
What Do You Get When You Combine a Marine Biologist, a Video Game, and JMP?

The idea for this topic began with Dr. Anderson Mayfield’s discussion on the JMP User Community about

a visualization of coral reef health. Dr. Mayfield is a marine biologist working as an Assistant Scientist at

NOAA and the University of Miami. He studies reef corals and presented in the Earth Day special version

of JMP On Air. He is also presenting in this Discovery Summit on Predicting the Fate of Reef Corals.

Figure 1 Reef Health Graphic

The circular graphics reminded me of the health monitors or player asset displays you see in video

games hovering over the characters’ heads as they move about the scene. Having some experience in

video game engine development, I thought I could combine that experience with my knowledge of JMP

to find a solution or two. This paper covers these solutions as well as a personal project where I

combined JMP, web development, and another game engine technique to create a web-based 3D

Scatterplot.

Ways to build geo located health monitors in JMP

We essentially want to be able to pack multiple variables into a small geo-referenced space.

Solutions to this were discussed in the JMP User Community post and published to JMP Public. Click on

images below to navigate to the specific JMP Public post.

• Using a custom graphic script:

https://community.jmp.com/t5/Discussions/pie-graphs-heat-maps/td-p/221475
https://community.jmp.com/t5/Discussions/pie-graphs-heat-maps/td-p/221475
https://community.jmp.com/t5/JMP-On-Air/Exploring-the-Reef-Coral-Response-to-Changing-Environments/ta-p/258762
https://community.jmp.com/t5/JMP-On-Air/Exploring-the-Reef-Coral-Response-to-Changing-Environments/ta-p/258762
https://community.jmp.com/t5/Discussions/pie-graphs-heat-maps/td-p/221475

Figure 2 Custom graphics script example on JMP Public

• Using custom maps:

Figure 3 Custom map over contour on JMP Public

•%09https:/public.jmp.com/packages/Using-Bars-to-Display-3-Variables-Over-a/js-p/5d605bce3560ce0d2cafd48b
https://public.jmp.com/packages/Sea-Temperature-Near-Fiji/js-p/5d64597acf28b80f980812ba

To illustrate these techniques, I built a completely fictitious data set of a small school of fish racing from

the Great Barrier Reef to Sidney Australia. In the spirit of the Big Class sample data set, I called this data

set SmallSchool.jmp.

Figure 4 SmallSchool.jmp

The Race script in the table is a bivariate plot of lat by long to position the rows on the map.

Figure 5 Bivariate plot

This data set and any other files mentioned in this paper are provided in the same JMP User Community

post as this paper so you can use the steps provided below to follow along.

Custom Graphics Scripts

A graphics script can be added to any JMP graph. To see an example with the bivariate plot created by

the Race script in SmallSchool.jmp,

1. Right-click and choose Customize form the context menu

2. Press the + button in the Customize Graph dialog shown below

3. Under the Samples drop down, choose Polygon

4. The script is editable. Set the second value (the green component) in Fill Color to 0.0

5. Figure 6 Customize Graph dialog

6. Click Apply. This will draw a semi-transparent triangle in the plot. The vertices are randomly

generated, so you may end up with a sliver of a triangle as shown below:

Figure 7 Sample Graphics Script

7. Click OK

Save the script to the Script Window to show where the Add Graphics Script is added.

1. Red triangle button > Save Script > To Script Window

2. Look for Add Graphics Script

Figure 8 Add Graphics Script function call

We want to replace this script with drawing commands for each point.

1. Run the Race with Health Metric Bars script to see the result we’re after

Figure 9 Health monitor bars

To view the script, right-click on Run Race with Health Metric Bars and choose Edit.

Here is the Add Graphics Script code:

Notice that it uses some constants and a function to draw each bar. These are defined at the top of the

script:

Add Graphics Script(
 4,
 Description("Bars"),
 Transparency(0.7);
 For Each Row(
 // Draw health monitor.
 Pixel Origin(:long, :lat);
 // Draw monitor background.
 Pen Color(BACKGROUND_COLOR);
 Pen Size(21);
 yOffset = -15;
 Pixel Move To(-6, yOffset);
 Pixel Line To(20, yOffset);
 // Health monitor bars.
 Pen Size(4);
 drawBar(-10, :speed, COLOR1);
 drawBar(-15, :strength, COLOR2);
 drawBar(-20, :hunger, COLOR3);
);
)

With some effort and study of the graphics functions available in JSL, you can get the look you need.

Building a custom map

JMP map shape files have a -XY (coordinates) file and a -Name file. For shapes that define states of a

country, the -Name file would contain the name of each state. Custom map files are no different.

The -XY file defines the coordinates of the shapes and the -Name file provides the names of the shapes.

Here’s a minimal custom map example defining two square shapes named weight and height.

// Constants
LIGHTNESS = 0.4;
SATURATION = 0.7;
// Bar colors defined using Hue, Lightness, and Saturation
// values between 0 and 1.
// If you think of the color wheel as a clock,
// the bar colors' hues will be at 1, 4 and 7 O'Clock.
COLOR1 = HLS Color(1 / 12, LIGHTNESS, SATURATION);
COLOR2 = HLS Color(4 / 12, LIGHTNESS, SATURATION);
COLOR3 = HLS Color(7 / 12, LIGHTNESS, SATURATION);
// Bar colors defined using Red, Green, aand Blue values
// between 0 and 1.
BACKGROUND_COLOR = RGB Color(0.3, 0.3, 0.3);
BAR_BACKGROUND_COLOR = RGB Color(0.9, 0.9, 0.9);
// Length and offset are in pixels.
BAR_BACKGROUND_LENGTH = 18;
BAR_X_OFFSET = -4;

// drawBar function draws a horizontal bar at a
// given height y in pixels from pixel origin,
// a given length and color. It also and fills
// in the background in the color specified by
// BAR_BACKGROUND_COLOR color upto the length
// specified by BAR_BACKGROUND_LENGTH.

drawBar = Function({ y, length, color },
 Pen Color(color);
 Pixel Move To(BAR_X_OFFSET, y);
 Pixel Line To(length, y);
 Pen Color(BAR_BACKGROUND_COLOR);
 //Pixel Move To(x, y);
 Pixel Line To(BAR_BACKGROUND_LENGTH, y);
);

https://www.jmp.com/support/help/en/15.2/#page/jmp/graphics-functions.shtml
https://www.jmp.com/support/help/en/15.2/index.shtml#page/jmp/custom-map-files.shtml

Figure 10 Tiny-XY.jmp

Figure 11 Tiny-Name.jmp

The rows don’t need to be labeled in Tiny-XY.jmp but are labeled in this case so that you can run the

Show Points script to see the shapes that are defined. The Show Points script is also only present

for illustration.

1. Open Tiny-XY.jmp and run the Show Points script. It’s a Fit Y By X plot. The arrows will not be

visible, they were added to emphasize that the shapes are constructed in a clockwise direction.

Figure 12 Tiny-XY points labeled

2. Open Tiny-Name.jmp and examine the column info for the Name column

Figure 13 Tiny-Name.jmp Column Info

In the -Name file, the Name column should have a Map Role property with the Map Role set to Shape

Name Definition.

Shape name use is not necessary for the -XY file, but it is necessary in the data set that uses the shapes.

To apply this custom map to Big Class.jmp, stack the weight and height columns.

1. Tables > Stack …

2. Choose height and weight

3. Set Output table name. (Big Class Stacked.jmp)

Figure 14 Stacking weight and height columns

4. Click OK.

5. Save the stacked column table in the same directory as the map files.

Figure 15 Big Class Stacked.jmp

The height and weight columns’ data will be stacked in the Data column and there will be a column

named Label that alternates between height and weight.

To link the Data to the shapes in the custom map files, we need to set the Map Role property on the

Label column:

1. Right-click on the Label column and select Column Properties > Map Role

2. Choose Shape Name Use

3. Click the open table button to select Tiny-Name.jmp

4. Set Shape definition column to Name

Figure 16 Label column's Shape Name Use Map Role

5. Click OK

You should see an asterix (*) next to the Label column in the Columns display (left).

Figure 17 Columns display

To use the custom shape in a Graph Builder plot:

1. Start Graph Builder

2. Drag Label to the Map Shape role

3. Drag Data to the Color role

These red and blue box colors represent the mean of all the weight values(top) and height

values(bottom).

This technique is best if the data values are on the same scale, which is not the case here, but this is just

for illustration purposes.

Figure 18 Using the custom map

To get one map for each student,

1. Drag name into the Wrap role.

2. Click Done

Figure 19 Tiny Custom Shapes applied to Big Class Stacked.jmp

For Tiny-XY.jmp, it was easy to manually enter the coordinates for the two shapes, but for a more

complicated shape, like a shape that will allow us to display five variables, you can use the Custom Map

Creator add-in.

With the Custom Map Creator, you can load an image and trace the shapes you need.

If you don’t already have a picture of the shapes you want, you could create a grid in JMP or any

drawing application that supports it and save it as an image. Then load it into the Custom Map Creator

and trace out the shapes you need. Here’s an example of five shapes within a square.

community.jmp.com/t5/JMP-Add-Ins/Custom-Map-Creator/ta-p/21479
community.jmp.com/t5/JMP-Add-Ins/Custom-Map-Creator/ta-p/21479

Figure 20 Grid, Tracing, and Shape test

The Custom Map Creator is great for organic shapes, but if you need to create points that line up

perfectly or follow a perfectly circular arc, a script to generate the points is more suitable. This was the

case for the complex pie shapes Dr. Mayfield was looking for.

Figure 21 Complex pie shape

One of the reasons we like to avoid circular shapes in data visualization is that it’s harder for us to

understand relative areas in circular shapes than in rectangular shapes, but in this case, all the outer

shapes are the same size. The data are encoded in colors, not the size of the shapes.

Xan Gregg included a script with his solution to the JMP User Community post “How can I make this

polar plot in JMP?”. The script was flexible enough to create a ring with any number of wedges. I just

needed to adjust it to add a center shape to create the script in ComplexPieMaker.jsl.

Figure 22 Complex pie drawing order

https://community.jmp.com/t5/Discussions/How-can-I-make-this-polar-plot-in-JMP/td-p/284530
https://community.jmp.com/t5/Discussions/How-can-I-make-this-polar-plot-in-JMP/td-p/284530

By changing the values of the variables in the script: n shapes; isCentered; nc; inner radius; and outer

radius, you can generate the following shapes:

Figure 23 Shapes generated with ComplexPieMaker.jsl

As demonstrated with Big Class, to prepare the data for displaying within custom shapes, each area of

the complex shape needs to be identified by a shape name. If you stack the columns with the individual

data, the column names can be used as identifiers. If you do this, the shape file will also need to use the

column names for each shape. This is OK if you are only going to use these columns whenever you want

to use this shape file.

If you’re likely to reuse this technique for different column names, you’ll need to use more generic

names in your shape file, like shape1, shape2, … shapeN and add a column in your data set that maps

the data name to the generic shape name. The Complex Pie Maker’s shape names are wedge1, wedge2,

… wedge<n shapes - 1>, and center.

Figure 24 Using ComplexPie 4plus1

Another approach is to use a virtual join from your data set to a table that maps data column names to

generic shape names. This approach will be used below.

SmallSchool.jmp contains three health measurements (strength, speed, hunger) and an overall health

metric. The automatically generated shape files needed to display these four variables are ComplexPie

3plus1-Name.jmp and ComplexPie 3plus1-XY.jmp.

To use this custom map shapes pair with SmallSchool.jmp,

1. Stack speed, strength, hunger and health and output to SmallSchoolStacked.jmp.

Figure 25 Stacking health measures columns

2. Create a table of column names (Data Label) to generic shape names (Shape Name)

3. Right-click on Data Label > Link ID (for use as virtual joined column)

4. Add a Map Role column property to Shape Name

a. Shape Name Use

b. Use the table selector to select ComplexPie 3plus1-Name.jmp

c. Set Shape definition column to Label

d. Click OK

5. Save as Labels.jmp

Figure 26 Labels.jmp

6. In SmallSchoolStacked.jmp, right-click on the Label column and set Link Reference to Labels.jmp

7. Build a graph for each fish:

a. Start Graph Builder

b. Drag Shape Name[Label] into the Map Shape role

c. Drag Data into the Color role

d. Notice that the hover label shows Shape Name[Label]

e. Optional step: Suppress Shape Name[Label] from the hover label

i. Right-click > Hover Label > Hover Label Editor…

ii. Click on Gridlet

iii. Under Delete tab, set Type = Column

iv. Target > Shape Name[Label]

v. Click Add

vi. Click OK

vii. Hover over the graph and notice how the hover label no longer shows Shape

Name[Label]

f. Right-click on the legend and choose Gradient … to change gradient as desired

i. Choose the Green Yellow Red gradient

ii. Reverse Colors so that better health is green

iii. To get one of these per fish, drag the name column into the Wrap role

Figure 27 Health metrics per fish

This graph may be useful as is, but we’ll need to do more with this graph to be able to place the

individual graphics on a map.

Make into Data Table will build a table of images we can use to add to hover labels or use for markers.

1. Squeeze the graph horizontally or stretch vertically to get square cells so the graphics fill the

cells.

Figure 28 Square cells

2. From the red triangle menu, choose Make into Data Table. This will create a table with name

and Graph columns shown below.

3. Right click on the name column and set Link ID (for use as virtual joined column)

4. Save as HealthImages.jmp

Figure 29 HealthImages.jmp

To add these images to hover labels for points on the map,

1. Open SmallShool.jmp. (not the stacked version)

2. Right-click on the name column and set Link Reference to HealthImages.jmp

3. Notice Graph[name] added to the Columns list:

Figure 30 Virtually joined health images

4. Label this column – right-click and choose Label/Unlabel

To Test this:

1. Run the Race script

2. Hover over any fish

3. Need some to stay in place? Pin the hover label with the pin in the top right of the hovel label

Figure 31 Pinned hover label with image

That’s OK, but we want to see health indicators for all the fish at the same time. That’s easily done with

Use for Marker, but we have a minor issue with our health images in HealthImages.jmp. There’s a white

border around the images that we don’t want. To remove it we can set the alpha (opacity) to 0 for gray

and white pixels using this script:

If our script only modified the alpha for white pixels, we would have been left with a gray border.

Fortunately, we’re using a color gradient that doesn’t include any shades of gray. Otherwise, whole

dt = CurrentDataTable();
For Each Row(
 {r, g, b} = dt:Graph[] << getpixels("rgb");
 a = !AND(r == g, g == b);
 dt:Graph[] << setpixels("rgba", {r, g, b, a});
);

sections would become transparent. This script is added to the provided HealthImages.jmp file with the

name Make Transparent.

To set Use for Marker, right-click on Graph[name] in the Columns list and choose Use for Marker.

Figure 32 Use for marker

When you zoom in or out, you can adjust the image sizes by adjusting the marker size (right-click >

Graph > Marker Size). When the images are small, you can use the hover label to see the underlying

data and a larger health monitor image:

Figure 33 Smaller marker size and image in hover label

In the JMP Public graph example with coral health monitors, there’s also a contour showing ocean

temperatures. Here’s how that can be done with SmallSchool if we add some ocean temperature

measures.

1. Add temperature data to the SmallSchool.jmp (SmallSchoolOceanTemps.jmp)

a. I used fictitious, possibly unrealistic data for the sake of demonstration.

2. We don’t have health indicator images for these data, so mark these rows hidden

3. Start Graph Builder

4. Set “Detailed Earth” as the background map.

5. Drag lat into the Y role and long into the X role

6. Click on the Points and Smoother element buttons to remove them

7. Click on the Contour element to add the contour to the graph

8. Drag temp to the Color role

9. Adjust Contour settings:

Figure 34 Contour settings

10. Right-click on the gradient legend and set Transparency to 0.6

11. Shift-click the Points Element button to add Points back on top of the contour

https://public.jmp.com/packages/Sea-Temperature-Near-Fiji/js-p/5d64597acf28b80f980812ba

12. To add the health legend, drag the health column to left side of the color role

Figure 35 Adding a color role for points

13. We don’t want the health color role to affect the contour, so expand the Variables section

under the Contour element settings and uncheck Color health:

Figure 36 Disable health color role for contour

14. Edit the health gradient legend

a. Right-click on the legend and choose Gradient

b. Pick the Green Yellow Red color theme

c. Set Number Of Labels = 4, Minimum = 5, and Maximum = 20

d. Check Reverse Colors

e. Click OK

Figure 37 Gradient settings

15. Bring the health gradient legend to the top and remove lat and Boundary from the legend

a. From the red triangle menu choose Legend Settings…

b. Select health and use the up arrow to move it to the top

c. Uncheck lat and Boundary

Figure 38 Legend settings

d. Click OK

16. Click Graph Builder’s Done button

17. Change Title from “Graph Builder” to “Health and Sea Temperature” (Double click & type this

title)

18. Remove title: “lat vs. long” (Double click & Delete)

19. Zoom in as desired and set marker size as desired (for example, 10)

Figure 39 Contour with health indicators

It would be nice to add a labeled version of the health indicator to let the viewer know what

each section represents.

1. With the file we used to map data labels to shape names (Labels.jmp),

a. Label the Shape Name column

b. Label all the rows

2. Start Graph Builder

a. Drag Shape Name to the Map Shape role

b. Click Done

3. Adjust the size of the image and move the labels if desired.

a. We’re going to want to capture just the graph, so it would make it easier if we

remove the axis ticks.

b. In the Axis Settings dialog for each axis, disable

i. Automatic Tick Marks

ii. Major and Minor Tick Marks and Labels

Figure 40 Removing the axis in Axis Settings

c. If you also remove the title and rename “Graph Builder” to “Health Legend”,

you’ll be left with:

Figure 41 Health legend graph

d. Use the Selection tool (fat plus toolbar button) to select just the graph

e. Right-click over the selected graph and choose Copy

f. Paste the clipboard into an image editor (Paint on Window/Photos on Mac)

g. Save to disk. (PieLegend.PNG)

h. Drag the file from your file browser onto the Health and Sea Temperature

graph. It will be placed in the background initially, so you will need to bring it to

the front.

i. Right-click and choose Customize…

ii. Click the down arrow to move the Picture to the bottom of the drawing

order.

iii. If desired, set the Transparency of the picture to 0.8 to dim the legend

and let some of the underlying graph show through. You can use Apply

before closing the dialog to preview it.

iv. Click OK

i. Drag the legend image to the top right corner.

Figure 42 Shape legend

The complex pie maker script ComplexPieMaker.jsl and custom maps are included with this paper so you

can try this with your own data.

Web 3D Scatterplot

The web version of a 3D scatterplot described here is one of my personal visualization projects. It is also

inspired by video game technology and JMP. It is not a supported JMP feature but may be used as an

example of how to export data from JMP in a format usable by a third-party application.

Here is JMP’s Scatterplot 3D launch dialog with Diamonds Data.jmp:

Figure 43 JMP's Scatterplot 3D launch dialog

It will produce:

Figure 44 Scatterplot 3D with Diamonds Data

Here is a screen shot of the Web 3D Scatterplot of Diamonds Data.jmp displaying the Carat Weight,
Depth, and Price columns colored by the Clarity column:

Figure 45 Web 3D Scatterplot

I built the application using open source JavaScript Libraries.

• Three.JS for 3D drawing

• OrbitControls.js for zooming, panning and rotating the scene

• dat.gui.js for scene customization user interface (top right).

What Is Three.JS?

Three.js is an open source JavaScript library that supports 3D Drawing using WebGL which is a 3D Canvas

Drawing API supported by all modern web browsers. Web GL can be used directly, but Three.js provides

objects that encapsulate some of the boiler plate code needed to build a 3D Web application with Web

GL. It also provides examples and documentation.

What are particle systems?

Particle systems are used by games, simulations and visualizations to provide effects such as fire, smoke,

fireworks, and clouds. Usually, they provide dynamic behavior allowing the particles to move over time.

They often use textures or sprites for 3D points in a scene to add more detail in an efficient way. In some

cases, it’s desirable to have the textures rotate as the scene rotates to constantly face the front.

http://johnp3d.github.io/scatterplot/scatterplot.html
https://threejs.org/
https://github.com/mrdoob/three.js/blob/master/examples/jsm/controls/OrbitControls.js
https://github.com/dataarts/dat.gui

If the geometry for each of the spheres in this scene were generated and shaded with a light source, this

3D Scatterplot wouldn’t rotate smoothly in a web browser running on a low powered device. With the

help of particles systems, we can use a shaded gray sphere image texture for each point blended with a

color to represent the category or “Color By” variable.

When I first started building this Web 3D Scatterplot application, I used random data to see how well it

would perform with medium to large data sets.

Figure 46 3D Scatterplot with 25000 randomly place points

The point of this discussion is to describe how to export data from JMP in a format that can be

consumed by or integrated into another application. When doing so, the first concern is the format

required by the target application.

There are many available data sets online in various formats that can be read by an open source

JavaScript library, but I wanted to use a column-based format like JMP datasets and make it easier to

read into my program.

A popular web format is JSON (JavaScript Object Notation), because it’s easy to read into a JavaScript

program. I could have used JSON, but since JavaScript code is interpreted rather than compiled, I

decided to just use JavaScript objects. JavaScript objects are something like Associative Arrays in JSL.

Here’s a very simple example:

I found the famous iris data set in CSV(comma-separated values) and wrapped it in some JavaScript code

to make it easier to read:

Rather than manually converting this to my column-based format, I wrote some JavaScript code to

convert it.

Although this worked, I really didn’t want to do this for every data set I wanted to use. JMP is good at

importing data in many formats and converting them into a column-based format.

So, I built a JSL script (in Export_XYZC_to_JS.jsl) to choose columns form the current dataset and export

them in JavaScript objects compatible with my 3D Scatterplot program.

I hope by describing and sharing this script, you’ll be able to use it as a starting point for your exporting

need even if the format you need is very different.

First, here’s how you would use the script.

1. Open Diamonds Data.jmp

// x, y, z, color category

let simpleData = [

 { name: "X data", min: 1, max: 10,

values: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] },

 { name: "Y data", min: 10, max: 100,

values: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] },

 { name: "Z data", min: -0.1, max: .7,

values: [-0.1, 0, .1, .3, .2, .4, .6, .5, .8, .7] },

 { name: "category", names: ["category 1", "category 2", "category 3"],

values: [0, 0, 0, 0, 1, 1, 1, 2, 2, 2] },
];

let irisColumnNames = ["sepal_length","sepal_width","petal_length",

"petal_width","species"];

let irisCategories = ["setosa", "versicolor", "virginica"];

let irisCSV = [

[5.1,3.5,1.4,0.2,0],

[4.9,3.0,1.4,0.2,0],

. . .,

[5.9,3.0,5.1,1.8,2]

];

2. Open and run Export_XYZC_to_JS.jsl

3. Pick 3 continuous columns for XYZ

4. Pick a categorical column for Color

Figure 47 Select Columns dialog

5. Click OK

6. The log will display the location of the generated file.

7. Open the file in a text editor:

The script performs the following tasks.

1. Launches the Select Columns dialog

2. Builds up the JavaScript code into a string

3. Save the string into a text file

Let’s look at the script:

We ask for exactly 3 Numeric columns and up to 1 ordinal or nominal column for color.

Here is example output for a small continuous column:

This is code builds the name, min, max, and values parts of this line and concatenates them:

let simpleData = [

 { name : "Carat Weight", min: 0.3, max: 2.02, values: [0.3, 0.44, 0.31, . . .

dlg = Column Dialog(
 xyz = Col List("XYZ", Min Col(3), Max Col(3), Data Type("Numeric")),
 clr = Col List("Color", Max Col(1), Modeling Type({ "Ordinal", "Nominal" }))
);

{ name: "X data", min: 1, max: 10, values: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] },

Here’s example output for a categorical column:

This code builds the names array of the output:

The following code builds the values array for the line. Notice that the values are 0-based indices into

the names array in JavaScript while JSL array indices are 1-based.

These lines concatenate the color column’s JavaScript object members:

nameString = "name : \!"" || (col << GetName()) || "\!", ";
minString = "min: " || char(colMin(col)) || ", ";
maxString = "max: " || char(colMax(col)) || ", ";
valuesString = "values: " || char(col << getValues);
colString = " { " || nameString || minString || maxString || valuesString || "
},\!n";

{ name: "meal", names: ["breakfast", "lunch", "supper"],
values: [0, 2, 1, 2, 1, 0, 2, 2, 0, 1] },

x = col << getAsMatrix;
aa = associativeArray(x);
keys = aa << getKeys; // List of category names.
keyString = "[";
n = N Items(keys);
For(i = 1, i <= n, i++,
 if (i == n,
 Insert Into (keyString, "\!"" || char(keys[i]) || "\!"]"),
 Insert Into (keyString, "\!"" || char(keys[i]) || "\!", ")
);
);

indicesString = "[";
For Each Row(
 s = col[Row()];
 index = Loc(keys, s)[1]; // 1-based indexing.
 Insert Into(indicesString, char(index - 1) || ", "), // 0-based
indexing.
);
Insert Into(indicesString, "]");

Finally, these lines build up the output file name and save the code in the file.

To learn JSL Scripting, I recommend:

• Saving reports to the Script Window and examining the generated code

• Looking up functions in the Scripting Index

• Reading the Scripting Guide

• Searching for JSL solutions in the JMP User Community’s blogs, discussions, and JSL Cookbook

Summary

JMP brings people together from different industries and often cross pollinates ideas. There’s no limit to

the number of ways you can combine ideas from different industries, and past experiences to discover

new useful techniques in JMP. I enjoyed bringing together old skills with new skills to create this paper.

Don’t be afraid to experiment with JMP and JSL. If you discover something new and worth sharing,

please do so.

References:

JMP User Community post inspiring this topic:

https://community.jmp.com/t5/Discussions/pie-graphs-heat-maps/td-p/221475

Dr. Anderson Mayfield’s JMP On Air Earth Day Presentation:

https://community.jmp.com/t5/JMP-On-Air/Exploring-the-Reef-Coral-Response-to-Changing-

Environments/ta-p/258762

Custom Graphics Script on JMP Public:

https://public.jmp.com/packages/Using-Bars-to-Display-3-Variables-Over-a/js-

p/5d605bce3560ce0d2cafd48b

nameString = "name : \!"" || (col << GetName()) || "\!", ";
catString = "names: " || keyString || ", ";
valuesString = "values: " || indicesString || ", ";
colString = " { " || nameString || catString || valuesString || " },\!n";

dataTableName = (dt << Get Name());
jsFilename = Get Path Variable("TEMP") || dataTableName || ".js";
saveTextFile(jsFilename, jsString);

https://community.jmp.com/
https://community.jmp.com/t5/JSL-Cookbook/tkb-p/jsl-cookbook-tkb
https://community.jmp.com/t5/Discussions/pie-graphs-heat-maps/td-p/221475
https://community.jmp.com/t5/JMP-On-Air/Exploring-the-Reef-Coral-Response-to-Changing-Environments/ta-p/258762
https://community.jmp.com/t5/JMP-On-Air/Exploring-the-Reef-Coral-Response-to-Changing-Environments/ta-p/258762
https://public.jmp.com/packages/Using-Bars-to-Display-3-Variables-Over-a/js-p/5d605bce3560ce0d2cafd48b
https://public.jmp.com/packages/Using-Bars-to-Display-3-Variables-Over-a/js-p/5d605bce3560ce0d2cafd48b

Custom Maps over Contour on JMP Public:

https://public.jmp.com/packages/Sea-Temperature-Near-Fiji/js-p/5d64597acf28b80f980812ba

JMP Custom Map files:

https://www.jmp.com/support/help/en/15.2/index.shtml#page/jmp/custom-map-files.shtml

Nascif’s example with bar graphs as markers and using virtual join:

https://community.jmp.com/t5/JSL-Cookbook/Geographic-Maps-with-Graphs-as-Markers/ta-p/53782

Custom Map Creator:

community.jmp.com/t5/JMP-Add-Ins/Custom-Map-Creator/ta-p/21479

JSL Graphics functions:

https://www.jmp.com/support/help/en/15.2/#page/jmp/graphics-functions.shtml

Three.js 3D Graphics JavaScript open source library:

https://threejs.org/

Inspiration for SmallSchool.jmp:

https://pixar.fandom.com/wiki/Category:Finding_Nemo_Characters

https://www.seaturtlestatus.org/articles/2010/takin-a-ride-on-the-eac-across-the-southern-pacific-

ocean

Editing Hover Labels:

https://www.jmp.com/support/help/en/15.2/#page/jmp/edit-hover-labels.shtml#

https://public.jmp.com/packages/Sea-Temperature-Near-Fiji/js-p/5d64597acf28b80f980812ba
https://www.jmp.com/support/help/en/15.2/index.shtml#page/jmp/custom-map-files.shtml
https://community.jmp.com/t5/JSL-Cookbook/Geographic-Maps-with-Graphs-as-Markers/ta-p/53782
https://community.jmp.com/t5/JMP-Add-Ins/Custom-Map-Creator/ta-p/21479
https://www.jmp.com/support/help/en/15.2/#page/jmp/graphics-functions.shtml
https://threejs.org/
https://pixar.fandom.com/wiki/Category:Finding_Nemo_Characters
https://www.seaturtlestatus.org/articles/2010/takin-a-ride-on-the-eac-across-the-southern-pacific-ocean
https://www.seaturtlestatus.org/articles/2010/takin-a-ride-on-the-eac-across-the-southern-pacific-ocean
https://www.jmp.com/support/help/en/15.2/#page/jmp/edit-hover-labels.shtml#

