these models—and they can be easily understood at the conceptual level, it is not a trivial
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task to measure how successfully the proposed models achieve their goals under practical
settings.

Although many studies have focused on developing robust formulations and testing their
performance, little effort has been put into analyzing the behavior of robust portfolios. On
the theoretical front, Kim et al. (2012) focus on worst-case optimization and provide mathe-
matical rationale for the relationship between factor returns and portfolios formed from the
robust model with an ellipsoidal uncertainty set. They analytically find that as the robustness
of a portfolio is increased, the weights of the portfolio move closer to the portfolio whose
variance is maximally explained by factors.

In this paper, we look for empirical support for their theoretical results in order to further
analyze the behavior of portfolios obtained from robust optimization. We attempt to find
out if simply decreasing the sensitivity to estimation errors is all robust models do; there
could be unintended side-effects of robust optimization, which further explain the behavior
of robust portfolios. Specifically, we evaluate whether robust equity portfolios consistently
invest more in the fundamental factors of companies. If robust equity portfolio returns are
reasonably explained by these factors, it would mean that robust portfolio optimization is
betting on these factors instead of individual asset movements. Therefore, we compute in-
sample returns for robust portfolio optimization and classical mean-variance optimization
using empirical data and compare the two approaches through factor analysis using the re-
turns generated from a factor model. There are several commercially available factor models
employed by quantitative equity managers by banks in managing client accounts, a popular
one is the fundamental risk factor model proposed by Fama and French (1993). In addition,
we compare the behavior of robust equity portfolios with various levels of robustness; ro-
bustness of a portfolio is increased as the confidence interval around the estimated expected
return of the uncertainty set is increased.

The main contribution of this study is our empirical evidence that robust equity portfolios
are more dependent on the fundamental factor model such as the Fama-French three-factor
model. By performing regression analysis between portfolio returns and factor returns, we
show that robust models invest more on the factors compared to Markowitz’s mean-variance
portfolios. Furthermore, we find that this conjecture also holds among robust portfolios;
correlation with factor returns increases as the robustness of a portfolio is increased. Addi-
tionally, we notice that robust equity portfolios tend to bet on the market and large factors
under no constraints on portfolio weights. In particular, unconstrained robust equity portfo-
lios using a 5-year rebalancing period appears to also bet on the growth factor in addition to
the market and large market capitalization factors.

The organization of the paper is as follows. Section 2 briefly reviews robust models that
have been widely used, focusing on worst-case optimization because this is the basis for
our robust formulations. Section 3 describes the data and Sect. 4 outlines our test model for
portfolio optimization and factor analysis. Section 5 reports the results and interpretations
of our findings; further analysis of the portfolios is included in Sect. 6. Our conclusions are
summarized in Sect. 7.

2 Robust portfolio models

As previously mentioned, research in robust models became popular in order to resolve high
sensitivity to estimation errors in the mean-variance framework.

Michaud (1998) proposed a robust framework combining Monte Carlo resampling and
bootstrapping. As an approach to stabilize portfolio weights that are sensitive to inputs, the
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model initially computes weights by solving an optimization problem for each point within
the confidence region of the parameters, and then taking the average. This approach, known
as the Resampling Efficiency technique, gives more stable and realistic weights compared
with the classical mean-variance method (Michaud and Michaud 2008).

The robust framework introduced by Black and Litterman (1991, 1992), based on the
capital asset pricing model (CAPM), creates a robust model by making the input variables
robust. When an investor has his or her own view on the asset returns, the expected return can
be improved using a Bayesian framework. Hence, the expected return in the Black-Litterman
model becomes a linear combination of the market equilibrium and the investor’s view.

The worst-case approach, the focus of this paper, assumes the distributions of uncer-
tain parameters such as mean and covariance of returns, and creates a robust portfolio by
maximizing the return in the worst case for each parameter (Fabozzi et al. 2007a, 2007b).
Since the expected return affects portfolio performance more than its covariance (Chopra
and Ziemba 1993), we concentrate on robust portfolios using a box or an ellipsoid as the
uncertainty set for expected returns. In the classical mean-variance framework, portfolio
optimization formulation is,

min
w

w′Σw − λμ′w
s.t. w′ι = 1

(1)

where μ is the expected returns, Σ is the covariance, w is the portfolio weights, λ is the risk
coefficient, and ι is a vector of ones. In the above formulation, λ represents the risk-seeking
coefficient where setting it to zero gives the minimum-variance portfolio. For the return μ

in the above objective function, if we assume the uncertainty set as a box with estimation
error less than a small number δ, the uncertainty set becomes,

Uδ(μ) = {
μ

∣∣ |μi − μ̂i | ≤ δi, i = 1, . . . ,N
}

where μ̂ is the estimate of the expected returns. In other words, δ is a constant that sets the
size of the confidence region. Formulating a min-max problem using the above uncertainty
set gives,

min
w

max
μ∈Uδ(μ̂)

w′Σw − λμ′w

s.t. w′ι = 1

This min-max problem is equivalent to solving the following minimization problem, which
is the optimization problem for our first robust model,

min
w

w′Σw − λ
(
μ̂′w − δ′|w|)

s.t. w′ι = 1
(2)

Similarly, the uncertainty set for μ when assumed to be an ellipsoid is defined as (see
Goldfarb and Iyengar 2003),

Uδ(μ) = {
μ

∣∣(μ − μ̂)′Σ−1
μ (μ − μ̂) ≤ δ2

}

The optimization problem with this uncertainty for expected asset returns is formulated as,

min
w

max
μ∈Uδ(μ̂)

w′Σw − λμ′w

s.t. w′ι = 1

Consequently, by differentiating the above min-max problem and solving the first-order con-
dition forms the following simpler problem, which is our second robust optimization model,
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min
w

w′Σw − λ
(
μ̂′w − δ

√
w′Σμw

)

s.t. w′ι = 1
(3)

where Σμ is the covariance matrix of estimation errors for the expected returns.
While the theory of robust optimization is well developed, there are still many shortcom-

ings in attempting to implement these models. In order to further understand robust models,
this paper tackles the two worst-case optimization models that use a box and an ellipsoid
as uncertainty sets. Hereinafter, when referring to robust models we mean the worst-case
optimization formulations using these two uncertainty sets.

3 Data

There are two basic ways to estimate asset returns. The first approach involves using the
returns of every individual security; the second is using factor-level returns. Forming port-
folios using individual security returns become computationally expensive in even the sim-
plest mean-variance framework. As noted by Fabozzi et al. (2007a, 2007b), since accurately
measuring return covariance matrices especially requires a large number of observations, a
common practice is to estimate the mean and variance at a factor level. Kim and Mulvey
(2009) pointed out that an effective security segmentation scheme is to group stocks at an
industry level as it is defined in a straightforward way and has small misclassification errors.
Therefore, we perform our analysis primarily at an industry level and confirm the results at
the individual security level using sampling techniques to resolve computational limitations.

In fact, Fama and French (1997) introduced industry portfolios that were used to validate
their factor model. These industry portfolios assign each stock traded on the NYSE, AMEX,
and NASDAQ to an industry portfolio using the corresponding Standard Industrial Classifi-
cation (SIC) code. Among many variations, the 49 industry portfolios are used in this study,
which is the version with the largest number of industries available in French’s data library.

In addition, return data for fundamental factors are required for regression analysis. Fun-
damental factors refer to underlying basic sources of randomness that influence individual
asset returns. Common factors include size, earnings/price ratio, leverage, and momentum.
To investigate the behavior of robust equity portfolios in our study, the three-factor model
proposed by Fama and French (1993, 1995) is used. The three-factor model explains a secu-
rity’s return by excess return on the market portfolio and an additional two factors referred to
by Fama and French as SMB (small minus big) and HML (high minus low). Excess market
return is defined as the difference between the value-weighted return on all NYSE, AMEX,
and NASDAQ stocks and the one-month Treasury rate. SMB, which is the size factor, is
the return on portfolios of small capitalization stocks minus return on portfolios of big cap-
italization stocks. Similarly, HML, which is the book-to-market ratio factor, is the return on
portfolios of value stocks minus the return on portfolios of growth stocks.

Security-level returns that are used as a check of our industry-level results are retrieved
from the Center for Research in Security Prices (CRSP) database. Portfolios are created
from randomly sampled 200 securities. In order to eliminate any bias against the three
Fama-French fundamental factors, 50 securities are selected from each of the four groups:
large-cap value, large-cap growth, small-cap value, and small-cap growth stocks. Securities
are split into these four groups using market capitalization and book-to-market ratio. Fur-
thermore, since the listed stocks for the NYSE, AMEX and NASDAQ stock markets change
over time, sampling is done at each rebalancing period among the existing stocks during that
time period. For example, for a portfolio using a 5-year rebalancing period starting in 1970,
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the first sampling will be done among stocks that existed from January 1970 to December
1974.

In our empirical analysis, daily returns from 1970 to 2009 are collected for both the 49 in-
dustry portfolios and the Fama-French three factors.1 In addition, daily returns of individual
securities in the CRSP database are compiled for the same period as well.

4 Test model

To explain the behavior aspect of robust models, we test whether these models consistently
put more weight on the fundamental factors. For the analysis, we focus on three portfolios:
the mean-variance portfolio, the robust portfolio with a box uncertainty, and the robust port-
folio with an ellipsoid uncertainty formed by solving optimization problems (1), (2), and (3),
respectively.2 For the remainder of the paper, we will refer to portfolios optimized through
the mean-variance model as MV, portfolios formed using robust portfolio optimization with
box uncertainty set as R1, and robust portfolios with uncertainty set defined as an ellipsoid
as R2.

We perform in-sample tests on portfolio returns because our main goal is to find out how
the robust portfolios put weights on the fundamental factors during the process of construct-
ing portfolios. We compute returns for the mean-variance and robust portfolios from 1970 to
2009 using 5-year, 3-year, and 1-year rebalancing periods. With these portfolio returns, we
attempt to compare the correlation between the three fundamental factors by linear regres-
sion on the returns. Our analysis is based on the time-series regression model introduced by
Jensen et al. (1972), and also used by Fama and French (1993) in distinguishing the com-
mon risk factors. From the three-factor model, portfolio returns can be expressed as a linear
equation,

Rp = a + βM [RM − Rf ] + βSMB[SMB] + βHML[HML] + ε

where βM , βSMB, and βHML are corresponding coefficients for the Fama-French three factors.
Therefore, the R2 values of the linear regression will indicate how much of the return is
dependent on the three fundamental factors.

Another reason for comparing the performance between the robust and mean-variance
portfolios is to investigate two corresponding portfolios that take the same level of risk.
Since the risk coefficient determines how much risk investors are willing to take, portfolios
with the same value of λ will correspond to each other with respect to risk. For example,
when λ is set to zero, the mean-variance and robust optimization formulations are the same
and all models compute the minimum-variance portfolio,

min
w

w′Σw

s.t. w′ι = 1

Therefore in this experiment, we compare MV, R1, and R2 that have the same value of
λ to analyze their characteristics. We select various values of λ to correctly compare factor

1Data obtained from the online data library of Kenneth R. French (http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html).
2For the estimation error covariance matrix Σμ in the robust models with ellipsoidal uncertainty sets, we use
the diagonal matrix containing the estimation variances, which is known to work well in practice for robust
optimization. For further details, see Stubbs and Vance (2005).

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Ann Oper Res (2013) 205:141–168 147

Fig. 1 Mean-variance efficient
frontier: no constraints. This
figure shows three separate
efficient frontiers for
mean-variance portfolios with no
constraints. Circles show
portfolios with λ as 0.01, 0.03,
0.05, 0.07, and 0.09 (starting
from left-bottom)

Fig. 2 Mean-variance efficient
frontier: no-shorting constraints.
This figure shows three separate
efficient frontiers for
mean-variance portfolios with
no-shorting constraints. Circles
show portfolios with λ as 0.1,
0.2, 0.3, 0.4, and 0.5 (starting
from left-bottom)

loadings; λ values between 0.01 and 0.5 are used, where portfolios with no constraints focus
on 0.01, 0.03, 0.05, 0.07, and 0.09 (as shown in Fig. 1), and portfolios with no-shorting
constraints focus on 0.1, 0.2, 0.3, 0.4, and 0.5 (as shown in Fig. 2).3

Besides using portfolios with predetermined values of λ, we also compare the mean-
variance portfolio with maximum Sharpe ratio with its corresponding robust portfolios. For
this evaluation, we first find Markowitz’s mean-variance portfolio with maximum Sharpe
ratio and use that portfolio’s risk level to calculate the returns of robust portfolios R1 and R2.

In addition to comparing the mean-variance and robust models, we investigate a pattern
among robust equity portfolios with different robustness. The robustness can be controlled

3The values of λ are chosen to represent five portfolios with standard deviation less than 0.3 that are equally
spread-out when plotted on the mean-variance efficient frontier.
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by changing the value of δ; a higher value of δ enlarges the uncertainty set, which makes it
more robust.4 We observe robust equity portfolios with various confidence levels between
1 % and 99 % to confirm whether more robust portfolios with higher confidence levels
are betting more on the Fama-French three factors. For this test, we fix the value of λ and
compare the correlation among all confidence levels for each MV, R1, and R2. We also pay
close attention to the regression coefficients for the three factors. A pattern in the coefficients
along with an increase in robustness will provide further insight on the specific factors and
directions the robust equity portfolios bet on.

Finally, since non-negative weights are often imposed in reality, we perform the entire
analysis under no constraints and also under no-shorting constraints on portfolio weights.
Furthermore, we confirm the outcome using individual security returns; 40 samples of secu-
rity returns from 1970 to 2009 are retrieved to form 40 portfolio returns for each MV, R1,
and R2. For each sample, a new list of 200 securities is randomly selected every rebalancing
period. In other words, each sample consists of a total of 200 securities but its composition is
updated every time the portfolio is rebalanced. The empirical results for both industry-level
and security-level analysis are presented in the next section.

5 Empirical test results

In this section, we compare the results of the factor analysis between the returns of the mean-
variance and robust portfolio models. We mainly focus on industry-level results and match
the outcomes by analyzing individual securities.

5.1 Industry-level results

We present the results under two conditions: no constraints and no-shorting constraints on
portfolio weights. We look for patterns under no constraints as a generic case and confirm
using no-shorting constraints. Tables 1, 2, 3, 4, and 5 report the regression outcomes when
no constraints are imposed, and Tables 6, 7, and 8 do the same when we optimize using non-
negative weights. We primarily focus on results using a 5-year rebalancing period unless
observed patterns differ using shorter rebalancing periods.

For the no constraints case, R2 values from the three-factor regression for MV, R1, and
R2 are presented in Table 1. Initially, we confirm that R2 values are very similar when the
value of λ is set to zero since the minimum-variance portfolio is formed in all three cases.
In addition, the results of the factor analysis for multiple points on the efficient frontier with
various risk levels clearly show significant differences in the R2 values among MV, R1, and
R2. In particular, once the value of λ reaches 0.05, the coefficient of determination reaches
0.6 for R1 and 0.7 for R2. The two robust models, R1 and R2, consistently have higher
correlation than MV for all values of λ. Moreover, this observation is persistent throughout
all three rebalancing periods. Further significance lies in the fact that even though only
confidence levels of 90 % and 95 % are included in Table 1, this pattern continues for all
confidence levels providing strong evidence that the robust models bet more on the three
fundamental factors than the mean-variance model.

4The value of δ does not directly represent confidence levels (90 %, 95 %, etc.). Asset returns are assumed to
follow a normal distribution when setting the confidence interval. For example, a 95 % confidence level for
the box model uses δi = 1.96σi/

√
T , where T is the sample size (Fabozzi et al. 2007a, 2007b, 2010). For

the ellipsoid model, we assume the square of estimation error δ2 follows a χ2 distribution with degrees of
freedom as the number of assets in the portfolio (Fabozzi et al. 2007a, 2007b, 2010).
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Table 1 R2 values for MV, R1, and R2 formed under no constraints

λ Confidence 5-year 3-year 1-year

MV R1 R2 MV R1 R2 MV R1 R2

0 – 0.1621 0.1638 0.1621 0.1962 0.1934 0.1962 0.2224 0.2211 0.2224

0.01 90 % 0.3572 0.3872 0.4439 0.3783 0.4370 0.5028 0.3674 0.4593 0.5242

95 % 0.3965 0.4477 0.4517 0.5065 0.4789 0.5290

0.03 90 % 0.5174 0.5687 0.6495 0.4933 0.6091 0.6963 0.3417 0.5831 0.6999

95 % 0.5832 0.6540 0.6261 0.7013 0.6112 0.7067

0.05 90 % 0.5427 0.6338 0.7241 0.4854 0.6594 0.7583 0.2875 0.6086 0.7640

95 % 0.6513 0.7289 0.6762 0.7634 0.6362 0.7709

0.07 90 % 0.5343 0.6659 0.7622 0.4569 0.6789 0.7887 0.2486 0.6063 0.7960

95 % 0.6843 0.7672 0.6968 0.7939 0.6343 0.8029

0.09 90 % 0.5159 0.6818 0.7859 0.4272 0.6843 0.8073 0.2201 0.5958 0.8147

95 % 0.7002 0.7911 0.7035 0.8126 0.6265 0.8215

Maximum
Sharpe ratio

90 % 0.4251 0.6497 0.8423
0.0021

0.4968 0.8356 0.0015 0.1569 0.6574

95 % 0.6797 0.8481 0.6303 0.8434 0.2402 0.6909

We also look at the mean-variance portfolio with maximum Sharpe ratio. In order to
properly compare portfolios taking the same risk level in both models, the value of λ that
maximizes the Sharpe ratio in the mean-variance framework is used when forming the cor-
responding robust portfolios. As shown in the last row of Table 1, there is a noticeable
difference between the R2 values for regression analysis on the return series using the Fama-
French three-factor model. Compared with the R2 value in the mean-variance framework,
the R2 values in the robust models when assuming confidence intervals of 90 % and 95 %
for the parameter distribution are both significantly higher. Particularly, R2 having uncer-
tainty set as an ellipsoid has the highest correlation with R2 values greater than 0.8. R1 with
uncertainty set as a box shows R2 values not as high as R2 but values over 0.6, which is a
meaningful increase from MV. The difference in correlation is larger for shorter rebalancing
periods; the coefficient of determination is less than 0.002 for MV but at least 0.1 and up to
0.7 for R1 and R2 when using a 1-year rebalancing period. These findings coincide with the
preliminary conclusion from Table 1 that the robust equity portfolios depend more on the
Fama-French three factors.

We test further to see how the robust equity portfolios behave depending on their ro-
bustness. Portfolio optimization constructs more robust portfolios as the confidence level
increases. We run the optimization with confidence levels from 1 % to 99 % with 10 % in-
crements. As reported in Tables 2 and 3, the R2 value shows a steady rise as the confidence
increases for a fixed value of λ. The results show high statistical significance as most of the
p-values of regression coefficients are significant at the 5 % level. For example, Panel A of
Table 3 has an R2 value around 0.36 at a confidence level of 0 % but constantly increases
to 0.42 at a confidence level of 99 %, and all coefficients for the three factors show signifi-
cance at the 1 % level. Tables 2 and 3 also include R2 values from performing simple linear
regression between each Fama-French factor and the portfolio returns; we use the R2 values
to investigate how much of the portfolio returns are explained by a single factor. We find that
not only does the correlation from the three-factor regression increase with robustness, but
robustness also leads to an increase in the correlation from simple regression between the
robust portfolio return and each fundamental factor (i.e., market return, SMB, and HML).
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Table 2 β and R2 values for R1 under no constraints using a 5-year rebalancing period

Confi-
dence

βM βSMB βHML R2 Confi-
dence

βM βSMB βHML R2

Panel A. Value of λ is set to 0.01 Panel B. Value of λ is set to 0.03

0 % 0.6493∗∗ 0.0766∗∗ 0.1921∗∗ 0.3576 0 % 0.7639∗∗ 0.0423∗∗ 0.1430∗∗ 0.5179

(0.3227) (0.0058) (0.0008) (0.4995) (0.0178) (0.0131)

1 % 0.6467∗∗ 0.0757∗∗ 0.1950∗∗ 0.3546 1 % 0.7643∗∗ 0.0427∗∗ 0.1441∗∗ 0.5181

(0.3189) (0.0059) (0.0006) (0.4994) (0.0177) (0.0128)

10 % 0.6506∗∗ 0.0752∗∗ 0.1903∗∗ 0.3594 10 % 0.7648∗∗ 0.0408∗∗ 0.1432∗∗ 0.5196

(0.3253) (0.0060) (0.0009) (0.5012) (0.0183) (0.0131)

20 % 0.6466∗∗ 0.0765∗∗ 0.1928∗∗ 0.3545 20 % 0.7658∗∗ 0.0383∗∗ 0.1420∗∗ 0.5219

(0.3194) (0.0057) (0.0007) (0.5039) (0.0190) (0.0134)

30 % 0.6527∗∗ 0.0760∗∗ 0.1920∗∗ 0.3615 30 % 0.7678∗∗ 0.0349∗∗ 0.1411∗∗ 0.5259

(0.3268) (0.0060) (0.0009) (0.5082) (0.0201) (0.0137)

40 % 0.6530∗∗ 0.0741∗∗ 0.1905∗∗ 0.3623 40 % 0.7677∗∗ 0.0322∗∗ 0.1421∗∗ 0.5263

(0.3282) (0.0063) (0.0010) (0.5085) (0.0208) (0.0135)

50 % 0.6528∗∗ 0.0716∗∗ 0.1912∗∗ 0.3624 50 % 0.7702∗∗ 0.0310∗∗ 0.1421∗∗ 0.5303

(0.3283) (0.0067) (0.0009) (0.5125) (0.0213) (0.0136)

60 % 0.6577∗∗ 0.0706∗∗ 0.1899∗∗ 0.3683 60 % 0.7722∗∗ 0.0270∗∗ 0.1419∗∗ 0.5343

(0.3347) (0.0070) (0.0011) (0.5167) (0.0226) (0.0138)

70 % 0.6620∗∗ 0.0679∗∗ 0.1881∗∗ 0.3739 70 % 0.7762∗∗ 0.0239∗∗ 0.1419∗∗ 0.5410

(0.3412) (0.0076) (0.0013) (0.5234) (0.0239) (0.0141)

80 % 0.6678∗∗ 0.0668∗∗ 0.1878∗∗ 0.3809 80 % 0.7825∗∗ 0.0190∗∗ 0.1400∗∗ 0.5522

(0.3484) (0.0080) (0.0015) (0.5351) (0.0258) (0.0150)

90 % 0.6725∗∗ 0.0633∗∗ 0.1872∗∗ 0.3872 90 % 0.7918∗∗ 0.0132 0.1369∗∗ 0.5687

(0.3551) (0.0089) (0.0016) (0.5523) (0.0284) (0.0165)

95 % 0.6797∗∗ 0.0597∗∗ 0.1872∗∗ 0.3965 95 % 0.7996∗∗ 0.0076 0.1330∗∗ 0.5832

(0.3647) (0.0099) (0.0018) (0.5677) (0.0308) (0.0181)

99 % 0.6945∗∗ 0.0524∗∗ 0.1832∗∗ 0.4166 99 % 0.8159∗∗ −0.0015 0.1250∗∗ 0.6137

(0.3865) (0.0121) (0.0026) (0.5998) (0.0353) (0.0218)

Panel C. Value of λ is set to 0.05 Panel D. Value of λ is set to 0.07

0 % 0.7739∗∗ 0.0266∗∗ 0.1180∗∗ 0.5431 0 % 0.7634∗∗ 0.0189∗∗ 0.1048∗∗ 0.5341

(0.5308) (0.0225) (0.0201) (0.5245) (0.0240) (0.0229)

1 % 0.7744∗∗ 0.0273∗∗ 0.1194∗∗ 0.5431 1 % 0.7637∗∗ 0.0187∗∗ 0.1050∗∗ 0.5346

(0.5305) (0.0224) (0.0198) (0.5249) (0.0241) (0.0229)

10 % 0.7772∗∗ 0.0237∗∗ 0.1185∗∗ 0.5487 10 % 0.7700∗∗ 0.0138∗ 0.1044∗∗ 0.5454

(0.5364) (0.0237) (0.0203) (0.5359) (0.0261) (0.0236)

20 % 0.7813∗∗ 0.0186∗∗ 0.1170∗∗ 0.5568 20 % 0.7781∗∗ 0.0083 0.1056∗∗ 0.5588

(0.5448) (0.0255) (0.0210) (0.5490) (0.0285) (0.0240)

30 % 0.7851∗∗ 0.0144∗ 0.1177∗∗ 0.5635 30 % 0.7826∗∗ 0.0040 0.1046∗∗ 0.5673

(0.5514) (0.0272) (0.0211) (0.5577) (0.0303) (0.0247)

40 % 0.7878∗∗ 0.0119 0.1179∗∗ 0.5682 40 % 0.7862∗∗ −0.0005 0.1038∗∗ 0.5745

(0.5561) (0.0282) (0.0213) (0.5649) (0.0321) (0.0253)

50 % 0.7913∗∗ 0.0082 0.1178∗∗ 0.5749 50 % 0.7927∗∗ −0.0030 0.1038∗∗ 0.5853

(0.5627) (0.0297) (0.0216) (0.5756) (0.0336) (0.0259)
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Table 2 (Continued)

Confi-
dence

βM βSMB βHML R2 Confi-
dence

βM βSMB βHML R2

60 % 0.7970∗∗ 0.0056 0.1177∗∗ 0.5844 60 % 0.8018∗∗ −0.0046 0.1027∗∗ 0.6001

(0.5722) (0.0311) (0.0222) (0.5906) (0.0349) (0.0272)

70 % 0.8035∗∗ 0.0037 0.1177∗∗ 0.5949 70 % 0.8131∗∗ −0.0059 0.1026∗∗ 0.6180

(0.5827) (0.0323) (0.0228) (0.6085) (0.0363) (0.0285)

80 % 0.8135∗∗ −0.0005 0.1157∗∗ 0.6124 80 % 0.8253∗∗ −0.0085 0.1006∗∗ 0.6389

(0.6005) (0.0346) (0.0244) (0.6297) (0.0383) (0.0306)

90 % 0.8253∗∗ −0.0056 0.1125∗∗ 0.6338 90 % 0.8401∗∗ −0.0130∗ 0.0969∗∗ 0.6659

(0.6224) (0.0374) (0.0266) (0.6571) (0.0414) (0.0336)

95 % 0.8344∗∗ −0.0100 0.1089∗∗ 0.6513 95 % 0.8502∗∗ −0.0160∗∗ 0.0951∗∗ 0.6843

(0.6403) (0.0399) (0.0287) (0.6757) (0.0435) (0.0355)

99 % 0.8502∗∗ −0.0143∗ 0.1060∗∗ 0.6795 99 % 0.8646∗∗ −0.0174∗∗ 0.0974∗∗ 0.7078

(0.6690) (0.0430) (0.0315) (0.6987) (0.0455) (0.0364)

For each confidence level, β and R2 values are shown, and significance at the 1 % and 5 % levels are given

by ∗∗ and ∗, respectively. R2 value from simple linear regression representing the relationship between a
single factor and portfolio returns is shown in parenthesis

Table 3 β and R2 values for R2 under no constraints using a 5-year rebalancing period

Confi-
dence

βM βSMB βHML R2 Confi-
dence

βM βSMB βHML R2

Panel A. Value of λ is set to 0.01 Panel B. Value of λ is set to 0.03

0 % 0.6493∗∗ 0.0766∗∗ 0.1921∗∗ 0.3576 0 % 0.7639∗∗ 0.0423∗∗ 0.1430∗∗ 0.5179

(0.3227) (0.0058) (0.0008) (0.4995) (0.0178) (0.0131)

1 % 0.6937∗∗ 0.0589∗∗ 0.1824∗∗ 0.4143 1 % 0.8148∗∗ 0.0164∗ 0.1248∗∗ 0.6056

(0.3840) (0.0106) (0.0027) (0.5920) (0.0288) (0.0220)

10 % 0.7000∗∗ 0.0569∗∗ 0.1809∗∗ 0.4227 10 % 0.8216∗∗ 0.0152∗ 0.1209∗∗ 0.6178

(0.3931) (0.0113) (0.0031) (0.6051) (0.0297) (0.0238)

20 % 0.7029∗∗ 0.0561∗∗ 0.1801∗∗ 0.4266 20 % 0.8246∗∗ 0.0146∗ 0.1192∗∗ 0.6232

(0.3973) (0.0116) (0.0033) (0.6108) (0.0301) (0.0247)

30 % 0.7047∗∗ 0.0555∗∗ 0.1796∗∗ 0.4291 30 % 0.8267∗∗ 0.0141∗ 0.1180∗∗ 0.6270

(0.3999) (0.0118) (0.0034) (0.6149) (0.0304) (0.0253)

40 % 0.7062∗∗ 0.0552∗∗ 0.1791∗∗ 0.4312 40 % 0.8287∗∗ 0.0137∗ 0.1170∗∗ 0.6305

(0.4021) (0.0120) (0.0035) (0.6186) (0.0307) (0.0258)

50 % 0.7078∗∗ 0.0549∗∗ 0.1787∗∗ 0.4333 50 % 0.8304∗∗ 0.0136∗ 0.1161∗∗ 0.6337

(0.4044) (0.0121) (0.0037) (0.6219) (0.0308) (0.0263)

60 % 0.7096∗∗ 0.0544∗∗ 0.1781∗∗ 0.4357 60 % 0.8320∗∗ 0.0132∗ 0.1150∗∗ 0.6367

(0.4070) (0.0123) (0.0038) (0.6251) (0.0311) (0.0268)

70 % 0.7109∗∗ 0.0541∗∗ 0.1779∗∗ 0.4375 70 % 0.8338∗∗ 0.0127∗ 0.1140∗∗ 0.6400

(0.4090) (0.0124) (0.0039) (0.6287) (0.0314) (0.0273)

In fact, plotting the yearly returns and standard deviations from the in-sample test with
various confidence levels, we see that the portfolios with higher confidence tend to move
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Table 3 (Continued)

Confi-
dence

βM βSMB βHML R2 Confi-
dence

βM βSMB βHML R2

80 % 0.7129∗∗ 0.0536∗∗ 0.1773∗∗ 0.4402 80 % 0.8359∗∗ 0.0122∗ 0.1127∗∗ 0.6440

(0.4119) (0.0126) (0.0040) (0.6329) (0.0317) (0.0280)

90 % 0.7156∗∗ 0.0528∗∗ 0.1765∗∗ 0.4439 90 % 0.8389∗∗ 0.0117 0.1108∗∗ 0.6495

(0.4159) (0.0129) (0.0042) (0.6388) (0.0321) (0.0290)

95 % 0.7182∗∗ 0.0519∗∗ 0.1755∗∗ 0.4477 95 % 0.8412∗∗ 0.0111 0.1092∗∗ 0.6540

(0.4200) (0.0133) (0.0045) (0.6436) (0.0325) (0.0297)

99 % 0.7224∗∗ 0.0507∗∗ 0.1743∗∗ 0.4536 99 % 0.8456∗∗ 0.0102 0.1064∗∗ 0.6624

(0.4262) (0.0138) (0.0048) (0.6525) (0.0331) (0.0312)

Panel C. Value of λ is set to 0.05 Panel D. Value of λ is set to 0.07

0 % 0.7739∗∗ 0.0266∗∗ 0.1180∗∗ 0.5431 0 % 0.7634∗∗ 0.0189∗∗ 0.1048∗∗ 0.5341

(0.5308) (0.0225) (0.0201) (0.5245) (0.0240) (0.0229)

1 % 0.8454∗∗ −0.0019 0.0960∗∗ 0.6703 1 % 0.8585∗∗ −0.0130∗ 0.0804∗∗ 0.7025

(0.6621) (0.0374) (0.0348) (0.6963) (0.0427) (0.0424)

10 % 0.8539∗∗ −0.0035 0.0916∗∗ 0.6867 10 % 0.8684∗∗ −0.0136∗ 0.0755∗∗ 0.7215

(0.6791) (0.0387) (0.0375) (0.7160) (0.0438) (0.0458)

20 % 0.8576∗∗ −0.0041 0.0897∗∗ 0.6937 20 % 0.8724∗∗ −0.0139∗∗ 0.0735∗∗ 0.7292

(0.6865) (0.0393) (0.0387) (0.7240) (0.0443) (0.0473)

30 % 0.8600∗∗ −0.0044 0.0882∗∗ 0.6984 30 % 0.8751∗∗ −0.0139∗∗ 0.0719∗∗ 0.7345

(0.6914) (0.0396) (0.0396) (0.7295) (0.0445) (0.0484)

40 % 0.8620∗∗ −0.0047 0.0870∗∗ 0.7024 40 % 0.8773∗∗ −0.0142∗∗ 0.0708∗∗ 0.7390

(0.6955) (0.0398) (0.0404) (0.7341) (0.0448) (0.0492)

50 % 0.8639∗∗ −0.0049 0.0858∗∗ 0.7061 50 % 0.8794∗∗ −0.0143∗∗ 0.0696∗∗ 0.7431

(0.6994) (0.0400) (0.0411) (0.7384) (0.0450) (0.0500)

60 % 0.8658∗∗ −0.0052 0.0847∗∗ 0.7098 60 % 0.8813∗∗ −0.0143∗∗ 0.0684∗∗ 0.7470

(0.7033) (0.0403) (0.0418) (0.7424) (0.0452) (0.0509)

70 % 0.8677∗∗ −0.0056 0.0834∗∗ 0.7136 70 % 0.8835∗∗ −0.0145∗∗ 0.0673∗∗ 0.7512

(0.7073) (0.0406) (0.0426) (0.7468) (0.0454) (0.0517)

80 % 0.8699∗∗ −0.0060 0.0821∗∗ 0.7181 80 % 0.8858∗∗ −0.0145∗∗ 0.0659∗∗ 0.7559

(0.7120) (0.0410) (0.0434) (0.7516) (0.0456) (0.0527)

90 % 0.8728∗∗ −0.0063 0.0799∗∗ 0.7241 90 % 0.8889∗∗ −0.0145∗∗ 0.0639∗∗ 0.7622

(0.7183) (0.0413) (0.0448) (0.7581) (0.0459) (0.0541)

95 % 0.8752∗∗ −0.0067 0.0784∗∗ 0.7289 95 % 0.8914∗∗ −0.0146∗∗ 0.0627∗∗ 0.7672

(0.7233) (0.0416) (0.0457) (0.7633) (0.0461) (0.0550)

99 % 0.8794∗∗ −0.0069 0.0752∗∗ 0.7376 99 % 0.8957∗∗ −0.0145∗∗ 0.0601∗∗ 0.7760

(0.7325) (0.0420) (0.0477) (0.7724) (0.0465) (0.0569)

For each confidence level, β and R2 values are shown, and significance at the 1 % and 5 % levels are given

by ∗∗ and ∗, respectively. R2 value from simple linear regression representing the relationship between a
single factor and portfolio returns is shown in parenthesis

towards the lower-left direction on the mean-variance plane. In Markowitz’s mean-variance
plane, portfolios towards the lower-left are risk-averse portfolios and ones towards the upper-
right are risk-seeking portfolios. Each curve in Fig. 3 represents R1 portfolios with the same
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Fig. 3 R1 portfolios with no
constraints with various
confidence levels (for λ = 0.1).
Connected dots are portfolios
formed with identical data.
Circles towards the left-bottom
are portfolios with confidence
99 % and the confidence level
decreases towards the right-top

Fig. 4 R2 portfolios with no
constraints with various
confidence levels (for λ = 0.1).
Connected dots are portfolios
formed with identical data.
Circles towards the left-bottom
are portfolios with confidence
99 % and the confidence level
decreases towards the right-top

value of λ for a specific 5-year period.5 The right-most point for each curve is the portfolio
with 1 % confidence level and the circle towards the lower-left is the portfolio with 99 %
confidence. Therefore, the plot confirms that the robust portfolios which depend more on the
three fundamental factors are the more conservative ones. In fact, the plotted curve shows a
very similar shape to efficient frontiers of the mean-variance model. Figure 4 represents R2
portfolios in the same manner as Fig. 3, and also indicates that more robust portfolios are
plotted towards the left-bottom in the mean-variance plane.

Tables 4 and 5 contain regression coefficients presented in Tables 2 and 3 along with
those obtained using 3-year and 1-year rebalancing periods. We find that for each value of
λ, the coefficient for the market factor always increases as the confidence level increases for

5The first curve uses return data from 1970 to 1974, the second curve uses return data from 1975–1979, and
so on.
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Table 4 Values of β for Fama-French three factors under no constraints for R1

λ Confi-
dence

5-year 3-year 1-year

βM βSMB βHML βM βSMB βHML βM βSMB βHML

0.01 10 % 0.6506 0.0752 0.1903 0.6989 0.0660 0.2332 0.6546 0.0730 0.1424

30 % 0.6527 0.0760 0.1920 0.7041 0.0660 0.2344 0.6660 0.0722 0.1454

50 % 0.6528 0.0716 0.1912 0.7162 0.0676 0.2384 0.6803 0.0704 0.1482

70 % 0.6620 0.0679 0.1881 0.7284 0.0663 0.2403 0.6981 0.0682 0.1512

90 % 0.6725 0.0633 0.1872 0.7473 0.0637 0.2458 0.7258 0.0620 0.1505

0.03 10 % 0.7648 0.0408 0.1432 0.7761 0.0456 0.1695 0.6366 0.0600 0.1043

30 % 0.7678 0.0349 0.1411 0.7919 0.0465 0.1789 0.6721 0.0544 0.1134

50 % 0.7702 0.0310 0.1421 0.8119 0.0459 0.1903 0.7101 0.0488 0.1226

70 % 0.7762 0.0239 0.1419 0.8317 0.0432 0.1991 0.7524 0.0426 0.1261

90 % 0.7918 0.0132 0.1369 0.8564 0.0354 0.1998 0.8025 0.0310 0.1220

0.05 10 % 0.7772 0.0237 0.1185 0.7645 0.0379 0.1385 0.5899 0.0539 0.0890

30 % 0.7851 0.0144 0.1177 0.7916 0.0357 0.1513 0.6330 0.0442 0.0974

50 % 0.7913 0.0082 0.1178 0.8200 0.0325 0.1639 0.6861 0.0354 0.1082

70 % 0.8035 0.0037 0.1177 0.8491 0.0285 0.1728 0.7487 0.0297 0.1143

90 % 0.8253 −0.0056 0.1125 0.8786 0.0215 0.1725 0.8164 0.0243 0.1146

0.07 10 % 0.7700 0.0138 0.1044 0.7419 0.0332 0.1213 0.5521 0.0515 0.0817

30 % 0.7826 0.0040 0.1046 0.7755 0.0278 0.1344 0.5951 0.0387 0.0876

50 % 0.7927 −0.0030 0.1038 0.8110 0.0234 0.1470 0.6558 0.0279 0.0999

70 % 0.8131 −0.0059 0.1026 0.8480 0.0194 0.1556 0.7338 0.0254 0.1094

90 % 0.8401 −0.0130 0.0969 0.8842 0.0140 0.1556 0.8144 0.0251 0.1115

0.09 10 % 0.7576 0.0081 0.0965 0.7192 0.0304 0.1107 0.5218 0.0504 0.0778

30 % 0.7732 −0.0042 0.0955 0.7557 0.0223 0.1223 0.5633 0.0355 0.0818

50 % 0.7867 −0.0103 0.0928 0.7961 0.0165 0.1340 0.6263 0.0241 0.0952

70 % 0.8131 −0.0111 0.0905 0.8393 0.0125 0.1418 0.7148 0.0231 0.1068

90 % 0.8458 −0.0170 0.0839 0.8823 0.0096 0.1426 0.8075 0.0264 0.1097

both R1 and R2. In other words, as portfolios become more robust, they depend more on the
market portfolio. Similarly, the coefficient for SMB appears to decrease as the confidence
level increases. This implies that the robust equity portfolios depend more on the large factor
as robustness leads to betting on big stocks. We also recognize that the coefficient for HML
tends to decrease as the confidence level increases when using a 5-year rebalancing period.
Although not as clear in shorter rebalancing periods, this pattern indicates that the robust
portfolios invest on the growth factor. Therefore, at least when using a 5-year rebalancing
period, robustness in portfolios leads to betting on the market, large, and growth factors. In
general, unconstrained robust portfolio optimization evidently put more weight on market
and large factors.

Results using non-negative portfolio weights presented in Table 6 exhibit a similar in-
creasing pattern in the R2 value as portfolios become more robust. In agreement with the
findings when there are no constraints, R1 and R2 show a higher correlation than MV for
all values of λ. Moreover, we see that the value of R2 reaches 0.9 for R2 for all three rebal-
ancing periods. Consistently, a high R2 value is shown for both R1 and R2 when comparing
the maximum Sharpe ratio mean-variance portfolio to the corresponding robust portfolios.
Tables 7 and 8 present results under no-shorting constraints that correspond to values in
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Table 5 Values of β for Fama-French three factors under no constraints for R2

λ Confi-
dence

5-year 3-year 1-year

βM βSMB βHML βM βSMB βHML βM βSMB βHML

0.01 10 % 0.7000 0.0569 0.1809 0.7779 0.0671 0.2409 0.7466 0.0641 0.1338

30 % 0.7047 0.0555 0.1796 0.7837 0.0669 0.2401 0.7534 0.0638 0.1320

50 % 0.7078 0.0549 0.1787 0.7878 0.0666 0.2396 0.7580 0.0634 0.1305

70 % 0.7109 0.0541 0.1779 0.7915 0.0667 0.2390 0.7626 0.0630 0.1291

90 % 0.7156 0.0528 0.1765 0.7974 0.0655 0.2380 0.7690 0.0624 0.1267

0.03 10 % 0.8216 0.0152 0.1209 0.8854 0.0412 0.1807 0.8382 0.0438 0.0961

30 % 0.8267 0.0141 0.1180 0.8918 0.0407 0.1784 0.8486 0.0429 0.0922

50 % 0.8304 0.0136 0.1161 0.8961 0.0404 0.1766 0.8551 0.0423 0.0895

70 % 0.8338 0.0127 0.1140 0.9001 0.0402 0.1746 0.8612 0.0416 0.0869

90 % 0.8389 0.0117 0.1108 0.9057 0.0397 0.1717 0.8693 0.0406 0.0831

0.05 10 % 0.8539 −0.0035 0.0916 0.9074 0.0255 0.1483 0.8673 0.0324 0.0835

30 % 0.8600 −0.0044 0.0882 0.9146 0.0253 0.1453 0.8796 0.0317 0.0796

50 % 0.8639 −0.0049 0.0858 0.9191 0.0250 0.1432 0.8870 0.0313 0.0769

70 % 0.8677 −0.0056 0.0834 0.9233 0.0249 0.1411 0.8935 0.0309 0.0743

90 % 0.8728 −0.0063 0.0799 0.9289 0.0247 0.1380 0.9018 0.0304 0.0709

0.07 10 % 0.8684 −0.0136 0.0755 0.9150 0.0153 0.1301 0.8810 0.0256 0.0804

30 % 0.8751 −0.0139 0.0719 0.9231 0.0155 0.1272 0.8951 0.0256 0.0767

50 % 0.8794 −0.0143 0.0696 0.9281 0.0157 0.1252 0.9031 0.0256 0.0742

70 % 0.8835 −0.0145 0.0673 0.9327 0.0160 0.1233 0.9101 0.0256 0.0719

90 % 0.8889 −0.0145 0.0639 0.9387 0.0165 0.1205 0.9185 0.0259 0.0691

0.09 10 % 0.8768 −0.0196 0.0663 0.9184 0.0086 0.1189 0.8881 0.0215 0.0808

30 % 0.8842 −0.0197 0.0630 0.9277 0.0096 0.1164 0.9040 0.0222 0.0772

50 % 0.8889 −0.0196 0.0608 0.9334 0.0104 0.1148 0.9128 0.0227 0.0749

70 % 0.8933 −0.0194 0.0587 0.9385 0.0113 0.1132 0.9202 0.0233 0.0729

90 % 0.8992 −0.0187 0.0560 0.9450 0.0126 0.1110 0.9290 0.0243 0.0705

Tables 2 and 3. The R2 values display an increasing trend as the confidence level increases
for all values of λ for both R1 and R2. In addition, it appears that the robust models under
no-shorting constraints also bet more on the market portfolio as robustness increases; the co-
efficient for the market return mostly increases as the confidence level increases. However,
trends in the coefficients for the other two Fama-French factors are not as notable as in the
case where there is an absence of restrictions on the weights. In summary, even when restric-
tions on portfolio weights are imposed, the empirical results under no-shorting constraints
agree with our finding that the robust equity portfolios depend more on the Fama-French
three factors.

5.2 Security-level results

Consistent with our industry-level analysis, the security-level results from the 40 samples
also show that robust portfolios are more dependent on the three Fama-French factors than
the mean-variance portfolios. Figure 5 displays the R2 value for MV, R1, and R2 when the
value of λ is set to 0.03 and 0.07 with a confidence level of 95 % under no constraints.
We clearly observe the following pattern for the 40 samples: R2 has the highest correlation
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Table 6 R2 values for MV, R1, and R2 formed under no-shorting constraints

λ Confi-
dence

5-year 3-year 1-year

MV R1 R2 MV R1 R2 MV R1 R2

0 – 0.7705 0.7705 0.7705 0.7617 0.7617 0.7617 0.7586 0.7586 0.7586

0.1 90 %
0.7258

0.7546 0.8787 0.6876 0.7380 0.8851 0.6334 0.6707 0.8923

95 % 0.7556 0.8800 0.7412 0.8865 0.6748 0.8936

0.2 90 %
0.6644

0.7214 0.8917 0.6124 0.6961 0.8944 0.5424 0.6097 0.9030

95 % 0.7253 0.8929 0.7066 0.8957 0.6163 0.9043

0.3 90 %
0.6180

0.6783 0.8970 0.5524 0.6460 0.8973 0.4827 0.5700 0.9069

95 % 0.6862 0.8982 0.6576 0.8987 0.5840 0.9082

0.4 90 %
0.5867

0.6424 0.8997 0.5102 0.6070 0.8987 0.4431 0.5412 0.9089

95 % 0.6508 0.9009 0.6239 0.9001 0.5614 0.9102

0.5 90 %
0.5679

0.6145 0.9013 0.4814 0.5732 0.8995 0.4146 0.5180 0.9101

95 % 0.6225 0.9025 0.5960 0.9009 0.5441 0.9114

Maximum
Sharpe ratio

90 %
0.6537

0.7113 0.9047 0.5285 0.6462 0.9037 0.5109 0.5902 0.9105

95 % 0.7136 0.9056 0.6675 0.9049 0.6117 0.9116

Table 7 β and R2 values for R1 under no-shorting constraints using a 5-year rebalancing period

Confi-
dence

βM βSMB βHML R2 Confi-
dence

βM βSMB βHML R2

Panel A. Value of λ is set to 0.1 Panel B. Value of λ is set to 0.2

0 % 0.8643∗∗ 0.0084 0.0332∗∗ 0.7258 0 % 0.7999∗∗ −0.0147∗ −0.0338∗∗ 0.6644

(0.7248) (0.0340) (0.0656) (0.6633) (0.0362) (0.0903)

1 % 0.8643∗∗ 0.0093 0.0331∗∗ 0.7255 1 % 0.8003∗∗ −0.0146∗ −0.0338∗∗ 0.6652

(0.8601) (0.0415) (0.0738) (0.8732) (0.0424) (0.0816)

10 % 0.8670∗∗ 0.0087 0.0359∗∗ 0.7288 10 % 0.8035∗∗ −0.0153∗∗ −0.0321∗∗ 0.6694

(0.8656) (0.0415) (0.0742) (0.8800) (0.0428) (0.0813)

20 % 0.8699∗∗ 0.0086 0.0392∗∗ 0.7322 20 % 0.8071∗∗ −0.0157∗∗ −0.0304∗∗ 0.6745

(0.8677) (0.0415) (0.0743) (0.8820) (0.0427) (0.0811)

30 % 0.8726∗∗ 0.0088 0.0423∗∗ 0.7352 30 % 0.8106∗∗ −0.0158∗∗ −0.0285∗∗ 0.6792

(0.8692) (0.0415) (0.0744) (0.8835) (0.0427) (0.0809)

40 % 0.8757∗∗ 0.0050 0.0395∗∗ 0.7434 40 % 0.8147∗∗ −0.0158∗∗ −0.0263∗∗ 0.6846

(0.8704) (0.0415) (0.0745) (0.8846) (0.0426) (0.0808)

50 % 0.8782∗∗ 0.0048 0.0426∗∗ 0.7462 50 % 0.8191∗∗ −0.0161∗∗ −0.0235∗∗ 0.6904

(0.8715) (0.0415) (0.0745) (0.8857) (0.0426) (0.0807)

60 % 0.8800∗∗ 0.0061 0.0505∗∗ 0.7448 60 % 0.8250∗∗ −0.0170∗∗ −0.0208∗∗ 0.6989

(0.8726) (0.0414) (0.0746) (0.8867) (0.0425) (0.0806)

70 % 0.8832∗∗ 0.0058 0.0550∗∗ 0.7484 70 % 0.8311∗∗ −0.0170∗∗ −0.0161∗∗ 0.7063

(0.8737) (0.0414) (0.0746) (0.8878) (0.0425) (0.0805)

80 % 0.8860∗∗ 0.0048 0.0607∗∗ 0.7508 80 % 0.8382∗∗ −0.0174∗∗ −0.0094 0.7147

(0.8749) (0.0414) (0.0747) (0.8890) (0.0424) (0.0804)
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Table 7 (Continued)

Confi-
dence

βM βSMB βHML R2 Confi-
dence

βM βSMB βHML R2

90 % 0.8896∗∗ 0.0023 0.0682∗∗ 0.7546 90 % 0.8467∗∗ −0.0160∗∗ 0.0029 0.7214

(0.8769) (0.0418) (0.0750) (0.8904) (0.0423) (0.0802)

95 % 0.8913∗∗ −0.0011 0.0755∗∗ 0.7556 95 % 0.8426∗∗ −0.0143∗∗ 0.0130∗ 0.7253

(0.8782) (0.0417) (0.0750) (0.8917) (0.0422) (0.0801)

99 % 0.8903∗∗ −0.0076∗ 0.0866∗∗ 0.7518 99 % 0.8621∗∗ −0.0120∗ 0.0310∗∗ 0.7312

(0.8806) (0.0413) (0.0757) (0.8937) (0.0421) (0.0798)

Panel C. Value of λ is set to 0.3 Panel D. Value of λ is set to 0.4

0 % 0.7639∗∗ −0.0162∗ −0.0512∗∗ 0.6180 0 % 0.7455∗∗ −0.0092 −0.0512∗∗ 0.5870

(0.6156) (0.0335) (0.0935) (0.5847) (0.0295) (0.0900)

1 % 0.7641∗∗ −0.0164∗∗ −0.0513∗∗ 0.6185 1 % 0.7457∗∗ −0.0095 −0.0514∗∗ 0.5874

(0.8792) (0.0429) (0.0838) (0.8814) (0.0427) (0.0847)

10 % 0.7657∗∗ −0.0190∗∗ −0.0517∗∗ 0.6222 10 % 0.7466∗∗ −0.0128 −0.0532∗∗ 0.5911

(0.8852) (0.0427) (0.0829) (0.8876) (0.0426) (0.0836)

20 % 0.7678∗∗ −0.0211∗∗ −0.0523∗∗ 0.6267 20 % 0.7475∗∗ −0.0164∗ −0.0553∗∗ 0.5951

(0.8874) (0.0427) (0.0825) (0.8899) (0.0425) (0.0832)

30 % 0.7702∗∗ −0.0231∗∗ −0.0523∗∗ 0.6313 30 % 0.7482∗∗ −0.0201∗∗ −0.0578∗∗ 0.5990

(0.8888) (0.0426) (0.0823) (0.8914) (0.0424) (0.0829)

40 % 0.7734∗∗ −0.0249∗∗ −0.0518∗∗ 0.6367 40 % 0.7485∗∗ −0.0237∗∗ −0.0605∗∗ 0.6025

(0.8900) (0.0425) (0.0821) (0.8926) (0.0424) (0.0826)

50 % 0.7771∗∗ −0.0266∗∗ −0.0511∗∗ 0.6427 50 % 0.7494∗∗ −0.0271∗∗ −0.0628∗∗ 0.6066

(0.8911) (0.0425) (0.0819) (0.8937) (0.0423) (0.0824)

60 % 0.7819∗∗ −0.0279∗∗ −0.0492∗∗ 0.6499 60 % 0.7519∗∗ −0.0294∗∗ −0.0640∗∗ 0.6121

(0.8921) (0.0424) (0.0817) (0.8948) (0.0423) (0.0822)

70 % 0.7879∗∗ −0.0281∗∗ −0.0467∗∗ 0.6581 70 % 0.7574∗∗ −0.0302∗∗ −0.0630∗∗ 0.6205

(0.8931) (0.0424) (0.0815) (0.8958) (0.0422) (0.0820)

80 % 0.7949∗∗ −0.0280∗∗ −0.0430∗∗ 0.6670 80 % 0.7652∗∗ −0.0301∗∗ −0.0598∗∗ 0.6307

(0.8943) (0.0423) (0.0813) (0.8970) (0.0421) (0.0817)

90 % 0.8053∗∗ −0.0254∗∗ −0.0353∗∗ 0.6783 90 % 0.7752∗∗ −0.0289∗∗ −0.0541∗∗ 0.6424

(0.8958) (0.0422) (0.0811) (0.8985) (0.0420) (0.0814)

95 % 0.8144∗∗ −0.0215∗∗ −0.0259∗∗ 0.6862 95 % 0.7839∗∗ −0.0255∗∗ −0.0472∗∗ 0.6508

(0.8970) (0.0421) (0.0809) (0.8997) (0.0419) (0.0812)

99 % 0.8269∗∗ −0.0143∗ −0.0012 0.6899 99 % 0.7992∗∗ −0.0181∗∗ −0.0219∗∗ 0.6575

(0.8990) (0.0419) (0.0805) (0.9017) (0.0418) (0.0807)

For each confidence level, β and R2 values are shown, and significance at the 1 % and 5 % levels are given

by ∗∗ and ∗, respectively. R2 value from simple linear regression representing the relationship between a
single factor and portfolio returns is shown in parenthesis

followed by R1, and MV is the least correlated with the three factors. In fact, MV shows the
lowest correlation and R2 shows the highest correlation in all 40 samples in both panels.

Likewise, Fig. 6 exhibits the same structure for the 40 samples under no-shorting con-
straints: the value of R2 decreases in the order of R2, R1, and MV. Although the R2 values
of MV and R1 are lower than the outcomes under no constraints on portfolio weights, the
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Table 8 β and R2 values for R2 under no-shorting constraints using a 5-year rebalancing period

Confi-
dence

βM βSMB βHML R2 Confi-
dence

βM βSMB βHML R2

Panel A. Value of λ is set to 0.1 Panel B. Value of λ is set to 0.2

0 % 0.8142∗∗ −0.0069 0.0294∗∗ 0.6504 0 % 0.7520∗∗ −0.0295∗∗ −0.0483∗∗ 0.6027

(0.6496) (0.0355) (0.0588) (0.6002) (0.0375) (0.0890)

1 % 0.9437∗∗ 0.0073 0.0441∗∗ 0.8618 1 % 0.9458∗∗ 0.0048 0.0308∗∗ 0.8740

(0.8601) (0.0415) (0.0738) (0.8732) (0.0424) (0.0816)

10 % 0.9471∗∗ 0.0080∗ 0.0446∗∗ 0.8674 10 % 0.9500∗∗ 0.0049 0.0326∗∗ 0.8809

(0.8656) (0.0415) (0.0742) (0.8800) (0.0428) (0.0813)

20 % 0.9483∗∗ 0.0083∗ 0.0447∗∗ 0.8695 20 % 0.9516∗∗ 0.0054 0.0336∗∗ 0.8830

(0.8677) (0.0415) (0.0743) (0.8820) (0.0427) (0.0811)

30 % 0.9493∗∗ 0.0086∗ 0.0450∗∗ 0.8710 30 % 0.9527∗∗ 0.0058 0.0342∗∗ 0.8845

(0.8692) (0.0415) (0.0744) (0.8835) (0.0427) (0.0809)

40 % 0.9499∗∗ 0.0087∗ 0.0450∗∗ 0.8721 40 % 0.9535∗∗ 0.0062 0.0347∗∗ 0.8857

(0.8704) (0.0415) (0.0745) (0.8846) (0.0426) (0.0808)

50 % 0.9506∗∗ 0.0089∗ 0.0452∗∗ 0.8733 50 % 0.9543∗∗ 0.0065 0.0352∗∗ 0.8868

(0.8715) (0.0415) (0.0745) (0.8857) (0.0426) (0.0807)

60 % 0.9513∗∗ 0.0091∗ 0.0452∗∗ 0.8744 60 % 0.9551∗∗ 0.0068∗ 0.0356∗∗ 0.8878

(0.8726) (0.0414) (0.0746) (0.8867) (0.0425) (0.0806)

70 % 0.9520∗∗ 0.0093∗ 0.0455∗∗ 0.8755 70 % 0.9559∗∗ 0.0071∗ 0.0361∗∗ 0.8889

(0.8737) (0.0414) (0.0746) (0.8878) (0.0425) (0.0805)

80 % 0.9527∗∗ 0.0094∗∗ 0.0456∗∗ 0.8768 80 % 0.9568∗∗ 0.0076∗ 0.0367∗∗ 0.8901

(0.8749) (0.0414) (0.0747) (0.8890) (0.0424) (0.0804)

90 % 0.9535∗∗ 0.0087∗ 0.0452∗∗ 0.8787 90 % 0.9579∗∗ 0.0080∗ 0.0373∗∗ 0.8917

(0.8769) (0.0418) (0.0750) (0.8904) (0.0423) (0.0802)

95 % 0.9543∗∗ 0.0090∗ 0.0455∗∗ 0.8800 95 % 0.9588∗∗ 0.0085∗ 0.0379∗∗ 0.8929

(0.8782) (0.0417) (0.0750) (0.8917) (0.0422) (0.0801)

99 % 0.9557∗∗ 0.0105∗∗ 0.0448∗∗ 0.8823 99 % 0.9604∗∗ 0.0093∗∗ 0.0389∗∗ 0.8951

(0.8806) (0.0413) (0.0757) (0.8937) (0.0421) (0.0798)

Panel C. Value of λ is set to 0.3 Panel D. Value of λ is set to 0.4

0 % 0.7411∗∗ −0.0236∗∗ −0.0526∗∗ 0.5863 0 % 0.7262∗∗ −0.0145∗ −0.0554∗∗ 0.5622

(0.5836) (0.0343) (0.0895) (0.5595) (0.0298) (0.0885)

1 % 0.9477∗∗ 0.0040 0.0275∗∗ 0.8799 1 % 0.9486∗∗ 0.0045 0.0262∗∗ 0.8820

(0.8792) (0.0429) (0.0838) (0.8814) (0.0427) (0.0847)

10 % 0.9523∗∗ 0.0055 0.0307∗∗ 0.8860 10 % 0.9534∗∗ 0.0061 0.0298∗∗ 0.8884

(0.8852) (0.0427) (0.0829) (0.8876) (0.0426) (0.0836)

20 % 0.9540∗∗ 0.0061 0.0319∗∗ 0.8882 20 % 0.9553∗∗ 0.0067∗ 0.0312∗∗ 0.8907

(0.8874) (0.0427) (0.0825) (0.8899) (0.0425) (0.0832)

30 % 0.9551∗∗ 0.0065 0.0327∗∗ 0.8897 30 % 0.9565∗∗ 0.0072∗ 0.0322∗∗ 0.8923

(0.8888) (0.0426) (0.0823) (0.8914) (0.0424) (0.0829)

40 % 0.9561∗∗ 0.0069∗ 0.0334∗∗ 0.8910 40 % 0.9575∗∗ 0.0076∗ 0.0329∗∗ 0.8936

(0.8900) (0.0425) (0.0821) (0.8926) (0.0424) (0.0826)

50 % 0.9570∗∗ 0.0073∗ 0.0341∗∗ 0.8921 50 % 0.9584∗∗ 0.0079∗ 0.0336∗∗ 0.8947

(0.8911) (0.0425) (0.0819) (0.8937) (0.0423) (0.0824)
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Table 8 (Continued)

Confi-
dence

βM βSMB βHML R2 Confi-
dence

βM βSMB βHML R2

60 % 0.9578∗∗ 0.0076∗ 0.0346∗∗ 0.8931 60 % 0.9592∗∗ 0.0083∗ 0.0343∗∗ 0.8958

(0.8921) (0.0424) (0.0817) (0.8948) (0.0423) (0.0822)

70 % 0.9586∗∗ 0.0080∗ 0.0352∗∗ 0.8942 70 % 0.9601∗∗ 0.0087∗∗ 0.0350∗∗ 0.8969

(0.8931) (0.0424) (0.0815) (0.8958) (0.0422) (0.0820)

80 % 0.9595∗∗ 0.0084∗ 0.0359∗∗ 0.8955 80 % 0.9611∗∗ 0.0091∗∗ 0.0358∗∗ 0.8981

(0.8943) (0.0423) (0.0813) (0.8970) (0.0421) (0.0817)

90 % 0.9608∗∗ 0.0090∗∗ 0.0368∗∗ 0.8970 90 % 0.9623∗∗ 0.0097∗∗ 0.0368∗∗ 0.8997

(0.8958) (0.0422) (0.0811) (0.8985) (0.0420) (0.0814)

95 % 0.9617∗∗ 0.0094∗∗ 0.0375∗∗ 0.8982 95 % 0.9633∗∗ 0.0102∗∗ 0.0375∗∗ 0.9009

(0.8970) (0.0421) (0.0809) (0.8997) (0.0419) (0.0812)

99 % 0.9634∗∗ 0.0103∗∗ 0.0387∗∗ 0.9004 99 % 0.9650∗∗ 0.0110∗∗ 0.0389∗∗ 0.9030

(0.8990) (0.0419) (0.0805) (0.9017) (0.0418) (0.0807)

For each confidence level, β and R2 values are shown, and significance at the 1 % and 5 % levels are given

by ∗∗ and ∗, respectively. R2 value from simple linear regression representing the relationship between a
single factor and portfolio returns is shown in parenthesis

R2 values for R2 are at least 0.7 for all samples under no-shorting constraints. This pattern
of MV having lower correlation with Fama-French factors than R1 and R2 is detected in all
values of λ for both no constraints and no-shorting constraints.

Furthermore, Fig. 7 presents R2 values for several confidence levels for R1 and R2 un-
der no constraints when the value of λ is set to 0.05. Similarly, Fig. 8 presents the same
information under no-shorting constraints when the value of λ is set to 0.3. Observe that
the correlation increases as the portfolio’s robustness is increased; robust portfolios with a
confidence level of 90 % have the highest R2 values, followed by 50 %, and then 10 %.
Particularly for R2, all samples show a strict increase in correlation with the Fama-French
factors as the robustness increases. Although we utilize a sample of 200 stocks, our results
provide strong evidence that our findings at the industry-level are also observed with indi-
vidual securities.

6 Further analysis

We further analyze portfolios MV, R1, and R2 in order to validate our findings on robust
portfolios: we confirm that the robust portfolios in our empirical tests are indeed more ro-
bust, and also look into the diversification levels to show that our results are not an effect
of diversification. Therefore, we first confirm whether R1 and R2 form portfolios that are
relatively more robust compared to MV, and also look for patterns in performance among
the returns of the three portfolios. Second, we examine diversification levels of MV, R1, and
R2 using two diversification measures to check if diversification has any influence on our
empirical results reported in Sect. 5.

6.1 Robustness

Out-of-sample tests are performed on industry-level portfolios to compare the robustness of
MV, R1, and R2. For year t , we create 10 portfolios using one-year data each from year
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Fig. 5 Security-level results: R2 values of 40 samples under no constraints with 95 % confidence

t − 10 to year t − 1. The returns of these 10 portfolios at year t are used to calculate the
robustness and performance for each portfolio. Figures 9 and 10 plot the results when the
value of λ is set to 0.03 and 0.07 with a 95 % confidence level under no constraints on port-
folio weights. Although no clear dominance is observed in the mean return and mean Sharpe
ratio among MV, R1, and R2, the standard deviation of portfolio returns and mean volatil-
ity of portfolios for MV are almost always higher than for both R1 and R2. In fact, higher
values for MV are witnessed for all values of λ. The exact same pattern is observed under
no-shorting constraints—that is, portfolios formed using the mean-variance model produce
more volatile results. Lower standard deviation of returns and mean portfolio volatility indi-
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Fig. 6 Security-level results: R2 values of 40 samples under no-shorting constraints with 95 % confidence

cate that R1 and R2 are less sensitive to changes in the inputs than MV, demonstrating that
they are indeed more robust.

6.2 Diversification

One of the shortcomings of the mean-variance model is its tendency to put much weight on
only a few assets since it searches through corner cases. Therefore, if robust portfolios are
investing in more assets, the higher correlation with fundamental factors that we observe
could be due to diversification. Although Tütüncü and Koenig (2004) find that robust port-
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Fig. 7 Security-level results: R2 values of 40 samples under no constraints for λ = 0.05

folios concentrate on a small set of asset classes, they conclude that a comparison based
on diversification requires an appropriate metric. In order to eliminate the possibility that
our observed patterns are caused by diversification, we compare the level of diversification
among MV, R1, and R2.

Two measures have been used in other empirical studies as a measure of diversification:
(1) the total number of assets in the portfolio and (2) deviation of a portfolio from the market
portfolio. Goetzmann and Kumar (2008) use the first portfolio diversification measure, total
number of assets in the portfolio, as a crude measure of diversification. Since we are using
only 49 industries, for this diversification measure we count the number of industries with
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Fig. 8 Security-level results: R2 values of 40 samples under no-shorting constraints for λ = 0.3

weights having an absolute value of at least 1 %; portfolios with a diversification level of 49
are considered fully diversified.

Blume and Friend (1975) introduced the second portfolio diversification measure: the
deviation of a portfolio from the market portfolio. Since the weight of each security in the
market portfolio would be very small, they approximated this measure with the sum of the
squares of the proportions invested in each stock.

N∑

i=1

(wi − wm)2 =
N∑

i=1

(
wi − 1

Nm

)2

≈
N∑

i=1

w2
i
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Fig. 9 Standard deviation of returns with 95 % confidence. Each point represents standard deviation of
returns of 10 portfolios using one-year data each from year t − 10 to year t − 1 year, respectively

where N is the number of stocks in the portfolio, Nm is the number of stocks in the market
portfolio, wi is the weight given to security i in the portfolio, and wm is the weight given
to a security in the market portfolio. Since we are only using 49 industry-level portfolios in
our case, we approximate this measure of diversification with the deviation from the equal-
weighted portfolio as our second diversification measure,

N∑

i=1

(wi − wm)2 =
49∑

i=1

(
wi − 1

49

)2
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Fig. 10 Mean volatility of portfolios with 95 % confidence. Each point represents mean volatility of returns
of 10 portfolios using one-year data each from year t − 10 to year t − 1 year, respectively

where wi is the weight assigned to industry i. In contrast to the first measure, a sum of
squared differences close to zero indicates well diversified portfolios.

Diversification levels for MV, R1 and R2 with 95 % confidence levels using a 5-year
rebalancing period are summarized in Table 9. In terms of the number of assets in the port-
folio, there is no consistent evidence showing that MV is less diversified than the other two
robust portfolios. In fact, MV portfolios under no constraints have a greater number of se-
curities in their portfolios than the portfolios generated from the two robust models. When
no-shorting constraints are included, MV portfolios invest in a lot less number of securities
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Table 9 Diversification levels for 95 % confidence level using a 5-year rebalancing period

λ Total number of assets Sum of squared deviation

MV R1 R2 MV R1 R2

No
constraints

0.01 40.8 37.1 38.5 0.5602 0.4168 0.3080

0.03 44.9 26.8 37.1 0.7763 0.3657 0.1678

0.05 46.3 20.0 36.3 1.2396 0.3417 0.1131

0.07 47.1 15.9 36.4 1.9538 0.3219 0.0862

0.09 47.1 14.1 36.6 2.9131 0.3085 0.0714

No-shorting
constraints

0.1 11.8 9.8 31.8 0.1163 0.2653 0.0224

0.2 11.1 9.4 34.0 0.1364 0.2372 0.0147

0.3 8.3 7.6 34.3 0.1914 0.2799 0.0134

0.4 6.3 6.0 34.6 0.2628 0.3537 0.0129

0.5 4.8 5.3 34.5 0.3155 0.4178 0.0128

than the no constraints case, but R1 portfolios seem to have similar diversification levels as
MV portfolios. Furthermore, when looking at the second measure of diversification, robust
portfolios seem to be more diversified than MV under no constraint. However, MV is clearly
more diversified than R1 under no-shorting constraints, making it difficult to conclude that
robust portfolios are more diversified than mean-variance portfolios. Deviation for R2 is
much lower than MV and R1, which could be one of the reasons why R2 has a much higher
correlation with the Fama-French factors, especially under no-shorting constraints. Never-
theless, evidence that robust portfolios are not always more diversified allows us to discard
the possibility that diversification is the main reason why robust portfolios show more de-
pendence with fundamental factors.

7 Conclusion

Numerous studies have been conducted on solving the sensitivity problem of the classi-
cal mean-variance portfolio optimization. However, there has been relatively little effort to
understand the characteristics of robust models. One of the notable works on finding the
characteristics of robust portfolios is the mathematical explanation by Kim et al. (2012) to
show how an increase in robustness leads a portfolio to become closer to the portfolio whose
variance is most dependent on factors. In this study, we provide comprehensive support for
their analytic findings and look for characteristics of robust equity portfolios that could fur-
ther explain the behavior of robust models. Our main approach is to perform regression
analysis to investigate the correlation between portfolio returns and fundamental factors as
the robustness of a portfolio increases.

Using the Fama-French three-factor model, we find that as the robustness of a portfolio
increases, the explanatory power for the return series of the three factors in that model in-
creases. First, both robust models which assume the uncertainty set for the expected return
as a box and an ellipsoid show higher R2 values compared with the classical mean-variance
model. Second, as the confidence level increases within the same robust portfolio optimiza-
tion model, the R2 value also increases, providing evidence that an increase in robustness
also increases its dependency to the three fundamental factors. The plot of portfolios with
various confidence levels in the mean-variance framework looks similar to the conventional
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shape of efficient frontiers; the portfolios with higher confidence level are plotted towards
the left-bottom in the mean-variance plane, indicating that more robust portfolios move to-
wards the risk-averse section. Furthermore, we find that an increase in robustness results in
portfolios betting more on the market return. Particularly under no constraints on portfolio
weights, it appears that robust equity portfolios bet on the market and large factors.

From these results, we see that robust portfolio optimization not only reduces its sensi-
tivity to estimate errors but also puts more weight in factors as a side-effect of the process.
We confirm this behavior at an industry level as well as at the individual security level,
and also eliminate the likelihood that diversification of robust models is the sole reason for
the observed patterns. Being more dependent on certain factors means that robust equity
portfolios bet less on individual asset risks. Hence, we carefully suggest that robust equity
portfolios could be more robust than classical mean-variance portfolios partly because they
consistently bet on fundamental factors.
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