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What	is	Statistical	Engineering?	
(Chapter	1,	Section	1,	Statistical	Engineering	Handbook)	

Draft	2,	March	2019	
Roger	Hoerl	

	
1.1.1 Objectives	
The	purpose	of	this	section	is	to	explain	what	statistical	engineering	is;	that	is,	how	
it	is	defined,	how	it	works,	why	it	is	needed,	as	well	as	the	basics	of	its	underlying	
theory.	
	
1.1.2 Outline	
We	begin	with	an	elucidation	of	the	definition	of	statistical	engineering.	Next,	we	
explain	why	it	is	needed	as	a	discipline,	and	then	present	the	current	state	of	the	art	
in	terms	of	its	underlying	theory.	
	
1.1.3	Definition	and	Elaboration	
The	discipline	of	statistical	engineering	is:	the	study	of	the	systematic	integration	of	
statistical	concepts,	methods,	and	tools,	often	with	other	relevant	disciplines,	to	solve	
important	problems	sustainably.	
	
Several	words	in	this	definition	warrant	explanation.	First	of	all,	statistical	
engineering	is	defined	as	a	discipline,	the	study	of	something,	not	as	a	set	of	tools	or	
techniques.	Secondly,	as	an	engineering	discipline	it	does	not	focus	on	advancing	the	
fundamental	knowledge	of	the	physical	world,	i.e.,	it	is	not	a	science.	Rather,	as	with	
other	engineering	disciplines,	it	utilizes	existing	concepts,	methods,	and	tools	in	
novel	ways	to	achieve	novel	results.	In	this	sense	it	is	complementary	to	statistical	
science,	just	as	chemical	engineering	is	complementary	to	chemistry.	
	
Concepts,	methods,	and	tools	are	each	important,	and	need	to	be	integrated.	That	is,	
formal	statistical	methods,	such	as	time	series	or	regression	analysis,	and	individual	
tools,	such	as	residual	plots,	need	to	be	integrated	with	concepts,	such	as	the	
advantages	of	randomization,	and	the	need	to	understand	the	quality	(“pedigree”)	of	
observational	data	prior	to	developing	models	(Hoerl	and	Snee	2018).	When	
addressing	straightforward	issues,	a	single	statistical	tool	may	suffice.	However,	as	
noted	by	Hardin	et	al.	(2015),	when	solving	the	challenging	problems	often	faced	by	
practitioners,	obtaining	a	viable	solution	typically	requires	integration	of	multiple	
methods	into	an	overall	strategy	and	sequential	approach.		
	
Such	integration	should	be	done	in	a	systematic,	rather	than	ad	hoc	manner.	
Throughout	the	history	of	statistics,	good	statisticians	have	generally	figured	out	
how	to	integrate	concepts,	methods,	and	tools	to	solve	problems.	One	classic	
example	would	be	Box	and	Wilson’s	(1951)	integration	of	experimental	design	and	
regression	into	an	overall	sequential	strategy	for	the	empirical	optimization	of	
processes,	which	we	know	today	as	response	surface	methodology.		
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It	would	appear	clear,	however,	that	despite	many	historical	examples	of	successful	
integration,	there	is	little	existing	theory	in	the	literature	on	how	to	best	accomplish	
such	integration	in	general,	that	is,	with	a	new	problem.		Due	to	a	lack	of	theory,	new	
integration	problems	are	often	attacked	with	a	trial	and	error	approach.	However,	
the	theory	of	statistical	engineering,	discussed	below,	provides	guidance	for	a	
systematic	approach,	which	is	likely	to	be	much	more	effective.	In	addition,	such	
theory	can	be	formally	studied,	taught,	and	advanced	over	time.	
	
By	the	word	theory,	we	do	not	refer	to	mathematical	statistics.	Rather,	we	refer	to	
development	of	an	overall	methodology,	based	on	the	scientific	method,	by	which	
one	might	approach	integration	in	a	methodical	(systematic)	rather	than	ad	hoc	
manner.	Note	that	theory	may	be	defined	as:	“A	coherent	group	of	general	
propositions	used	to	explain	a	phenomenon”	(Hoerl	and	Snee	2017).	Note	that	
neither	this	nor	other	common	definitions	of	theory	contain	explicit	requirements	
for	mathematics,	although	mathematics	is	often	important.	
	
In	addition,	for	many	of	the	important	problems	facing	practitioners,	such	
integration	must	include	other	disciplines	beyond	statistics.	For	example,	almost	by	
definition,	information	technology	(IT)	is	required	to	address	“Big	Data”	problems	
(see	the	ASA	statement	on	Data	Science	at	
(http://www.amstat.org/misc/datasciencestatement.pdf).	In	fact,	the	authors	of	
this	handbook	have	found	that	IT	is	needed	to	some	degree	to	solve	most	important	
real	problems.	Kendall	and	Fulenwider	(2000)	explain	how	critical	IT	is	to	
successful	Six	Sigma	projects,	and	we	feel	that	the	same	is	true	of	statistical	
engineering.	Challenging	problems,	such	as	developing	personalized	medicine	
protocols	through	genomics,	for	example,	are	virtually	impossible	to	resolve	
without	effective	and	innovative	use	of	IT.		
	
Other	disciplines	may	be	needed	as	well,	including	natural	sciences,	other	
engineering	disciplines,	and	also	social	sciences,	such	as	organizational	
effectiveness,	psychology,	or	social	networking	theory,	depending	on	the	specific	
problem	being	addressed.	As	one	example,	the	improvement	methodology	Lean	Six	
Sigma	(Antony	et	al.	2017)	is	essentially	the	integration	of	diverse	statistical	
methods,	including	control	charts,	experimental	design,	and	regression,	with	
various	quality	concepts	and	methods,	including	Pareto	charts,	mistake	proofing,	
and	quality	function	deployment	(QFD),	in	addition	to	the	efficiency	concepts	and	
methods	from	Lean	manufacturing.	These	efficiency	concepts	and	methods	could	be	
considered	under	the	umbrella	of	the	discipline	of	industrial	engineering.	
	
As	an	engineering	discipline,	the	ultimate	goal	of	statistical	engineering	is	to	solve	
important	problems.	While	this	may	seem	obvious,	an	emphasis	on	solving	
important	problems	gives	statistical	engineering	perhaps	its	most	important	
attribute,	being	tool-agnostic.	That	is,	statistical	engineering	is	neither	Bayesian	nor	
frequentist,	neither	parametric	nor	non-parametric	(or	semi-parametric),	and	does	
not	promote	either	classical	or	computer-aided	designs,	per	se.	Rather,	as	an	
engineering	discipline	its	“loyalty”	is	to	solving	the	problem	and	generating	results,	
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not	to	a	predetermined	set	of	methods.	Tools	are	of	course	important,	but	within	a	
statistical	engineering	paradigm	they	are	chosen	based	on	the	unique	nature	of	the	
problem	to	provide	the	best	possible	solution,	rather	than	predetermined	based	on	
personal	preferences.	Various	philosophies	and	tool	sets	may	be	employed	and	
integrated.	
	
Further,	statistical	engineering	seeks	solutions	that	are	sustainable.	We	argue	that	
many	solutions,	including	those	published	in	professional	journals,	provide	
technical	solutions,	but	all	too	frequently	these	solutions	are	not	actually	sustainable	
over	time.	Of	course,	virtually	no	solution	will	be	permanent,	but	statistical	
engineering	seeks	solutions	that	are	sustainable	beyond	the	immediately	time	
frame,	and	hopefully	last	until	the	problem	itself	changes,	or	until	new	technology	
becomes	available,	enabling	an	even	better	solution.	
	
In	practice,	purely	technical	solutions	often	overlook	organizational,	political,	or	
psychological	constraints.	To	be	sustainable,	the	solution	must	eventually	be	
embedded	into	standard	work	procedures	and	best	practices,	typically	via	IT.	An	
interesting	example	from	the	related	discipline	of	data	science	is	the	classic	Netflix	
competition,	in	which	Netflix	paid	$1,000,000	to	the	team	that	developed	the	“best”	
model	to	predict	customer	ratings	of	movies.		
	
As	noted	by	Donoho	(2017),	however,	the	winning	solution	was	never	actually	
implemented	by	Netflix,	because	it	found	that	the	time	and	expense	involved	in	
maintaining	the	107	individual	models	utilized	within	the	overall	ensemble	(see	
Fung	2013)	was	not	worth	the	small	improvement	in	accuracy.	So	a	team	won	the	
competition	and	the	$1,000,000	award,	but	it	did	not	actually	solve	Netflix’s	
business	problem.	Clearly,	the	technical	solution	is	only	a	part	of	solving	important	
problems	sustainably.		
	
1.1.4	Why	Statistical	Engineering?	
It	is	certainly	logical	to	ask	why	a	new	discipline	is	actually	needed,	and	even	
allowing	that	one	is,	why	it	should	be	statistical	engineering.	As	noted	previously,	
good	statisticians	have	integrated	multiple	statistical	methods,	and	tools	from	other	
disciplines,	for	a	long	time.	In	this	sense,	we	could	say	that	statistical	engineering	
itself	is	old.	However,	as	also	noted	above,	such	applications	have	typically	been	
presented	as	isolated	case	studies	utilizing	ingenuity	and	creativity	to	provide	novel	
solutions	to	complex	problems.	What	has	been	missing	is	a	concise	presentation	of	
an	underlying	theory	as	to	how	the	researchers	actually	developed	their	solutions.	A	
body	of	research	is	needed	to	fill	in	this	gap,	to	develop	an	underlying	theory	as	to	
how	such	problems	should	be	addressed	in	general,	and	why.	In	this	sense,	we	say	
that	statistical	engineering	is	a	new	discipline,	even	though	statistical	engineering	
itself	is	old.	
	
The	main	reason	statistical	engineering	was	needed	in	these	case	studies	was	to	
solve	problems	that	were	not	straightforward	“textbook”	problems.	Textbook	
problems	are	typically	well	structured,	have	a	clear	objective,	and	a	single,	correct	
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answer;	generally,	one	that	can	be	looked	up	in	somewhere	in	the	textbook.	For	
example,	a	data	set	might	be	presented	with	paired	data,	such	as	“before	and	after”	
weights	from	a	diet	evaluation	study.	Clearly,	with	paired	data	a	standard	
independent	samples	t	test	would	not	be	appropriate.	Rather,	a	paired	t	test	is	likely	
to	provide	the	“correct”	analysis.	We	can	look	this	up	in	the	textbook	in	order	to	
verify	that	it	is	the	appropriate	analysis,	making	reasonable	assumptions.	
	
However,	real	problems	faced	by	practitioners	are	not	usually	so	well	structured.	
The	specific	problem	to	be	solved	may	not	be	clear.	Appropriate	data	for	solving	the	
problem	may	not	yet	exist.	For	example,	suppose	an	international	corporation’s	
reputation	was	damaged	by	the	discovery	that	a	supplier	was	-	unknown	to	the	
corporation	-	using	child	or	slave	labor	in	a	developing	country.	The	corporation	
needs	to	address	this	issue	immediately,	so	as	not	to	support	such	human	rights	
violations,	and	then	begin	perhaps	a	much	longer	process	of	rebuilding	its	
reputation.	But	what	exactly	does	“rebuilding	its	reputation”	mean?	How	would	this	
be	measured	and	verified?	How	should	the	company	go	about	acquiring	data	to	set	a	
baseline	on	its	reputation?	The	answers	to	these	questions	are	not	obvious,	and	
there	is	certainly	no	“correct”	answer	to	look	up	in	a	textbook.	
	
Further,	it	is	unlikely	that	one	statistical	method	would	suffice	to	solve	this	problem.	
Some	type	of	survey,	or	perhaps	web	scrapping	of	social	media	could	be	involved,	
followed	by	analysis	of	the	data,	perhaps	with	multiple	tools.	Additional	data	
gathering	and	analysis	steps	might	follow.	In	other	words,	there	would	be	a	need	to	
first	think	through	an	overall	strategy	of	how	to	attack	the	problem,	then	acquire	
data,	then	analyze	the	data	using	a	mix	of	graphical	and	analytical	tools.	That	is,	
there	would	be	a	need	to	link	and	integrate	multiple	tools	in	a	sequential	fashion,	
based	on	a	strategy.		
	
Very	few	statistical	textbooks	provide	guidance	on	how	to	link	and	integrate	
multiple	tools,	especially	through	sequential	cycles	of	data	gathering	and	analysis.	
Rather,	most	textbooks	provide	details	on	individual	methods,	one	method	at	a	time;	
descriptive	statistics,	probability,	confidence	intervals,	hypothesis	testing,	
regression,	and	so	on.	Further,	a	theoretical	foundation	is	needed	to	provide	
guidance	on	how	to	accomplish	this	integration,	including	the	underlying	theory	of	
statistical	engineering,	which	we	present	shortly.	
	
Several	other	authors	have	noted	this	gap	in	the	current	body	of	research	on	tool	
integration	to	solve	complex	problems.	For	example,	Meng	(2009)	pointed	to	the	
same	issue,	and	subsequently	added	a	new	course	in	the	Harvard	statistics	
department	curriculum,	Stat	399,	which	“…emphasizes	deep,	broad,	and	creative	
statistical	thinking,	instead	of	technical	problems	that	correspond	to	a	recognizable	
textbook	chapter”.	Complex	problems	rarely	correspond	to	a	recognizable	textbook	
chapter!	
	
Shortly	after	the	publication	of	Meng’s	paper,	Susan	Hockfield,	then	President	of	MIT	
and	a	member	of	the	General	Electric	(GE)	Board	of	Directors,	gave	an	interesting	
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perspective	on	the	relationship	between	science	and	engineering,	which	has	obvious	
ramifications	for	statistical	engineering	and	statistical	science	(Hockfield	2010).	She	
noted	that	around	the	dawn	of	the	20th	century,	physicists	discovered	the	basic	
building	blocks	of	the	universe	(i.e.,	the	periodic	table),	which	could	be	considered	a	
“parts	list.”	However,	it	was	engineers	who	figured	out	how	this	parts	list	could	be	
put	to	best	use,	subsequently	driving	the	electronics	and	computer	revolutions.	
Similarly,	Hockfield	noted	that	biologists	had	recently	discovered	the	basic	building	
blocks	of	life	(the	human	genome),	another	“parts	list,”	and	now	engineers	are	
finding	creative	ways	to	use	this	parts	list,	such	as	in	personalized	medicine.	
	
A	key	point	Hockfield	made	was	that	there	has	been	for	some	time	a	consistent	
“separation	of	labor”	between	science	and	engineering	across	diverse	disciplines,	
although	it	is	important	that	they	collaborate.	To	be	more	precise	in	terminology,	
common	definitions	of	the	word	“science”	are	similar	to:	“the	study	and	
advancement	of	the	fundamental	knowledge	of	the	physical	or	natural	word”	(e.g.,	
https://www.merriam-webster.com/dictionary/science).	Various	definitions	of	
engineering	are	also	available	(e.g.,	https://www.merriam-
webster.com/dictionary/engineering),	but	accepted	definitions	generally	
emphasize	“utilization	of	existing	science	and	mathematics	in	novel	ways	to	benefit	
humankind”.	An	old	saying	in	the	engineering	community	is:	“An	engineer	is	
someone	who	can	accomplish	for	$1	what	any	fool	can	accomplish	for	$2.”	While	
science	emphasizes	development	of	new	fundamental	knowledge,	engineering	finds	
creative	ways	to	use	this	knowledge	for	the	benefit	of	society.	
	
We	argue	that	this	distinction	between	science	and	engineering	applies	to	statistics	
quite	well.	Statisticians	have	been	developing	an	excellent	toolkit	for	over	a	century,	
which	could	also	be	considered	a	“parts	list,”	using	Hockfield’s	terminology.	This	is	
what	the	vast	majority	of	statistics	textbooks	emphasize,	as	noted	above.	However,	
we	argue	that	insufficient	thought	has	gone	into	the	engineering	problem	of	how	to	
best	integrate	multiple	tools	in	creative	ways	to	solve	complex	problems.	At	least,	
insufficient	thought	has	gone	into	documenting	the	underlying	theory	of	how	to	
approach	this	engineering	problem	in	general.	
	
Acknowledging	this	problem,	the	American	Statistical	Association	(ASA)	published	
guidelines	for	the	design	of	undergraduate	statistics	programs,	noting	(ASA	2014,	p.	
6):		
	

Undergraduates	need	practice	using	all	steps	of	the	scientific	
method	to	tackle	real	research	questions.	All	too	often,	
undergraduate	statistics	majors	are	handed	a	“canned”	dataset	and	
told	to	analyze	it	using	the	methods	currently	being	studied.	This	
approach	may	leave	them	unable	to	solve	more	complex	problems	
out	of	context,	especially	those	involving	large,	unstructured	data….	
Students	need	practice	developing	a	unified	approach	to	statistical	
analysis	and	integrating	multiple	methods	in	an	iterative	manner.	
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Unfortunately,	the	ASA	report	did	not	suggest	a	specific	method	to	provide	a	
“unified	approach	to	statistical	analysis	and	integrating	multiple	methods	in	an	
interactive	manner”.	This	is,	in	fact,	the	gap	statistical	engineering	is	intended	to	fill.	
	
So	there	appears	to	be	a	clear	consensus	that	a	deep	theoretical	foundation	in	
individual	methods,	while	certainly	valuable	and	needed,	is	not	sufficient.	In	
addition	to	sound	statistical	science,	the	profession	also	needs	a	well-developed	
theory	and	practice	of	statistical	engineering,	to	ensure	that	society	benefits	from	
the	many	advancements	that	have	been	made	in	statistical	science.	
	
At	first	glance,	some	may	feel	that	what	we	are	calling	statistical	engineering	is	
nothing	more	than	a	rebranding	of	applied	statistics.	However,	this	would	be	
analogous	to	saying	that	chemical	engineering	is	nothing	more	than	a	rebranding	of	
applied	chemistry.	As	a	simplistic	example,	consider	parents	who	buy	their	children	
a	chemistry	set	for	a	birthday	or	holiday.	If	the	children	mix	vinegar	and	baking	
soda,	they	might	create	a	toy	“volcano”,	due	to	the	subsequent	chemical	reaction.	
This	is	certainly	applied	chemistry!	However,	not	many	would	consider	this	to	be	
chemical	engineering.	The	children	did	not	use	the	laws	of	chemistry	to	engineering	
a	solution	to	a	real	problem.	
	
Similarly,	whenever	someone	applies	a	statistical	method	to	real	data,	this	
constitutes	applied	statistics.	In	many	applications,	particularly	with	relative	
straightforward	problems,	one	method	found	in	a	textbook	will	suffice.	The	problem	
has	now	been	successfully	solved	through	applied	statistics.	However,	with	more	
complex	problems,	a	single	method	will	rarely	suffice.	More	likely,	a	novel	solution	
will	have	to	be	engineered,	using	the	“parts	list”	of	statistical	science	tools,	perhaps	
integrated	with	tools	from	other	disciplines.	
	
Another	important	distinction	between	statistical	engineering	and	applied	statistics	
is	that	statistical	engineering	has	an	underlying	theory,	while	“the	theory	of	applied	
statistics”	would	be	an	oxymoron;	it	is	applied	statistics,	not	theoretical	statistics.	As	
noted	by	Nair	(2008),	there	is	a	clear	and	well-established	delineation	between	
theoretical	statistics	and	applied	statistics,	although	hopefully	these	are	intertwined.		
	
1.1.5	The	Underlying	Theory	of	Statistical	Engineering	
1.1.5.1	What	is	Theory?	
As	we	present	the	theory	of	statistical	engineering,	we	should	acknowledge	that	it	is	
in	its	early	stages	of	development.	Of	course,	the	theories	of	all	known	disciplines	
are	in	essence,	“works	in	progress”,	in	that	research	in	each	continues	to	this	day.	
For	example,	mathematics	is	one	of	the	oldest	known	disciplines,	and	has	been	
formally	studied	and	researched	for	millennia.	And	yet,	rigorous	research	in	
mathematics	continues	at	universities	and	colleges	around	the	world,	with	no	
evidence	of	slowing	down.	Having	noted	the	ongoing	development	of	the	theories	of	
all	disciplines,	the	current	state	of	statistical	engineering	theory	is	admittedly	basic	
and	relatively	crude	compared	with	more	established	disciplines,	including	
traditional	engineering	disciplines.	We	anticipate	that	future	research	will	add	to	
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the	current	body	of	knowledge,	eventually	producing	a	rich	literature	documenting	
the	theory	of	statistical	engineering	to	a	degree	of	rigor	on	par	with	other	
engineering	disciplines.		
	
The	underlying	theory	of	statistical	engineering	is	quite	different	from	the	
underlying	theory	of	statistical	science,	which	is	based	on	mathematical	statistics.	
That	is,	most	of	the	theory	of	statistical	science	can	be	proven	or	derived	using	
formal	mathematics;	calculus,	real	analysis,	linear	algebra,	and	so	on.	The	theory	of	
statistical	engineering	is	not	mathematical	in	nature,	however.	In	other	words,	it	is	
not	based	on	a	“theorem-proof”	model.	Rather,	it	is	based	more	on	empirical	
research,	which	demonstrates	what	does	and	does	not	tend	to	work	to	solve	
important	problems	sustainably,	and	why.	Of	course,	there	may	be	proofs	that	
certain	tools	work	better	than	others	under	specific	assumptions.	
	
While	some	statisticians	might	not	consider	such	theory	to	be	a	true	theory,	it	is	
important	to	keep	in	mind	that	the	fundamental	theory	of	most	disciplines	cannot	
be	proven	mathematically.	For	example,	no	one	to	date	has	mathematically	proven	
that	the	Keynesian	theory	of	economics	is	“correct”	or	even	“better”	than	its	main	
alternative,	New	Classical	Economics	
(https://www.econlib.org/library/Enc/KeynesianEconomics.html).	Of	course,	no	
one	has	proven	that	it	isn’t	correct	either.	Psychology,	sociology,	management	
science,	and	geology	are	a	brief	list	of	disciplines	that	have	extensive	bodies	of	
research	and	underlying	theory,	but	which	rarely	publish	“theory-proof”	articles	in	
their	journals.	
	
Madigan	and	Stuetzle,	in	their	discussion	of	Lindsay	et	al.	(2004	,	p.	409),	made	
essentially	this	same	point:	“The	issues	we	raise	above	have	nothing	to	do	with	the	
old	distinction	between	applied	statistics	and	theoretical	statistics.	The	traditional	
viewpoint	equates	statistical	theory	with	mathematics	and	thence	with	intellectual	
depth	and	rigor,	but	this	misrepresents	the	notion	of	theory.	We	agree	with	the	
viewpoint	that	David	Cox	expressed	at	the	2002	NSF	Workshop	on	the	Future	of	
Statistics	that	‘theory	is	primarily	conceptual,’	rather	than	mathematical.”	
	
The	word	“theory”	itself	must	be	properly	understood	in	order	to	understand	the	
points	above,	as	well	as	the	theory	of	statistical	engineering.		As	with	engineering	
and	science,	many	definitions	of	the	word	theory	are	possible	(e.g.,	
http://www.merriam-webster.com/dictionary/theory	).	However,	reasonable	and	
accepted	definitions	typically	state	something	similar	to:	“a	coherent	group	of	
general	propositions	used	to	explain	a	phenomenon.”	Obviously,	there	is	no	explicit	
requirement	in	such	definitions	for	mathematics	to	be	involved,	although	it	often	is.	
The	underlying	theory	of	physics,	for	example,	involves	considerable	mathematics,	
but	of	course	not	all	of	the	theory	of	physics	is	mathematical.	If	it	were,	physics	
would	be	considered	a	subfield	of	mathematics.		
	
There	is	now,	in	fact,	“a	coherent	group	of	general	propositions	used	to	explain”	
statistical	engineering.		These	propositions	are	presented	and	explained	below.	
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There	are	two	other	aspects	of	the	underlying	theory	that	we	feel	are	also	
important:	a	conceptual	model	of	the	relationship	between	statistical	engineering	
and	the	statistical	methods,	which	we	present	first,	and	an	overall	model	to	guide	
application	of	statistical	engineering	to	large,	complex,	unstructured	problems,	
which	we	present	third.	
	
1.1.5.2	How	Does	Statistical	Engineering	Fit?	
Figure	1	(Snee	and	Hoerl	2017)	depicts	the	statistics	discipline	as	a	system,	with	
strategic,	tactical,	and	operational	levels,	each	of	which	has	both	a	theoretical	and	an	
applied	aspect.	The	strategic-tactical-operational	model	is	one	that	has	been	used	in	
the	military,	business,	government,	and	other	organizations	for	a	long	time,	perhaps	
millennia.	The	strategic	level	is	where	high-level	decisions	are	made	about	the	
organization’s	fundamental	purpose,	what	it	views	as	success,	and	how	it	will	win	in	
a	competitive	environment.	This	is	where	such	things	as	vision,	mission,	values,	and	
so	on	are	determined.	Per	Meng	(2009),	statistical	thinking	is	at	the	strategic	level	
for	the	statistics	discipline;	that	is,	how	we	think	about	statistics	itself,	and	its	
relationship	with	other	disciplines.	This	includes	how	to	interpret	the	world	from	a	
stochastic	versus	deterministic	viewpoint,	how	we	think	about	data	and	its	
relationship	to	subject	matter	theory	in	problem	solving,	and	so	on.		
	

	
	

	
	
	
	
	
The	operational	aspect	of	this	type	of	model	is	where	the	“rubber	hits	the	road,”	that	
is,	where	the	actual	work	of	the	organization	is	accomplished.	In	the	military,	it	

Operational
Statistical Methods and Tools

Tactical
Statistical 

Engineering

Strategic
Statistical 
Thinking

Statistical 
Theory

Statistical
Practice

Figure 1.1 The Statistics Discipline as a System
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would	be	the	“front	lines”,	in	manufacturing	it	would	be	the	production	floor,	and	in	
a	hospital,	where	patients	are	seen	and	treated,	to	give	just	a	few	examples.	In	
Figure	1,	the	methodologies	of	statistics,	such	as	time	series	models,	experimental	
design,	statistical	process	control,	and	so	on,	would	be	at	the	operational	level.	In	
fact,	when	most	people,	both	statisticians	and	non-statisticians,	think	about	the	
statistics	discipline,	it	is	likely	that	they	primarily	think	of	this	operational	level	–	
the	tools	themselves.	Research	on	the	tools	over	the	decades	has	produced	a	rich	
and	deep	understanding	of	how	and	why	these	tools	work,	as	well	as	invention	of	
newer	and	more	effective	tools.	When	this	theory	is	integrated	with	learning	from	
actual	applications,	we	refer	to	this	combined	body	of	knowledge	as	statistical	
science.		
	
Note	that	Figure	1	illustrates	a	theoretical	and	applied	component	at	all	three	levels.	
For	example,	at	the	operational	level	we	both	perform	research	on	the	theory	of	the	
individual	methods,	and	also	actually	apply	them	to	real	problems.	Similarly,	we	can	
debate	the	theory	of	statistical	thinking;	what	should	be	the	fundamental	principles	
of	the	discipline?	A	stochastic	view	of	the	world	would	seem	obvious	as	a	core	
principle,	but	what	about	the	proper	relationship	between	statistics,	data	science,	
computer	science,	industrial	engineering	or	operations	research?	There	could	no	
doubt	be	serious	debates	as	to	how	the	statistics	profession	should	view	its	
boundaries	and	proper	relationships	with	these	other	disciplines.		
	
Of	course,	these	concepts	are	hopefully	actually	applied	in	practice,	such	as	the	Food	
and	Drug	Administration	(FDA)	insisting	the	clinical	trials	be	based	on	randomized	
experiments,	rather	than	solely	on	observational	data.	Fortunately,	the	FDA	
understands	the	qualitative	distinction	between	observational	data	and	data	from	
randomized	experiments.	
	
The	tactical	level	of	the	organization	exists	to	develop	tactics	to	carry	out	the	
strategy.	In	the	business	world,	senior	executives	set	strategy	–	where	to	place	the	
“big	bets”	in	new	product	development,	which	businesses	or	markets	to	get	out	of,	
which	to	get	in	to,	and	so	on.	However,	the	employees	on	the	“front	lines”	in	
manufacturing,	sales,	logistics,	and	so	on,	are	far	removed,	both	physically	and	
conceptually,	from	the	executive	office.	Middle	management	therefore	exists	to	take	
the	strategic	direction	and	figure	out	specific	tactics	within	each	function	to	ensure	
that	the	strategy	actually	succeeds.	For	success	to	occur,	of	course,	the	“front	lines”	
need	to	take	actions	that	are	supportive	of	the	overall	strategy.	In	some	ways,	this	
tactical	level	of	middle	management	has	the	toughest	job,	which	is	one	reason	that	
“middle	management”	has	a	negative	connotation	in	many	circles.		
	
In	the	statistics	discipline,	we	have	found	a	serious	gap	between	the	higher-level	
principles	of	statistical	thinking	and	utilization	of	the	individual	tools.	That	is,	
distinguished	statisticians	may	opine	on	the	proper	way	to	think	about	the	
discipline	and	how	it	can	succeed	in	expository	articles,	but	such	opining	is	far	
removed	from	the	tools	research	being	done	in	academia,	or	from	the	routine	
applications	of	practitioners.	In	essence,	there	is	no	“middle	management”	in	the	
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statistics	profession.	In	our	view,	the	critical	question	of	how	researchers	or	
practitioners	should	research	and	use	statistical	methods	in	such	a	way	as	to	be	
consistent	with	the	principles	of	statistical	thinking	has	gone	largely	unanswered.	
	
Wild	and	Pfannkuch	(1999	)	identified	this	issue	two	decades	ago,	and	provided	
some	suggestions	as	to	how	to	address	it.	We	propose	that	statistical	engineering	
can	further	fill	this	gap	and	serve	as	the	tactical	element	of	the	discipline,	linking	the	
individual	methods	with	the	fundamental	principles	of	statistical	thinking.	That	is,	
statistical	engineering,	as	we	discuss	below,	is	based	on	fundamental	statistical	
thinking	principles.	It	applies	these	principles	to	guide	the	linking	and	integration	of	
individual	tools	to	solve	a	real	problem,	typically	one	that	is	large,	complex,	and	
unstructured.	Therefore,	it	is	providing	guidance	on	how	to	take	the	individual	tools	
and	utilize	them	in	a	manner	consistent	with	the	strategy.	As	one	example,	statistical	
engineering	provides	a	specific	“unified	approach	to	statistical	analysis	and	
integrating	multiple	methods	in	an	iterative	manner”,	one	of	the	strategic	principles	
mentioned	in	the	ASA	guidelines	for	undergraduate	statistical	education,	discussed	
previously.	
	
Again,	while	it	is	important	to	develop	a	theory	of	how	to	do	this,	it	is	equally	
important	to	actually	apply	this	theory	to	real	problems.	Such	application	provides	a	
feedback	loop	to	the	theory,	noting	what	does	and	does	not	actually	work	in	
practice,	when	addressing	real	problems	versus	textbook	problems.	
	
1.1.5.3	A	Coherent	Group	of	General	Propositions	
The	statistics	profession	has	certainly	learned	and	documented	important	principles	
over	the	decades	concerning	solution	of	large,	complex,	and	unstructured	problems.	
However,	we	do	not	feel	that	they	have	been	effectively	integrated	into	a	formal	
framework.	If	integrated,	however,	they	are	in	some	sense	a	“theory,”	that	is,	“a	
coherent	group	of	general	propositions	used	to	explain	a	phenomenon.”	
	
Most	experienced	practitioners	learn	these	principles	and	pitfalls	“on	the	job,”	often	
through	making	their	own	mistakes.	At	this	point,	they	might	be	considered	
principles	of	statistical	practice,	or	applied	statistics.	However,	we	argue	that	such	
principles	can	be	studied,	documented,	debated,	and	enhanced	over	time,	as	well	as	
formally	taught	to	students.	Under	these	circumstances,	they	would	be	considered	a	
theory.	The	logical	expectation	in	most	disciplines	is	that	theory	and	practice	should	
gradually	converge	over	time;	we	believe	that	the	same	should	be	true	of	statistics.	
	
In	our	view,	the	most	critical	propositions,	or	principles	of	statistical	engineering	
applied	to	large,	complex,	unstructured	problems	can	be	loosely	grouped	into	the	
five	major	categories	listed	in	Table	1	(Hoerl	and	Snee	2017).	The	first	principle	
emphasizes	the	need	for	developing	an	understanding	of	the	problem	context.	With	
straightforward	problems,	little	time	needs	to	be	invested	in	studying	the	
background	or	context.	If	someone	asks	you	what	time	it	is,	you	don’t	need	to	study	
the	history	of	watchmaking	to	answer	the	question	–	just	look	at	your	watch	or	cell	
phone!		
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Table	1.1		

Fundamental	Principles	of	Statistical	Engineering	
1. Understanding	of	the	problem	context	
2. Development	of	a	problem	solving	strategy	
3. Consideration	of	the	data	pedigree	
4. Integration	of	sound	subject	matter	theory	(domain	knowledge)	
5. Utilization	of	sequential	approaches	

	
However,	suppose	a	city	wishes	to	address	gang	violence.	One	could	no	doubt	come	
up	with	some	“obvious”	solutions,	such	as	providing	more	police	to	patrol	the	
streets,	trying	to	infiltrate	the	gangs	with	informants,	or	even	modifying	the	criminal	
justice	system.	However,	with	large,	complex,	unstructured	problems	such	as	these,	
“obvious”	solutions	rarely	work	well.	Rather,	to	have	a	serious	impact	on	gang	
violence	the	city	would	likely	need	to	develop	a	deep	understanding	of	the	gangs	
themselves;	why	people	join	them	in	the	first	place,	how	they	recruit	and	operate,	
their	specific	criminal	activities,	how	the	gangs	relate	to	one	another,	their	internal	
codes	of	conduct,	and	so	on.	An	effective	response	is	only	likely	to	be	identified	after	
developing	a	deep	understanding	of	these	contextual	issues.	This	same	principle	
generally	holds	for	large,	complex,	unstructured	problems	in	business,	engineering,	
and	healthcare.	
	
The	second	principle	highlights	the	fact	that	serious	thought	needs	to	go	into	
development	of	a	problem-solving	strategy,	once	the	context	is	understood.	With	
straightforward	problems,	the	correct	solution	can	often	be	found	in	a	textbook;	no	
overall	strategy	is	needed.	However,	with	complex	problems,	especially	those	that	
are	unstructured,	the	plan	of	attack	will	often	not	be	clear.	In	fact,	there	is	rarely	a	
single	“correct”	approach.	Therefore,	significant	time	and	planning	need	to	go	into	
developing	the	overall	approach	to	solve	the	problem.	Hoerl	et	al.	(2014)	discussed	
these	points	in	greater	detail	within	the	context	of	Big	Data	problems.	
Unfortunately,	the	word	“strategy”	rarely	appears	in	the	indices	of	statistics	
textbooks,	providing	another	illustration	of	the	difference	between	statistical	
engineering	and	statistical	science.	
	
Understanding	of	the	data	pedigree,	point	3,	is	important	in	any	data	analysis.	Too	
often	analysts	assume	that	the	data	are	“perfect”,	representing	a	random	sample	
from	the	population	of	interest.	Almost	without	exception,	they	don’t	represent	a	
random	sample	from	the	population	of	interest.	Data	always	have	some	limitations,	
whether	they	involve	biased	or	limited	sampling,	outliers,	missing	data,	missing	
variables,	the	wrong	timeframe	of	data	collection,	or	just	outright	blunders,	such	as	
recording	a	“34”	when	the	actual	number	was	“43”.	Murphy’s	Law,	which	says	that	
anything	that	can	go	wrong,	will	go	wrong,	certainly	applies	to	data	collection.	
	
The	pedigree	documents	how	the	data	were	collected,	what	specifically	they	
represent,	how	samples	were	obtain	and	measured,	and	what,	if	any	changes	or	
deletions	were	made	to	the	data	over	time	(the	“chain	of	custody”).	Hoerl	and	Snee	
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(2018)	provide	more	detail	on	the	concept	and	use	of	data	pedigree,	and	an	
elaboration	of	this	topic	is	also	given	in	the	Data	Acquisition	chapter	of	this	
handbook.	
	
The	next	two	points	emphasize	that	statistical	engineering	views	statistical	and	
other	tools	from	the	perspective	of	the	scientific	method.	That	is,	statistical	methods	
are	viewed	as	enablers	of	the	scientific	method,	not	substitutes	for	it.	While	this	
point	may	seem	obvious,	we	note	that	few	statistics	textbooks	formally	discuss	the	
scientific	method,	or	how	statistics	fits	within	it.	In	particular,	few	discuss	the	
critical	importance	of	subject	matter	knowledge	in	acquiring	data,	analyzing	it	
statistically,	and	interpreting	the	analyses;	this	is	the	emphasis	of	the	fourth	
principle.	
	
Subject	matter	(domain)	knowledge	is	everything	we	know	about	the	phenomenon	
under	study,	either	from	relevant	theory,	such	as	physics,	epidemiology,	or	
economics,	or	from	previous	data	analyses.	Such	knowledge	is	needed	from	the	very	
beginning	of	applications	of	statistical	engineering,	even	in	identifying	the	true	
problem,	that	is,	the	root	cause,	rather	than	just	the	symptoms.	If	scientists	had	all	
possible	knowledge,	they	actually	wouldn’t	need	statistics	or	statistical	engineering.	
Statistics	is	only	needed	because	scientific	knowledge	is	not	complete,	and	empirical	
approaches	–	based	on	data	collection	and	analysis	–	are	often	needed	to	“fill	in	the	
gaps”	in	our	scientific	knowledge.	Eventually,	after	the	data	analyses	are	confirmed,	
they	augment	our	previous	scientific	knowledge,	enhancing	our	understanding.	This	
process	continuous	through	sequential	cycles	of	the	scientific	method,	eventually	
producing	a	mature	discipline,	such	as	physics	or	chemistry.		
	
Sequential	approaches	are	also	core	to	the	scientific	method,	and	are	the	emphasis	
of	the	fifth	principle	in	Table	1.	Most	applications	in	statistics	textbooks	tend	to	be	
“one	shot	studies”,	where	a	data	set	is	given,	and	the	“correct”	statistical	method	is	
applied,	allowing	the	authors	to	move	on	to	the	next	data	set	or	next	problem.	The	
same	is	true	of	homework	problems;	for	example,	“what	is	the	correct	method	to	
apply	to	this	data”?	Of	course,	real	problems,	particularly	large,	complex,	
unstructured	problems,	are	not	so	simple.	There	is	no	single	“correct”	method,	and	
in	most	cases	multiple	statistical	methods	and	perhaps	multiple	disciplines	are	
needed.	In	other	words,	a	sequential	approach	is	needed.	
	
Each	time	practitioners	determine	the	specific	data	needed,	they	do	so	based	on	
their	current	understanding,	that	is,	their	current	subject	matter	knowledge.	They	
often	have	specific	questions	they	need	answered	to	“fill	in	the	gaps”.	Once	they	
obtain	the	data	and	begin	to	analyze	it,	typically	with	multiple	tools,	they	may	
answer	some	questions,	but	others	may	arise	unexpectedly.	For	example,	why	is	
every	fourth	data	point	high?	Therefore,	additional	rounds	of	data	gathering	and	
analysis	are	typically	needed.	Fortunately,	with	each	round,	they	become	a	little	
more	knowledgeable,	and	can	ask	better	and	more	specific	questions.	That	is,	their	
understanding	gradually	increases	through	these	sequential	cycles	of	the	scientific	
method,	producing	greater	and	greater	understanding.	This	is	illustrated	in	Figure	2,	
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based	off	a	similar	graph	in	Hoerl	and	Snee	2012,	which	is	itself	based	off	an	earlier	
version	from	Box,	Hunter,	and	Hunter	(1978).	
	

	
	
	
1.1.5.4	A	Framework	for	Statistical	Engineering	Projects	
As	previously	noted,	there	is	no	“correct”	solution	to	large,	complex,	unstructured	
problems.	Similarly,	there	is	no	“cookbook”	that	will	lead	practitioners	step	by	step	
through	successful	completion	of	all	such	projects.	However,	there	is	a	framework	to	
give	some	guidance	as	to	how	to	think	about	approaching	such	problems.	Figure	3,	
based	on	Hoerl	and	Snee	(2017),	shows	the	phases	that	statistical	engineering	
projects	typically	go	through.	As	an	analogy,	each	child	grows	up	to	maturity	along	a	
different	path;	no	two	children,	even	“identical”	twins,	grow	up	exactly	the	same.	
However,	the	discipline	of	child	development	has	documented	the	fact	that	virtually	
all	children	go	through	the	same	set	of	phases	growing	up,	although	uniquely.	For	
example,	“terrible	twos”,	“fantastic	fours”,	pre-teens,	teenagers,	and	so	on,	are	
layman’s	terms	for	these	child	development	phases	commonly	used	by	parents.		
	
So	it	is	important	to	keep	in	mind	that	Figure	3	provides	a	general	framework,	not	a	
“cookbook”.	As	previously	noted	in	the	discussion	of	fundamental	principles,	
practitioners	will	generally	need	to	develop	a	unique	strategy	for	each	problem,	
based	its	unique	context.	Therefore,	while	statistical	engineering	projects	will	
generally	go	through	each	of	these	phases,	they	will	do	so	in	unique	ways,	just	as	
children	go	through	child	development	in	unique	ways.		
	
It	should	also	be	noted	that	Figure	3	is	similar	in	nature	to	other	problem-solving	
frameworks,	such	as	DiBenedetto	et	al.	(2014),	the	Job	Task	Analysis	(JTA)	
framework	and	“domains”	from	the	Certified	Analytics	Professional	(CAP)	program	
(INFORMS	2018),	and	the	Data	Analytics	Lifecycle	(EMC	Education	Services	2015).	
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Figure 1.2 The Sequential Nature of Statistical Engineering
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While	each	of	these	frameworks	has	distinctive	aspects,	with	Figure	3	focusing	on	
large,	complex,	unstructured	problems,	there	is	enough	overlap	to	provide	
confidence	that	that	each	provides	a	reasonable	approach.	
	
	

	
	
	
The	first	phase	in	Figure	3	is	to	identify	the	problem.	This	might	sound	easy,	and	in	
some	cases	it	is.	However,	as	noted	by	D.	K.	J.	Lin	(2014,	personal	communication),	
“Finding	a	good	problem	is	harder	than	finding	a	good	solution.”	Also,	large	and	
complex	problems	typically	cross	organizational	boundaries	or	“silos”.	Because	it	is	
usually	easier	to	work	“within”	a	silo	than	“across”	silos,	teams	will	often	focus	their	
problem-solving	efforts	on	their	silo,	working	on	the	symptoms	of	the	larger	
problem	that	appear	within	their	silo.	If	multiple	teams	work	on	the	same	large	
problem,	but	each	focuses	on	the	symptoms	within	their	silos,	the	net	result	is	often	
teams	working	at	cross	purposes,	each	trying	to	push	the	problem	from	their	silo	to	
another	silo.	The	real	problem,	crossing	multiple	silos,	may	not	even	be	recognized,	
much	less	addressed.	
	
A	classic	example	of	this	phenomenon	occurs	when	businesses	attempt	to	effectively	
manage	their	overall	order	fulfillment	system,	from	sales	to	production	planning	to	
warehousing	and	inventory	to	logistics,	ultimately	delivering	the	product	to	
customers	in	a	timely	fashion.	Obviously,	this	overall	order	fulfillment	system	is	a	
large,	complex	system.	In	most	businesses,	it	is	broken	up	into	individual	silos,	
representing	each	functional	area	involved,	such	as	a	sales	team,	a	production	
planning	team,	a	warehousing	and	inventory	team,	logistics	or	product	delivery,	and	
customer	management,	which	focuses	on	“keeping	the	customer	happy”.	
Periodically,	there	will	be	a	business	drive	to	reduce	inventory	costs	and	working	
capital,	putting	pressure	on	the	warehousing	and	inventory	team	to	reduce	the	
inventory	levels	as	low	as	possible.	At	the	same	time,	a	team	from	logistics	or	
customer	management	may	be	working	on	a	project	to	provide	more	timely	
deliveries	to	customers,	with	no	product	outages.	
	
It	should	be	obvious	that	both	teams	are	working	on	the	same	fundamental	problem	
–	order	fulfillment,	but	both	are	only	working	within	their	own	respective	silos,	

Figure 1.3 The Phases of Statistical Engineering 
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focusing	on	the	symptoms	they	see;	high	inventory	costs	and	late	or	incomplete	
customer	deliveries,	in	this	case.	The	net	result	is	that	one	team	is	figuring	out	how	
to	lower	inventories,	while	the	other	is	working	on	how	to	increase	them.	No	one	
has	identified	the	real	problem	they	should	all	be	working	on;	the	large,	complex,	
unstructured	problem	of	optimizing	the	order	fulfillment	system,	whatever	that	
might	mean	when	properly	structured.	The	overall	system	could	no	doubt	be	
improved,	but	this	would	require	cooperation,	and	everyone	having	the	same	
understanding	of	what	the	real	problem	is,	and	what	success	would	look	like.	In	
other	words,	they	would	need	to	identify	the	right	problem.	
	
Once	the	right	problem	has	been	identified,	it	usually	needs	to	be	properly	
structured.	As	noted	by	X.	Tort	(2018,	personal	communication),	what	we	typically	
see	initially,	unfortunately,	is	a	“mess”.	It	is	virtually	impossible	to	solve	a	mess.	
Rather,	we	first	need	to	convert	the	mess	into	a	formal	problem.	Once	we	have	a	
formal	problem,	we	can	move	forward	to	solve	it.	The	process	of	converting	a	mess	
into	a	problem	is	what	we	call	providing	structure.	
	
In	our	order	fulfillment	example,	we	may	initially	see	a	mess	in	which	we	have	too	
much	finished	product	inventory	(perhaps	some	is	expiring	before	we	can	deliver	it	
to	customers),	too	much	work-in-progress	inventory,	upset	customers	who	don’t	
know	where	their	product	is	or	why	it	was	late	or	incomplete,	manufacturing	
disruptions,	dysfunctional	teams	that	don’t	like	each	other	and	won’t	work	across	
silos,	recurring	quality	issues	resulting	in	more	work-in-progress	and	late	
shipments,	and	perhaps	pressure	from	senior	management	demanding	that	the	
situation	be	“fixed”	ASAP,	but	not	providing	any	methodology	to	fix	it.	
	
As	a	next	step,	the	organization	would	have	to	define	the	right	problem	properly,	
considering	the	overall	order	fulfillment	system.	Since	it	is	typically	impossible	to	
minimize	inventory	while	at	the	same	time	minimizing	late	customer	deliveries,	
what	exactly	would	success	look	like?	How	would	it	be	measured?	It	should	be	clear	
that	there	is	no	obvious	problem	statement	or	a	single,	quantitative	objective	to	be	
maximized.	Considerable	work	may	be	required	to	convert	this	mess	into	a	formal	
problem	that	can	be	attacked,	and	to	obtain	organization	alignment	across	silos	and	
with	senior	leadership.	
	
The	next	phase	is	to	understand	the	context	of	the	problem,	which	is	one	of	the	
fundamental	principles	of	statistical	engineering,	and	was	discussed	in	the	previous	
section.	As	noted	there,	large	and	complex	problems	have	resisted	solution	for	a	
reason;	“obvious”	solutions	don’t	generally	work.	Only	once	the	problem’s	root	
causes,	the	history	of	previous	efforts	–	including	why	they	failed,	and	the	technical,	
political	and	social	background	of	the	problem	are	properly	understood,	can	the	
team	develop	a	viable	approach	to	solution.	This	usually	requires	a	lot	of	hard	work,	
but	is	absolutely	necessary	for	big	problems.	
	
Once	the	right	problem	has	been	properly	identified,	the	mess	has	been	converted	to	
a	formal	problem	statement,	and	the	context	of	the	problem	is	properly	understood,	
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the	team	is	in	position	to	develop	a	strategy	to	address	it.	As	noted	above,	a	strategy	
is	needed	because	multiple	methods	and	perhaps	multiple	disciplines	will	be	
required,	and	all	of	these	need	to	be	integrated	into	an	overall	approach	or	game	
plan.	In	sports,	one	aspect	of	a	head	coach’s	responsibilities	is	to	prepare	a	“game	
plan”	for	each	opponent.	The	individual	game	plans	may	be	quite	different	from	
each	other,	depending	on	the	strengths	and	weaknesses	of	the	opponents	the	team	
faces.	This	game	plan	is	in	essence	a	strategy	that	the	coaching	staff	believes	will	
maximize	the	chances	of	success.	However,	if	the	players	are	not	all	on	the	same	
page,	and	some	are	not	following	the	game	plan,	failure	is	likely.		
	
Similarly,	a	key	role	of	project	leadership	is	to	develop	a	game	plan,	or	strategy,	to	
solve	the	problem,	and	then	ensure	that	everyone	on	the	team,	even	people	from	
different	silos,	are	all	on	the	same	page.	This	is	easier	said	than	done,	because	
people	from	different	silos	and	with	different	skills	sets	may	have	their	own	ideas	
about	how	the	project	should	proceed.	That	is,	they	may	not	agree	with	the	strategy,	
and	start	to	go	off	on	their	own	“closet	projects”.	Such	a	splintering	of	the	team	
rarely	works	well,	just	as	it	doesn’t	in	sports.	The	statistical	engineering	strategy	
will	typically	involve	application	of	a	series	of	statistical	and	other	methods,	linked	
and	integrated	in	a	logical	manner.	Note	that	the	strategy	for	solving	a	particular	
problem	is	obviously	at	a	much	lower	level	than	the	overall	strategy	for	a	business,	
university,	or	other	organization,	which	we	discussed	previously.	Both	are	examples	
of	strategy,	however.	
	
Once	a	strategy	has	been	developed	and	everyone	is	on	the	same	page,	the	team	
needs	to	develop	and	employ	tactics	to	actually	carry	out	the	project.	A	strategy,	
while	critically	important,	is	just	a	plan.	To	win	on	the	sports	field	the	team	needs	to	
actually	block,	tackle,	pass,	catch,	and	so	on,	in	order	to	implement	the	strategy.	
Tactics	are	more	detailed	elements	of	the	overall	strategy	that	provide	specific	
direction	at	the	operational	level.	For	example,	suppose	our	strategy	for	order	
fulfillment	includes	a	decision	that	for	now	we	will	prioritize	customer	fulfillment	
(minimizing	late	deliveries)	over	inventory	reduction.	We	still	need	specific	
methods	for	fulfilling	orders;	a	high-level	plan	is	not	sufficient.	In	the	tactics	phase,	
we	figure	out	specific	methods	to	fulfill	orders	more	consistently,	and	then	actually	
deploy	these	in	operations	to	see	how	well	they	worked.	The	tactics	will	generally	
involve	selection	of	individual	statistical	and	other	methods	within	each	of	the	core	
processes	discussed	above.	
	
Once	the	strategy	and	tactics	are	in	place,	the	team	can	“take	the	field”	and	begin	
implementing	them,	i.e.,	solving	the	problem.	For	statistical	engineering	problems	
this	will	result	in	several	statistical	and	non-statistical	tools	utilized	in	a	sequential	
strategy.	The	results	of	the	first	analysis	may	change	the	ensuing	tactics,	just	as	
when	sports	teams	find	themselves	way	behind	at	halftime	they	may	“ditch	the	
game	plan”	and	start	over,	or	perhaps	make	less	dramatic	halftime	adjustments.	
	
In	the	course	of	applying	these	methods	in	a	systematic	fashion,	the	team	should	
begin	to	learn	and	identify	specific	actions	they	could	take	to	address	the	problem.	
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In	most	cases,	these	actions	will	need	to	be	piloted	to	verify	that	they	actually	work,	
and	don’t	cause	unforeseen	issues.	Gradually,	a	final	solution	is	identified	and	
deployed.	If	it	doesn’t	work	as	well	as	anticipated,	the	team	may	need	to	reloop	back	
to	the	strategy	or	tactics	phases.	Once	a	satisfactory	solution	is	obtained,	the	team	
still	needs	to	worry	about	sustainability.	Therefore,	a	“control	plan”	is	typically	
needed	to	embed	the	solution	into	standard	work	processes,	as	well	as	to	identify	
how	the	system	should	be	monitored	over	time,	and	what	steps	employees	should	
take	when	backsliding	is	detected.	
	
Even	in	a	best-case	scenario,	there	will	be	opportunity	for	further	learning	and	
improvement.	Therefore,	a	new	improvement	initiative	or	project	may	make	sense,	
to	follow	up	on	the	first	team’s	results.	The	cycle	of	improvement	from	the	scientific	
method	continues.	
	
1.1.5.5	The	Core	Processes	of	Statistical	Engineering	
The	methods	needed	within	the	statistical	engineering	strategy	are	often	selected	
from	five	major	categories,	or	“core	processes”,	which	represent	the	major	“what’s”	
of	statistical	science.		That	is,	the	core	processes	are	not	individual	methods	or	tools,	
such	as	regression	analysis	or	control	charts,	which	could	be	considered	“how’s”.	
They	are	called	“processes”	because	they	represent	the	major	high-level	activities	
performed	in	applications	of	statistics.	Virtually	all	individual	statistical	methods	fit	
conceptually	into	one	of	these	processes.	Of	course,	other	non-statistical	tools	and	
competencies	will	be	needed	in	the	other	phases	of	statistical	engineering	projects,	
as	we	explain	shortly.	In	the	typical	order	in	which	they	are	applied,	the	core	
processes	are:	

• Data	Acquisition	–	proactively	obtaining	the	highest	quality	data	possible	for	
the	problem	at	hand,	and	documenting	the	data	pedigree	

• Data	Exploration	–	understanding	the	data,	observing	patterns	and	trends,	
and	beginning	to	develop	or	refine	hypotheses,	based	on	graphical	and	
numerical	methods	

• Model	Building	–	developing	different	types	of	formal	models,	depending	on	
the	data	and	problem	being	addressed	

• Drawing	Inferences	(Learning)	–	considering	what	broader	conclusions	can	
be	drawn	about	the	phenomenon	of	interest	beyond	this	particular	data	set	

• Solution	Identification	and	Deployment	–	determining	the	best	course	of	
action	to	take	based	on	what	has	been	learned	from	the	previous	processes,	
deploying	it,	and	ensuring	sustainability	

	
Note	that	each	of	these	high-level	processes	begins	with	a	verb	–	they	represent	
some	action,	rather	than	a	specific	tool.	Of	course,	there	are	many	tools	to	be	
considered	for	use	within	each	process.	The	mix	of	tools	will	typically	vary	for	each	
problem.	There	is	also	a	set	of	overarching	competencies	that	is	generally	needed	to	
achieve	success.	These	competencies	are	needed	not	only	in	the	strategy	and	tactics	
phases,	but	rather	across	all	phases	of	statistical	engineering	applications.	These	
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overarching	competencies	include	project	management,	teamwork,	communication,	
and	other	competencies	discussed	in	the	chapter	on	overarching	competencies.	
	
	
1.1.6	Summary	of	Key	Points	
Key	points	that	we	would	like	to	emphasize	from	this	introductory	section	include:	

• Statistical	engineering	is	not	a	“buzzword”.	It	has	been	carefully	defined	to	
represent	the	engineering	of	solutions	to	statistically	oriented	problems.	

• Large,	complex,	unstructured	problems	are	particularly	amenable	to	a	
statistical	engineering	approach.	

• Statistical	engineering	emphasizes	integration;	that	is,	integration	of	methods	
and	integration	of	disciplines.	

• There	is	an	underlying	theory	to	statistical	engineering	that	is	admittedly	a	
work	in	progress.	

• Part	of	this	theory	is	a	set	of	generic	phases	through	which	most	applications	
of	statistical	engineering	progress.	This	framework	provides	general	
guidance	to	those	applying	statistical	engineering.	

• The	overall	strategy	and	tactics	utilized	in	applications	will	typically	involve	
a	series	of	methods	selected	from	statistical	core	processes,	linked	with	other	
methods.	The	specific	methods	selected	will	depend	on	the	unique	aspects	of	
the	problem	at	hand.	
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