Where's the Beef? New Products & Impact of Distillers Grains on Quality Chris R. Calkins, Ph.D. Nebraska Beef Industry Professor of Animal Science University of Nebraska-Lincoln, USA Nebraska Lincoln

Muscle Profiling - Goal

- 1. Increase the value of the chuck and round
- 2. Create an encyclopedia of knowledge of each muscle

Muscle Profiling Is:

- A comprehensive body of work that fully characterizes the chuck and round, such as:
 - Tenderness
 - Composition
 - Processing traits
 - Dimensions
 - Color
 - Others

Muscle Profiling - How

144 carcasses x 39 muscles in each = 5,616 muscles

3 quality grade classes, 4 yield grade classes, 3 weight classes

Cooperative project with University of Florida

Profiling Muscles of the Chuck and Round

		250-295 kg	Carcass Weight 318-363 kg	386-431 kg
Upper 2/3 Choice	YG 1			
	YG 2			
	YG 3			
	YG 4&5			
Low Choice	YG1			
	YG 2			
	YG 3			
	YG4&5			
Select	YG 1			
	YG 2			
	YG 3			
	YG 4&5			

Bovine Myology – Muscle Profiling Web Site Univ. of NE http://bovine.unl.edu

Muscle Profiling - Consequences The Value Cuts - Flat Iron Steak - Shoulder Tender - Ranch Cut (Clod Heart) - Knuckle Center - Western Griller

2005 versus 2007 (million pounds)					
<u>Cut</u>	<u>2005</u>	<u>2007</u>	<u>Increase</u>		
Flat Iron	47	92	95%		
Petite Tender	28	40	42%		
Ranch Cut	<u>31</u>	<u>37</u>	<u>19%</u>		
Total	106	169	59%		

teaks	Pounds in Millions	<u>%</u>
Ribeye and Strip Steaks	373	26
Sirloin	292	21
Other steaks	222	16
Filet Mignon	253	18
T- Bone	62	4.4
Porterhouse	35	2.5
Flat Iron	92	6.5
Petite Tender	40	2.8
Ranch Cut	37	2.6

Regular Fab. Chuck eye	10.5%	Bnls Rib Fab. Bnls Ribs	37.3%
steaks			
Bnls chuck roast	67.2%	Denver steaks	21.4%
Stew	8.4%	Sierra cut	6.0%
80/20	8.4%	Stew	13.4%
		80/20	12.3%

Regular Fal).	Bnls Rib Fab.	
Chuck eye steaks	10.5%	Bnls Ribs	37.3%
Bnls chuck roast	67.2%	Denver steaks	21.4%
Stew	8.4%	Sierra cut	6.0%
80/20	8.4%	Stew	13.4%
		80/20	12.3%
Cut Yield	94.54	90.34	
Net\$	\$147.88	\$255.35	
Net %	41.0%	53.5%	

Outline Carcass traits Marbling, carcass fatness Fatty acid changes Shelf Life Oxidation Eating Quality Wet distillers grains versus distillers solubles, benefits of Vitamin E Optimal level of Vitamin E

Marbling attributes (Yearlings)					
Attributes	0%	15%	30%	P-value	
Score ¹	Small ²⁰	Small ²²	Small ³⁰	0.89	
Fat, %	5.44	5.91	5.94	0.19	
¹ Slight = 300 - 399, Small = 400 -	499				

Why Reduced Shelf-life?

- · Color is compromised by oxidation.
- · Myoglobin is oxidized to brown.

Eating Quality

- Trained Evaluation (Jenschke et al., 2007)
 - Cattle fed 0, 10, 20, 30, 40, and 50 WDGS
 - No effect on tenderness
 - No treatment effects noted for:
 - · Metallic, sour, charred, oxidized, rancid or livery
- However, that research was done with meat directly removed from the vacuum bag
 - no retail display (no exposure to oxygen)

How to Address the Issue?

- · Vitamin E is an antioxidant
- Can be fed during the finishing phase
- Question can feeding high doses of vitamin E help to address the issue?
- Study WDG at 0, 20 or 40% -- With or without solubles -- With or without vitamin E

(fed at 500 IU/head/d for entire feeding period)

Take Home Point The solubles cause an increase in the mineral content of the muscles – minerals which support oxidation

Take Home Points • Feeding WDG causes an increase in oxidation • The effect is mitigated through feeding of vitamin E

Take Home Points

- Retail color stability is less a problem if the beef is aged just 7 d. When beef is aged longer, discoloration is an issue.
- Solubles exagurate the discoloration

Take Home Points Vitamin E? Vitamin E helps to minimize problems with oxidation, discoloration and off-flavors when fed with WDG What is the optimal level of vitamin E?

Take Home Points

- The ideal level of vitamin E depends on the packaging system to be used
- With minimal aging (7 d), little to no vitamin E is needed
- With extended aging, up to 1,000 IU/head/day are necessary.

Summary

- · Carcass traits
 - No negative effects on marbling traits
- Meat traits
 - Increased PUFA
 - Decreased shelf life
 - Increased off flavors
 - Vitamin E helps to mitigate these issues
 - Levels up to 1,000 IU/head/d are needed

