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This study explored the problem solving experience of pre-service teachers in finding 
the greatest common factor and the least common multiple using many different 
approaches. In particular, it examined the effect of pre-service teachers’ mathematics 
content knowledge on how they chose their preferred approach and how they valued 
the most efficient approach. The findings indicated that the most efficient approach 
was appreciated only if such approach was reasonably understood by these 
pre-service teachers. 

INTRODUCTION 

Aesthetic values play a central role in experts’ mathematics problem solving 
experience (Silver & Metzger, 1989). Typically, a problem solving approach is 
considered “beautiful” if it is particularly clear, simple, and unexpected. Beginning 
problem solvers have also demonstrated the ability to develop and favour certain 
problem solving approaches often considered more efficient than others (Silver, 
Leung, & Cai, 1995). Nonetheless, little is known about the extent to which beginning 
problem solvers’ mathematics content knowledge influenced how they chose their 
preferred approach and how they valued the most efficient approach. In particular, 
does an aesthetic appreciation for the most efficient approach necessitate certain 
understanding of that approach? Is it possible to appreciate the most efficient approach 
if one lacks the understanding of problem solving using many different approaches? 
Does knowing more than one approach allow for more flexibility in problem solving? 

The purpose of this article is to investigate the effect of pre-service teachers’ 
mathematics content knowledge on their aesthetic predisposition in their problem 
solving experience involving problems of finding the greatest common factor (GCF) 
and the least common multiple (LCM) of two numbers. It begins with the theoretical 
background on the benefits of problem solving using many different approaches and 
the mathematics aesthetic aspect of experts’ problem solving practices, as well as 
examples of beginning problem solvers’ conceptions of what it means for an approach 
to be efficient. In connection with the instruments used in the methodology, several 
approaches for finding the GCF and LCM are discussed. The article continues with the 
findings and consequent analysis, and concludes with pedagogical recommendations 
that promote the habit of mind of creative problem solving and the mathematics 
aesthetic appreciations. 
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THEORETICAL BACKGROUND 

In recent years, mathematics problems solving using many different approaches has 
drawn more attention than before (Leikin & Levav-Waynberg, 2007). Some 
researchers, in fact, considered such practice to be beneficial for students’ mathematics 
learning experience. 

Silver et al. (2005) believed that students “can learn more from solving one problem in 
many different ways than [they] can from solving many different problems, each in 
only one way” (p. 288). They particularly advised students interested in mathematics 
to obtain more experience in problem solving with many different approaches. They 
regarded such experience as having “the potential advantage of providing students 
with access to a range of representations and solution strategies in a particular instance 
that can be useful in future problem-solving encounters” (p. 288). They also 
considered the use of many different approaches in order to “facilitate connection of a 
problem at hand to different elements of knowledge with which a student may be 
familiar, thereby strengthening networks of related ideas” (p. 288). 
Tabachneck, Koedinger, and Nathan (1994) recognized the purpose of adopting many 
different approaches in problem solving. They argued that on its own, each approach 
might entail disadvantages and weaknesses. In order to overcome these, they 
recommended students operate a combination of approaches, instead of counting on 
only one approach. More specifically, they maintained that students could benefit from 
employing this learning style in mathematical problem solving. In addition to teaching 
to solve one problem with many approaches, psychologists encouraged teaching a 
coherent interrelation among those approaches (Skemp, 1987; De Jong et al., 1998; 
Van Someren et al., 1998; Bodemer et al., 2004). Equally important, Reeves and 
Weisberg (1994) recommended showing students many analogical problems or 
examples concurrently. On the whole, cognitive psychologists took a positive stance 
on problem solving using many approaches, as did mathematics education researchers. 

Given the many possible different approaches to solve the same problem, a decision to 
choose one approach over the many other approaches may be less than arbitrary. 
Aesthetic aspects were particularly considered in many studies connected with experts’ 
preference in problem solving approaches. 

Silver and Metzger (1989) assessed the role of the aesthetics in a study involving 
university professors in mathematics. They found that these expert problem solvers 
displayed signs of aesthetic emotion. On one occasion, a subject resisted the 
temptation to resort to the use of calculus in solving a geometry problem, 
acknowledging the possibility of a “messy equation” (p. 66). Only after some 
unsuccessful attempts to seek a geometric approach did the subject concede to solving 
the problem using calculus. Although successful, he felt that “calculus failed to satisfy 
his personal goal of understanding, as well as his aesthetic desire for ‘harmony’ 
between the elements of the problem and elegance of solution” (p. 66). On another 
occasion, having solved another geometry problem algebraically, the same subject 
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appeared unsettled, recognizing that a geometric approach could be “more elegant” (p. 
66). 

Dreyfus and Eisenberg (1986) were interested in exploring whether students 
considered aesthetic values of mathematical reasoning in their problem solving 
approaches. Their study involved college-level mathematics students who had been 
rigorously prepared in advanced mathematics courses. They were tested on several 
carefully chosen mathematics problems which involved many different approaches not 
immediately apparent to average students, yet readily accessible with high school 
mathematics knowledge. After completing the test, students were presented with 
approaches that were considered elegant by expert mathematicians. 

Dreyfus and Eisenberg (1986) discovered that not only were the students not able to 
supply elegant approaches in the test as they had been expected to, but they were also 
not able to recognize the differences between elegant and pedestrian approaches. 
Furthermore, when presented with elegant approaches, they showed no enthusiasm and 
found them no more attractive than their own approaches. In other words, they had no 
sense of aesthetic appreciation. Dreyfus and Eisenberg (1986) concluded that 
mathematics instruction in classroom settings lacked an emphasis on reflective 
thinking, especially aesthetic value. 

Sinclair (2004) analysed the role of aesthetic values from several conceptual insights. 
She drew examples from existing empirical findings such as those by Dreyfus and 
Eisenberg (1986) and Silver and Metzger (1989). In one of her interpretations of their 
work, she suggested that “mathematicians’ aesthetic choices might be at least partially 
learned from their community as they interact with other mathematicians and seek 
their approval” (Sinclair, 2004, p. 276). Furthermore, she indicated that mathematical 
beauty was only feasible in the process “when young mathematicians are having to join 
the community of professional mathematicians—and when aesthetic considerations 
are recognized (unlike at high school and undergraduate levels)” (p. 276). 
Nevertheless, few studies have demonstrated that beginning problem solvers might 
actually be capable of recognizing mathematical “beauty” from the standpoint of 
efficiency. Nesher, Hershkovitz, and Novotna (2003) investigated students’ choices of 
approaches to solving algebra problems. Specifically, they were interested in ninth 
grade students’ use of independent variables when solving algebra word problems. 
These word problems involved a situation with three unknown quantities whose sum 
was known. In interviewing the students, the researchers found that the students’ 
choices of independent variables were mainly influenced by the order in which the 
quantities were described in the word problems. At the same time, students favoured 
independent variables with the smallest quantity in relation to the other two quantities 
discussed in the problems. By doing so, students unconsciously revealed their natural 
inclination to working with whole numbers as opposed to rational numbers. To some 
extent, students were capable on their own of constructing the notions of the more 
efficient approach in problem solving. 
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METHODOLOGY 

This study involved 37 pre-service teachers (31 female, 6 male, age 20-24) in an 
elementary (age 5-12, grade K-6) education program at a large, urban university. These 
37 pre-service teachers were enrolled in a mathematics content course in which the 
researcher was the instructor. Four approaches for the GCF and four approaches for the 
LCM were introduced to these pre-service teachers during the instruction time of two 
50-minutes sessions. 

Using an example of finding the GCF and LCM of 24 and 36, the eight approaches are 
discussed as follows. The first approach for finding the GCF is the Set Intersection 
Method where given all factors of 24 (e.g., 1, 2, 3, 4, 6, 8, 12, and 24) and 36 (e.g., 1, 2, 
3, 4, 6, 9, 12, 18, 36), the common factors of 24 and 36 are 1, 2, 3, 4, 6, and 12, of which 
12 is the largest. The second approach for finding the GCF is the Prime Factorization 
Method where after expressing 24 and 36 in their prime factor exponential forms (e.g., 
24 = 23∙31 and 36 = 22∙32), the GCF consists of the prime factors with the smaller 
exponents (e.g., 22∙31 = 12). The third approach for finding the GCF is the Repeated 
Subtractions Method where the GCF is obtained by repeatedly subtracting the smaller 
number from the larger number until both numbers are equal (e.g., 
GCF(24,36)=GCF(36-24,24)=GCF(12,24)=GCF(24-12,12)=GCF(12,12)=12). The 
fourth method for finding the GCF is the Euclidean Algorithm Method where the GCF 
is obtained by repeatedly dividing the larger number by the smaller number until a 
remainder of zero is obtained (e.g., 36÷24=1R12, 24÷12=2R0, and thus, GCF is 12). 

The first approach for finding the LCM is the Set Intersection Method where given 
some multiples of 24 (e.g., 24, 48, 72, 96, 120, 144, …) and 36 (e.g., 36, 72, 108, 144, 
…), the common multiples of 24 and 36 are 72, 144, …, of which 72 is the smallest. 
The second approach for finding the LCM is the Prime Factorization Method where 
after expressing 24 and 36 in their prime factor exponential forms (e.g., 24 = 23∙31 and 
36 = 22∙32), the LCM consists of the prime factors with the larger exponents (e.g., 23∙32 
= 72). The third approach for finding the LCM is the Build-up Method where after 
expressing 24 and 36 in their prime factor exponential forms (e.g., 24 = 23∙31 and 36 = 
22∙32), the LCM is obtained by building up the prime factors to the larger exponents 
(e.g., because 22∙32 has more threes than 23∙31, we build up from 24 = 23∙31 to have the 
same number of threes as 22∙32, making the LCM 23∙32 = 72). The fourth approach for 
finding the LCM is using the Theorem Method which states that the product of two 
numbers is equal to the product of their GCF and LCM (e.g., because the GCF of 24 
and 36 is 12, LCM of 72 is obtained by dividing 24×36 by 12). 

After the instruction, the pre-service teachers were evaluated by means of a quiz and a 
survey. In a quiz of 12 problems, problems 1, 2, 3, and 4 involved finding the GCF of 
45 and 75 using the first, second, third, and fourth approaches, respectively. Problems 
5, 6, 7, and 8 involved finding the LCM of 45 and 75 using the first, second, third, and 
fourth approaches, respectively. Problem 9 and 10 involved finding the GCF and LCM 
of 12 and 18 using any method. Problem 11 and 12 involved finding the GCF and LCM 
of 2,873 and 3,757 using any method. Each problem in the quiz was scored as 1 if the 
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correct answer was supported by clear explanations and logical arguments; otherwise, 
it was scored as 0. Thus, the quiz score ranged from 0 to 12. In the survey of two 
questionnaires, they were asked about their preference of finding the GCF and LCM 
based on their problem solving experience. They were also required to write one or two 
paragraphs explaining any criteria they identified for their choices of preferred 
approaches, as well as providing a comparison and contrast analysis of the different 
approaches for finding the GCF and LCM. 

FINDINGS 

Based on the survey, the first, second, third, and fourth approaches of finding the GCF 
were preferred by 2, 7, 6, and 22 pre-service teachers, respectively. The first, second, 
third, and fourth approaches of finding the LCM were preferred by 3, 20, 5, and 9 
pre-service teachers, respectively. 

Although the majority of the pre-service teachers recognized that the Set Intersection 
Method for finding the GCF and LCM was “clunky” and “only works for small 
numbers,” they agreed that such method was conceptually the more “natural” way of 
making sense of the GCF and LCM. The Prime Factorization Method for finding the 
GCF and LCM was the more “familiar” approach that most pre-service teachers 
“learned in grade school.” The pre-service teachers considered the Euclidian 
Algorithm Method the most efficient approach for finding the GCF because it “works 
for any numbers, including large ones” and “simplifies the steps in the Repeated 
Subtractions Method.” On the other hand, the Build-up Method was not favourable 
because it was viewed as less efficient than the Prime Factorization Method. While the 
Theorem Method was not the most popular approach, those who preferred it said it was 
the most efficient and “easiest” approach “if you figure out the GCF beforehand, 
especially for big numbers.” 

Supposing that the Euclidian Algorithm Method and the Theorem Method were the 
most efficient approaches for finding the GCF and LCM, respectively, as the 
pre-service teachers assessed in general, it was apparent that those who preferred either 
of those two approaches performed well above those who preferred other approaches. 
The average scores of all problems of the pre-service teachers who preferred the first, 
second, third, and fourth approaches of finding the GCF were 4, 6.7, 6.6, and 9.4, 
respectively. The average scores of all problems of the pre-service teachers who 
preferred the first, second, third, and fourth approaches of finding the LCM were 8, 
7.6, 8, and 11, respectively. 

In relation to their understanding of the most efficient approaches for finding the GCF 
and LCM, the pre-service teachers’ performance on problems 4 and 8 (problems 
involving the most efficient methods for the GCF and LCM, respectively) was highly 
indicative of their likelihood of preferring those most efficient approaches. The 
average scores of problem 4 of the pre-service teachers who preferred the first, second, 
third, and fourth approaches of finding the GCF were 0, 0.1, 0.1, and 0.8, respectively. 
The average scores of problem 8 of the pre-service teachers who preferred the first, 
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second, third, and fourth approaches of finding the LCM were 0.3, 0.1, 0.2, and 0.9, 
respectively. 

Ten of the 12 pre-service teachers who successfully solved problems 11 and 12 
(problems involving finding the GCF and LCM of larger numbers) solved both 
problems using and chose as their preferred approach the Euclidian Algorithm Method 
or the Theorem Method. Only twelve of the 25 pre-service teachers who successfully 
solved problems 9 and 10 (problems involving finding the GCF and LCM of smaller 
numbers) but not problems 11 and 12 chose as their preferred approach the Euclidian 
Algorithm Method or the Theorem Method. In other words, the 
more-mathematically-able pre-service teachers were about twice as likely, in 
proportion to their group membership, both to solve them using and to prefer the 
Euclidian Algorithm Method or the Theorem Method to other approaches as the 
less-mathematically-able pre-service teachers. To this extent, the pre-service teachers’ 
mathematics content knowledge was a determining factor in their appreciation for the 
most efficient approach. 

Nevertheless, like the majority (23) of the 25 pre-service teachers who successfully 
solved problems 9 and 10 but not problems 11 and 12, 11 of the 12 pre-service teachers 
who successfully solved problems 11 and 12 was more likely to solve problems 9 and 
10 (problems involving finding the GCF and LCM of smaller numbers) using either the 
Set Intersection Method or the Prime Factorization Method than any other approaches. 
Evidently, the more-mathematically-able pre-service teachers appeared to be more 
flexible in choosing problem solving strategy, depending on the level of difficulty of 
the problems, in particular, the magnitude of the numbers involved in the problems. 

This, to some extent, demonstrated, from a point of view of number theory, a similar 
notion of the “apparently counter-intuitive inverted aptitude-strategy relationship” 
based on the findings by Roberts, Gilmore, and Wood (1997): the pre-service teachers 
who were more fluent in the more sophisticated approaches for finding the GCF and 
LCM (e.g., the Euclidian Algorithm Method and the Theorem Method) ingeniously 
avoided the use of such sophisticated approaches when solving simpler problems. One 
explanation to this flexibility might be that these more-mathematically-able 
pre-service teachers consciously attended to one attribute of an elegant approach, 
namely, simplicity (Silver & Metzger, 1989): simpler problems could and should be 
solved using a more elementary strategy (e.g., the Set Intersection Method or the Prime 
Factorization Method), instead of a more advanced strategy (e.g., the Euclidian 
Algorithm Method or the Theorem Method). 

Indeed, some of them explained that “I only began to see why we need to learn many 
different approaches until you gave us the last four problems [problems 9, 10, 11, and 
12] all at once,” while others deduced that “some methods work for some problems, 
while other methods work better for other problems.” Their explanations suggested, to 
some extent, that they valued the need to study more than one approach in order to 
better appreciate other approaches. It was clear that the more approaches they 
understood, the more positive they were towards the practice of problem solving using 
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many different approaches, and thus, the more mathematically mature they became to 
appreciate the various characteristics of a mathematically “beautiful” approach, 
including the idea of efficiency and simplicity. 

Such flexibility in adapting alternative approaches was yet not observed in the eight 
pre-service teachers who successfully solved problems 9 and 10 but not problems 11 
and 12. These less-mathematically-able pre-service teachers persisted in applying 
either the Set Intersection Method or the Prime Factorization Method to solve 
problems 11 and 12, albeit unsuccessfully. While the Set Intersection Method could be 
viewed as the more “natural” way of conceptualizing the GCF and LCM, this evidence 
suggested, to some extent, that such approach was realized by these 
less-mathematically-able pre-service teachers more at the procedural level, rather than 
at the conceptual level. 

CONCLUSIONS AND DISCUSSIONS 

The current study explored the relationship between pre-service teachers’ mathematics 
content knowledge and their preferred approaches for finding the GCF and LCM, as 
well as their predisposition to favour mathematically “beautiful” approach. Two major 
findings were observed. First, the more-mathematically-able pre-service teachers were 
more likely than the less-mathematically-able pre-service teachers to recognize the 
most efficient approach. An aesthetic appreciation for the most efficient approach 
appeared to necessitate a certain level of understanding of that approach; to some 
extent, it was not possible to appreciate the most efficient approach if one lacked the 
understanding of problem solving using many different approaches. Second, the 
more-mathematically-able pre-service teachers were more likely than the 
less-mathematically-able pre-service teachers to adaptively vary their problem solving 
strategies to accommodate the level of difficulty of the problems. The more tools they 
could work with to solve a problem, the more options they had when reflecting to 
decide which tool would be appropriate for which situation. 

Two pedagogical recommendations might be proposed. First, mathematics learning 
experience, perhaps as early as the elementary school level, could involve problem 
solving using many different approaches. Given sufficient exposure to a variety of 
different methods to solve the same problem involving the same mathematics concept, 
beginning problem solvers might become not only fluent in many different problem 
solving approaches but also creative in looking for novel problem solving approaches 
and flexible to recognize the appropriateness of utilizing certain problem solving 
approaches in solving particular situations. Second, aesthetic appreciations towards 
mathematical “beauty” could be nurtured to young children, even if they might only 
concern with the idea of efficiency in terms of time and the number of steps to solve a 
problem. To this end, mathematics teachers could promote classroom discussions that 
required students to compare and contrast different problem solving approaches. 



Tjoe 

5 - 256 PME 2014 

References 

Bodemer, D., Plötzner, R., Feuerlein, I., & Spada, H. (2004). The active integration of 
information during learning with dynamic and interactive visualizations. Learning and 
Instruction, 14, 325-341.  

De Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., Reimann, P., … 
Swaak, J. (1998). Acquiring knowledge in science and mathematics: The use of multiple 
representations in technology-based learning environments. In M. van Someren, P. 
Reimann, H. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations (pp. 
9-41). Oxford, England: Elsevier Sciences. 

Dreyfus, T., & Eisenberg, T. (1986). On the aesthetic of mathematical thought. For the 
Learning of Mathematics, 6, 2-10. 

Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to 
explain the gap between theory-based recommendations and school practice in the use of 
connecting tasks. Educational Studies in Mathematics, 66, 349-371.  

Nesher, P., Hershkovitz, S., & Novotna, J. (2003). Situation model, text base and what else? 
Factors affecting problem solving. Educational Studies in Mathematics, 52, 151-176. 

Reeves, L. M., & Weisberg, R. W. (1994). The role of content and abstract information in 
analogical transfer. Psychological Bulletin, 115, 381-400. 

Roberts, M. J., Gilmore, D. J., & Wood, D. J. (1997). Individual differences and strategy 
selection in reasoning. British Journal of Psychology, 88, 473-492. 

Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C., & Font Strawhun, B. T. (2005). 
Moving from rhetoric to praxis: Issues faced by teachers in having students consider 
multiple solutions for problems in the mathematics classroom. Journal of Mathematical 
Behavior, 24, 287-301. 

Silver, E. A., Leung, S. S., & Cai, J. (1995). Generating multiple solutions for a problem: A 
comparison of the responses of U.S. and Japanese students. Educational Studies in 
Mathematics, 28, 35-54. 

Silver, E. A., & Metzger, W. (1989). Aesthetic influences on expert mathematical problem 
solving. In D. McLeod, & V. Adams (Eds.), Affect and mathematical problem solving (pp. 
59-74). New York: Springer-Verlag. 

Sinclair, N. (2004). The roles of the aesthetic in mathematical inquiry. Mathematical 
Thinking and Learning, 6, 261-284. 

Skemp, R. (1987). The psychology of learning mathematics. Mahwah, NJ: Erlbaum.  

Tabachneck, H. J., Koedinger, K. R., & Nathan, M. J. (1994). Toward a theoretical account of 
strategy use and sense-making in mathematics problem solving. In A. Ram & K. Eiselt 
(Eds.), Proceedings of the sixteenth annual conference of the Cognitive Science Society 
(pp. 836-841). Hillsdale, NJ: Erlbaum. 

Van Someren, M. W., Boshuizen, H. P., De Jong, T., & Reimann, P. (1998). Introduction. In 
M. van Someren, P. Reimann, H. Boshuizen, & T. de Jong (Eds.), Learning with multiple 
representations (pp. 1-5). Oxford, England: Elsevier Sciences. 


