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ABSTRACT 

Software quality comprises a combination of both functional and performance requirements that together 
specify not only what software should accomplish, but also how well it should accomplish it. 
Recoverability—a common performance objective—represents the timeliness and efficiency with which 
software or a system can resume functioning following a catastrophic failure. Thus, requirements for high 
availability software often specify the recovery time objective (RTO), or the maximum amount of time that 
software may be down following an unplanned failure or a planned outage. While systems demanding 
high or near perfect availability will require redundant hardware, network, and   additional infrastructure, 
software too must facilitate rapid recovery. And, in environments in which system or hardware 
redundancy is infeasible, recoverability only can be improved through effective software development 
practices. Because even the most robust code can fail under duress or due to unavoidable or 
unpredictable circumstances, software reliability must incorporate recoverability principles and methods. 
This text introduces the TEACH mnemonic that describes guiding principles that software recovery should 
be timely, efficient, autonomous, constant, and harmless. Moreover, the text introduces the SPICIER 
mnemonic that describes discrete phases in the recovery period, each of which can benefit from and be 
optimized with TEACH principles. Software failure is inevitable but negative impacts can be minimized 
through SAS® development best practices. 

INTRODUCTION 

Reliability describes a measure of performance against failure, often defined mathematically as the 
probability (or actuality) of error-free operation or mean time to failure (MTTF), thus the amount of time a 
product functions before it fails. Because a software failure typically represents only a need to restart (or 
occasionally reprogram), software reliability often is instead referenced as mean time between failures 
(MTBF), distinguishing that the software lifespan does not terminate when it fails, unlike a burned out 
lightbulb that becomes useless. Regardless of which nomenclature is utilized, reliability should be sought 
in software design, especially in SAS software that underpins critical infrastructure, serves an extensive 
user base, produces dependent processes or data products, or is intended to be enduring. Achieving 
reliability is the most crucial step in minimizing the annual recovery time that a development team 
cumulatively spends restoring code and functionality following failures—because code that doesn't fail in 
the first place won't need to recover. 

Notwithstanding, even the most robust, reliable, defect-free code will fail on occasion. Environmental, 
network, system, data, and other external issues can cause lapses in connectivity, memory errors, and 
other failures that result in unavoidable program termination. Planned outages, including upgrades and 
modifications to SAS software, its infrastructure, network, and hardware also require halting operational 
SAS programs. While recoverability reflects the ability to restore functionality or availability of a system or 
software following a failure or planned outage, recovery represents the state of restored functionality or 
availability, and recovery period the time and effort required to restore the system or software. As 
recoverability principles are embraced in software design, the recovery period decreases and software 
reliability correspondingly improves. 

An ideal recovery is timely, efficient, autonomous, constant, and harmless—tightly intertwined principles 
depicted through the TEACH mnemonic. Timeliness reflects the speed with which the recovery occurs, 
including discovery of the failure, how long it takes to restart the code, and how long it takes the code to 
surpass the point of failure. Efficiency demonstrates code that does not require excessive processing 
power or developer effort, the latter of which can be eliminated through autonomous code. Code 
autonomy reflects code that identifies failure, terminates automatically if necessary, and can be restarted 
with the push of a button without further developer intervention. Code constancy demonstrates that a 
recovery strategy is enduring and thus not an expedient "quick fix" that will need to be improved or 



undone later. Harmless code should both fail and recover without damaging its environment, such as 
causing other processes to fail or producing invalid data products. 

While TEACH depicts recoverability principles that should be applied during software design and 
development, the SPICIER mnemonic identifies specific components of the recovery period, each of 
which can be optimized through development best practices: 

1. Stop the Program if code did not fail safely, because failure does not necessarily denote that code 
has stopped running. 

2. Investigation entails gaining a full understanding of the source, cause, duration, impact, and potential 
remedies of the failure. 

3. Cleanup often can be eliminated through software development best practices, but includes actions 
such as removing or "backing out" faulty data that have entered a permanent data store due to poor 
quality control. 

4. Internal issues and remedies represent code modifications that must be made following a failure to 
facilitate recovery. 

5. External issues and remedies also represent modifications to code, but on modules that interface with 
external data, such as monitoring its connectivity status, structure, format, content, or quality. 

6. Rerunning code is the final phase in the recovery period and, after especially heinous failures that 
have crippled critical infrastructure, the point at which SAS developers tap that keg and finally 
celebrate. 

While signaling higher quality software, an investment in recoverability will not be warranted in all 
situations. Production code that runs with no external dependencies in a stable SAS environment likely 
experiences few failures per year, thus reliability would be only marginally improved through decreased 
recovery periods. SAS code similarly that is ad hoc, has no dependencies, is not critical, or is intended to 
have a brief lifespan also may not benefit substantially from adherence to recoverability principles, which 
often require additional quality assurance, quality control, and process tracking mechanisms to 
implement. However, developers should be aware of recoverability objectives and principles and, when 
appropriate and beneficial to software requirements, be able to build SAS software that confidently, 
completely, and consistently recovers from failure. 

RECOVERABILITY PRINCIPLES 

While these five principles of recoverability are closely intertwined, timeliness is the most measurable 
attribute and thus often acts as a proxy for other principles. Mean time to recovery (MTTR) represents the 
average amount of time that specific software requires to recover from failure over its lifespan or some 
other defined period. By some definitions, recovery is complete when software begins executing again. 
However, in data analytic development that often transforms data from one state to another through 
serialized extract transform load (ETL) processes, business value may not be achieved simply by typing 
"Run." Thus, recovery also can be defined organizationally as the point at which software execution 
surpasses the point of failure. In this sense, if code failed while extracting the 20

th
 of 25 tables from an 

external database, recovery would not be considered complete until the program had been executed 
again and had passed the point in the code of the original failure. This is not to suggest that the initial 19 
tables would need to be re-extracted, only to say that the 20

th
 table would need to be extracted 

successfully to constitute recovery. Other definitions of recovery are even more stringent and require that 
dependent data products be valid and available. In this sense, a failure that corrupted a critical data set 
would not be considered remedied until the data set—or possibly even dependent reports produced from 
the data set—had been replaced. 

It becomes clear that recovery must be conceptualized similarly by all stakeholders. Thus, a developer 
who restarts code minutes after a failure and at that point considers recovery to be complete may 
frustrate a stakeholder who instead does not view recovery as complete until he can access reports 
produced by the failed code.  Especially where reliability or recoverability metrics are captured by an 
organization, the recovery period must be measured and recorded through consistent methodology if 
used to calculate MTTR. Moreover, if stakeholders have established a recovery time objective (RTO) as a 
software requirement, the RTO should be conceptualized through the same methodology because the 
RTO becomes the standard against which MTTR is measured. Everyone must be on the same page. 



As a proxy for other recoverability principles, timeliness often is not only utilized to measure MTTR and 
the entire recovery period, but also to measure individual components of the recovery period to identify 
areas that can most be improved. Figure 1 demonstrates a timeline representing the path from failure to 
functionality through the recovery period. By optimizing each of these steps through recoverability 
principles, the ultimate objective in "coding for recovery" is to produce code that programmatically 
minimizes or bypasses each step entirely. 

 

Figure 1. Recovery Period Steps 

Efficiency can be represented by the effort that a person or process must expend to facilitate software 
recovery measured in relation to the idealized effort required. Thus, a developer could work inefficiently in 
investigating or remedying a failure if he is unfamiliar with the SAS environment, the SAS language, or 
the specific code. Code that is difficult to read or poorly documented also can unnecessarily delay 
recovery because it is not intuitive and thus more difficult to maintain and modify. A failure that requires 
substantial cleanup of the SAS system because the code produced spurious data, metadata, or data 
products also could be an inefficient use of a developer's time, because that cleanup likely could have 
been eliminated or occurred automatically were more rigorous software development practices enforced. 
While software failure is never a pleasant experience, through proactive design and development, 
developers can ensure that their time is at least well utilized during the recovery period. 

Software itself also must recover efficiently. If SAS code fails to recognize that an internal failure has 
occurred and the failure goes unnoticed for hours or days, this is an inefficient use of the SAS processor 
which was effectively spinning its wheels without purpose. When the program must be rerun at the close 
of the recovery period, efficient code also should intelligently bypass any unnecessary steps that don't 
need to be completed. Under ideal conditions, restore points have been recorded that demonstrate code 
modules that have completed successfully, and process flow can skip directly to the point of failure. Thus, 
re-extracting 19 tables that had ingested without error only an hour before would be tremendously 
inefficient. 

Autonomy requires that code recover with minimal or no developer intervention. From automatic detection 
of the initial failure, to effortless cleanup, to code that can be rerun without further modification, autonomy 
can dramatically expedite recovery. Process metrics collected during software failure can demonstrate the 
type and location of defects or errors, especially if they can be compared with baseline metrics that 
demonstrate previous process success. By anticipating and identifying specific error types in exception 
handling routines, software can often terminate gracefully. And, when code does terminate gracefully 
from an anticipated failure such as a temporarily dropped network connection or a memory error, the path 
to recovery also can be predicted and thus automated because neither internal nor external issues will 
need to be investigated or recoded. And, where new or unanticipated errors occur causing failure, code 
and business rules can be modified to include routines that identify those specific events so that the code 
continues to grow more robust and autonomous over time. 

Constancy reflects stability in code over time including the manner in which code is executed. Thus, it can 
include the initial execution before a failure occurs as well as rerunning code after a failure. Stable code 
should be dynamic enough to intelligently determine how and where to restart after a failure. Thus, rather 
than highlighting sections of code to be run manually or creating quick fixes to be used to jump start code, 
developers should be able to run the same code in its entirety every time. Thus, temporary solutions that 
can run code today may be timely but, if they introduce new defects or technical debt that must be dealt 
with tomorrow, their added cost may not be worthwhile.  

Harmless code does not negatively affect its environment when it fails and throughout the recovery 
process, such as producing faulty, incomplete, corrupt, or otherwise invalid data, metadata, data 
products, or output. In order to be harmless, code should automatically detect the failure when it occurs 
and handle it in a predictable, responsible manner, because only through predictability comes the 
assurance that dependent processes and data products are not negatively affected. In most cases, it is 
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far more desirable to have data products that are unavailable or delayed than those that are dead wrong. 
The recovery process also should not harm external processes or alter the environment unfavorably. 
Thus, if a developer modifies SAS library names in a production environment as an expedient solution to 
rerun code that has failed (because it referenced library names in the development environment), this 
could cause unrelated processes to fail. Code bandages may be appropriate under extraordinary 
circumstances, but when those bandages lack quality or display commensurately less quality than 
software requirements specify, wounds quickly can fester and even spread to previously unaffected 
infrastructure. 

1. STOP PROGRAM 

Failure comes in all shapes and sizes but does not necessarily denote program termination or even that 
errors were encountered during execution. Failure can occur not only when code produces warnings or 
errors or terminates abruptly, but also when it enters a deadlock, infinite loop, or continues to execute 
albeit producing invalid data or output. Thus, a common goal of exception handling routines is to 
channelize these disparate failure outcomes to a path in which processing continues, often called the 
“happy path,” and a path in which processing fails gracefully, often denoted as the “fail safe” path. When 
code does not fail safe, infinite loops, syntax errors, or faulty business logic can be encountered that 
produce invalid data or results, thus decreasing or eliminating production value. Worse are the cases in 
which developers or analysts are unsure of whether a process completed correctly, and thus are forced to 
endure a fishing expedition to validate a data product or other results. 

Although all production code should fail gracefully when errors are encountered, if an unanticipated error 
is encountered for the first time, code may fail in an unsafe or unpredictable manner. In these cases, if 
code is still executing but errors have been detected, the code should be terminated manually. For 
example, if an ETL program that performs daily data ingestion requires tables to have 40 fields but on 
Monday a table is encountered that only has 37 fields, the process flow should be robust enough to 
automatically recognize and resolve this disparity. The specific resolution would be controlled by business 
rules, but might include immediate program termination with notification to stakeholders, as well as 
preventing dependent processes from executing. If the system is not robust and does not detect the 37-
feld discrepancy, later code could continue to execute and create invalid results, even if no actual errors 
were produced. Thus, while code often may stop after encountering a failure, if it does not, it should be 
stopped through automatic or manual means. 

Timely, efficient, and autonomous termination often can be achieved through exception handling routines 
that detect runtime errors and provide graceful program termination. For example, the following SAS 
output demonstrates an error that is produced when the file Ghost does not exist. 

data temp; 

 set ghost; 

ERROR: File WORK.GHOST.DATA does not exist. 

run; 

 

NOTE: The SAS System stopped processing this step because of errors. 

WARNING: The data set WORK.TEMP may be incomplete. When this step was 

stopped there were 0 observations and 0 variables. 

WARNING: Data set WORK.TEMP was not replaced because this step was stopped. 

%put &SYSCC; 

1012 

The automatic SAS macro variable SYSCC reflects the value of the highest error encountered during 
processing, thus 1012 in the above example. Testing SYSCC after each procedure, DATA step, or other 
module offers one way to programmatically determine whether a runtime error occurred and can be 
utilized to dynamically alter program flow thereafter. In a separate text, the author demonstrates 
exception handling methods that detect error and other unwanted program states and redirect process 
flow toward program resumption or graceful termination.

i
 

Program failures, however, are not always signaled by accompanying runtime errors. If the following code 
is run after the above code, it runs without producing an error but is still considered to have failed. 



data temp2; 

 set temp; 

run; 

 

NOTE: There were 0 observations read from the data set WORK.TEMP. 

NOTE: The data set WORK.TEMP2 has 0 observations and 0 variables. 

It turns out that despite encountering an error, the first DATA step nevertheless creates the data set 
Temp which has zero observations and zero variables. Thus, the second DATA step executes without 
warning or error, despite having invalid input (i.e., a null data set.) Thus, in testing for conditions that 
should direct a program to abort, code must examine more than warning or error codes and must validate 
that business rules and prerequisite conditions are enforced. The following code first tests to ensure that 
the data set contains at least one observation and, if that requirement is not met, the %RETURN 
statement causes the macro to abort. 

%macro validate(dsn=); 

data _null_; 

 call symput('nobs',nobs); 

 stop; 

 set &dsn nobs=nobs; 

run; 

%if %eval(&nobs=0) %then %do; 

 %put NO OBSERVATIONS!; 

 %return; 

 %end; 

%mend; 

 

%validate(dsn=work.temp); 

Despite diligence in software exception management, on occasion code still will need to be terminated 
manually. Programs and in fact an entire SAS server can crawl or stall if SAS processes have consumed 
too many resources, thus memory-hogging code may need to be terminated and either restarted or 
reengineered. At other times, a developer may realize that an operational process has started creating 
errant output, such as HTML reports that are invalid or blank, indicative of some internal process failure. 
These errors often can occur when data integrity constraints are omitted and erroneous or unwanted data 
enter a process flow unfiltered. For example, if report production necessitates that a categorical text field 
have only five discrete values, the inclusion of additional values might not produce runtime errors, but 
could corrupt calculations and other data processes or reporting functions. 

Terminating code manually reinforces the reality that software can fail inexplicably on any line of code. 
The hapless developer who trips over a cable and disconnects his machine from the server could do so 
while any line of code is executing. Recoverability requires developers to responsibly espouse this 
mindset and ask themselves after every line of code, "What will happen if my code fails here?" This 
mindset reflects that code should always fail safe in a harmless, predictable manner. This aspect is 
discussed more fully in the Cleanup section below, because code that fails safe and is harmless will not 
require cleanup, thus this agonizing step in the recovery process can be omitted. 

2. INVESTIGATION 

Where program termination has resulted from a scheduled outage due to maintenance or other program 
modification, this step won't be necessary because no unknown exists. But in cases in which a failure has 
occurred in production code, analysts, developers, management, and other stakeholders will be 
clamoring not only for immediate restoration but also for answers. From a risk management perspective, 
higher level stakeholders often are not concerned with great technical detail, but rather with more 
substantive facts surrounding the failure: 

- Was the failure discovered immediately?  
- Was it discovered through automated means or manually?  
- What was the cost or damage of the failure?  
- Was the failure internally or externally caused?  



- Was the failure anticipated, in that it exploited a previously identified vulnerability?  
- Was the cause of the failure remedied? 
- Could this specific type of failure occur again? 
- Did this failure uncover additional vulnerabilities that should be remedied? 

Log files are a recommended best practice for production code because they can help validate program 
success through a baseline (i.e., clean) log as well as facilitate the identification of runtime or logic errors. 
Hopefully the source of the failure is captured in the log file and through continuous quality improvement 
(CQI), developers are able to refactor the code to be slightly more robust, thus obviating the possibility of 
at least that specific error from occurring in the future. In other cases, the log file may exist but may not 
contain sufficient information to debug code. This also occurs when errors in business rules or logic may 
not be perceived immediately, thus relevant log files may have been deleted before they could be 
analyzed. In these latter cases, the code may require extensive debugging and test runs to reproduce 
and recapture the failure with sufficient information to understand the underlying defect. 

While log files can be cumbersome, and are often the only way to demonstrate the presence of new 
errors occurring for the first time, they are not the only tool at the developer's disposal to facilitate 
investigation. A more proactive approach is to capture successful and unsuccessful process completion 
metrics in control tables that effectively monitor the state of software as it executes. In the above 
example, the macro %VALIDATE only wrote output to the log alerting developers to the null data set. 
Because in reality exception handling should instead dynamically alter process flow to route around the 
error, this exception could have been recorded in a control table, allowing data-driven processing to catch 
and handle the error. Moreover, in recording the type, location, and time of error in a control table, as well 
as other relevant attributes, the control table can become the “black box” to which developers reliably turn 
when disaster strikes a process flow. 

Maintenance of a risk register is another best practice for production code that is deployed operationally. 
The register proactively identifies known defects, faulty logic, and other weaknesses in code that could 
potentially cause program failure, either through a runtime error or through production of invalid data or 
data products. Developers often manage the register, recording pertinent details about defects, such as 
the conditions that would cause code to fail, the likelihood of discovery of the failure, the negative impact 
(i.e., cost) that a specific failure would have, a brief description of an option or options to remedy the 
defect, and a number quantifying and prioritizing the severity of the defect in relation to other defects. The 
risk register can be viewed as a measure of technical debt because it demonstrates all known functional 
and performance deficiencies that exist in operational code. It also can be utilized to demonstrate the 
robustness of software to stakeholders, because it identifies specific factors or events—internal and 
external—that will cause software to fail. In so doing, decision makers can choose either to accept the 
risks of faulty code or mitigate or eliminate these risks through refactoring and reengineering. 

After a failure, stakeholders may want to know whether the cause was anticipated (i.e., notated in the risk 
register) and might choose to elevate the prioritization of the defect that caused it. And, if the defect was 
not previously notated or anticipated, it should be added to the risk register and prioritized against other 
known defects. This risk management methodology prevents developers from espousing the unhealthy 
pattern of overcorrection, in which available resources suddenly shift toward the cause of the most recent 
failure. Thus, unless the most recent failure truly is prohibiting functional recovery, its remediation should 
be considered against other existing technical debt on the risk register, rather than in isolation. This 
formal prioritization of risks helps ensure that the greatest threats to system or software reliability are 
tackled first. 

Efficiency in investigation is greatly improved by savvy SAS developers who are intimately familiar with 
the code base and organizational infrastructure. Because they already have a working understanding of 
process flows, dependencies, requirements, and limitations, they can more intuitively discern what might 
have broken and what might have caused it. These developers also may have designed and engineered 
the original code, and thus may be highly motivated to demonstrate that external (not internal) factors 
felled “their” program. But especially in cases in which non-native developers are responsible for 
investigating the failure of legacy code, program organization, documentation, and standardization will 
facilitate more efficient and effective understanding and later modification. 



3. CLEANUP 

After investigation of a failure, the logical next step is either to rerun the code or to refactor or reengineer 
it if defects were discovered and prioritized for immediate completion. Especially in cases in which no 
defect exists and the code terminated due to unavoidable external circumstances, such as temporary 
network connection failure, the ideal recovery pattern is to restart the program without further intervention. 
Push-button simplicity can be thwarted, however, if code failure produces wreckage in the form of invalid 
or ambiguous data sets, metadata, control tables, reports, or other data products. The principle that 
recovery be harmless dictates that wreckage not be produced in the operational environment, thus the 
site of failed software should not resemble an accident scene, with bits of bumpers, broken glass, and the 
fetid stench of motor oil and transmission fluid seeping into the asphalt. Moreover, if developers are 
required to expend energy retrofitting or refurbishing the production environment following a failure, the 
objectives of timeliness, efficiency, and autonomy also will suffer. 

A common path to undesirable wreckage results when invalid data enter a data process flow due to a lack 
of data integrity constraints and ultimately poison a permanent data store and its metadata. For example, 
consider the transactional permanent data set Food.Food_Truck with the categorical variable Food_Item 
that should contain values of only burrito or taco. Failure to enforce data integrity on ingested 
transactional updates could result in invalid data populating and polluting permanent data. These invalid 
observations would need to be backed out, likely through a manual process, and re-ingested once the 
appropriate quality control gate had been emplaced. Associated metadata that represented the quantity 
and nature of the failed transactional update also would need to be manually corrected to ensure that the 
transactional update was not counted twice. Note that in this case, despite no runtime errors having been 
produced, the process flow still would be considered to have failed because faulty data would have been 
ingested into the permanent data store. The inclusion of quality control gates, especially those that 
enforce the integrity of third-party data structure, format, content, and quality are critical to eliminating 
painful cleanup that must occur when invalid data are irresponsibly ingested. 

Sometimes the design of SAS code creates ambiguous results that obfuscate the point from which code 
execution should resume following a failure. This often occurs in long process flows that repetitively 
modify permanent data sets through successive transformations. The following code simulates this 
confusion in a multistage ETL process flow in which successive transformation processes are 
demonstrated, all of which modify the permanent data set Food.Food_Truck. 

data food.food_truck; /* represents initial ingestion */ 

 infile datalines delimiter=','; 

 length food_item $20; 

 input food_item $; 

 datalines; 

burrito 

Burrito 

Tacos 

taco 

; 

run; 

 

data food.food_truck; /* represents first transformation */ 

 set food.food_truck; 

 food_item=lowcase(food_item); 

run; 

 

data food.food_truck; /* represents second transformation */ 

 set food.food_truck; 

 if food_item in('burrito','burritos') then food_item='burrito'; 

 if food_item in('taco','tacos') then food_item='taco'; 

run; 

The above code executes without any errors but, if the code does crash (due to external issues), an 
ambiguity must be resolved because the permanent data set Food.Food_Truck will have been created 



but will not be complete. In fact, in an actual ETL process flow that embodies this repetitive data set 
naming convention, a dozen or more disparate modules each could have overwritten the same 
permanent data set, thus causing exceptional confusion about the state of that data following a failure. 
Worse yet, if this permanent data set were to feed dependent processes or users who were waiting for its 
completion, those processes or analysts might detect that Food.Food_Truck existed but not be aware that 
it was invalid due to the process failure. And, if those dependent processes executed without further data 
set validation, cascading failures could erupt and cripple the infrastructure. 

Some developers do prefer the above repetitive naming convention for a couple reasons. Firstly, in 
complex data process flows, clutter can be reduced by maintaining only a few data sets that are 
overwritten repetitively. However, in production code, temporary data sets should not be too distracting 
because code is executed in a consistent and automated manner. Secondly, storage limitations in some 
environments may prohibit fifteen copies—albeit temporary—of a data set from being produced as a 
process flow executes. Where storage space is limited, repetitive data set naming may be the only viable 
solution to handling large files, but caution must be exercised because no data backup or restore points 
will exist in the event that data become corrupted in a later transformation. 

A preferred methodology is to maintain intermediate views of a data flow through permanent—not 
temporary—data sets that demonstrate incremental progress. The obvious advantage is that following 
many failures, data recovery can begin from these “restore points” that demonstrate the point of last 
known successful completion, rather than from the beginning of the process flow. Restore points also 
allow developers to forego the painful process of log parsing, data diving, and the creation of one-time 
code patches to facilitate recovery, thus dramatically facilitating timely, efficient, and autonomous 
recovery. The improved code now only runs the TRANS macro if INGEST completes without error, and 
produces intermediate permanent data sets to aid in process validation and recovery. 

data food.control; /* create control table */ 

 infile datalines delimiter=','; 

 length module_no 8 module $20 dt 8; 

 input module_no module $; 

 format dt datetime19.; 

 datalines; 

1,INGEST 

2,TRANS1 

; 

run; 

 

data food.ingest; /* represents initial ingestion */ 

 infile datalines delimiter=','; 

 length food_item $20; 

 input food_item $; 

 datalines; 

burrito 

Burrito 

Tacos 

taco 

; 

run; 

%macro ingest; 

%if %eval(&SYSERR=0) %then %do; /* test ingest module */ 

 data food.control; 

  set food.control; 

  if module="&SYSMACRONAME" then dt=datetime(); 

 run; 

 %end; 

%else %abort; 

%mend; 

 



%ingest; 

 

%macro trans; 

data food.food_truck; /* represents transformation */ 

 set food.ingest; 

 food_item=lowcase(food_item); 

run; 

%if %eval(&SYSERR=0) %then %do; 

 data food.control; 

  set food.control; 

  if module="&SYSMACRONAME" then dt=datetime(); 

 run; 

 %end; 

%else %abort; 

%mend; 

%trans; 

In this example, testing the value of the SAS automatic macro variable SYSERR demonstrates whether a 
warning or error occurred and, if none has, the control table is updated with the date and time of 
completion, thus validating the process. In an actual ETL scenario, the ingestion module could be a 
complicated data pull that actually takes several hours to complete. Thus, if code fails, developers are 
able to pinpoint the last known point of success by accessing the control table (manually or 
programmatically) and recovery will be able to start from that point. Moreover, dependent processes or 
users who rely on the data set Food.Food_Truck only need to access the control table Food.Control to 
verify that the data set (and its prerequisite processes) have completed without warning or error. A more 
complete example utilizing a control table with automatic restore points is demonstrated in the Rerun 
section. 

In actual implementation, because control tables operate as an information bridge between the ETL code 
that is executing and the processes (or SAS users) that are waiting for the code to complete, caution 
must be exercised to ensure that two parties do not attempt to simultaneously access the control table. 
Thus, while a control table is being updated by the ETL process, the table will be exclusively locked so 
that other sessions will not be able to access it. And, correspondingly, for the split-second that users or 
processes are interrogating a control table to gain process metrics, a shared lock will exist that prohibits 
the ETL process from modifying the table. In a separate text, the author demonstrates use of the 
LOCKITDOWN macro, which eliminates the possibility of data collision errors in a multi-user environment, 
by requiring all processes to test data set availability before attempting access.

ii
 All control tables used in 

multi-user environments should be secured with LOCKITDOWN or similar lock control methodology. 

The above code also does not redirect program flow once a failure has occurred. In a more realistic 
exception handling scenario, rather than simply aborting the program, use of %RETURN could be 
implemented to terminate the immediate macro while capturing the error and propagating it (through 
inheritance) to other processes. In this manner, processes that depended on the failed module would be 
prevented from starting, but other unrelated processes would be allowed to continue, thus squeezing the 
most value from the code, despite the failure state. Preventing dependent processes from executing after 
detection of a failure is one of the most critical steps taken toward eliminating unnecessary wreckage that 
will require cleanup. 

4. INTERNAL ISSUES AND MODIFICATION 

Once code has failed and stopped, the cause and a potential remedy have been investigated, and any 
necessary cleanup has occurred, the next step often is simply to execute the code again. This 
straightforward scenario occurs when a hapless SAS developer has tripped over and unplugged a 
network cable, causing brief alarm as code begins to fail unexpectedly, and later jubilation as the cable is 
plugged in without further incident. Other straightforward scenarios can include failures caused by 
memory or resource errors. For example, when a junior analyst Cartesian joins two billion-record data 
sets to each other, the SAS server may gurgle amid troubled, agonal respirations, but likely will stall 



before completing the absurd task. In these scenarios, terminating the offending process manually usually 
will allow business to continue undaunted with no further modifications to code or the SAS infrastructure. 

But if defects have been identified in the code, or if management or developers have decided that the 
reliability of the software or system needs to be improved, immediate modifications will be warranted. In 
the most exigent circumstances, hardware, network, or SAS code modifications may be required before 
recovery can be achieved, thus developers may be under the gun by management and other 
stakeholders. In some cases, less significant defects may only require subtle code refactoring, thus 
improving performance while maintaining equivalent functionality. In other words, the software will do the 
same thing—just better—after developers complete the facelift. 

One example of a performance enhancement involves another hapless SAS developer who noted that his 
code always ran the first time he executed it, but failed consistently thereafter, thus requiring him to 
terminate the SAS session after each run. The problem was that global macro variables created in the 
first execution were persisting into subsequent executions, thus causing cross-contamination and failure. 
Thus, when %GLOBAL or %LOCAL statements are utilized to initialize macro variables, they will initialize 
variables to null values if the macro variables do not exist but, if a macro variable already exists, these 
statements do nothing. This is illustrated in the following code sample. 

%macro test; 

%global var; 

%do i=1 %to 3; 

 %let var = &var &i; 

 %end; 

%put &var; 

%mend; 

 

%test; 

The first time the code is executed, it correctly prints "1 2 3". However, when executed a second time 
from the same SAS session, it prints "1 2 3 1 2 3" because the original value of &VAR persists, despite 
the %GLOBAL declaration. Performance can be improved by adding a line of code that utilizes 
%SYMEXIST to first test the existence of the variable &VAR and to reinitialize it to null if necessary. 

%macro test; 

%if %symexist(var) %then %let var=; 

%else %global var; 

%do i=1 %to 3; 

 %let var = &var &i; 

 %end; 

%put &var; 

%mend; 

 

%test; 

The revised code now is more robust and can be rerun without having to terminate the SAS session and 
resume. Other examples of internal issues that must be remedied can be much more extensive, such as 
when a control table or other data-driven methodology is implemented to foster more dynamic, data-
driven process control. Implementation of quality assurance quality control measures can be a huge 
undertaking and, in fact, the lines of code representing performance enhancements may equal or even 
surpass the amount of code fulfilling the actual functional requirements. Thus, the risk of not 
implementing these controls must be assessed in relation to the anticipated benefit and cost of their 
inclusion.  

5. EXTERNAL ISSUES AND MODIFICATION 

Sometimes the cause of a failure may be external, such as a failed connection to an external database 
administered by a third party. In this case, the hapless developer can't just plug in the cable, and instead 
has to begin making phone calls to attempt to ascertain the cause of the failure and its anticipated 
duration. Thus, in many cases when an external cause is identified during investigation, all a development 



team can do is sit around and wait. This also can occur when some component within the SAS server or 
infrastructure fails but developers lack the administrative permissions or expertise to remedy the problem. 
SAS administrators can quickly find themselves single-threaded in these situations as they struggle alone 
to bring a system back online, also emphasizing the need to identify and eliminate single points of failure 
in personnel that can cause delays during the recovery period. 

But when connectivity to an external data source has been lost, developers still may be able to take steps 
to retrofit their code if higher levels of robustness and reliability are desired. For example, if the code 
failed due to a connectivity issue, but continued attempting to process dependent DATA steps, this 
opportunity allows developers the chance to implement exception handling routines that immediately 
recognize the failure and reroute processing, either to unrelated processes or to program termination. 
Another best practice is to maintain a SAS module that only tests connectivity of the third-party data 
source and thus can confirm before attempting a data pull whether connectivity is live. And, if connectivity 
is lost, developers can reuse this same SAS module to repetitively test the connection programmatically 
so code can resume the second connectivity is regained. This is a far more efficient and autonomous 
solution than a developer manually testing the connection every 20 minutes until success is achieved. 

Sometimes an external connection initially will have worked but fails midway through an extraction 
process. In a production system, metrics about all successful and unsuccessful data pulls hopefully have 
been compiled and saved, thus these metadata can be used to guide the program upon resumption 
directly back to the point of failure. Thus, if a web services pull fails during the extraction of 1,000 XML 
documents, only those records that were not pulled should be queried when the code is reinitiated, 
substantially reducing the recovery period. 

Third-party data are especially prone to causing failure because their structure, format, content, and 
quality lie outside the responsibility and control of the development team. This underscores the 
importance of erecting control gates immediately after data ingestion to validate all data attributes. 
Reprising the food truck example from above, if data values that include enchilada and chimichanga are 
sneaking into SAS data flows and polluting the results, introduction of a single line of code can remove 
values that are discovered that lie outside the data schema. 

data food.food_truck; /* represents transformation */ 

 set food.food_truck; 

 if food_item in('burrito','burritos') then food_item='burrito'; 

 if food_item in('taco','tacos') then food_item='taco'; 

 if food_item not in ('taco','burrito') then delete; /* Control Gate */ 

run; 

In an actual control gate, the quality control mechanism should report to developers and users that 
enchiladas and chimichangas are being denied access, so that business rules can be inspected and 
potentially modified either to explicitly include or exclude these tasty observations. In this example, 
however, the DELETE statement serves to eliminate potential contamination caused by these 
observations, while other business rules might instead specify a replacement value be installed. In a 
separate text, the author demonstrates how to enforce data constraints dynamically through external 
schemas that model and validate data through exception reporting.

iii
 Thus, through dynamic coding, 

software should remain flexible to its environment while providing feedback to stakeholders. 

6. RERUN PROGRAM 

Once any necessary modifications to code, hardware, or other infrastructure have been made, the SAS 
program should be tested, validated in the production environment, and finally executed. Because the 
cause of the failure was identified and remedied (or, at the very least, evaluated and included in the risk 
register to be prioritized for future completion), in an ideal scenario, the developer presses a button or 
schedules his job and confidently walks away. Often, however, execution is neither this straightforward 
nor autonomous, and complications can arise when the code either has not failed safe or when restore 
points do not exist to specify where to resume operation. 

When SAS code fails in an end-user development environment, developers often make a quick fix, re-
attempt the offending module, and then run the remaining code from that point. End-user developers are 
well placed to flexibly make these modifications on the fly because they are, by definition, the only users 



of the code. While this "code and fix" mentality is appropriate for end-user development, robust 
operational environments that host critical infrastructure should espouse software development best 
practices. Thus, a more robust solution is to engineer SAS software that intelligently determines where it 
should begin executing. This professional design allows SAS practitioners other than the original 
developers to execute the code—including during both normal operation and after a failure has occurred. 

For example, if a data pull fails when pulling the 50
th
 of 60 tables from an external database, upon 

resumption, the code should be able to identify that 49 tables already have been extracted, and thus only 
extract the remaining eleven tables. Hapless developers—the same bunch who trip over their network 
cables—might be tempted to modify the code with a quick-fix that only pulls the remaining eleven tables. 
While timely, this manual solution would be inefficient because it would require additional development 
work, inconstant because the code would need to be modified again when the next full data pull was 
required, and would lack autonomy because the developer would have inserted himself into the recovery 
process. A more autonomous yet less timely solution would be to run the entire process and attempt to 
extract all 60 tables. Yet this duplication of effort would be neither timely nor efficient, and where 
connectivity issues might exist (because a network failure already had occurred), code should get in, get 
the data, and get out as quickly as possible. Moreover, in organizations that measure MTTR as time from 
the initial failure to the point at which code is later run and surpasses that failure point, this latter strategy 
can drastically slow the recovery period by delaying availability and functionality. 

Thus, a superior solution is to design modular code that intelligently identifies where it has failed and 
succeeded, and records process metrics in a control table that can be used both to drive processing 
under normal circumstances as well as under exceptional circumstances, including during and following 
catastrophic failure. Through these best practices, timely, efficient, autonomous, constant, and harmless 
recovery can be achieved. While the example in the above Cleanup section provides an introduction to 
the methodology and benefits of control tables, the following example provides more detailed information. 
For additional reference and examples, the use of control tables in data-driven and concurrent processing 
models is demonstrated in a separate text by the author.

iv
 

The following sections of code demonstrate the %BUILD_CONTROL macro that creates the control table 
if it does not exist. This also improves autonomy because if the control table is ever accidentally deleted 
or becomes corrupted, it can be deleted and it will regenerate automatically. Note that the %SYSFUNC 
macro function only tests for the existence of the control table, so if another data set already exists with 
the same file name, the code as currently written will fail. The %UPDATE_CONTROL macro is 
responsible for updating the control table with the date of completion for each module that completes 
without error. 

%macro build_control(); 

%if %sysfunc(exist(controller))=0 %then %do; 

 data controller; 

  length process $40 date_complete 8; 

  format date_complete date10.; 

  if ^missing(process);  

 run; 

 %end; 

%mend; 

 

%macro update_control(process=); 

data control_update; 

 length process $40 date_complete 8; 

 format date_complete date10.; 

 process="&process"; 

 date_complete=date();  

run; 

proc append base=controller data=control_update; 

run; 

%mend; 



The primary business rules are located in the %NEED macro, which specifies that a process should not 
be executed if it has already been executed on the same day. The %NEED macro is called immediately 
before each module in the ETL process to determine if that module needs to be executed or if can be 
skipped. Thus, if code failed after successfully completing one module, upon recovery, that first module 
automatically would be skipped. And, if the code is executing for the first time of the day under normal 
circumstances, all modules will be required so all modules will be executed. This logic exemplifies 
constancy, because it allows the same code to be executed both under normal circumstances as well as 
following program failure. 

%macro need(process=); 

%global need; 

%let need=YES; 

%let now=%sysfunc(date()); 

data _null_; 

 set controller; 

 if strip(upcase(process))="%upcase(&process)" and date_complete=&now 

then call symput('need','NO'); 

run; 

%mend; 

Two modules, %INGEST and %PRINT, are included here as representations of much larger modules that 
would exist in an actual ETL process flow. Most importantly, the automatic macro variable SYSERR tests 
module completion status and, only if no warnings or errors were encountered, the 
%UPDATE_CONTROL macro is called to record this successful completion in the control table. Note that 
in an actual infrastructure, additional information about process failures likely would be collected during 
this process and passed to the control table. In addition, failure of a prerequisite process (such as 
%INGEST) would necessitate that dependent processes (such as %PRINT) not initiate, but for 
demonstration purposes, this added business logic is omitted. Thus, while this code does not fail safe, it 
does eliminate redundant processing that often occurs during the recovery period. 

%macro ingest(); 

%let process=&SYSMACRONAME; 

data ingested; 

 set incoming_data; 

run; 

%if &SYSERR=0 %then %update_control(process=&process); 

%mend; 

 

%macro print(); 

%let process=&SYSMACRONAME; 

proc print data=ingested; 

run; 

%if &SYSERR=0 %then %update_control(process=&process); 

%mend; 

The %ETL macro represents the engine that drives processing, by first building the control table if 
necessary and by subsequently testing the need for each module before calling it. In an actual scenario, 
this code might be scheduled to run once a day, thus ingesting and processing new transactional data 
sets. To prevent the code from inefficiently performing redundant operations, successful execution of 
individual modules is tracked via the control table. And, if one of the modules does fail during execution, 
prerequisite processes are known to have completed, and data-driven processing will immediately direct 
execution toward the correct module. 

%macro etl(); 

%build_control; 

%need(process=ingest); 

%if &need=YES %then %ingest; 

%need(process=print); 

%if &need=YES %then %print; 

%mend; 



 

%etl; 

CONCLUSION 

Recoverability represents an often overlooked component in the quest for reliability in data analytic 
development. While SAS developers should strive first and foremost to develop fault-tolerant, defect-free 
code that resists failure or which fails gracefully when necessary, even the most robust, reliable code can 
be toppled by external or unavoidable circumstances. Design and development with a recoverability 
mindset can ensure that code recovers in a timely, efficient, autonomous, constant, and harmless 
manner. And, only by addressing aspects of both reliability and recoverability can SAS developers 
maximize the availability, functionality, and performance of their software. 
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