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Abstract: Several data-centric applications today produce and manipulate a large volume of data,
the so-called Big Data. Traditional databases, in particular, relational databases, are not suitable
for Big Data management. As a consequence, some approaches that allow the definition and
manipulation of large relational data sets stored in NoSQL databases through an SQL interface
have been proposed, focusing on scalability and availability. This paper presents a comparative
analysis of these approaches based on an architectural classification that organizes them according to
their system architectures. Our motivation is that wrapping is a relevant strategy for relational-based
applications that intend to move relational data to NoSQL databases (usually maintained in the cloud).
We also claim that this research area has some open issues, given that most approaches deal with
only a subset of SQL operations or give support to specific target NoSQL databases. Our intention
with this survey is, therefore, to contribute to the state-of-art in this research area and also provide a
basis for choosing or even designing a relational-to-NoSQL data wrapping solution.
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1. Introduction

Relational database systems (RDBMS) have been standing as the backbone of application systems
in several domains, being the standard database solution for maintaining critical data. However,
the continuous evolution of hardware, network, and software technologies, as well as the increase
of digital data production, have posed new challenges for application development and database
management. From the database point of view, the main challenges are related to high availability and
scalability to deal with these big data-centric applications.

One of the reasons for RDBMS not coping with big data-centric applications is the need to conform
to the atomicity, consistency, isolation, and durability (ACID) properties for data manipulation,
which are orthogonal to the availability and scalability requirements. Indeed, the overhead to
guarantee ACID transactions may be prohibitive when a large volume of data must be handled.
In addition, the fixed record format of relational data also introduces a modeling and storage problem
for data instances that do not respect a schema (relational databases follow the principle schema first,
data later [1]). This variety of representation is a typical Big Data feature.

Additionally, RDBMS provide vertical scalability, i.e., data servers can be powered to improve
performance, but such a task is usually complex and expensive [2]. On the other hand, cloud-based
architectures offer a low-cost commodity infrastructure. In such a scenario, NoSQL databases
(NoSQL DBs) have risen as a promising solution for big data processing with excellent scalability,
since they relax the ACID properties to maximize availability [3,4].
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NoSQL DBs are based on (not-relational) data models that better represent complex objects
whose data instances may have heterogeneous structures and do not strictly need to respect a schema
(following the principle data first, schema later [1]). In addition, they provide horizontal elasticity
instead of the (limited) vertical elasticity supported by most relational databases. Horizontal elasticity
guarantees a better performance for big data management since new machines can be added or
removed based on the application storage needs [4]. It is important to notice that, if ACID guarantees
are needed, RDBMS are still the right choice. However, if relaxed schema, high availability and
horizontal elasticity are essential requirements, NoSQL DBs are a good solution.

The dichotomy between having a relational-based application and offering high scalability with a
low-cost has directed some organizations to move their applications data to NoSQL DBs. Nevertheless,
we have several problems related to this moving. The first one is that NoSQL and relational data models
are different. NoSQL data models are flexible and commonly based on the notion of aggregates [4],
allowing the definition of different data instances with possible complex structures. On the other
hand, the relational data model represents only homogeneous and normalized data instances. Another
problem is the database access interface: developers are used to defining and manipulating data using
the SQL language, which is the standard for RDBMS. Instead, NoSQL DBs provide different access
methods and access languages depending on their data model or a specific product and usually have
limited (or not) support for the SQL language. As a consequence, the learning curve to start using
NoSQL DBs is very steep due to these differences in terms of data representation and data accessing.

When we consider the adaptation of applications to new computational environments,
the solutions can be organized into three categories [5]: (i) redevelopment, which rewrites the existing
applications from scratch; (ii) wrapping, which provides a new interface to a software component,
making it more easily accessible by other components; and (iii) migration, which moves the application
to the new environment, while retaining the original systems data and functionality. The choice for
one of these solutions depends on an evaluation of the costs, like the number of required changes,
costs, as well as the associated risks. The first solution is more expensive since it requires a whole
system reimplementation. The third one requires less effort than the first one considering that not all
the system will be recoded. Instead, the second solution is the less costly one as it usually provides
a faster-moving strategy. In this case, the wrapping component acts as an interface to a service that
performs some processing required by an external client that does not need to know details about the
implementation of the service.

Back to our specific problem of moving a relational-based application to a NoSQL-based
application with a low startup cost, the purpose of this survey is to present and compare approaches
that offer solutions based on the second category above, i.e., solutions that adopt the wrapping
strategy to move applications from SQL to NoSQL databases. These approaches allow relational-based
applications to access their data (stored in NoSQL databases) with low startup and maintenance
costs since they still view and manipulate data in the relational format and, thus, SQL operations
do not need to be explicitly translated to target NoSQL access methods or access languages by the
application. Instead, this task is supported by the wrappers that provide the interoperability between
SQL operations and NoSQL operations.

The surveyed works propose a SQL-to-NoSQL wrapping based on one of two development
strategies: (i) a layer that receives, translates, and executes SQL operations over NoSQL databases and
(ii) a storage engine that abstracts the storage of an RDBMS to access data in NoSQL databases, i.e.,
they map the logical relational data level to a physical data level in a NoSQL database. These strategies
are detailed in Section 3.

1.1. Survey Scope: What Is Out

As stated before, this survey considers wrapping solutions for allowing relational-based
applications to communicate with NoSQL databases. However, other approaches also deal with the
widespread problem of relational data management in the cloud. We organize them into four categories:
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(i) Cloud RDBMS; (ii) SQL-like approaches; (iii) database migration tools; and (iv) NoSQL-to-SQL
interoperability. We briefly present them in the following:

The cloud RDBMS category comprises RDBMS that can manage data in the cloud. In this category,
we have two main subcategories: (i) extensions of traditional RDBMS; and (ii) native cloud RDBMS.
The first subcategory regards products that offer optional packages for such a management, like Oracle
12c [6] and PostgreSQL [7]. The second subcategory are RDBMS specially designed to manage data
in the cloud, like Microsoft SQL Azure [8]. This second subcategory also comprises the NewSQL
database systems. The NewSQL paradigm combines the high availability and scalability from NoSQL
databases and the ACID support from relational databases [9]. They are usually in-memory RDBMS
running on a cloud environment, and each node stores a slice (partition) of the data. Some examples
are S-Store [10], H-Store [11], E-Store [12], Yesquel [13], Clay [14] and Rubato DB [15].

The SQL-like category regards solutions with the capability of executing operations, in an SQL-like
dialect, in a set of NoSQL databases. The online analytical processing (OLAP) is the focus in this
category, e.g., AsterixDB [16], SparkSQL [17], Scope [18], SQL to Flink Translator [19], Dryad [20],
Pig [21], SQL++ [22,23], CloudMdsQL [24], Hive [25], MuSQLe [26], among others.

The database migration tools category comprises solutions that do not implement a system to
access data. Instead, they offer a tool that helps users to migrate relational data to NoSQL databases.
These solutions accomplish a map between the relational data to a specific NoSQL database, but only
to migrate the data. The developer is further responsible for modifying his/her system to access the
NoSQL database. Some examples are the extensions of DigiBrowser [27] and ERwin HAWK [28].

Finally, the NoSQL-to-SQL interoperability category is related to industry and academic solutions
that work on the opposite direction of this survey intention, i.e., approaches that develop solutions
to store and/or access NoSQL data from relational databases. Their motivation is the support of the
SQL standard and transaction management provided by an RDBMS to manage complex NoSQL data,
as well as flexible NoSQL schemas. Most solutions consider the mapping of JSON data to relational
data. In this context, several RDBMS vendors support JSON data management, like Oracle [1,29],
DB2 [30], SQL Server [31] and PostgreSQL [32]. Their capabilities usually include: (i) a binary storage
format, like Oracle OSON and DB2 BSON; (ii) SQL extensions that allow the generation and retrieval
of data in JSON format, like Oracle SQL/JSON; (iii) APIs to manipulate JSON data, like DB2 JSON
API; and (iv) indexing strategies for JSON data. We also have some academic proposals, like Argo [33],
Sinew [34] and the work of DiScala and Abadi [35]. Argo proposes a layer for mapping JSON data to a
relational database and an SQL extension (Argo/SQL) for manipulating JSON data. Sinew is also a
layer that manages relational views over typical NoSQL data (arbitrary documents of key-value pairs)
against which SQL queries and updates can be issued. The work of DiScala and Abadi introduces an
algorithm that converts JSON data into relational data. Basically, the algorithm discovers relationships
among the attributes of denormalized NoSQL datasets in order to organize these attributes into
relational tables.

Different from all of these categories, this survey focuses on wrapping approaches that map
relational data and SQL operations to data and operations of NoSQL databases, respectively.
These approaches can be considered to move relational-based applications to the NoSQL world with
low startup and maintenance costs. It is also important to observe here that we consider approaches
that offer at least an elementary SQL DML interface, and we do not consider SQL extensions for
SQL-to-NoSQL interoperability purposes, like, for example, the SQL support for XML data and
data analytics.

In addition, this survey does not point out what NoSQL database model and NoSQL database
product are the most suitable to move relational data. This problem is context sensitive, having each
product specific advantages and disadvantages. The best choice among them depends on the data
nature, application workload, among other features.

Given the survey scope, we initially review the data models of NoSQL databases and propose a
basic architectural classification to categorize the related approaches. In the following, all approaches
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in the same category are detailed and compared to find out similarities and differences among them.
Last but not least, we provide an overall comparative analysis to highlight tendencies and limitations.
We intend to contribute to the state-of-art on this subject as well as to raise some open issues and
opportunities. We also believe that all provided overview and discussion of the approaches can
be useful for developers to choose the most suitable one for their big data applications on top of
a relational database, and even as a basis for the design and development of new SQL-to-NoSQL
solutions. To the best of our knowledge, no other survey is focusing on this scope.

1.2. Paper Organization

The rest of this paper is organized as follows. The next section gives an overview of the data
models of NoSQL databases. Section 3 proposes an architectural classification to organize the related
work. Section 4 details and compares approaches in a same classification. Section 5 provides an overall
comparative analysis and Section 6 is dedicated to the conclusion.

2. NoSQL Background

NoSQL database is a class of DBMS conceived to fulfill some data management requirements
that relational databases do not adequately satisfy. They can be defined as databases that do not
adopt the relational data model and have six properties [3,36]: (i) horizontal scaling; (ii) ability to
store complex data in a distributed way; (iii) simple access interface or protocol for data manipulation;
(iv) relaxed/non-existent ACID support; (v) high availability; and (vi) optional and flexible schema.

NoSQL databases have independent designs, each one with schemaless capabilities as well as
specific data models that support complex data. In the literature, we find out different taxonomies
about the data models of the NoSQL databases [3,4,36]. In this paper, we consider the four categories
of NoSQL data models defined in [4]. These categories are preferred since they are more compatible
with the NoSQL foundation presented in the interoperability approaches available in the literature and
considered in this survey. The NoSQL data model categories are: (i) key-value; (ii) document-oriented;
(iii) column-oriented; and (iv) graph. However, we had identified related work only for the first three
categories, which are described in the following.

The key-value data model is the simplest NoSQL data model. It is composed of a set of key-value
pairs, being the value accessed through a unique atomic key. A value can maintain a simple or complex
content, but this content cannot be queried, i.e., it is a “black-box” content. Due to it, we assume that
any value in a key-value data model has an atomic domain.

The document-oriented data model specializes the key-value data model. A document
encompasses a set of key-value pairs, and a unique atomic key accesses each document. However,
document content is composed of a set of simple or complex attributes. A simple attribute holds an
atomic value and a complex attribute holds a list of values, a set of values, or another document.

Finally, the column-oriented (or simply columnar) data model represents data properties based
on a column-distributed schema. It is composed of a keyspace, a column family, a column set accessed
by a unique atomic key, columns, and values [4]. This data model has been motivated by the Google
Big Table, and it is also known as extensible record stores or wide column stores [3,36].

3. Architectural Classification

We propose an architectural classification for organizing the current related work based on
the system architecture followed by the approaches. Figure 1 pictorially shows the proposed
classification. As stated before, our classification groups the approaches into two categories: Layer and
Storage Engine.

In short, all of the considered approaches map relational schemata and SQL operations to the
data models and operations of the NoSQL databases, respectively. Their main intention is to combine
the best of both worlds, i.e., the power of the SQL standard and the big data capabilities of NoSQL
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databases, by introducing a conversion mechanism. The motivation here is to minimize migration
costs for applications that access relational databases and intend to move to NoSQL databases.

The Layer category denotes approaches that support a relational layer over one or more NoSQL
databases (Figure 1a). This layer acts as a middleware between a relational-based application and a
NoSQL solution, being able to receive SQL operations and translate them into specific NoSQL database
access methods or access languages. On the other hand, the Storage Engine category comprises
approaches that modify the physical layer of an RDBMS to provide the storage of relational data in a
NoSQL database (Figure 1b). Different from the Layer category, the mapping component is tightly
coupled to the source RDBMS.

The next section details and compares the approaches on each one of these wrapping categories.

Figure 1. Overview of the proposed architectural classification for the related work.

4. SQL-to-NoSQL Wrapping Approaches

This section presents approaches that provide SQL-to-NoSQL database wrapping-based
interoperability based on the architectural representation of Section 3. As a running example,
we consider a subset of the Internet Movie Database (IMDb) [37]. The database is composed of six
tables: title_basics, title_crew, title_episode, title_principals, title_ratings, and name_basics (see Figure 2).
The title_basics table maintains basic information about 5,956,101 titles (movies, novels, series, among
others). Table title_crew contains the directors and writers for all the titles_basics table (5,958,788
tuples). Information about TV and series episodes are stored in title_episodes table (7,453,095 tuples).
Table title_principals contains the principal cast/crew for each titles (34,334,609 tuples). Table title_ratings
contains the IMDb rating and votes information for titles (1,702,114 tuples). Finally, table name_basics
stores basic information about people (e.g., actors, writers, and directors) (9,409,237 tuples).

Figure 2. IMDb logic data model.
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4.1. Layer Approach

Approaches in the Layer category provide a mapping infrastructure that allows systems or
end users to define and/or manipulate NoSQL databases from SQL operations. There exist ten
approaches in this category: the work of Zhang et al. maps SQL operations to document-oriented and
column-oriented NoSQL databases [38]; SimpleSQL is a layer on the SimpleDB NoSQL database [39];
JackHare is a layer on the HBase NoSQL database [40]; Unity is a layer that accesses data in relational and
NoSQL data sources, using MongoDB as the target NoSQL database [41]; the work of Rith et al. allows
the execution of SQL operations over relational databases (trivial case) and some NoSQL databases,
specifically, MongoDB and Cassandra [42]; Apache Phoenix [43] is a layer that also executes SQL
operations over HBase; SQLToKeyNoSQL [44,45] is a layer that executes SQL operations over key-based
NoSQL databases (column-oriented, document-oriented and key-value databases); MIDAS 1.8 [46]
proposes a layer that provides a transparent interoperability among different data management
services in the cloud; NoSQL2 [47] is a middleware for running SQL commands into NoSQL databases
with emphasis on the commands related to database administration; and MSI [48] is an integration
middleware that support hybrid database architectures allowing users to query data simultaneously
from relational SQL and NoSQL DBMSs. As the approaches proposed in [38,42] have no name, for the
sake of simplicity, we call them, from now on, RithWork and ZhangWork, respectively.

In the following, we present some architectural issues, as well as schema mapping and join
processing strategies for each approach.

4.1.1. Architectural Issues

The system architecture of the approaches presents, in general, the same anatomy. They usually
comprise three modules: (i) access interface; (ii) translation; and (iii) execution. The first one is responsible
for receiving and validating SQL operations. In most approaches, a subset of the main SQL Data
Definition Language (DDL) and Data Manipulation Language (DML) operations is supported. Unity,
RithWork and MSI are the only ones that do not consider DDL operations.

The translation module is responsible for identifying and mapping SQL operations and their
components (e.g., tables and attributes) to corresponding operations in the target NoSQL database.
The translation is usually supported by a metadata dictionary and specific mapping rules between
the relational and the NoSQL data models. SimpleSQL translates SQL operations to SimpleDB API
methods, like get() and put(), while JackHare translates them to map-reduce jobs [49] that access data
in HBase. Unity, Apache Phoenix and SQLToKeyNoSQL additionally provide a query optimizer that
determines join ordering and portions of the query plan to be executed on each considered data source.
RithWork, ZhangWork, MSI and NoSQL2 translate the SQL operation directly to the specific data source
access language through wrappers called connectors.

The execution module is responsible for sending the translated operation to the target NoSQL
database, as well as for receiving the result set and mapping it to tuples to be output, in case of a query
operation. SimpleDB defines correspondences between a set of documents and a set of tuples. Instead,
JackHare and Apache Phoenix define correspondences between a set of key-value pairs and a set of tuples,
and specific connectors support mappings in RithWork, ZhangWork and Unity. Currently, these three
last approaches offer connectors that provide correspondences between MongoDB documents and
Cassandra column families to tuples. SQLToKeyNoSQL and MIDAS 1.8 consider an intermediary
canonical data model that maps tuples to each specific NoSQL data model (and vice versa) through
wrappers. We remark that MIDAS 1.8 uses the canonical model proposed in SQLToKeyNoSQL and
works only for the document-oriented data model.

4.1.2. Schema Mapping

This section details the strategies for mapping relational schemata to the data models of the
target NoSQL databases. We start by the SimpleSQL approach. SimpleSQL allows the execution of SQL
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operations on the SimpleDB NoSQL database. SimpleDB supports the document-oriented data model,
which represents complex objects, i.e., objects with structured or multivalued attributes. Its particular
data model is composed of the following concepts: domains, items, attributes and values. A domain
consists of a name dom and a set of items iti with the form (dom, {it1, . . ., itn}). Each item, in turn,
is composed of a name n and a set of attributes with the form (n, ((key, value)1, . . ., (key, value)n)),
where key is the attribute name (attribute key) and value is the value of key. Multivalued attributes are
allowed. SimpleSQL maps a relational database db into a SimpleDB domain with the same name of db.
Each item name in SimpleDB denotes the primary key pk of a table t ∈ db. SimpleSQL also defines a
special attribute called SimpleSQL_TableName whose value is the name of t. For example, Figure 3
shows an extract from the IMDb mapped to SimpleSQL approach. The IMDd is mapped to a SimpleDB
domain and each tuple is mapped to an item (document) in SimpleDB. Considering the cardinality of
each table in IMDb, the final cardinality of SimpleSQL is 64,813,944 items (i.e., documents).

Figure 3. IMDb mapped to SimlpeSQL approach.

JackHare is a framework that allows the execution of SQL DDL and DML (except some aggregate
functions) operations over HBase. HBase is a column-oriented NoSQL database, and it is composed of
one keyspace. A keyspace has a set of HTables, and each HTable maintains a set of columns’ families.
Each column family holds a set of keys, being each key, in turn, composed of columns and values.

JackHare maps a relational database to the HBase data model by applying the following rules:
(i) each relational database db is mapped to an HTable HT with the name of db; (ii) each table t ∈ db
is mapped to a component of the key (as detailed in the next rule); (iii) each row r ∈ t is mapped
to a set of key-value pairs K, being each key obtained by concatenating the primary key of r with
the name of t; and (iv) a column c ∈ r is mapped to a column cHB ∈ HT. The name and value of c
become the cHB key and value, respectively. Figure 4 shows the mapping of a subset of IMDb to HBase.
The database is mapped to an HTable (HTable: IMDB), and each relational table to a column family.
The column family groups the attributes of a row from a given table. A row key id identifies each row.
For example, the tuple that represents the movie The Godfather from table title_basics is grouped in the
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title_basics column family, and its row key is title_basics:tt0068646. Thus, the resulting HTable
is composed of 69,581,116 rowkeys pointing to the same number of rows, and six column families
(one for each table).

Figure 4. IMDb mapped to JackHare.

Like JackHare, Apache Phoenix provides access to SQL DDL and DML operations over HBase.
However, Apache Phoenix implements a one-to-one mapping of relational tables to HTables. Each row
of the relational table is mapped to a row in the HTable, and the rowId of an HTable row is composed
of the concatenation of the primary key values of the table row. Column families of HTable are used in
Apache Phoenix for schema versioning. Figure 5 shows the mapping of the IMDb. Notice that, for each
table, one HTable is created. In addition, the total number of rowkeys generated by JackHare and
Apache Phoenix are the same, but Apache Phoenix divides rowkeys into different key stets, one for
each HTable.

Figure 5. IMDd mapped to Apache Phoenix.
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The Unity approach provides the mapping of a limited set of SQL operations over multiple data
sources, including the MongoDB NoSQL database. MongoDB is also a document-oriented database
whose data model is composed of a database, collections and documents. A collection maintains a set of
documents and a document is composed of a set of key-value pairs. Unity maps a relational database
db to a MongoDB database Mdb with the same name of db. Each collection Mc ∈ Mdb maps one table
t ∈ db. Mc name is the name of t. Each row r ∈ t is a document md ∈ Mc. Key-value pairs represent
attributes and values from r. For example, the title_basics table is mapped to a collection in MongoDB
(Figure 6). The collection title_basics is composed of 5,956,101 documents since every tuple become a
document. Unity also claims to have support for Cassandra, but mapping details are not available.

Figure 6. IMDb mapped to Unity.

The SQLToKeyNoSQL approach allows the execution of some SQL DDL and DML operations
over multiple key-based NoSQL databases. To provide this kind of access, it defines a canonical
model that abstracts the three key-based NoSQL data models. This canonical model is a set of keys
organized hierarchically. It can be seen as a tree T where the root node holds the relational database.
Figure 7 shows the IMDb represented in the canonical model. Besides the root, T has three levels of
keys: the first level maps a relational table t, the second level maps tuples from t represented by the
concatenation of primary keys of t, and the third level maps the columns of each tuple of t. The leaf
nodes maintain the values of each column. A relational schema represented in the canonical model is
further mapped to the target data model of a key-based NoSQL database. Figure 8 shows the canonical
model mapped to a document-oriented NoSQL DB (MongoDB). The first level keys of the canonical
model are mapped to document collections. The second level keys (tuple identifiers) are mapped to
documents, and, finally, third level keys are mapped to attributes. Consideration of the title Carmencita
in the canonical model (second level key tt0000001) is represented in the MongoDB model (Figure 8)
by the document _id: tt0000001 in title_basics document collection. Again, we remark that MIDAS 1.8 is
based on the same canonical model. More details about these mappings are given in Section 5.
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Figure 7. IMDb represented in the SQLToKeyNoSQL canonical model.

Figure 8. IMDb mapped to MongoDB by the SQLToKyeNoSQL approach.

The RithWork approach also provides the execution of a limited set of SQL operations in MongoDB
and Cassandra. It translates some SQL DML to API methods of these NoSQL databases through
predefined wrappers called connectors. Connectors parse SQL queries, send them to the target database,
and return the result to the requester. In [42], no further details about data and operation mappings
are presented. Despite that, in the case of Cassandra, we conclude that it probably accomplishes
a trivial mapping for query operations over a single table, given that Cassandra has an SQL-like
query language.

NoSQL2 and MSI mappings are defined manually through configuration files. NoSQL2 allows
only DDL commands since it aims to help a DBA to manage objects and rules in the NoSQL database.
On the other hand, MSI offers only a subset of DML commands.

Finally, ZhangWork gives support for document-oriented and column-oriented NoSQL databases.
Like RithWork, this approach is based on wrappers for data accessing. Each wrapper maps SQL
requests to the target NoSQL database API. Unfortunately, authors do not also provide details of the
mapping process between the relational model and these two NoSQL data models.
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4.1.3. Join Processing

Operations on NoSQL databases are not set-oriented. Instead, they are record-oriented. Thus,
queries with join operations are not supported by NoSQL databases, as it happens in relational
databases. To overcome this problem, most Layer approaches provide the processing of complex
queries with join operations.

The SimpleSQL approach supports joins by decomposing the SQL query into a list of attributes,
tables, joins, and predicates. If joins are detected, it splits the query into single queries with related
predicates. After retrieving each single result set, a dataTable is created with the schema of the
expected result. The list of retrieved items is joined item by item based on the join conditions and the
relational-to-SimpleDB schema mappings. The JackHare approach processes a join through parallel
map-reduce jobs. It starts by determining the size of the tables. Then, in the map phase, the smallest
one is converted to a key list and stored in HBase. In the following, it matches the values of the biggest
table with this key list and updates the key list. This process is also executed through map-reduce
jobs to obtain better performance. After all key list entries are analyzed, JackHare returns the list of
combined tuples, which constitutes the reduce phase. This strategy allows the manipulation of large
data sets since the processing can be distributed over several nodes.

Apache Phoenix, Unity and SQLToKeyNoSQL support join operations between NoSQL data sources
by adopting a hash join strategy based on record keys. Unity performs joins based on the size of datasets
and how the datasets are distributed over the servers (if it is the case). It starts from datasets that
fit in main memory. If none of the datasets fit in main memory, it performs the join operation in a
parallel way.

Apache Phoenix implements a variant of the hash join algorithm for data that can fit in the main
memory, and a hash-merge join otherwise. Both algorithms use the attributes of the join operation as
keys to combine the tuples.

SQLToKeyNoSQL support joins data in the same data source or between different data sources.
The implemented join algorithm is a standard hash join, where the keys for joining tuples are extracted
from the join predicate. This approach also gives the user the possibility of changing the join algorithm.
In the current version, SQLToKeyNoSQL supports hash-join (default) and merge-join. In addition,
the developer can plug other join algorithms in the middleware.

MIDAS 1.8 executes join operations when data come from different types of data sources. It scans
both result sets (a nested loop algorithm) to merge data from the two datasets and generate the final
result. On the other hand, MSI proposes two choices to perform joins: (i) to transform a NoSQL object
into a MySQL table and execute the join inside MySQL; or (ii) to execute nested loop joins between
the datasets.

Finally, RithWork, ZhangWork and NoSQL2 approaches do not support join operations.

4.1.4. Comparison

Based on the discussion in the previous section, we group the features to be compared in Table 1
as follows: (i) Data Model refers to the target NoSQL data model; (ii) SQL Support highlights the
supported SQL operations; (iii) SQL Mapping presents the approach to map input SQL operations to
corresponding operations at the target NoSQL database; (iv) Dictionary (Dict.) indicates whether or
not the approach works with a metadata catalog to map data and operations; and (v) Join Processing
denotes the strategy to perform join operations.

Most approaches take into account metadata to support their wrapping strategy. JackHare,
SimpleSQL, MIDAS 1.8, SQLToKeyNoSQL and Unity accomplish a semantic and a syntactic verification
of SQL operations with the aid of a dictionary. In the first four approaches, a NoSQL schema must be
available a priori, being the mapping pointed to this target schema. In the case of Unity, if the NoSQL
source has schema information, then the dictionary is also considered. Otherwise, mapping rules at
the data model level are considered, i.e., relational data are mapped to similar concepts in the target
NoSQL data model. ZhangWork and Apache Phoenix use the dictionary to store metadata about the
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target NoSQL database, e.g., table mapping, NoSQL database alias, among others. SQLToKeyNoSQL
also underlies information about mapping tables to objects in the target NoSQL database through
metadata in a dictionary, like the NoSQL database location, primary keys, and foreign keys. RithWork
does not mention the use of a dictionary probably because the mapping is coded by hand through new
connectors. NoSQL2 underlies the mapping strategy to configuration files built by the user.

Table 1. Comparison of layer approaches.

Approach Data Model SQL Support SQL Mapping Dict. Join Processing

ZhangWork Col./Doc. DDL + DML Subset API Methods Yes -
SimpleSQL Document DDL + DML Subset API Methods Yes Similarity
JackHare Columnar DDL + DML Subset Map-Reduce Jobs Yes Map-Reduce Jobs

Unity Col./Doc. DML Subset API Methods Yes Hash Join
RithWork Col./Doc. DML Subset API Meth./Access Com. - -

APache Phoenix Columnar DDL + DML API Methods Yes Hash Join
SQLToKeyNoSQL Key-based DDL + DML Subset API Methods Yes Hash Join

MIDAS 1.8 Document DML Subset API Methods Yes Nested Loop
NoSQL2 Independent DDL Subset Manually Configured No -

MSI Key-based DML Subset API Methods Yes Nested Loop

DML—Data Manipulation Language; DDL—Data Definition Language.

As shown in Table 1, most approaches work on specific NoSQL data models and NoSQL products.
This lack of generality could be better addressed. For example, MongoDB and CouchDB are both
document-oriented NoSQL data models, and SimpleSQL could provide support for both since they
implement the same data model. In fact, Layer approaches offer, in general, a set of mapping rules to
a specific NoSQL solution. SQLToKeyNoSQL is the only approach that provides wrappers for three
different NoSQL data models (although MIDAS 1.8 claims that support several types of data sources
because it uses the same SQLToKeyNoSQL’s canonical model, regarding NoSQL data models, in the
current version, it supports only document-oriented data model). NoSQL2 is the only work that
claims to be data model independent, but the specification of mappings is entirely manual, which is a
hard drawback.

According to Table 1, some works deal with a subset of SQL DDL and DML operations, while other
ones are more limited (MIDAS 1.8, MSI, NoSQL2, Unity, RithWork). SimpleSQL and SQLToKeyNoSQL
deal with simplified versions of DDL operations, and DML operations cannot have nested queries or
aggregate functions. Instead, MSI supports nested queries. JackHare additionally supports ordering,
grouping, and aggregate functions in query operations. The DML capabilities of Unity are very similar
to SimpleSQL. With respect to DDL operations, SimpleSQL considers only table and index creation.
Unity and RithWork offer only support for a subset of SQL DML operations, and Apache Phoenix is the
most comprehensive approach concerning SQL support. ZhangWork claims that it deals with a subset
of SQL DDL and DML operations, but we did not find detailed information about it.

Considering the execution flow of each SQL operation, Unity and RithWork use the MongoDB
physical operators to execute their operations since they propose a translation of SQL to Mongo query
language. The NoSQL2 also uses MongoDB operators but do not support DML. Similarly, the SimpleSQL
maps all the SQL statement to SimpleDB SQL-like query language. The mapping uses SimpleDB internal
operators for selections and projections. JackHare implements map-reduce jobs as physical operators,
and filtering actions are executed in the reduce phase. SQLToKeyNoSQL implements an internal
representation model for query execution, and each SQL operation is decomposed and translated
into primitives methods: put, get, delete from REST API. Similar to SQLToKeyNoSQL, MIDAS 1.8
applies a process that decomposes the queries in an internal language that is translated to the specific
API language.

On considering join processing, we see that the majority of approaches adopt different strategies,
in particular, hash join implementations, which achieve better performance than nested loop-based
solutions. Despite this lack of agreement, some of them provide distributed or parallel join processing,
like Apache Phoenix, Unity and JackHare.
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4.2. Storage Engine

Approaches in the storage engine category change the physical layer of an RDBMS (the storage
manager of an RDBMS, in particular) to allow persistence and retrieval of data into/from NoSQL
databases. The query processing module of the RDBMS makes requests to the modified storage
manager that, in turn, maps relational data to data in compliance with a NoSQL data model.
Three works fit into this category: Phoenix [50], CloudyStore [51] and DQE [52]. They are also detailed
in the following in terms of architectural issues, schema mapping, and join processing.

4.2.1. Architectural Issues

The system architecture of Phoenix and CloudyStore are similar since they both implement a storage
engine for the MySQL RDBMS. MySQL was chosen because its architecture allows the user to create
pluggable storage engines. Storage engines must have support for the basic CRUD (create, read,
update, and delete) operations. In this case, MySQL query processor calls the NoSQL storage engine to
get and set data, i.e., Phoenix and CloudyStore translate the SQL requests to the native access method or
access language of the target NoSQL database. The main difference between the two approaches is that
CloudyStore uses the MySQL internal key to optimize data access, and Phoenix uses an intermediary
data model to provide the mappings.

The distributed query engine (DQE) approach implements a storage engine for Derby RDBMS,
allowing data storage in the HBase NoSQL database. DQE architecture is composed of three layers:
query engine, storage system and file system. The first one receives and processes SQL operations. Then,
it sends requests to the storage system, which, in turn, performs the requests (over the file system) and
returns the results. To support this processing, DQE modifies the following Derby modules: parser,
optimizer and store management. The first two modules are redefined to provide optimizations based on
HBase store model system. The latter implements, in fact, the mapping between the relational and
HBase data models.

4.2.2. Schema Mapping

Phoenix implements a MySQL storage engine to Scalaris. Scalaris is a key-value NoSQL database.
In the key-value data model, the key is a unique identifier of a data item (value), and the value is
retrieved as a single block. The value can be simple or complex in Scalaris. Simple values have atomic
domains (e.g., string or integer data types), and complex values hold a set of key-value pairs.

Phoenix defines an intermediary data model to map relational data to the key-value data model
called VOEM (Value-based OEM). This intermediary data model is used as a mapping schema between
the two data models, and the idea is that it may be extended to provide mappings to other NoSQL
data models. VOEM is an extension of OEM (Object Exchange Model), which is a complex object model
whose instances have a unique atomic identifier (OID). As relational data are identified by values
instead of OIDs, VOEM extends OEM with the notion of a key, i.e., the value identification.

A VOEM object is a tuple v = < OID, λ, τ, ν, k >, where OID is the identifier of the object, λ is
a label that describes the object, τ is a type that indicates if the object is simple or complex, and ν is
the object value. If the object has a complex type, then ν contains an OID set. Finally, k is a key that
identifies the key-value pair and maps the tuple to the corresponding key-value pair in the key-value
data model. This key is obtained by concatenating values in the VOEM graph, as detailed in the
following. Figure 9a shows part of table IMDb represented in VOEM.
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(a) (b) (c)

Figure 9. Table Movie represented in a VOEM data model.

The mapping of the relational data model to VOEM respects the following rules: (i) a tuple t of
a relational table is represented by a VOEM object oi with label l (the value of the primary key of t),
and their values are a collection of OIDs that maps all the columns of t and (ii) each column c ∈ t with
type τ is mapped to a VOEM object oj with label c (column name) and type τ.

A VOEM object collection can be seen as a labeled graph V (Figure 9b) where each node of V
is an object and the edges are relationships between objects. This graph view is useful to define the
key of each VOEM object oi. In fact, a key is given by the concatenation of the labels of each object
in a depth-in graph traversal and the primary key of the row that oi represents. For example, in the
key-value pair "/tile_ratings/averagerating/tt0000001 => 5.8 of Figure 9c), the key is defined
by the concatenation of the path labels tr1 (tile_ratings) and c2 (averagerating) (see Figure 9b), and the
primary key with value tt0000001 comes from the object c1 that identifies the mapped row.

Based on this path expression scheme for representing VOEM objects, the mapping to the
key-value data model is straightforward: a VOEM object oi is mapped to a key-value pair kv. The key
of kv is the key of oi. If the value of oi is atomic, then the value of kv is the same of oi. If the value is
complex, then the value of kv is the set of VOEM objects that defines the value of oi. For example,
the first row of the table tile_ratings is mapped to the object “title_ratings” (Figure 9a,b), which is
mapped to the key-value instance in Figure 9c). In the key-value instance, each line is a key-value pair:
the first value is the key, and the second one is the value.

The CloudyStore approach maps relational data to a column-oriented NoSQL database named
Cloudy. Cloudy has a data model similar to HBase: keyspaces, families of columns, keys, columns,
and values.

CloudyStore proposes three rules to map a relational database to Cloudy: (i) a database db is
mapped to a keyspace K with the same name of db; (ii) a table tab ∈ db is mapped to a column family
CF ∈ K with the same name of tab; and (iii) for each tuple t ∈ tab is generated a key tk which is the
internal MySQL key for t (called rowid), and each column c ∈ t is mapped to a column ck assigned to
the key tk, with the same name and value of c.

Figure 10 shows how the IMDb is stored in Cloudy according to the CloudyStore approach.
Each table is mapped to a column families (e.g., title_basics). Each table row is mapped to a set of
column-value pairs. For example, the Godfather title is mapped as a set of columns in the title_basics
column family, being identified by the MySQL rowid A.

In DQE approach, the mapping rules are the following: (i) a database db is mapped to an HBase
keyspace K named db; (ii) a table t ∈ db is mapped to an HTable ht with the same name of t; (iii) a row
r ∈ t is mapped to a row rk ∈ ht; and (iv) each column c ∈ r is mapped to a column ck ∈ rk, with the
same name and value of c.
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Figure 10. IMDb mapped to Cloudy according to the CloudyStore approach.

If a table has indexed attributes, DQE creates, for each indexed attribute, a new HTable.
The attribute values are mapped to entries (keys) in this HTable and, for each entry, their values
are the keys in the corresponding HTable that holds the attribute values. If an entry has more than one
correspondent key, a set of keys is stored as a value in the HTable index.

Figure 11 shows the mapping of the IMDb to HBase according to the DQE approach. Notice that
the map generated by DQE is the same of Apache Phoenix (also same Figure 5). The only difference
between the mapping approach of Apache Phoenix and DQE is that DQE also creates HTables for
index structures. DQE creates one HTable for each relational table (with the same number of column
and rows) and additionally creates on HTable for each index of the relational system.

Figure 11. IMDb mapped to HBase according to the DQE approach.
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4.2.3. Join Processing

Storage Engine approaches do not develop specific join strategies because the host RDBMS already
has this capability. In this case, the approach is only responsible for getting data from the target NoSQL
database, the join being processed by the RDBMS query processing module.

4.2.4. Comparison

As we did for Layer approaches, we built a table (Table 2) with the most important features of the
approaches in the Storage Engine category. The column Data Model refers to the data model of the target
NoSQL database. The column RDB denotes the RDBMS considered by the approach. It means that the
approach can translate any SQL DDL or DML operation supported by this RDBMS and execute it in
the target NoSQL database. The column Mapping Information presents the strategy for maintaining
mapping information.

Table 2. Comparison of storage engine approaches.

Approach Data Model RDB Mapping Information

Phoenix Key-value MySQL VOEM
CloudyStore Columnar MySQL Dictionary

DQE Columnar Derby Dictionary

Table 2 reveals that the approaches consider only two NoSQL data models: key-value and
column-oriented. It can be justified by the fact that they are the less complex NoSQL data models.
We also note that all RDBMS are open source, which is expected since their source codes are available
for developers that intend to modify their components.

On concerning mapping information, we observe that Phoenix follows a different strategy:
it considers an intermediate data model (VOEM) for representing mapping information. As VOEM is a
general graph-based model, it can be used for mapping relational data to any other NoSQL data model.
On the other hand, CloudyStore and DQE implement a single and straightforward mapping to the
data model of the target NoSQL database through a specific mapping schema defined in a dictionary,
which is less flexible.

5. Comparative Analysis

This section presents a comparative analysis of all approaches described in this paper. Table 3
summarizes their general features and differences. Besides the Approach name and Category (according
to the architectural classification presented in Section 3), it shows to which NoSQL Data Model the
approach provides wrapping, the SQL capabilities (SQL Support), and if the approach deals with one
or more data sources (Multiple Sources).

Table 3. Comparison of related work.

Approach Category NoSQL Data Model SQL Support Multiple Sources

ZhangWork Layer Document/Column DDL + DML subset Yes
Phoenix Storage Engine Key-value Full SQL No

Apache Phoenix Layer Document DML + DDL No
CloudyStore Storage Engine Column Full SQL No

DQE Storage Engine Column DDL + DML No
JackHare Layer Column DML + DDL subset No

SimpleSQL Layer Document DDL + DML subset No
RithWork Layer Document/Column DML subset Yes

Unity Layer Document/Column DML subset Yes
SQLToKeyNoSQL Layer Key-based DML + DDL subset Yes

NoSQL2 Layer Independent DDL subset Yes
MIDAS 1.8 Layer Document DML subset Yes

MSI Layer Key-based DML subset Yes
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Notice that only the features that make sense to all related work are highlighted in Table 3.
For example, we do not consider here the comparison of the RDBMS on which the mapping strategy
was implemented because this feature is relevant only for approaches in the Storage Engine category.

First of all„ we argue that the choice for a specific approach depends on its category and the user
needs. Each category has its advantages and disadvantages. Layer approaches are more flexible than
Storage Engine approaches since they can be designed to handle multiple sources. However, there is an
overhead to process SQL operations due to the required mapping to a NoSQL database performed
by the approach. On the other hand, Storage Engine minimizes this overhead since the mappings are
coded in the kernel of an RDBMS. However, they are developed to specific RDBMS and coupled to
specific NoSQL databases, being less flexible.

Most of the Layer approaches provide access to multiple sources. However, they are usually based
on wrappers that must be manually coded to implement the translation of SQL operations to the API
access methods of the NoSQL databases. Different from them, SQLToKeyNoSQL supports the three
key-based NoSQL databases, and its mapping strategy is based on a canonical model that abstracts
all key-based NoSQL models. The canonical model provides a more straightforward mapping to the
data models of the NoSQL databases, as well as (also generic) primitive methods generated from
SQL operations that are further translated to each specific NoSQL database access method. It reduces
considerably the manual effort to define the mappings. MIDAS 1.8 also considers an intermediate
canonical model, but it is restricted to the document data model.

The other two points that arise from Table 3 analysis are the absence of a comprehensive approach
concerning the support of mappings for all NoSQL data models, as well as full support for SQL
operations, which is offered by few works. The only exception w.r.t. NoSQL data model support is
NoSQL2, but its limitation to DDL operations makes it a non-promising solution. In fact, the first
point is a hard task for Storage Engine approaches because they usually focus on a single target NoSQL
database at the physical level, and the second point is a hard task for Layer approaches because it
requires a robust SQL processor. Thus, if the focus is flexibility, Layer approaches are recommended.
Otherwise, if the focus is a full SQL support, Storage Engine approaches are recommended.

Table 4 shows another view of the relational-to-NoSQL schema mapping approaches. It organizes
the related work according to the target NoSQL data model supported. Approaches that provide
mappings for more than one NoSQL data model are duplicated in the table. In addition, approaches
that do not detail a schema mapping strategy (ZhangWork, RithWork and NoSQL2) were omitted from
Table 4.

Table 4. Schema mapping strategy comparison.

Approach Target NoSQL
Data Model

Relational-to-NoSQL Mapping Strategy

Database Table Tuple Attribute Value

Phoenix

Key-Value

database key component - key component value

SQLToKeyNoSQL database key component value value component value component

MSI database key component value value component value component

JackHare

Columnar

HTable key component column set column value

DQE keyspace HTable column set column value

Apache Phoenix keyspace HTable column set column value

CloudyStore keyspace column family column set column value

SQLToKeyNoSQL keyspace column family column set column value

SimpleSQL

Document

collection attribute document attribute value

Unity database collection document attribute value

Midas 1.8 DBaaS and DaaS collection document attribute value

MSI database collection document attribute value

SQLToKeyNoSQL database collection document attribute value
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As previously stated, no approach maps the relational model to a NoSQL solution based on
the graph data model, this subject being an open issue. Concerning the other NoSQL data models,
we consider, in this comparison, the set of common concepts described in Section 2 and specific
features of the data models of the mentioned target NoSQL databases in the related work. For the
key-value data model, the database is a repository of a set of keys. For the column-oriented data model,
generally, we have a keyspace, a column family, and a column set accessed by a unique key. For the
document-oriented data model, the database is a repository of document collections, a document
collection is a set of documents, and a document is composed of a set of attributes and their values.

On considering the target key-value data model, we see two different mapping strategies,
as shown in Table 4. Phoenix defines a key for the key-value schema as a composition of table
name, attribute name, and the primary key value. Instead, SQLToKeyNoSQL considers only the table
name and the primary key value of a tuple to define a key. For example, the first tuple of the Movie
table generates the following key-value pairs {“/movie/name/1”, “Psycho”}, {“/movie/director/1”,
“1”} and {“/movie/year/1”, “1960”} in Phoenix, and the following key-value pair {“movie.1”, “id:1;
name:Psycho; director:1; year:1960;”} in SQLToKeyNoSQL. SQLToKeyNoSQL seems to be a more
interesting approach since it generates fewer data entries in the key-value database in a more compact
way. Keys in Phoenix are larger because of the redundant table and attribute information for each
mapped tuple.

As shown in Table 4, several approaches provide mappings to the NoSQL column-oriented data
model. In this case, the differences in the proposed strategies regard the treatment of database and
table information. We argue that approaches that convert a database to a keyspace and a table to a
column family (SQLToKeyNoSQL and CloudyStore) better respect the hierarchy of concepts of both data
models: relational and column-oriented. In the same way, approaches that map relational concepts
directly to HTables (JackHare, Apache Phoenix and DQE) provide a specific mapping strategy since
HTable is a particular concept of the HBase NoSQL data model. As a keyspace is a repository of
HTables for HBase, it seems to be more manageable to distribute different HTables (various relational
tables) in different data nodes, if necessary, for elasticity purposes, i.e., data from the same table tend
to be stored together. JackHare maintains data from several tables in the same HTable, being more
complex to manage data distribution. However, it concatenates the primary key values and table
names to build the keys of every set of key-value pairs. This strategy improves the performance of
queries over the source database.

For the NoSQL document-oriented data model, we also notice different mapping strategies for
database and table information. Following the same reasoning for the NoSQL column-oriented data
model, we argue that to map a database to the equivalent concept in the document data model, as well
as tables to collections, are more suitable to the hierarchy of concepts of the relational model and,
thus, tend to facilitate the mapping management. All of the works except SimpleSQL adopt this
mapping strategy.

Table 5 shows how the approaches deal with the mapping of SQL operations to NoSQL operations.
Based on the way the approaches work, we classify the mapping strategies in two categories: (i) SQL
compiler: approaches in this category accomplish a lexical, syntactic and semantic analysis of the SQL
operation, and further translate the SQL operation directly to the specific NoSQL target access language
to be executed and (ii) SQL parser + hand-coded wrappers: approaches in this category accomplish a
lexical and syntactic analysis of the SQL operation followed by the invocation of specific wrappers
that translate such operation to a target NoSQL database operation.

Approaches that communicate with one (or more) specific NoSQL database usually adopt the
SQL compiler strategy because it translates SQL operations to the specific access language operations
of the target NoSQL database. However, this strategy leads the approaches to work with a specific
NoSQL database. On the other hand, approaches that follow the SQL parser + hand-coded wrappers
strategy are more flexible since they can connect to new NoSQL databases through the implementation
of new wrappers.
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In some cases, the approach is able to generate an optimized access plan for the input SQL query
before translating it to the access method or access language of the target NoSQL database. CloudyStore,
DQE, Unity, SQLToKeyNoSQL and MSI support this additional capability (SQL query optimizer column
in Table 5).

Table 5. Comparison of SQL operation mapping strategies.

Approach SQL Compiler SQL Parser +
Hand-Coded Wrappers SQL Query Optimizer

ZhangWork - X -
Phoenix X - -

Apache Phoenix X - -
CloudyStore X - X

DQE X - X
JackHare X - -

SimpleSQL X - -
RithWork - X -

Unity - X X
SQLToKeyNoSQL - X X

NoSQL2 - X -
MSI - X X

Midas 1.8 - X -

Approaches that follow the SQL compiler strategy are suitable for applications: (i) that use the
access interface of a specific RDBMS (Storage Engine approaches) because they do not have to modify
their access interfaces or (ii) whose data fits well with a specific NoSQL data model, providing a better
access and/or storage performance.

Instead, approaches that follow the SQL parser + hand-coded wrappers strategy are suitable for
dynamic applications that deal with heterogeneous data or data with flexible schemas. This kind
of application may require a flexible usage of several (different) NoSQL databases to represent data,
like polyglot persistence systems [4].

Final Remarks

The problem addressed in this survey is how to move relational-based applications to
NoSQL-based applications with a low startup cost. Although all the approaches can be used for
this purpose, we argue that most of them do not fulfill the needs of a real data-centric application.
We can point out two reasons for that: lack of support for (i) transactions and (ii) full DDL and DML
operations support.

Store Engine approaches are more suitable to achieve the requirement (ii). However, the
applications are restricted to work with a specific RDBMS and a specific NoSQL data model. In turn,
Layer approaches do not restrict applications to work with a given RDBMS, yet they do not support
transactions (only single ones) and deal only with a subset of DML and DDL operations. It denotes
that there is still space for improvements in this research topic.

6. Conclusions

The traditional RDBMS architecture is inadequate for big data-centric applications, mainly due to
the overhead to guarantee data and schema consistency. To cope with this problem, a new generation
of RDBMS products has been proposed for the cloud. Even then, some applications are not concerned
about ACID properties because scalability and availability are more important than the consistency.
In this case, NoSQL databases are the right choice.

NoSQL databases are designed to be scalable with big data and available most of the time.
However, the majority of them do not support SQL operations, so the migration costs from
relational-based applications to NoSQL databases are prohibitive since the applications need to
understand new database interfaces, new access language paradigms, and new data models.
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The purpose of this survey is to bring together all approaches that implement wrapping solutions
to access NoSQL databases through SQL operations. We propose an architectural classification to
classify the related work and a set of features to compare them. The features allow us to highlight the
weaknesses and strengths of each approach. These are the most significant contributions of this survey.

The general comparison shows the advantages of some approaches, like the flexibility of Layer
approaches and the optimized access of Storage Engine approaches. These issues must be carefully
considered when developers intend to use this kind of wrapping solution. In turn, the specific
comparisons are useful for evaluating features of a given solution and thus helping developers.
Therefore, we hope that this survey can be used as a guide for practitioners that want to move the
relational-based applications to an NoSQL environment with low startup cost.

Finally, on giving focus to relational-to-NoSQL wrapping proposals, we identified some open
issues by the time this survey was written. We emphasize here the absence of works that make a full
(and efficient) translation of SQL operations, including integrity constraints and transactions, as well as
a detailed translation of relational data for all existing data models of NoSQL databases. These issues
are relevant for future research efforts.
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