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Background and Problem Statement

« Raill transit systems have unique loading conditions due
to the variety of vehicles used from system to system

 Limited research has been conducted to understand the
type and magnitude of loads in ralil transit systems

« Aging rail transit infrastructure assets need to be well
maintained or replaced to keep the system in a “state of
good repair’ —a USDOT Strategic Goal
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FTA Project Mission

Characterize the desired performance and
resiliency requirements for concrete crossties
and fastening systems, quantify their behavior
under load, and develop resilient infrastructure

component design solutions for concrete
crossties and fastening systems for rail transit
operators.
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FTA Project Approach

~esignand 1

Environmental
Industry Field Data Laboratory Finite Element Factors and
Surveys Collection Experimentation Modelling Special

Circumstances

Paper Study

Resilient Concrete Crosstie and Fastening System for Rail Transit
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Rail Transit Vehicle Weight Definitions

« AWO (Empty Load)
— Empty vehicle weight, ready to operate
« AWI1 (Seated Load)
— Crew and fully seated passenger load + AWO
« AW2 (Design Load)
— Standing passenger load at 4/m? + AW1
« AW3 (Crush Load)
— Maximum passenger capacity x average passenger weight + AWO
« AW4 (Structural Design Load)
— Standing passenger load at 8/m? + AW1
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Rail Transit Vehicle Weight Quantification

AWO0 and AW3 weights were calculated for rail transit vehicles
operating within the United States as of August 2015

— National Transit Database (NTD) Revenue Vehicle Inventory
— Vehicle datasheets
- Data obtained and analyzed for:
— 100% of light rail vehicles (2,072 of 2,072)
— 85% of heavy ralil vehicles (9,781 of 11,474)
— 72% of commuter railcars (4,353 of 6,047)
— 91% of commuter locomotives (674 of 738)

« 195 Ibs. (88.5 kqg) per person was used as average passenger
weight for AW3 calculations based on multiple sources, including
Federal Aviation Administration (FAA) standards

- Datatabulated and balloted for inclusion in the AREMA
Manual for Railway Engineering (2018 Version)
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Light Rail, Heavy Rail, and Commuter Rail

Vehicle Wheel Load Distribution

Wheel Load (kN)

0 20 40 60 80 100 120 140 160
100% by ' ' ' ' ' '
90% -
2 80% -
S 70% -
L 60% -
1 50% -
c 40% A
S 30% -
§ 20% -
10% - S
0% : N : ; : . . :
0 5 10 15 20 25 30 35 40
Wheel Load (kips)
-« Light Rail AWO —| ight Rail AW3
-+« Heavy Rail AWO - Heavy Rail AW3
Commuter Railcar AWO Commuter Railcar AW3

Commuter Rail Locomotive AWO “Data as of August 2015



e
FTA Project Approach

~esignand 1
srmance L

“sportation and Engineering Center

« the Universay of flinois at Urbana-
A (UIUC) has been awarded a grant
FTA ttled “Resilient Concrete Crosstie 2

Environmental
0 eld Data aborato Finite Element Factors and
Paper Study . ollectio herimentatio Modelling Special

Circumstances

Resilient Concrete Crosstie and Fastening System for Rail Transit
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Typical Field Instrumentation Map

1 2 3 4 5 6 « Metrics to quantify:

‘ — Crosstie bending strain
. (crosstie moment design)

— Rail displacements
| (fastening system design)

| — Vertical and lateral input loads
. (crosstie and fastening system
7] design, and load environment
characterization)

— Crosstie temperature gradient

(Ambient Temperature)

Crosstie Bending Strain Rail Displacement (Base Vertical)

«zz.\lertical and Lateral Load (Wheel Loads) Thermocouple
Rail Displacement (Base Vertical, Base Lateral) Laser Trigger
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Instrumentation Overview
Vertical and Lateral Wheel Loads

e Desired data: (111 (111
— Vertical and lateral loads at the wheel-rall
interface and rail seat
L U L U

* Instrumentation description and methodology:

— Industry standard strain gauge bridges applied to rail web and
flange, similar to a wheel impact load detector (WILD) site

— Based on previous UIUC field instrumentation, one instrumented crib
per rail to approximate wheel loads throughout whole test section
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Partner Agencies
Metra:

The way fto really fly.

(Two Sites; Curve & Tangent)



Light Rail Tangent Data

Trains in Dataset: 2,245
From 18 March 2016
to 26 April 2016 (Tangent Location)
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Wheel-Rail Interface Load Quantification

MetroLink Tangent Location m

East St. Louis, IL

Track speed: 55 MPH

~154 trains/day (Red & Blue lines)

0.9 miles west of Fairview Heights Station
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Box Plot Background

Upper inner fence
(Q3+1.5%IQR)

« Box plots are great to: Outliers —— 4.0 /
— Visualize outliers T T~ Max
— Compare variability of different cases Q3 (75" (within
Percentile) fences)
— Check for symmetry \
— Check for normality
* 50% of Data are within the box Median —__ _ |QR

’—> Q1 (25th Mi!’] |
Percentile) (within
| .— fences)

/

Lower inner fence
Percentage (Q1-1.5xIQR)

Bending Moment
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Comparative Data
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Modal Comparison:

Vertical Wheel Loads

Vertical Load (kN)
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Vertical Load Percentiles for Each Mode

Light Rail Heavy Rail Commuter Rall
Percentile (Tangent) (Curve) (Tangent)
Vertical Load Kips (KN) Kips (KN) Kips (KN)

Minimum 2.7 (12.2) 6.4(28.5) 11.2 (49.9)

50% 8.1 (36.0) 13.8(61.4) 15.8 (70.1)
90% 9.4 (42.0) 16.4(72.9) 18.3 (81.3)
95% 0.8(43.8) 175 (77.8) 32.6(145.2)
99% 10.7 (47.5) 21.1(93.8) 37.1(165.0)
Maximum 18.6 (82.6) 59.3 (263.9) 44.9 (199.7)
Sample Size

(Wheel Passes) 53,880 143,680 372

Max. AWO  9.59 (42.6) 11.4 (50.6) 18.7 (83.5)
Max. AW3  12.5(55.5) 16.6(74.0) 23.1 (103.0)
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Impact Factor Percentiles for Each Mode

Impact Factor =

Dynamic Load

Static Load

Commuter
Percentile Light Rall Light Rall Heavy Rall Rail
Impact (Curve) (Tangent) (Curve) (Tangent,
Factor Coaches)
Minimum 0.47-091 0.22-042 0.39-0.56 0.49-0.88
50% 0.70-135 065-1.25 0.83-121 0.68-1.23
90% 090-172 0.76-146 099-144 0.73-1.33
95% 094-182 0.79-152 105-154 0.76-1.37
09% 1.02-197 086-165 1.27-185 0.79-1.44
Maximum 1.14-2.19 1.49-2.86 |3.57 -5.21 \ 096-1.74

Static load is bounded by
Min. AWO0 and Max. AW3
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Impact Factor Comparison

++++++ MetroLink Curve Low Estimate
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Impact Factor Comparison Chart
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Impact Factor Comparison Chart
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Modal Comparison: Lateral Loads

Curve Locations

Lateral Load (kN)
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Modal Comparison: L/V Ratios

Curve Locations
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Center Negative Bending Comparlson
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Center Negative Bending Comparlson
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Vertical Rail Load Data Conclusions

 Instrumentation was deployed and has successfully
captured wheel-rail loading data from 3 rail transit modes
at 4 field sites

« Impact Factors differ between modes; for example,
between heavy and light rail the impact factor is:

— 2.7 times greater at maximum load for heavy rail
— 1.7 times greater at 99t percentile load for heavy rail

« The currently-accepted impact factor of 3 (e.g. 200% per
AREMA) should be re-considered on a modal basis, and
possibly on a system-by-system basis
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Future Research & Path Forward

* Analyze extreme cases to understand better the
environment leading to high wheel loads

— Compare to other metrics (e.g. tie bending moments)
« Study the influence of speed on vertical & lateral loads

« Use field data to evaluate the effectiveness of dynamic
factor models and rail seat load models for light, heavy,
and commuter rail systems

« Perform analysis of seasonal variation

« Further investigation of maintenance-of-way equipment
loading conditions and their influence on design
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