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Abstract. Rotations averaging has become a key subproblem in global
Structure from Motion methods. Several solvers exist, but they do not
have guarantees of correctness. They can produce high-quality results, but
also sometimes fail. Our understanding of what makes rotations averaging
problems easy or hard is still very limited. To investigate the difficulty of
rotations averaging, we perform a local convexity analysis under an Lo
cost function. Although a previous result has shown that in general, this
problem is locally convex almost nowhere, we show how this negative
conclusion can be reversed by considering the gauge ambiguity.

Our theoretical analysis reveals the factors that determine local convexity—
noise and graph structure—as well as how they interact, which we describe

by a particular Laplacian matrix. Our results are useful for predicting

the difficulty of problems, and we demonstrate this on practical datasets.
Our work forms the basis of a deeper understanding of the key properties

of rotations averaging problems, and we discuss how it can inform the

design of future solvers for this important problem.

1 Introduction

Rotations averaging is the problem of assigning a rotation matrix to every vertex
in a graph, in a way that best respects given relative rotations on each edge.
This problem has become a staple of recent global Structure from Motion (SfM)
methods, where the vertices represent cameras and the rotation matrices are
their orientations [1-4]. In many global SfM approaches, camera orientations
and positions of many photographs are recovered by (1) estimating relative
poses among pairs or triplets of cameras, (2) computing camera orientations
via rotations averaging, and (3) computing camera positions from translation
direction constraints.

Despite the practical success of recent rotations averaging methods, they
largely come without guarantees. Indeed, the cost functions in question are
non-convex. Both Ly and Ly formulations of rotations averaging can have local
minima. Beyond these facts, little is known about the practical properties of
rotation averaging problems—in particular, what makes a problem easy or hard?

An instance of the rotation averaging problem is a graph with a measure-
ment on each edge. Figure 1 shows this measurement graph for the ARTSQUAD
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Fig. 1: In Structure from Motion, each vertex in a rotations averaging problem represents
a camera’s orientation. Edges are measurements of the relative rotation between two
cameras. Some real rotations averaging problems have complicated graph structure,
such as the ARTS QUAD problem pictured above [5].

dataset [5], a difficult real-world SfM problem. Intuitively, the performance of
a solver should depend on the structure of the graph (dense vs. sparse, well
connected, clustered, etc.), as well as the inherent noise level of the measurements.

The goal of this paper is to seek a principled answer to what makes a given
problem easy or hard. We pursue that via a local convexity analysis. We show that
the extent of local convexity depends on the smallest eigenvalue of a particular
normalized graph Laplacian. Such eigenvalues have found broad application in
describing random walks and diffusion on graphs, and are related to many
combinatorial graph properties [6].

Our results provide insight into the sources of problem difficulty. We see
that well-connected problems are easier, but that larger and noisier problems
may be difficult. This could motivate a future multistage approach that solves
larger, less connected problems by first considering small, simpler, well-connected
subproblems.

2 Related Work

Rotations averaging was first proposed within the vision community in Govindu’s
pioneering work on global SfM [7]. Like most subsequent methods, that paper
computes orientations for many cameras, subject to relative orientations between
some pairs of cameras. The solver in [7] is based on a quaternion representation
of rotations. If the constraint that a rotation is a wnit quaternion is relaxed,
minimizing the difference between quaternions is a linear problem. However,
Hartley et al. [8] later showed that this method does not exactly minimize a
reasonable cost function, due in part to quaternions only representing unique
rotations up to a sign. Martinec et al. [9] propose a similar solver: in the spirit of [7],
they represent rotations as orthogonal matrices and relax the orthonormality
constraints. This is again a linear problem, and is reported to work better than [7]
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in practice. Arrigoni et al. [10] augment the orthogonality relaxation with a low-
rank /sparse decomposition to be more robust to outlier measurements. Wang et
al. [11] propose an unsquared version of the cost in [9] and show that the correct
answer is exactly recovered under a certain noise model.

Crandall et al. [5] take an entirely different approach. They simplify the
problem greatly by assuming rotations without roll, and solve under robust cost
functions with a Markov Random Field. This has the advantage of robustness to
outlier data, but uses a complicated general purpose solver with many parameters,
rather than taking advantage of problem structure.

A third category of intrinsic solvers makes explicit use of the geometric
structure of the rotations group. Govindu [12] iteratively projects the problem
into tangent spaces, solving a Euclidean problem at each step. Tron et al. [13, 14]
give a distributed consensus algorithm for sensor arrays. Hartley et al. [15] also
give a consensus algorithm, this time motivated by the Weiszfeld algorithm for
Euclidean averaging. They minimize an L cost function, which is considered to
be more robust to noisy input. Chatterjee and Govindu [16] also give an iterative
tangent space scheme, but this time minimize a Huber-like robust loss. We will
analyze an intrinsic cost function in this paper.

Many of these methods can produce high quality results, but none of them
come with guarantees of the correctness or optimality of the underlying problem.
Fredriksson and Olsson [17] seek to verify the optimality of a solution. They
frame a dual problem such that if the dual and the original problem have the
same optimal cost then the solution is guaranteed to be optimal. In practice,
this works on problems with small inlier noise. We do not offer this chance at
a guarantee of optimality, but we instead provide broader insight into which
problems are easy.

Closely related to our work, other papers have also discovered connections
to the eigenvalues of graph Laplacians. Bandeira et al. [18] analyze the worst
case performance of a spectral algorithm for the closely related problem of
synchronization on the orthogonal group O(n), finding that it depends on the
smallest eigenvalues of a graph Laplacian. In [19] and [20], Boumal et al. take
a statistical modeling approach to rotations averaging and compute Cramér-
Rao lower bounds for maximum likelihood estimators. As in our results, these
bounds are in terms of the eigenvalues of graph Laplacians with boundary
conditions. These results are concerned with the quality of solutions, but not
with distinguishing between local and global minima.

3 Representing Rotations

Rotations averaging attempts to assign a 3D rotation to every vertex in a
graph, where often these vertices correspond to cameras. In this section we give
preliminaries by describing two representations for 3D rotations: rotation matrices
and angle-axis vectors.

Rotation matrices. A rotation matrix is a 3 x 3 real orthogonal matrix with
determinant 1. The set of all such rotations is the special orthogonal group SO(3).
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The group’s operation is the usual matrix product. Understood this way, SO(3)
is a three dimensional manifold inside R3*3,

Angle-Axis representation. Euler’s rotation theorem shows that any rotation
R may be viewed geometrically as a rotation by some angle # around some unit
vector v. The vector fv € R? is the angle-axis representation of R. The angle-axis
representation is not unique, since v ~ (27 — 6)(—v). A common convention is
to restrict 6 € [0, 7], which is only ambiguous for § = 0 and 6§ = 7. See [8] for
conversion formulas between rotations matrices and angle-axis vectors.

The tangent space. Rotation matrices and angle-axis vectors are connected in
a deep way. Since SO(3) is a 3D manifold in R3*3, at any point R on SO(3) there
is a 3D subspace of directions where an infinitesimal step remains on the manifold
(this is the tangent space at R), and an orthogonal 6D subspace of directions that
step away from SO(3). In fact, SO(3) is a Lie group — a continuous symmetry
group — and its tangent space at the identity (the Lie algebra) is the additive
group of skew-symmetric 3 x 3 matrices. For any differentiable manifold, there are
maps between the tangent space at a point and the manifold in the neighborhood
of that point: expy takes a step in the tangent space at R to a point on the
manifold, and log, maps a point on the manifold into the tangent space at R.
Because SO(3) is a Lie group there is a simple connection between the tangent
spaces at a rotation S and the Lie algebra:

expg(§2) = Sexp;(2) (1)

where (2 is any skew matrix. Moreover, at the identity I € SO(3), the exponential
and log maps are exactly the conversions between rotation matrices and angle-axis
vectors:

log;(R) = 0[v]x and exp; (f[v]x) =R (2)

where [-]x denotes the cross product matrix:

Vg 0 —v, vy
Vix=|vy| =] v. 0 —ug (3)
v |, —vy vy O

We will write exp and log for exp; and log;. These are precisely the ordinary
matrix exponent and log.

Distances on SO(3). There are several reasonable metrics on SO(3)[8]. In this
paper we will be concerned with the angular distance, d,(-,-). This is the angle
of the relative rotation between two rotation matrices (here R and 8):

4(8,8) = 5| log(Rs ™) ()

since for any rotation Q = exp(A[v]x), 5[ log(Q)|l2 = 3[0[v]xll2 = [|6v]2 = 6.
This is the most natural metric on SO(3), also called the geodesic distance.
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4 Rotations Averaging Problems

In this section we introduce rotations averaging problems and consider some of
their properties. In SfM, each camera in a scene has a 3D orientation (i.e. the
yaw, pitch, and roll of the camera). We represent these orientations as rotation
matrices, which map from a world coordinate system to a camera-centered system.

Problems and Solutions. A rotations averaging problem (G,ﬁ) is a graph
G = (V, E) where vertices represent absolute rotations, and edges are annotated
with measurements R : E — SO(3) of relative rotation. We will write V =
{1,2,...,n} and assume that G is connected. A solution R = (Ry,...,Ry) is an
assignment of absolute rotations to vertices.!

Cost Function. We measure the quality of a solution by how well the measured?
relative rotation R;; on each edge (7, j) matches the modeled relative rotation
RiRjT. We quantify this as ¢2, the L, rotations averaging cost function:

P*(R) = Z (dé(ﬁijaRiRjT))z (5)

(i.J)EE
We will often refer to the residuals R} R;;R; in their angle-axis form:
log (R{ Ri;R;) = 05 Wi (6)

so that the objective function ¢* becomes ¢?(R) = 2 (i)er 07;.

Gauge Ambiguity. If ¢?(R) = ¢, then ¢*(RS) = ¢ as well, where RS =
(R1S,...,R,S). We see that solutions are invariant to a global rotation. This is
the standard gauge ambiguity, and it is always understood that solutions are
only unique up to such a global rotation. The gauge ambiguity can be “fixed”
by arbitrarily setting the value of exactly one rotation; for example, requiring
R; = I. We will see later that appreciating the gauge ambiguity is crucial in
revealing convexity structure in rotations averaging problems.

Hardness. Because no closed-form way to find globally optimal solutions to
rotations averaging is known, solvers proceed iteratively. That is, the user supplies
a preliminary guessed solution, and then that solution is refined by taking a series
of steps in directions which reduce ¢2. These initial guesses can be generated
at random, or from spanning trees, but more commonly come from relazed
problems [7,9] which do have closed-form solutions, but may be only a loose
proxy for the true problem. We would like to know how good of a guess is
necessary. We will approach this question by asking where ¢? is locally convex.

1 We will usually wish to reason about G in an undirected manner, since a measurement
Ri; on (4, 4) is equivalent to Rj; = R;; on (j,1).

2 Throughout this paper, we use tildes, such as R and ﬁij, to represent measured
quantities—inputs to the problem. We use light block fonts, such as R; and ﬁqjj for
rotation matrices, and caligraphic fonts, such as R and R for sets of things.
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Local Convexity. Optimizing convex functions is easy: they have the property
that all guesses are “good enough” to get to the right answer. That is, all local
minima of a convex function are also global minima. Unfortunately, rotations
averaging is not convex. However, we can consider the weaker property of local
convezity. A problem (G,R) is locally convex at a solution R if there is some
ball around R on which the problem is convex. A function that is locally convex
on all of a convex domain is convex on that domain.

Functions are locally convex where the eigenvalues of their second derivative
(Hessian) matrices are all non-negative—that is, when the Hessian is positive
semi-definite. Local convexity can be a sufficient property for an optimization
problem to be easy if the problem is locally convex in a large region around a
global minimum. Even when local convexity fails, a function whose Hessian is
more nearly positive-definite is less prone to having local minima.

Matrices Associated to Problems. As a result of the graph structure under-
lying rotations averaging problems, when we inspect their Hessian matrices, we
will find components of some well-studied matrices in spectral graph theory. We
will define those here and indicate their other uses.

Consider our graph G with each edge (4, j) weighted by 6;;. These 6 will later
be the residuals that come from evaluating ¢? at a particular solution. We write
i~ jif i and j are neighbors. The degree §(i;0) of a vertex i € V' is 37, 0:;,
and the maximum degree A(f) = max,cv 6(v; ). (We continue to emphasize the
weights 6 because we will need to distinguish between different sets of weights.)

The degree matrix D(0) is the diagonal matrix diag([6(1;6)---d(n;0)]) and
the adjacency matrix A(6) has entries A;; = 6;;1(¢ ~ j), where 1 is the boolean
indicator function. The graph Laplacian is L(6) = D(0) — A(#). Because the
rows and columns of L sum to zero, the smallest eigenvalue A1 of L() is always
0 with corresponding eigenvector [1,1,...,1]. If G is connected, then Ay > 0.
This second-smallest eigenpair has special significance and is used for spectral
clustering. In the unweighted case when all ;; = 1 we write simply D, A, and L.
Then s is called the algebraic connectivity.

Further varieties of graph Laplacians arise in practice. The normalized graph
Laplacian has the form D(#)~'/?L(#)D(#)~ /2. Normalized graph Laplacians
have been used for image segmentation [21] and are also known to be closely
connected to many combinatorial graph measures [6]. In the following sections we
will also encounter a normalized graph Laplacian with boundary conditions, similar
to Laplacians which arise in the numerical solutions to Poisson’s equation [22].

5 Local Convexity Theorems for Rotations Averaging

In this section we develop a sufficient condition for rotations averaging to be
locally convex. The proof will work by finding a condition that implies that the
Hessian of ¢? positive definite. Since ¢? is a sum of terms, one for each edge
(i,7), we begin by computing the Hessian of a single term.
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Fig.2: The eigenvalues of the Hessian H;;.  Fig. 3: A function which is not convex
Two are constant: A\¢ =4 and A3 =0, and because of a rotational gauge ambiguity.
the other four appear in pairs.

Theorem 1. The Hessian matriz of d4(]§ij,RiR;r)2, evaluated at the point
(Ri, Rj), is given by

H. - pl+ (2—p)ww’ —pl = (2—p)ww " — O[w]x 7)
U el — (2—p)ww T+ O[w]« pI+ (2—p)ww '

where the residual R;'—Einj is a rotation by angle 6 € [0,7) around azis w, and

where p = 0 cot(6/2).

We give a proof of Theorem 1 in Appendix A. Note that H;; is a 6-by-6 real-valued
symmetric matrix, and that ¢ is not differentiable for § = r.

As has been observed in [14], H;; is positive semidefinite when d(ﬁij, RiRjT) =0,
and indefinite everywhere else. This can be seen in Figure 2, because some of the
eigenvalues of H;; immediately become negative when moving away from the
global minimum. We could well conclude at this point that ¢? may be locally
convex almost nowhere. However, this is not the case.

Some Gauge Intuition. In light of a previous result, the indefiniteness of H;;
is surprising. Hartley [8] has reported that d,(S,-)? is locally convex almost
everywhere. We also know that the gauge ambiguity can be freely fixed (for
instance, by setting Ry = I for some k) without altering the problem in any
meaningful way. So our two-rotations problem has reduced to Hartley’s:
mind,(S,RiRg )? s.t. Ro=1I = mind,(S,R1)? (8)
R1,Ro Ry
Similarly, Figure 3 shows a toy example of a simple polar optimization,
chosen to have a rotational gauge ambiguity. This problem is locally convex on
{(r,0)|]1 < r < 2}, but it is not locally convex on {(r,6)|0 < r < 1}. However,
this distinction is only an artifact of the gauge. We see that the root problem,
min (r — 1)2,0 < r < 2, is actually convex and very easy. A rotational gauge
ambiguity can introduce spurious nonconvexity into a problem.
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Could it be that fixing the gauge ambiguity will reveal local convexity in
general rotations averaging problems? Figure 4 shows the difference that fixing
the gauge makes on a real problem. Both lines plot the smallest eigenvalue of the
Hessian matrix along a 1D family of solutions, starting at a global minimum and
moving away in a random direction. Notice that the fixed problem is now locally
convex from the minimum to about 18° away. However, even with the gauge
fixed, the problem is not locally convex everywhere, because the nonconvexity
arises both from the gauge ambiguity and from the curvature of SO(3) (i.e., the
cross product term in Eqn. 21). The graph in Figure 4 is an instance of the
standard random graph G, , with n = 40 and edge probability p = 0.4.

We are now ready to state our main result. (We give a proof in Appendix
B.) By bounding the smallest eigenvalue of H, while also restricting the gauge
ambiguity by requiring Ry = I (for some k € V'), we derive a sufficient condition
for local convexity. We lose some precision by approximating away the directions
w;; of residuals in order to produce an interpretable result.

Theorem 2. A rotations problem (G, ﬁ) is locally convex at solution R if for
any k € V the smallest eigenvalue of a weighted, normalized graph Laplacian is
large enough:

)\min (Lﬁorm) > 1 (9)
where  Lporm = D(0:;) ™Y 2L i) D (6;5)~Y/2 (10)
and where 0;; are the magnitudes of the residuals of this solution, where ;; =

0;; cot(0;;/2) is a convenience function of the residuals, and where MF is the
matriz produced by removing row and column k from matriz M.

We demonstrate Theorem 2 in Figure 5. Note that the effect of fixing the
gauge at different vertices varies: fixing a high degree node can reveal more local
convexity than a vertex on the periphery of G. In our experiments, we always fix
the gauge at a maximum degree vertex.
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Fig. 6: Plots of the bound in Theorem 2 on the complete graph K, with identical
residual error 8 = {2°,5°,10°} on each edge. The zero crossings are indicated with
black dots. With all else equal, more nodes yield lower (less useful) bounds.

6 Consequences and Applications

In Theorem 2 we presented our main technical contribution: a sufficient condition
for the local convexity of a rotations averaging problem (G,R) at a solution
R. In this section we explore consequences, both theoretical and practical, of
Theorem 2. First we will look at what this theorem can tell us about what makes
a rotations averaging problem difficult, and then we will look about how we can
derive a way to quantify the difficulty of problems.

Interpretation of Theorem 2. Theorem 2 directly connects local convexity to
the smallest eigenvalue of a weighted, normalized graph Laplacian with boundary
conditions. It indicates that locally convex behavior depends on both the structure
of the graph and the size of the residuals. Lower noise and a more connected
graph structure interact with each other to produce easier problems.

To build some intuition about how this tradeoff works, consider complete
graphs, which are maximally connected. In Figure 6 we plot the quantity
Amin (L) — 1 over many sizes of complete graphs K, supposing a solution with
identical residuals 6 on every edge. Our theorem says that where this quantity is
positive, problems are locally convex. Notice that more nodes yield less useful
bounds, when all else is equal.

Figure 7 shows a problem on which Theorem 2 can directly demonstrate local
convexity. The problem is built on an instance of the random graph G,, , with
n =10, p = 0.6, and noise of 5° standard deviation added to each edge. Each line
gives the value of Ay, (H¥) along a path moving away from the global minimum.
The circles mark where Theorem 2 transitions from guaranteeing local convexity
to not applying. It appears that problem actually becomes locally non-convex
around 32° from the minimum. An initial guess inside the locally convex region
is good enough to find a global minimum.

Algebraic Connectivity as a Measurement of Hardness. In the previous
section, we demonstrated how to use Theorem 2 to take a problem and a solution
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Fig. 7: A plot of Amin (Hk) along six random directions away from a global minimum.
To the left of the circles on each line, Theorem 2 guarantees local convexity. To the
right of them, the theorem fails to apply.

and certify if the problem is locally convex there. However, this is unlikely to
be a useful operation for solving problems in practice. The greater utility of
Theorem 2 is the insight it provides: It describes the way graph structure and
noise in the problem interact to make a problem difficult.

Now we will take this a step further. When considering an unsolved problem, it
is unclear quite how noisy it is. Similarly, when collecting data to form a problem
instance, the noisiness of the measurements may not be easy to control. Can we
understand the contribution of graph structure alone to problem difficulty?

In the following Theorem, we relax Theorem 2 to get an easily interpretable
(although less precise) bound which separates the dependencies on noise and
graph structure:

Theorem 3. A rotations averaging problem (G, ﬁ) 18 locally convezx if

/\QT(LL) o NA(H(HU))

(11)

where Ao (L) is the algebraic connectivity of the graph G, p(Omax) is the u con-
venience function applied the the largest residual, and A(6;;) is the mazimum
degree in the graph G with weights 0;;.

Proof. From the proof of Theorem 2, we have a constraint that is sufficient for
local convexity:

Amin (La(pi;) — De(6i5).) >0 (12)

Now recalling that D¢(6;;) is a non-negative diagonal matrix,

< Amin (u(&maX)L — D(OUD >0 (13)
<= Amin (#4(Omax)L) > Amax (D(aij)) (14)
A(8i;)

(Omax) (15)

1
<— 7)\2([4) >
n
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Fig. 8: A cartoon depiction of first solving easy, well-connected subproblems to simplify
a harder problem.

where the last implication follows by considering the eigensystem of L. The
maximum projection of any vector whose kth element is 0 onto [1,1,...,1] is
V/(n—1)/n, so the projection onto other eigenvectors of L must be at least

1/+/n. We conclude that xLrx > A2(L)/n. This harmonic bound is the least
precise approximation in this paper.
O

To arrive at the separation of graph structure and noise in Theorem 3 we
necessarily made many approximations that reduce the precision of the result.
In fact, Theorem 3 will only be directly applicable on unrealistic problems with
very low noise. However, its value is in the insight that it brings.

We propose using A2(G)/n, the graph structure term that appears in The-
orem 3, as an indicator to distinguish easy problems from harder ones. To
demonstrate that this is effective, consider this indicator computed on each of the
1DSIM datasets [1] in Figure 9. These are challenging, real-world Structure from
Motion datasets compiled from Internet community photo collections. We plot
A2(G)/n on the z-axis. To estimate the true difficulty of a problem, we initialize
with a linear method [9] and then minimize ¢? with the Ceres non-linear least
squares solver [23]. The average (gauge-aligned) distance between our solution
and the reference solution provided with the datasets is our error, plotted on the
y-axis. As claimed, we see that in general problems with higher indicator can be
solved with lower error.

Applications to Solver Design. Our results indicate that smaller, well-connected
graphs are generally easier than larger and less noisy ones. How can our results
inform the design of the next generation of solvers? Figure 8 is a cartoon where
the original problem is very poorly-connected and probably rather hard. However,
if we first solve a set of easy, well-connected subproblems, then we can reduce the
hard problem to a series of easy ones. We demonstrate this in Figure 9, where
by splitting a dataset UNION SQUARE into two pieces using normalized spectral
clustering [6], both pieces can be solved more accurately. Notice that both pieces
have a better (larger) hardness score than the original problem.

Approaches based on solving a sequence of increasingly large subproblems
have been used elsewhere in Structure from Motion [24,25], although not for
rotations averaging. Rather than resorting to empirical heuristics, Theorem 3
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gives a principled score of the difficulty of a subproblem, which could be used to
guide an algorithm.

7 Summary and Conclusions

Future Work. Two weaknesses of these theorems—the choice of vertex in fixing
the gauge, and the lossy harmonic approximation—may be closely related. While
fixing a vertex is quite simple, the existence of the choice of node suggests that in
some sense this approach is not the most naturally suited to the problem. A more
sophisticated understanding of the class of gauge-fixing constraints, including
distributed constraints, may be able to greatly improve upon Theorems 2 and 3.
Conclusion. Rotations averaging has become a key subroutine in many global
Structure from Motion methods. It is known to be nonconvex, yet many solvers
perform reasonably well in practice. Global convergence results for nonlinear
optimization problems like this one are rare and hard to achieve. We do something
more tractable, using local convexity to show global convergence on a (hopefully
large) subdomain of reasonable solutions. We give sufficient but not necessary
conditions. Our analysis locates the root sources of non-convexity: both the gauge
ambiguity, and the curvature of the rotations group. The extent of local convexity
depends on the interaction of structure and noise, as captured in a particular
graph Laplacian. We also approximate the contribution of graph structure alone
to problem difficulty, which can be used to estimate the difficulty of a problem
instance and can lead to new algorithms that subdivide problems based on this
measure. This deeper understanding of the structure and challenges of rotations
averaging can inform the construction of an ever-more reliable next generation of
solvers.
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Appendix A: Proof of Theorem 1

We will calculate derivatives of d(R;;, R RT) at (R;,R;) by introducing perturba-
tions x; and x; in the respective tangent spaces at R; and R;.

H;; = =D? d( ij> €XPg, [xi]x €XPg; [Xj];:)z (16)
= D?d(Rij, R; exp[x;] x eXp[xj]TRT)2 (17)
= D% (R R”Rj,exp[xz]X exp[—x }X)Q (18)
= D?d (RTR”RJ,eXpBC'H([xZ]X,[ x,]%))? (19)

(20)

We refer the reader to [26] for an explanation of the Baker-Campbell-Hausdorff
formula, which relates the product exp A exp B to exp BCH (A, B). Although the
BCH itself is quite messy, we can approximate it. Since we are computing second
derivatives, we go to second order:

H;; ~ D?d(R] Ri;Rj, exp([xi]x — [X;]x — [x; X %;]x)) (21)

Note the cross product term x; x x;. This is the main source of nonconvexity in
rotations averaging, and arises from the twistedness of the space SO(3).

In [8], Hartley et al. compute the simpler case of d(S,exp[]«)? (where S is
some constant) and conclude that

D d(S,exp[x]x)? = —w and D?d(S,exp[x|x)? = pl + (2 — p)ww' (22)

where 8 = exp[fw], and and p = 6 cot §.

Our problem has now been reduced to computing the derivatives of a com-
position of functions, both of which themselves have known derivatives. The
conclusion follows after repeated application of the chain rule. Refer the supple-
mentary materials for a supporting Mathematica notebook. a

Appendix B: Proof of Theorem 2

We wish to find a constraint that is sufficient for H positive definite. In order
to do this, we will have to fix the gauge of the problem by requiring Ry = I.
Our approach will be to uncover what structure we can find within H, and then
return to the matter of the gauge. We use A = B for symmetric matrices A and
B to mean that A — B is positive semi-definite, and A ® B for the Kronecker
product of matrices A and B. We begin by analyzing the Hessian for a single
residual block Hj;:
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WiiW —Wi W, I -1 0 —|wy
H;; = (2—p45) { 7 7 T]} + 45 {_ } + 05 {[W [ j]x] (23)

—Wi W Wi Wy I1 i7] 0
- I-1 y 0 7[Wij] X
= i [*I I:| + 0 |:[Wij]>< 0 (24)
I-1 I0
Hij —Hij 05 0 D
= — ®I 26
({*uij ma} [ 0 0i; ’ (26)

where we began with Theorem 1 and approximated away all of the terms which
depended on the directions w;; of the residuals, by first dropping a positive
semi-definite term, and then bounding a skew matrix from below. We now analyze
the full Hessian:

H- Y H, 1)

(i,4)eE
s 0.. 0
(T H T R
(i.))€E —Hij Hij 0 01]
[ [l [y ) e @)
gee s TV TY Y
= (L(pi;) — D(0i;)) @13 (30)

To fix the gauge, we need to remove the rows and columns of H pertaining to
vertex k. Since we can view this as projecting onto a subspace, by the Cauchy
interlacing theorem this operation preserves the matrix inequality:

H = (L(uy;) - D(0,;) 15 (31)

Since a Kronecker product with the identity only alters the multiplicity of the
eigenvalues, a sufficient constraint for H* » 0 is

L(Mij)k - D(Qij)k -0 (32)
i

= (D(0:5) L1, D(0:) /) = L1 -0 (33)

— Lﬁorm —I,.1>0 (34)

= Amin(Lhop) > 1 (35)

We call Lﬁorm a weighted, normalized graph Laplacian with a boundary condition.
O
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