What is scientific notation?

- a way of... \qquad
The number 154,000,000,000 is written in scientific notation as

The first number (1.54) is called the \qquad . It must be greater than or equal to 1 and less than 10.

The second number (10) is called the \qquad It will always be \qquad .

The third number (11) is called the \qquad . It is also referred to as the power of ten.

Write this number in scientific notation by following the steps below.
785000

Step 1: Write the \qquad by putting the decimal after the first non-zero digit.

Step 2: Write the \qquad ($\times 10$).

Step 3: Find the \qquad by counting the number of places the decimal must move.

Ex. Write the following numbers in scientific notation:

$195000000000=$	$675000000=$
$56000000=$	$72000=$

What about really small numbers?

Numbers that are less than 1 have a \qquad exponent.
A millionth of a second would look like this: $0.000001=$ \qquad .

Ex. Write the following numbers in scientific notation. Remember that the coefficient only has one number before the decimal place.
$0.00000007=$
$0.0000743=$
$0.00056=$
$0.092=$

When do you write a negative exponent when converting to scientific notation?

When do you write a positive exponent when converting to scientific notation?

Using Calculators in scientific notation

Multiply these two numbers together by following using the Exp or EE button on your calculator

$$
\left(2.1 \times 10^{8}\right) \times\left(3.2 \times 10^{4}\right)=6.72 \times 10^{12}
$$

Type EXACTLY into your calculator:
$\left(6.3 \times 10^{12}\right) \times\left(5 \times 10^{4}\right)=$ $\left(3 \times 10^{6}\right) \div\left(4.2 \times 10^{-3}\right)=$

Homework:
Scientific Notation/Conversions Practice

1. Express each of the following in scientific notation:
a) $978000000000=$ \qquad e) $1000=$ \qquad
b) $0.0000003001=$ \qquad f) $0.035000=$ \qquad
c) $457.1=$ \qquad g) $36400=$ \qquad
d) $8920000=$ \qquad h) $0.0000000198=$ \qquad
2. Write the following in standard form:
a) $3.34 \times 10^{4}=$ \qquad
e) $1.8 \times 10^{6}=$ \qquad
b) $9.8765 \times 10^{3}=$ \qquad f) $2.8404 \times 10^{-3}=$ \qquad
c) $5.55 \times 10^{-2}=$ \qquad g) $3 \times 10^{8}=$ \qquad
d) $9.98 \times 10^{-5}=$ \qquad h) $9.99 \times 10^{4}=$ \qquad

Metric Conversions

METRIC PREFIX SCALE

Use the metric prefix scale to convert between units.
$900 \mathrm{~mm}=$ \qquad m $\quad 3 \mathrm{GL}=$ \qquad kL $\quad 500 \mathrm{~cm}=$ \qquad nm
$265 \mathrm{~mm}=$ \qquad cm

Converting with nanometres!

One nanometre is \qquad metres.

Convert the following values.

1. $600 \mathrm{~nm}=$ \qquad m
2. $20 \mathrm{~nm}=$ \qquad m
3. $4550 \mathrm{~nm}=$ \qquad m
4. $175 \mathrm{~nm}=$ \qquad m

5. $6 \mathrm{~m}=$ \qquad nm
6. $2.99 \times 10^{-10} \mathrm{~m}=$ \qquad nm
7. $7.5 \times 10^{-9} \mathrm{~m}=$ \qquad nm
8. $9.87 \times 10^{-7} \mathrm{~m}=$ \qquad nm

Homework: Convert between the following metric units.
a) $75 \mathrm{~m}=$ \qquad km
g) $3.75 \times 10^{-7} \mathrm{~m}=$ \qquad nm
b) $538 \mathrm{~nm}=$ \qquad m
h) $2 \mathrm{GV}=$ \qquad v
c) $0.0036 \mathrm{~m}=$ \qquad mm
i) $3.78 \mathrm{~nm}=$ \qquad m
d) $0.000000179 \mathrm{~m}=$ \qquad nm
j) 2.5 hours $=$ \qquad seconds
e) $50.6 \mathrm{~L}=$ \qquad mL
k) 3 days = \qquad hours
\qquad mV
I) 1000000 seconds $=$ \qquad days

What is Light?

We now know that light is a form of \qquad . This energy travels in \qquad , which together with visible light are called electromagnetic radiation.

Properties of Waves	
Crest	
Trough	
Wavelength	
Amplitude	
Frequency	

The energy transferred by a wave often depends on the \qquad of the wave and its \qquad .

The higher the frequency, the \qquad energy the wave passes along.

The wave equation tells us the relationship between frequency, speed, and wavelength:

Ex 1. Red light has a wavelength of 700 nm . If its frequency is $4.2827 \times 10^{14} \mathrm{~Hz}$, what is the SPEED OF LIGHT?

Ex 2. Knowing that the speed of light is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and that some X-rays have a wavelength of 5.25 $n m$, what is the frequency of the X-rays?

Using the Wave Equation Practice

All final answers should be rounded to 2 decimal places

1. A pendulum goes through 100 cycles in 2.5 minutes. Determine its frequency.
2. While sitting on a dock, a boat passes by you and produces a wave. You estimate the distance from the first crest to the fifth crest is 12 m .
a) Use a diagram to determine the number of cycles and the wavelength of the wave.
b) You measure that it takes 3.4 s for 6 waves to pass your dock. Determine the frequency of the wave.
c) Using your answers from part a) and b) determine the speed of the wave.
3. What is the speed of a wave with a wavelength of 1.75 m and a frequency of 800 Hz ?
4. A light wave passes through a transparent wall. It has a wavelength of 0.3 m and travels at $2000 \mathrm{~m} / \mathrm{s}$. What is its frequency?
5. A red light has a wavelength of 680 nm . What is its frequency?
6. Radiation from a distant galaxy has a frequency of $3.2 \times 10^{22} \mathrm{~Hz}$. What is the wavelength of the light? What type of ray is it?
7. A light ray from a laser has a frequency of $6.7 \times 10^{14} \mathrm{~Hz}$. What is the wavelength of the light? What colour is the light?

We can only see a tiny portion called visible light.
What we see is a \qquad of colours

The difference between colours of light is:

(9) 2006 Merriam-webster, Inc.

	Radio	Microwaves	Infrared	Visible	Ultraviolet	X-rays	Gamma
Uses							
Wavelength Range	> 0.3	0.001-0.3	$\begin{gathered} 7.6 \times 10^{-7}- \\ 0.001 \end{gathered}$	$\begin{aligned} & 3.8 \times 10^{-7}- \\ & 7.6 \times 10^{-7} \end{aligned}$	$\begin{aligned} & 8 \times 10^{-9}- \\ & 3.8 \times 10^{-7} \end{aligned}$	$\begin{gathered} 6 \times 10^{-12}- \\ 8 \times 10^{-9} \end{gathered}$	$<6 \times 10^{-12}$
Big							
Small						Small	

We can also think about light as a \qquad .It is made of \qquad (massless particles that travel in a wave-like pattern at the speed of light). Photons contain a specific amount (bundle) of energy. How much energy the photons contain tells us where the radiation is on the \qquad This gives us a "wave-particle duality"

The Ray Model of Light

Light can be represented in many different ways; each explanation giving validity to a specific aspect of light. Wave theories help to explain \qquad , particles explain light at an atomic level, but neither explains \qquad . This is shown through the

The ray model of light, light is represented by using \qquad that show the direction that the light travels. Light rays travel away from the source in \qquad , and in completely \qquad . Ray diagrams are drawings that show the as it radiates out. Each ray has an \qquad to
indicate which direction the light is travelling in.

Light rays diagrams are useful when explaining what happens to light when it hits an object. Once light strikes an object one of three things will occur:

- Light is transmitted freely through the material	
- e.g. Clear glass or plastic	
Some light is transmitted through, some is reflected	
- e.g. Frosted Glass	
. No light is transmitted through the material, all light is reflected	
- e.g. Wood door	

Light Reflection

You can see objects around you because \qquad and has returned to your eyes. Incoming rays \qquad to one another and in regular reflection (), outgoing rays \qquad , travelling parallel as well. In regular reflection, all of the light rays are the same both incoming and outgoing. When this happens you can see a on the smooth surface. However, not all objects are smooth; some are composed of many rough edges. The \qquad causes the parallel incoming light rays to be
in many different directions, resulting in \qquad . Diffuse reflection allows you to see the object rather than a reflected image.

Shadows

1. How does a shadow form?
2. What is the difference between the umbra and the penumbra of a shadow? Label the diagram.

3. Using a diagram, explain how shadows can change size even though the object remains constant

The Law of Reflection

When light reflects off a surface, the angle of incidence
is \qquad to the angle of reflection.

The law of reflection can be written using mathematical symbols. Theta, \qquad , is used as the symbol for an angle.
Subscripts identify the angle. The law says that \qquad _.

The angle of incidence and the angle of reflection are always measured from the normal and not from the surface of the object.

Any mirror that has a flat reflective surface is called a \qquad mirror. When using a \qquad mirror it's not possible to make an image you can capture on paper (placed behind mirror), since no light from the object
\qquad . This means the image in a plane mirror is a \qquad image, an image formed by rays that do not actually pass through the location of the image. (This is an exact reflection of the real object).

How to Draw a Ray Diagram on a Plane Mirror

Reflection of Plane Mirrors

1. Aim the ray box so that the light passes over top of the first dot. Use two mirrors to reflect the light through the second dot. Use a pencil to trace over the pathway of light.

-

2. Draw ray diagrams to show the image and the rays that extend to the eye.

3．Trace the incident ray as it reflects from the mirrored surface until it leaves the area（draw in the normals first to show that that law of reflection is being followed．．．the first normal is drawn for you）

4．Why are letters on an ambulance written in reverse and backward？（Hint：Look at it in the mirror）

ョコИА」UЯМА

5．Come up with a word that does not change appearance in a mirror．（Use the flat mirror to check！）

Curved Mirrors

There are two types of curved mirrors：

1. \qquad

Incoming rays that are parallel all reflect through the
\qquad ＿．

This is also called a \qquad mirror

Predictor Chart for curved mirrors

Locating Images in Concave Mirrors

Write down the rules for locating images formed by concave mirrors and illustrate these rules on the diagram below.

Image Characteristics for Mirrors:

Characteristic (SALT) (compared to object)	Descriptions
S - size	smaller, larger, or same
A - attitude	Same or Inverted
L - location	 F) could be given as a ZONE
T - type	Virtual or real

Summary of Characteristics of Images in Mirrors

Plane Mirrors (flat)

Size	
Attitude	
Location	
Type	

Concave Mirrors

Images formed in concave (converging light) mirrors have different characteristics depending on the location of the object.

	Image Characteristics			
Location of object	Size	Attitude	Location	Type
beyond 'C' (2F) Zone 1				
at 'C' (2F)				
between 'C' (2F) and 'F' - Zone 2				
at 'F'				
between 'F' and 'V'				
Zone 3				

Convex Mirrors

Size	
Attitude	
Location	
Type	

Curved Mirror Ray Diagrams (Homework)

- used when concentrating light to a \qquad is required, also be used to create a beam of \qquad rays

Device	Use of Mirror

Uses for diverging mirrors

-> can see \qquad than a plane mirror ("more amount of stuff")
-> \qquad reasons

Examples:

Magnification

-curved mirrors can be used to \qquad objects by increasing or decreasing their size -magnification of an image can be calculated two ways

$$
\begin{array}{ll}
\text { magnification }=\frac{\text { image height }}{\text { object height }} & \mathrm{M}= \\
\text { magnification }=\frac{\text { image distance }}{\text { object distance }} & \mathrm{M}=
\end{array}
$$

Example 1: An object is placed 4 cm away from a mirror, and the image reflected in a concave mirror is 7.3 cm away from the mirror. What is the magnification of the object?

Example 2: A 16 cm tall squirrel runs across the front lawn. Penny sees its reflection in a mirror that is magnified by 0.43 X . How tall is the squirrel's reflection?

Example 3: A slide projector has a magnification of 60X. How tall is the slide if the image on the screen is 97 cm tall?

Refraction

Refraction is the \qquad of light as it travels from one medium into another (with a different \qquad _)

Light is \qquad (compared to the speed of light in a vacuum) by optically dense mediums.

The refraction only happens at the \qquad between the two mediums.

Index of Refraction (n)

- is a measure of how much light is \qquad -the larger the refractive index, the \qquad light travels
speed of light in a vacuum: $\mathrm{c}=$ \qquad
Example 1. The speed of light through an unknown medium is $1.75 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is the index of refraction?

Example 2. What is the speed of light in table salt ($\mathrm{n}=1.51$)?

Homework: Complete the practice problems on page 438 (6 of them)
Predicting the direction that light will refract:

If a light ray goes from a medium where light is travelling \qquad (high index of refraction) to a medium where it is travelling \qquad (low index of refraction), it bends \qquad from the normal

If a light ray goes from a medium where light is travelling \qquad (low index of refraction) to a medium where it is travelling \qquad (high index of refraction), it bends \qquad the normal
\qquad so a \qquad
\qquad is seen.

Snell's Law

We already know:
As light slows down, it bends \qquad the normal As light speeds up, it bends \qquad the normal
$\theta i \neq \theta r$
HOW MUCH the light bends can be calculated using Snell's Law:
n values are \qquad
θ values are \qquad
Ex 1. When light passes from air into water at an angle of 60° from the normal, what is the angle of refraction?

Ex 2. In an experiment, a block of cubic zirconia is placed in water. A laser beam is pased from the water through the cubic zirconia. The angle of incidence is 50°, and the angle of refraction is 27°. What is the index of refraction of cubic zirconia?

Homework: Complete the practice problems on pages 441-442 (6 of them)

Scenarios where light does NOT refract

1. Both mediums have the same \qquad .
2. The light enters along the \qquad $\left(\theta_{i}=0\right)$.
3. \qquad occurs

- light is "trapped" in the \qquad medium because it refracts at an angle of refraction greater than 90°
- light must be travelling from a \qquad index of refraction to a \qquad index of refraction (speeding up... bending \qquad from the normal)

The \qquad angle $(\theta \mathrm{c})$ is the angle of incidence at which total internal reflection first happens (when $\theta \mathrm{r}=90^{\circ}$)

At an any θ_{i} \qquad than the critical angle, total internal reflection happens

We can calculate the critical angle using Snell's Law (with $\theta_{r}=$ \qquad ${ }^{\circ}$) Ex. What is the critical angle of light travelling from water into air?

A \qquad is formed when light from a distant object refracts through different temperatures of air before it gets to our eyes.

Lenses

A lens is a \qquad transparent material with a regular shape that refracts light in a \qquad way.
Most lenses are made of \qquad or \qquad -
\qquad (spread out). By shaping a lens, it is possible to make light rays \qquad (come together) or Lenses can produce images of all \qquad -

Converging Lenses:

A converging lens is \qquad at the centre than at the edges.
As light travels through a converging lens, they are refracted \qquad the principal axis.

This causes the rays to move toward each other. The light rays cross at \qquad _.

The primary focus is on the \qquad side of the lens as the object.

Diverging Lenses:

A diverging lens is \qquad in the centre than at the edges.

As light rays pass through a diverging lens, they are refracted \qquad the principal axis.

This means the light rays diverge and they will \qquad on the other side of the lens.

The primary focus is on the \qquad of the lens as the object

Summary of Characteristics of Images in Lenses

Rules for drawing ray diagrams for Lenses:
In your ray diagrams, assume you are working with a thin lens. All refraction happens at the axis of symmetry

1.	
2.	
3.	

Images formed in converging lenses have different characteristics depending on the location of the object.

	Image Characteristics			
Location of object	Size	Attitude	Location	Type
beyond 2F' (Zone 1')				
at 2F'				
between 2F' and F^{\prime} (Zone 2')				
at F^{\prime}				
between F^{\prime} and lens (Zone 3')				

Diverging Lens

LOCATING IMAGES IN LENSES

For each of the following Lenses, Locate the image and draw it as an arrow from the Principal Axis. Describe the image using the

T

T

L

T

L
T

Uses for Lenses:

Converging Lenses are useful because they can be used to create a on a screen.

Distance from object to lens	Type of image formed	Uses
Beyond 2F' (zone 1') - converging		
Between F' and 2F' (zone 2') - converging		
Between F' and the converging lens		
Diverging lenses - All distances		

Thin Lens Equation:

To use this equation you must be very careful about the sign (+ or -) that you assign to each value.

FOCAL LENGTH

The focal length for a converging lens is ALWAYS \qquad
The focal length for a diverging lens is ALWAYS \qquad

OBJECT DISTANCE

The OBJECT DISTANCE is always \qquad
IMAGE DISTANCE - Virtual vs. Real
If the image is REAL the distance is always \qquad
If the image is VIRTUAL the distance is always \qquad
Ex 1. A converging lens of a magnifying glass is held 2.00 cm above a page to magnify the print. If the image produced by the lens is 3.60 cm away and virtual, what is the focal length of the magnifying glass?

Ex 2. A converging lens has a focal length of 60.0 cm . A candle is placed 50 cm from the lens. What type of image is formed, and how far is the image from the lens?

Ex 3. A camera with a $200-\mathrm{mm}$ lens makes a real image of a bird on film. The film is located 201 mm behind the lens. Determine the distance from the lens to the bird.

Homework: Practice problems 1-3 on pages 455-457 (9 of them)

Read section 12.2 (Pg 482-492)

OPTICS LAB 2: THIN LENSES

PURPOSE

You will observe the location of images produced by thin convex (positive, converging) lenses, and verify the thin lens equation for several different object positions.

APPARATUS

Metre stick and supports (x2), object/source light (candle and mount), screen (and mount), converging lens (and mount).

PROCEDURE:

1. Determine the focal length, f, of a convex lens in air using a distant object or light source. (Distant means at least 10 meters away - if possible, the farther the better). You will use this value for f to set up the apparatus as outlined in step 2 . This will be done as a class. $f=$
2. Set up the apparatus listed above (with instructions from your teacher) and measure i) the distance of the object (d_{o}), ii) the height of the object - candle flame - (h_{0}), iii) the image distance (d_{i}) and iv) the image height $\left(h_{i}\right)$ for each of the cases below. Place your data in the chart below. Also determine whether the images in these cases are real or virtual; upright or inverted.

OBSERVATIONS:

TITLE:

Case	$d_{o(c m)}$	$h_{o(c m)}$	$d_{i(c m)}$	$h_{i(c m)}$	real/virtual	upright/inverted
1. $d_{0}=3 f$						
2. $d_{0}=2 f$						
3. $d_{0}=1.5 f$						
4. $d_{0}=1.0 f$						
5. $d_{0}=0.5 f$						

ANALYSIS: Answer these questions in the space provided.

1. For a converging lens, where does the object have to be placed (in relation to f) to create an image that is:
a) smaller and real
b) larger and virtual
\qquad
c) same size and real
d) larger and real
2. Using the thin lens equation, and your measured distances for the object (d_{o}) and the image $\left(\mathrm{d}_{\mathrm{i}}\right)$, calculate an experimental value for the focal length (f) in each of the cases. Show your calculations below for each case (3 calculations for f).
$3 f:$
$2 f:$

1.5f:

3. How did your calculated value for f compare with the focal length you got using a 'distant' object?
4. Using the equation for magnification given above, compare calculated values of magnification (M) based on i) your measured d_{i} and d_{0} with ii) your results for h_{i} and h_{0}. Use a table like the one below.

| Case | $\mathbf{M}_{d}\left(d_{i} \div d_{o}\right)$ | $\mathbf{M}_{h}\left(h_{i} \div h_{o}\right)$ | $\left(\mathbf{M}_{d}-\mathbf{M}_{h}\right) \div \mathbf{M}_{d} \times \mathbf{1 0 0}$ |
| :---: | :--- | :--- | :--- |$|$| Percent difference |
| :---: |
| 1 |

5. Describe two sources of error that would create discrepancies in focal length and magnification (from the true value).
