STANFORD SYNCHROTRON RADIATION LABORATORY

Everything You Ever Wanted to Know About S But Were Afraid to Ask

John A Pople Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Stanford CA 94309 When should I use the Scattering Technique?

Ideal Studies for Scattering

Scattering good for:

- Global parameters, distributions; 1st order
- Different sample states
- In-situ transitional studies
- Non destructive sample preparation

Recrystallized

Solid

Melted & Sheared

Ideal Studies for Microscopy

Microscopy good for:

- Local detail
- Surface detail
- Faithfully represents local complexities

E.g. if objective is to monitor the degree to which Mickey's nose(s) and ears hold to a circular micromorphology... use microscopy not scattering

Complementary Scattering and Microscopy

Forming a bi-continuous porous network with ligament width on the nanoscale by removing the less noble element from a binary alloy, in this case Ag-Au

X-rays Sensitive to electron density contrast

Neutrons

Sensitive to nuclear scattering length contrast

Neutron scattering: Deuteration allows species selection

Advantages of X-ray scattering:

- Relatively small sample quantities required
- Relatively fast data acquisition times allows time resolved effects to be characterized

Neutrons: Deuteration allows species selection

This essentially permits a dramatic alteration to the 'visibility' of the tagged elements in terms of their contribution to the reciprocal space scattering pattern

Atom ¹H

 ^{2}D

Scattering lengthIncoherent scattering $(x \ 10^{12} \, \text{cm}^2)$ $(x \ 10^{24} \, \text{cm}^2)$ -0.374800.6672

Photos of deformation

SANS patterns

 $\lambda = 0\%$ $\lambda = 300\%$

X-rays: Order of magnitude better spatial resolution Fast data acquisition times for time resolved data

Oscillatory Shearing of lyotropic HPC – a liquid crystal polymer

X-ray Scattering: Transmission or Reflection?

Need to be conscious of:

Constituent elements, i.e. absorption cutoffs Multiple scattering

Area of interest: surface effect or bulk effect

Transmission geometry appropriate for:

- Extracting bulk parameters, especially in deformation
- Weakly scattering samples: can vary path length

X-ray Scattering: Transmission or Reflection?

Reflection geometry appropriate for:

- Films on a substrate (whether opaque or not)
- Probing surface interactions

X-ray Scattering: SAXS or WAXS?

No fundamental difference in physics: a consequence of chemistry

WAXS patterns contain data concerning correlations on an intramolecular, inter-atomic level (0.1-1 nm)

SAXS patterns contain data concerning correlations on an inter-molecular level: necessarily samples where there is macromolecular or aggregate order (1-100 nm)

As synthesis design/control improves, SAXS becomes more relevant than ever before

X-ray Scattering: SAXS or WAXS?

Experimental consequences

WAXS: Detector close to sample, consider:

- Distortion of reciprocal space mapping
- Thermal effects when heating sample
- No ion chamber for absorption

SAXS: Detector far from sample, consider:

- Absorption from intermediate space
- Interception of appropriate q range

What can I Learn from a SAXS Pattern?

Recognizing Reciprocal Space Patterns: Indexing

Face centered cubic pattern from diblock copolymer gel

Recognizing Reciprocal Space Patterns: Indexing

Real space packing

Face centered cubic

Body centered cubic

Hexagonal

Reciprocal space image

(unoriented domains)

Normalized $\equiv 1$; $=\sqrt{4/3}$; $=\sqrt{8/3}$ peak positions

Recognizing Reciprocal Space Patterns: R_g

James L Hedrick

IBM Almaden, 650 Harry Road, San Jose, CA 95120

Dendrimers designed as poragens for nanoporous media: interest in monodispersity and density distribution per poragen

 $R_q^2 \alpha \ln I(q) / q^2$

Modeling Radial Density of Isomer Architectures

Relate the internal density (and thus functionality as nano-electronic application) of dendrimer isomer to the design architecture, modelling as a star with f arms. Can predict size and density of sphere from architectural model.

Recognizing Reciprocal Space Patterns: Preferential Orientation

Molecular size: Radius of gyration (R_a)

 $I(q) = I(0) \exp \left[-q^2 R_g^2 / 3\right]$ $R_g^2 \alpha \ln I(q) / q^2$ Guinier region: q < 1 / R_g

Molecular conformation: Scaling exponent

Molecular Conformation in Dentin

John H Kinney

Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA 94143

SAXS pattern

Molecular Conformation in Dentin

Molecular Conformation in Dentin

Shape change of mineral crystallites from needle-like to plate-like from pulp to dentin-enamel junction (DEJ).

Dentinogenesis imperfecta (DI) teeth shown to exhibit impaired development of intrafibrillar mineral: characteristic scattering peaks are absent from the diseased tooth.

Molecular conformation: Persistence length of coiled chain

q

Molecular orientation: Orientation parameter P₂

Molecular Orientation in Injection Moldings

Measuring the degree and inclination of preferential molecular orientation in a piece of injection molded plastic (e.g. hip replacement joints). ~ 1500 WAXS patterns

Orientation parameters: $0 < P_2 < 0.3$

Axis of orientation

What can the SAXS beamline at SSRL do?

GENERIC SYNCHROTRON LAYOUT

Beamline 1-4: Materials Science Scattering

Unfocused $\phi \sim 4e11 \text{ hv} \text{ s}^{-1} \text{ mA}^{-1}$

Source size: 8 000 μm² **Min q ~ 0.015** nm⁻¹ Bent mirror, V focus Bent, offcut Xtl mono, H focus SPEAR3 bend magnet I = 500 mA, E = 8333 eV $\sigma(x)$, $\sigma(y)$ 160 x 50 µm

Max d ~ 400 nm

Beamline 1-4 upstream optics: The 'Coffin'

Helium filled drift tank: The 'Coffin'

Beamline 1-4 (early design)

Inside the 'Coffin': Three jaw slit

Cu side shielding Cu Upper slit Cu Side slit Cu Lower slit

Inside the 'Coffin': Cu cooled Bent Mirror M0

0

Finger comb pressing contact onto MO

Copper contact bar

Bending rods

rays

Cu terminus block

MO SiO2 block

Cu braid, welded to bar

M0 cooling Cu terminus

Helium exit for Mono cooling

M0 cooling Cu braid Inside the 'Coffin': He Cooled Si Mono

> Si [111] crystal

> > 1-4 топо assembly

He Outlet onto mono

Cu coils around He drift tubes

Recirculating bath

Helium filled 'Coffin'

Intakę

Experimental Hutch stopper 2 stopper 1 Mono crystal

X-rays

Each stopper 1.25" Си + 2 х 3/16" Рb

SSRL Beamline 1-4: SAXS Materials Science

Experimental Hutch Ion chamber readout Motor position encoders-Hutch stopper control-Electronics control chassis. B. NO Motor control chassis Beamline control computer Sample temperature control

Sample Environments: Goniometer

Used for Reflection X-ray geometries

Huber 410 Goniometer

Sample Environments: X-Y drivable flat mount

Four sample positions

x and y drives $\pm 2.25 \mu m$ x and y throw ~ 100mm

Adaptor to hold fluid cells

Fluid cell with flow feeds

Sample Environments: Oven Temp T: $25^{\circ}C < T < 450^{\circ}C$ *stability* ±2°*C*

Feed for inert gas

Fit for fluid holder cells 10 soldering iron core heaters

Sample Environments: Oven

Fluid holder cells: assemble as three parts with windows Sample volume ~ 2.5 cc Optical path length = 1 mm Material: 5 each of Polytetrafluoroethylene (Teflon); Aluminum & Steel

Teflon cells have flow couplings for in-situ titration

Sample Environments: Tensiometer

Extension rate E:Drive motor $0.001 \text{ mm s}^{-1} < E < 25 \text{ mm s}^{-1}$

Oven Temp T: $25 \circ C < T < 100 \circ C$ OvenTemp stability $\pm 2 \circ C$ F.xternal

Internal heater tapes

External heater tape 、

Elastomeric Polypropylene sample at 300% extension

Principal Parameters for Scattering Experiments

 $q_{min}: 0.03 \ nm^{-1} \ (c.f. \ pre \ 2004 \ q_{min} = 0.07 \ nm^{-1})$

Can observe features $d_{max} \sim 200 \text{ nm}$ (c.f. pre-2004 $d_{max} = 90 \text{ nm}$) Focused Flux $\Phi \sim 1 \times 10^{10} \text{ hv s}^{-1} \text{ mA}^{-1}$

pre 2004 source size

Current source size

Source size = 18 nm/rad (c.f. pre 2004 = 130 nm/rad) Sample to detector distance D = 3 m (c.f. pre 2004 D = 1.2m)