

What you should learn

GOAL Use properties of rational exponents to evaluate and simplify expressions.

GOAL 2 Use properties of rational exponents to solve real-life problems, such as finding the surface area of a mammal in Example 8.

Why you should learn it

▼ To model **real-life** quantities, such as the frequencies in the musical range of a trumpet for **Ex. 94**.

STUDENT HELP

For help with properties

of exponents, see p. 324.

Look Back

Properties of Rational Exponents

Full Page View

(目)

GOAL 1

PROPERTIES OF RATIONAL EXPONENTS AND RADICALS

The properties of integer exponents presented in Lesson 6.1 can also be applied to rational exponents.

CONCEPT SUMMARY

PROPERTIES OF RATIONAL EXPONENTS

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers. The following properties have the same names as those listed on page 323, but now apply to rational exponents as illustrated.

	PROPERTY	EXAMPLE
1.	$a^m \cdot a^n = a^{m+n}$	$3^{1/2} \cdot 3^{3/2} = 3^{(1/2 + 3/2)} = 3^2 = 9$
2.	$(a^m)^n = a^{mn}$	$(4^{3/2})^2 = 4^{(3/2 \cdot 2)} = 4^3 = 64$
3.	$(ab)^m = a^m b^m$	$(9 \cdot 4)^{1/2} = 9^{1/2} \cdot 4^{1/2} = 3 \cdot 2 = 6$
4.	$a^{-m}=\frac{1}{a^m},\ a\neq 0$	$25^{-1/2} = \frac{1}{25^{1/2}} = \frac{1}{5}$
5.	$\frac{a^m}{a^n}=a^{m-n},a\neq 0$	$\frac{6^{5/2}}{6^{1/2}} = 6^{(5/2 - 1/2)} = 6^2 = 36$
6.	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$	$\left(\frac{8}{27}\right)^{1/3} = \frac{8^{1/3}}{27^{1/3}} = \frac{2}{3}$

If $m = \frac{1}{n}$ for some integer *n* greater than 1, the third and sixth properties can be written using radical notation as follows:

$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	Product property
$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	Quotient property

EXAMPLE 1

Using Properties of Rational Exponents

Use the properties of rational exponents to simplify the expression.

a. $5^{1/2} \cdot 5^{1/4} = 5^{(1/2 + 1/4)} = 5^{3/4}$ **b.** $(8^{1/2} \cdot 5^{1/3})^2 = (8^{1/2})^2 \cdot (5^{1/3})^2 = 8^{(1/2 \cdot 2)} \cdot 5^{(1/3 \cdot 2)} = 8^1 \cdot 5^{2/3} = 8 \cdot 5^{2/3}$ **c.** $(2^4 \cdot 3^4)^{-1/4} = [(2 \cdot 3)^4]^{-1/4} = (6^4)^{-1/4} = 6^{[4 \cdot (-1/4)]} = 6^{-1} = \frac{1}{6}$ **d.** $\frac{7}{7^{1/3}} = \frac{7^1}{7^{1/3}} = 7^{(1 - 1/3)} = 7^{2/3}$ **e.** $\left(\frac{12^{1/3}}{4^{1/3}}\right)^2 = \left[\left(\frac{12}{4}\right)^{1/3}\right]^2 = (3^{1/3})^2 = 3^{(1/3 \cdot 2)} = 3^{2/3}$ Table of Contents) 🕀

EXAMPLE 2

Using Properties of Radicals

Use the properties of radicals to simplify the expression.

Full Page View

(日)

 \mathbf{Q}

a.
$$\sqrt[3]{4} \cdot \sqrt[3]{16} = \sqrt[3]{4 \cdot 16} = \sqrt[3]{64} = 4$$
 Use the product property.
b. $\frac{\sqrt[4]{162}}{\sqrt[4]{2}} = \sqrt[4]{\frac{162}{2}} = \sqrt[4]{81} = 3$ Use the quotient property.

For a radical to be in **simplest form**, you must not only apply the properties of radicals, but also remove any perfect *n*th powers (other than 1) and rationalize any denominators.

EXAMPLE 3 Writing Radicals in Simplest Form

Write the expression in simplest form.

a.
$$\sqrt[3]{54} = \sqrt[3]{27 \cdot 2}$$
 Factor out perfect cube.
 $= \sqrt[3]{27} \cdot \sqrt[3]{2}$ Product property
 $= 3\sqrt[3]{2}$ Simplify.
b. $\sqrt[5]{\frac{3}{4}} = \sqrt[5]{\frac{3 \cdot 8}{4 \cdot 8}}$ Make the denominator a perfect fifth power.
 $= \sqrt[5]{\frac{24}{32}}$ Simplify.
 $= \frac{\sqrt[5]{24}}{\sqrt[5]{32}}$ Quotient property
 $= \frac{\sqrt[5]{24}}{2}$ Simplify.

Two radical expressions are **like radicals** if they have the same index and the same radicand. For instance, $\sqrt[3]{2}$ and $4\sqrt[3]{2}$ are like radicals. To add or subtract like radicals, use the distributive property.

EXAMPLE 4 Adding and Subtracting Roots and Radicals

Perform the indicated operation.

a.
$$7(6^{1/5}) + 2(6^{1/5}) = (7 + 2)(6^{1/5}) = 9(6^{1/5})$$

b. $\sqrt[3]{16} - \sqrt[3]{2} = \sqrt[3]{8 \cdot 2} - \sqrt[3]{2}$
 $= \sqrt[3]{8} \cdot \sqrt[3]{2} - \sqrt[3]{2}$
 $= 2\sqrt[3]{2} - \sqrt[3]{2}$
 $= (2 - 1)\sqrt[3]{2}$
 $= \sqrt[3]{2}$

STUDENT HELP HOMEWORK HELP Visit our Web site www.mcdougallittell.com for extra examples. The properties of rational exponents and radicals can also be applied to expressions involving variables. Because a variable can be positive, negative or zero, sometimes absolute value is needed when simplifying a variable expression.

$$\sqrt[n]{x^n} = x \text{ when } n \text{ is odd} \qquad \sqrt[n]{2^7} = 2 \text{ and } \sqrt[n]{(-2)^7} = -2$$

$$\sqrt[n]{x^n} = |x| \text{ when } n \text{ is even} \qquad \sqrt[4]{5^4} = 5 \text{ and } \sqrt[4]{(-5)^4} = 5$$

Absolute value is not needed when all variables are assumed to be positive.

EXAMPLE 5 Simplifying Expressions Involving Variables

Simplify the expression. Assume all variables are positive.

a. $\sqrt[3]{125v^6} = \sqrt[3]{5^3(v^2)^3} = 5v^2$ **b.** $(9u^2v^{10})^{1/2} = 9^{1/2}(u^2)^{1/2}(v^{10})^{1/2} = 3u^{(2 \cdot 1/2)}v^{(10 \cdot 1/2)} = 3uv^5$ **c.** $\sqrt[4]{\frac{x^4}{y^8}} = \frac{\sqrt[4]{x^4}}{\sqrt[4]{y^8}} = \frac{\sqrt[4]{x^4}}{\sqrt[4]{(y^2)^4}} = \frac{x}{y^2}$ **d.** $\frac{6xy^{1/2}}{2x^{1/3}z^{-5}} = 3x^{(1-1/3)}y^{1/2}z^{-(-5)} = 3x^{2/3}y^{1/2}z^5$

Writing Variable Expressions in Simplest Form

Write the expression in simplest form. Assume all variables are positive.

a.
$$\sqrt[3]{5a^5b^9c^{13}} = \sqrt[3]{5a^5b^5b^4c^{10}c^3}$$
 Factor out perfect fifth powers.
 $= \sqrt[3]{a^5b^5c^{10}} \cdot \sqrt[3]{5b^4c^3}$ Product property
 $= abc^2\sqrt[3]{5b^4c^3}$ Simplify.
b. $\sqrt[3]{\frac{x}{y^7}} = \sqrt[3]{\frac{xy^2}{y^7y^2}}$ Make the denominator a perfect cube.
 $= \sqrt[3]{\frac{xy^2}{y^9}}$ Simplify.
 $= \frac{\sqrt[3]{xy^2}}{\sqrt[3]{y^9}}$ Quotient property
 $= \frac{\sqrt[3]{xy^2}}{\sqrt[3]{y^9}}$ Simplify.

Simplify.

EXAMPLE 7

Adding and Subtracting Expressions Involving Variables

Perform the indicated operation. Assume all variables are positive.

a.
$$5\sqrt{y} + 6\sqrt{y} = (5+6)\sqrt{y} = 11\sqrt{y}$$

b. $2xy^{1/3} - 7xy^{1/3} = (2-7)xy^{1/3} = -5xy^{1/3}$
c. $3\sqrt[3]{5x^5} - x\sqrt[3]{40x^2} = 3x\sqrt[3]{5x^2} - 2x\sqrt[3]{5x^2} = (3x-2x)\sqrt[3]{5x^2} = x\sqrt[3]{5x^2}$

Table of Contents

GOAL 2 PROPERTIES OF RATIONAL EXPONENTS IN REAL LIFE

EXAMPLE 8 Evaluating a Model Using Properties of Rational Exponents

Biologists study characteristics of various living things. One way of comparing different animals is to compare their sizes. For example, a mammal's surface area *S* (in square centimeters) can be approximated by the model $S = km^{2/3}$ where *m* is the mass (in grams) of the mammal and *k* is a constant. The values of *k* for several mammals are given in the table.

Mammal	Mouse	Cat	Large dog	Cow	Rabbit	Human
k	9.0	10.0	11.2	9.0	9.75	11.0

Approximate the surface area of a cat that has a mass of 5 kilograms $(5 \times 10^3 \text{ grams})$. Source: Scaling: Why Is Animal Size So Important?

Full Page View

目)

SOLUTION

$S = km^{2/3}$	Write model.
$= 10.0(5 \times 10^3)^{2/3}$	Substitute for <i>k</i> and <i>m</i> .
$= 10.0(5)^{2/3} (10^3)^{2/3}$	Power of a product property
$\approx 10.0(2.92)(10^2)$	Power of a power property
= 2920	Simplify.

The cat's surface area is approximately 3000 square centimeters.

EXAMPLE 9 Using Properties of Rational Exponents with Variables

BIOLOGY CONNECTION You are studying a Canadian lynx whose mass is twice the mass of an average house cat. Is its surface area also twice that of an average house cat?

FOCUS ON

BIOLOGY The average mass of a Canadian lynx is about 9.1 kilograms. The average mass of a house cat is about 4.8 kilograms.

SOLUTION

Let *m* be the mass of an average house cat. Then the mass of the Canadian lynx is 2m. The surface areas of the house cat and the Canadian lynx can be approximated by:

$$S_{\text{cat}} = 10.0m^{2/3}$$
 $S_{\text{lynx}} = 10.0(2m)^{2/3}$

To compare the surface areas look at their ratio.

$$\frac{S_{\text{lynx}}}{S_{\text{cat}}} = \frac{10.0(2m)^{2/3}}{10.0m^{2/3}}$$
Write ratio of surface areas.

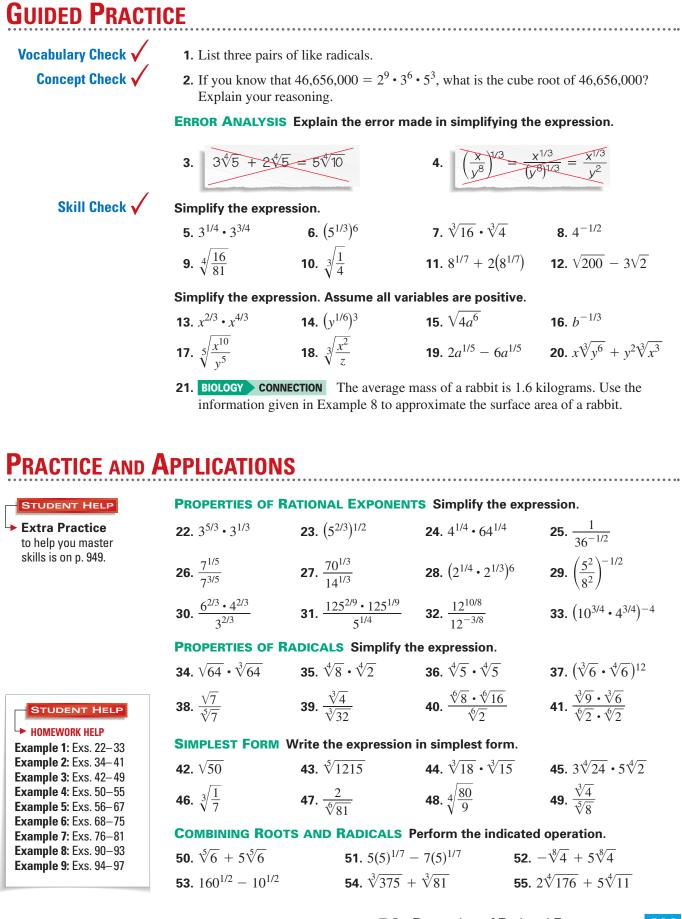
$$= \frac{10.0(2^{2/3})(m^{2/3})}{10.0m^{2/3}}$$
Power of a product property

$$= 2^{2/3}$$
Simplify.

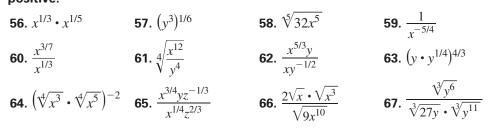
$$\approx 1.59$$
Evaluate.

The surface area of the Canadian lynx is about one and a half times that of an average house cat, not twice as much.

	Full Page View	Section Page	Page	Section
(i) Go to classzone.com Table of Contents		(ک (کی	Page 5 of 8	▶>>)



VARIABLE EXPRESSIONS Simplify the expression. Assume all variables are positive.



SIMPLEST FORM Write the expression in simplest form. Assume all variables are positive.

68. $\sqrt{36x^3}$ **69.** $\sqrt[4]{10x^5y^8z^{10}}$ **70.** $\sqrt[5]{8xy^7} \cdot \sqrt[5]{6x^6}$ **71.** $\sqrt{xyz} \cdot \sqrt{2y^3z^4}$ **72.** $\frac{4}{\sqrt[3]{x}}$ **73.** $\sqrt[3]{\frac{x^3}{y^2}}$ **74.** $\sqrt{\frac{9x^2y}{32z^3}}$ **75.** $\frac{\sqrt[5]{x^4}}{\sqrt[7]{x^4}}$

COMBINING VARIABLE EXPRESSIONS Perform the indicated operation. Assume all variables are positive.

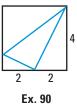
76.
$$2\sqrt[5]{y} + 7\sqrt[5]{y}$$
77. $9x^{1/5} - 2x^{1/5}$ **78.** $-\sqrt[4]{x} + 2\sqrt[4]{x}$ **79.** $(x^9y)^{1/3} + (xy^{1/9})^3$ **80.** $\sqrt{4x^5} - x\sqrt{x^3}$ **81.** $y\sqrt[3]{24x^5} + \sqrt[3]{-3x^2y^3}$

EXTENSION: IRRATIONAL EXPONENTS The properties you studied in this lesson can also be applied to irrational exponents. Simplify the expression. Assume all variables are positive.

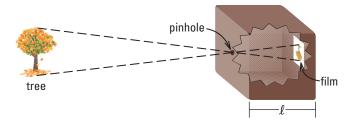
82.
$$x^2 \cdot x^{\sqrt{3}}$$

83. $(y^{\sqrt{2}})^{\sqrt{2}}$
84. $(xy)^{\pi}$
85. $4^{-\sqrt{7}}$
86. $\frac{x^{2\sqrt{5}}}{x^{\sqrt{5}}}$
87. $(\frac{x^{1/\pi}}{y^{2/\pi}})^{\pi}$
88. $3x^{\sqrt{2}} + x^{\sqrt{2}}$
89. $xy^{\sqrt{11}} - 3xy^{\sqrt{11}}$

- **90. GEOMETRY CONNECTION** Find a radical expression for the perimeter of the triangle. Simplify the expression.
- **91. GEOMETRY CONNECTION** The areas of two circles are 15 square centimeters and 20 square centimeters. Find the exact ratio of the radius of the smaller circle to the radius of the larger circle.



- **92. BIOLOGY CONNECTION** Look back at Example 8. Approximate the surface area of a human that has a mass of 68 kilograms.
- **93.** Solution PINHOLE CAMERA A pinhole camera is made out of a light-tight box with a piece of film attached to one side and a pinhole on the opposite side. The optimum diameter d (in millimeters) of the pinhole can be modeled by $d = 1.9[(5.5 \times 10^{-4})l]^{1/2}$, where l is the length of the camera box (in millimeters). What is the optimum diameter for a pinhole camera if the camera box has a length of 10 *centimeters*?



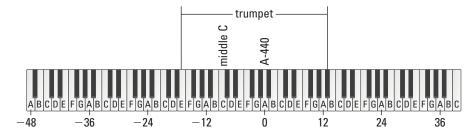
STUDENT HELP

Skills Review For help with perimeter and area, see p. 914.

	Full Page View	Section Page	Page Section
(i) Go to classzone.com Table of Contents		Page 7 of 8	

S MUSIC In Exercises 94 and 95, use the following information.

The musical note A-440 (the A above middle C) has a frequency of 440 vibrations per second. The frequency *f* of any note can be found using $f = 440 \cdot 2^{n/12}$ where *n* represents the number of black and white keys the given note is above or below A-440. For notes above A-440, n > 0, and for notes below A-440, n < 0.



- **94.** Find the highest and lowest frequencies in the musical range of a trumpet. What is the exact ratio of these two frequencies?
- **95. LOGICAL REASONING** Describe the pattern of the frequencies of successive notes with the same letter.
- **96. Solution DISTANCE OF AN OBJECT** The maximum horizontal distance *d* that an object can travel when launched at an optimum angle of projection from an

initial height h_0 can be modeled by $d = \frac{v_0 \sqrt{(v_0)^2 + 2gh_0}}{g}$ where v_0 is the initial

speed and g is the acceleration due to gravity. Simplify the model when $h_0 = 0$.

- **97. S BALLOONS** You have filled two round balloons with air. One balloon has twice as much air as the other balloon. The formula for the surface area *S* of a sphere in terms of its volume *V* is $S = (4\pi)^{1/3} (3V)^{2/3}$. By what factor is the surface area of the larger balloon greater than that of the smaller balloon?
- **98. MULTI-STEP PROBLEM** A common ant absorbs oxygen at a rate of about 6.2 milliliters per second per square centimeter of exoskeleton. It needs about 24 milliliters of oxygen per second per cubic centimeter of its body. An ant is basically cylindrical in shape, so its surface area *S* and volume *V* can be approximated by the formulas for the surface area and volume of a cylinder:

 $S = 2\pi rh + 2\pi r^2 \qquad V = \pi r^2 h$

- **a.** Approximate the surface area and volume of an ant that is 8 millimeters long and has a radius of 1.5 millimeters. Would this ant have a surface area large enough to meet its oxygen needs?
- **b.** Consider a "giant" ant that is 8 meters long and has a radius of 1.5 meters. Would this ant have a surface area large enough to meet its oxygen needs?
- **c.** *Writing* Substitute 1000*r* for *r* and 1000*h* for *h* into the formulas for surface area and volume. How does increasing the radius and height by a factor of 1000 affect surface area? How does it affect volume? Use the results to explain why "giant" ants do not exist.
- *** Challenge** 99. CRITICAL THINKING Substitute different combinations of odd and even positive integers for *m* and *n* in the expression $\sqrt[n]{x^m}$. Do *not* assume that *x* is always positive. When is absolute value needed in simplifying the expression?

Test Preparation

MIXED REVIEW

COMPLETING THE SQUARE Find the value of *c* that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial. (Review 5.5)

100. $x^2 + 14x + c$	101. $x^2 - 21x + c$	102. $x^2 - 7.6x + c$
103. $x^2 + 9.9x + c$	104. $x^2 + \frac{2}{3}x + c$	105. $x^2 - \frac{1}{4}x + c$

POLYNOMIAL OPERATIONS Perform the indicated operation. (Review 6.3 for 7.3)

106. $(-3x^3 + 6x) - (8x^3 + x^2 - 4x)$	107. $(50x - 3) + (8x^3 + 9x^2 + 2x + 4)$
108. $20x^2(x-9)$	109. $(2x + 7)^2$

LONG DIVISION Divide using long division. (Review 6.5 for 7.3)

Full Page View

目)

110. $(x^3 - 28x - 48) \div (x + 4)$	111. $(4x^2 + 3x - 3) \div (x + 1)$
112. $(4x^2 - 6x) \div (x - 2)$	113. $(x^4 - 2x^3 - 70x + 20) \div (x - 5)$

QUIZ 1 Self-Test for Lessons 7.1 and 7.2

Evaluate the expression without using a calculator. (Lesson 7.1)

1. 8 ^{2/3}	2. $32^{-3/5}$	3. $-(81^{1/4})$	4. $(-64)^{2/3}$

Solve the equation. Round your answer to two decimal places. (Lesson 7.1)

5.
$$x^5 = 10$$
 6. $-9x^6 = -18$ **7.** $x^4 - 4 = 9$ **8.** $(x + 2)^3 = -15$

Write the expression in simplest form. (Lesson 7.2)

9.
$$\frac{1}{4^{-1/4}}$$
 10. $\sqrt[4]{\frac{16}{3}}$ **11.** $\frac{512^{1/3}}{8^{1/3}}$

12.
$$\sqrt{45}$$
 13. $\sqrt[3]{7} \cdot \sqrt[3]{49}$ **14.** $8^{1/5} + 2(8^{1/5})$

Write the expression in simplest form. Assume all variables are positive. (Lesson 7.2)

15.
$$\sqrt[3]{x^2} \cdot \sqrt[4]{x}$$
16. $(x^{1/5})^{5/2}$ **17.** $\frac{xy^{1/2}}{x^{3/4}y^{-2}}$ **18.** $\sqrt[3]{5x^3y^5}$ **19.** $\sqrt{\frac{36x}{y^3}}$ **20.** $x(9y)^{1/2} - (x^2y)^{1/2}$

21. Solution GENERATING POWER As a rule of thumb, the power *P* (in horsepower) that a ship needs can be modeled by $P = \frac{d^{2/3} \cdot s^3}{c}$ where *d* is the ship's displacement (in tons), *s* is the normal speed (in knots), and *c* is the Admiralty coefficient. If a ship displaces 30,090 tons, has a normal speed of 22.5 knots, and has an Admiralty coefficient of 370, how much power does it need? (Lesson 7.1)

22. BIOLOGY CONNECTION The surface area *S* (in square centimeters) of a large dog can be approximated by the model $S = 11.2m^{2/3}$ where *m* is the mass (in grams) of the dog. A Labrador retriever's mass is about three times the mass of a Scottish terrier. Is its surface area also three times that of a Scottish terrier? (Lesson 7.2)