
Where Syntax Meets Semantics

Chapter Three Modern Programming Languages, 2nd ed. 1

Three “Equivalent” Grammars

Chapter Three Modern Programming Languages, 2nd ed. 2

G1: <subexp> ::= a | b | c | <subexp> - <subexp>

G2: <subexp> ::= <var> - <subexp> | <var>
 <var> ::= a | b | c

G3: <subexp> ::= <subexp> - <var> | <var>
 <var> ::= a | b | c

These grammars all define the same language: the
language of strings that contain one or more as, bs
or cs separated by minus signs. But...

Chapter Three Modern Programming Languages, 2nd ed. 3

Why Parse Trees Matter

 We want the structure of the parse tree to
correspond to the semantics of the string it
generates

 This makes grammar design much harder:
we’re interested in the structure of each
parse tree, not just in the generated string

  Parse trees are where syntax meets
semantics

Chapter Three Modern Programming Languages, 2nd ed. 4

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 5

Operators

  Special syntax for frequently-used simple
operations like addition, subtraction,
multiplication and division

 The word operator refers both to the token
used to specify the operation (like + and *)
and to the operation itself

 Usually predefined, but not always
 Usually a single token, but not always

Chapter Three Modern Programming Languages, 2nd ed. 6

Operator Terminology

 Operands are the inputs to an operator, like
1 and 2 in the expression 1+2

 Unary operators take one operand: -1
 Binary operators take two: 1+2
  Ternary operators take three: a?b:c

Chapter Three Modern Programming Languages, 2nd ed. 7

More Operator Terminology

  In most programming languages, binary
operators use an infix notation: a + b

  Sometimes you see prefix notation: + a b
  Sometimes postfix notation: a b +
 Unary operators, similarly:

–  (Can’t be infix, of course)
–  Can be prefix, as in -1
–  Can be postfix, as in a++

Chapter Three Modern Programming Languages, 2nd ed. 8

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 9

Working Grammar

Chapter Three Modern Programming Languages, 2nd ed. 10

G4: <exp> ::= <exp> + <exp>  
 | <exp> * <exp>
 | (<exp>)
 | a | b | c

This generates a language of arithmetic expressions
using parentheses, the operators + and *, and the
variables a, b and c

Issue #1: Precedence

Chapter Three Modern Programming Languages, 2nd ed. 11

Our grammar generates this tree for a+b*c. In this tree,
the addition is performed before the multiplication,
which is not the usual convention for operator precedence.

Operator Precedence

  Applies when the order of evaluation is not
completely decided by parentheses

  Each operator has a precedence level, and those
with higher precedence are performed before those
with lower precedence, as if parenthesized

  Most languages put * at a higher precedence level
than +, so that

 a+b*c = a+(b*c)

Chapter Three Modern Programming Languages, 2nd ed. 12

Precedence Examples

 C (15 levels of precedence—too many?)

  Pascal (5 levels—not enough?)

  Smalltalk (1 level for all binary operators)

Chapter Three Modern Programming Languages, 2nd ed. 13

a = b < c ? * p + b * c : 1 << d ()

a <= 0 or 100 <= a

a + b * c

Error!

Precedence In The Grammar

Chapter Three Modern Programming Languages, 2nd ed. 14

To fix the precedence problem, we modify the grammar so
that it is forced to put * below + in the parse tree.

G5: <exp> ::= <exp> + <exp> | <mulexp> 
 <mulexp> ::= <mulexp> * <mulexp>
 | (<exp>)
 | a | b | c

G4: <exp> ::= <exp> + <exp>  
 | <exp> * <exp>
 | (<exp>)
 | a | b | c

Correct Precedence

Chapter Three Modern Programming Languages, 2nd ed. 15

Our new grammar generates this tree for a+b*c. It generates
the same language as before, but no longer generates parse
trees with incorrect precedence.

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 16

Issue #2: Associativity

Chapter Three Modern Programming Languages, 2nd ed. 17

Our grammar G5 generates both these trees for a+b+c.
The first one is not the usual convention for operator
associativity.

Operator Associativity

 Applies when the order of evaluation is not
decided by parentheses or by precedence

  Left-associative operators group left to
right: a+b+c+d = ((a+b)+c)+d

 Right-associative operators group right to
left: a+b+c+d = a+(b+(c+d))

 Most operators in most languages are left-
associative, but there are exceptions

Chapter Three Modern Programming Languages, 2nd ed. 18

Associativity Examples

 C

 ML

  Fortran

Chapter Three Modern Programming Languages, 2nd ed. 19

a<<b<<c — most operators are left-associative
a=b=0 — right-associative (assignment)

3-2-1 — most operators are left-associative
1::2::nil — right-associative (list builder)

a/b*c — most operators are left-associative
a**b**c — right-associative (exponentiation)

Associativity In The Grammar

Chapter Three Modern Programming Languages, 2nd ed. 20

To fix the associativity problem, we modify the grammar to
make trees of +s grow down to the left (and likewise for *s)

G5: <exp> ::= <exp> + <exp> | <mulexp> 
 <mulexp> ::= <mulexp> * <mulexp>
 | (<exp>)
 | a | b | c

G6: <exp> ::= <exp> + <mulexp> | <mulexp> 
 <mulexp> ::= <mulexp> * <rootexp> | <rootexp>
 <rootexp> ::= (<exp>)
 | a | b | c

Correct Associativity

Chapter Three Modern Programming Languages, 2nd ed. 21

Our new grammar generates this tree for a+b+c. It generates
the same language as before, but no longer generates trees with
incorrect associativity.

Practice

Chapter Three Modern Programming Languages, 2nd ed. 22

Starting with this grammar:

1.) Add a left-associative & operator, at lower precedence
than any of the others
2.) Then add a right-associative ** operator, at higher
precedence than any of the others

G6: <exp> ::= <exp> + <mulexp> | <mulexp> 
 <mulexp> ::= <mulexp> * <rootexp> | <rootexp>
 <rootexp> ::= (<exp>)
 | a | b | c

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 23

Issue #3: Ambiguity
 G4 was ambiguous: it generated more than

one parse tree for the same string
  Fixing the associativity and precedence

problems eliminated all the ambiguity
 This is usually a good thing: the parse tree

corresponds to the meaning of the program,
and we don’t want ambiguity about that

 Not all ambiguity stems from confusion
about precedence and associativity...

Chapter Three Modern Programming Languages, 2nd ed. 24

Dangling Else In Grammars

Chapter Three Modern Programming Languages, 2nd ed. 25

<stmt> ::= <if-stmt> | s1 | s2
<if-stmt> ::= if <expr> then <stmt> else <stmt>
 | if <expr> then <stmt>
<expr> ::= e1 | e2

This grammar has a classic “dangling-else ambiguity.” The
statement we want derive is

 if e1 then if e2 then s1 else s2

and the next slide shows two different parse trees for it...

Most languages that have
this problem choose this
parse tree: else goes with
nearest unmatched then

Chapter Three Modern Programming Languages, 2nd ed. 26

Eliminating The Ambiguity

Chapter Three Modern Programming Languages, 2nd ed. 27

We want to insist that if this expands into an if, that if must
already have its own else. First, we make a new non-terminal
<full-stmt> that generates everything <stmt> generates, except
that it can not generate if statements with no else:

<stmt> ::= <if-stmt> | s1 | s2
<if-stmt> ::= if <expr> then <stmt> else <stmt>
 | if <expr> then <stmt>
<expr> ::= e1 | e2

<full-stmt> ::= <full-if> | s1 | s2
<full-if> ::= if <expr> then <full-stmt> else <full-stmt>

Eliminating The Ambiguity

Chapter Three Modern Programming Languages, 2nd ed. 28

Then we use the new non-terminal here.

The effect is that the new grammar can match an else part
with an if part only if all the nearer if parts are already
matched.

<stmt> ::= <if-stmt> | s1 | s2
<if-stmt> ::= if <expr> then <full-stmt> else <stmt>
 | if <expr> then <stmt>
<expr> ::= e1 | e2

Correct Parse Tree

Chapter Three Modern Programming Languages, 2nd ed. 29

Dangling Else

 We fixed the grammar, but…
 The grammar trouble reflects a problem

with the language, which we did not change
 A chain of if-then-else constructs can be

very hard for people to read
 Especially true if some but not all of the

else parts are present

Chapter Three Modern Programming Languages, 2nd ed. 30

Practice

Chapter Three Modern Programming Languages, 2nd ed. 31

int a=0;
if (0==0)
 if (0==1) a=1;
else a=2;

What is the value of a after
this fragment executes?

Clearer Styles

Chapter Three Modern Programming Languages, 2nd ed. 32

int a=0;
if (0==0)
 if (0==1) a=1;
 else a=2;

int a=0;
if (0==0) {
 if (0==1) a=1;
 else a=2;
}

Better: correct indentation

Even better: use of a block
reinforces the structure

Languages That Don’t Dangle

  Some languages define if-then-else in a way
that forces the programmer to be more clear
–  Algol does not allow the then part to be

another if statement – though it can be a block
containing an if statement

–  Ada requires each if statement to be
terminated with an end if

–  Python requires nested if statement to be
indented

Chapter Three Modern Programming Languages, 2nd ed. 33

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 34

Clutter
 The new if-then-else grammar is harder for

people to read than the old one
  It has a lot of clutter: more productions and

more non-terminals
  Same with G4, G5 and G6: we eliminated

the ambiguity but made the grammar harder
for people to read

 This is not always the right trade-off

Chapter Three Modern Programming Languages, 2nd ed. 35

Reminder: Multiple Audiences
  In Chapter 2 we saw that grammars have

multiple audiences:
–  Novices want to find out what legal programs

look like
–  Experts—advanced users and language system

implementers—want an exact, detailed definition
–  Tools—parser and scanner generators—want an

exact, detailed definition in a particular,
machine-readable form

 Tools often need ambiguity eliminated, while
people often prefer a more readable grammar

Chapter Three Modern Programming Languages, 2nd ed. 36

Options

 Rewrite grammar to eliminate ambiguity
 Leave ambiguity but explain in

accompanying text how things like
associativity, precedence, and the dangling
else should be parsed

 Do both in separate grammars

Chapter Three Modern Programming Languages, 2nd ed. 37

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 38

EBNF and Parse Trees

 You know that {x} means "zero or more
repetitions of x" in EBNF

  So <exp> ::= <mulexp> {+ <mulexp>}
should mean a <mulexp> followed by zero
or more repetitions of "+ <mulexp>"

 But what then is the associativity of that +
operator? What kind of parse tree would be
generated for a+a+a?

Chapter Three Modern Programming Languages, 2nd ed. 39

EBNF and Associativity
 One approach:

–  Use {} anywhere it helps
–  Add a paragraph of text dealing with

ambiguities, associativity of operators, etc.
 Another approach:

–  Define a convention: for example, that the form
<exp> ::= <mulexp> {+ <mulexp>} will be used
only for left-associative operators

–  Use explicitly recursive rules for anything
unconventional:
 <expa> ::= <expb> [= <expa>]

Chapter Three Modern Programming Languages, 2nd ed. 40

About Syntax Diagrams

  Similar problem: what parse tree is
generated?

 As in EBNF applications, add a paragraph
of text dealing with ambiguities,
associativity, precedence, and so on

Chapter Three Modern Programming Languages, 2nd ed. 41

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 42

Full-Size Grammars

  In any realistically large language, there are
many non-terminals

 Especially true when in the cluttered but
unambiguous form needed by parsing tools

 Extra non-terminals guide construction of
unique parse tree

 Once parse tree is found, such non-
terminals are no longer of interest

Chapter Three Modern Programming Languages, 2nd ed. 43

Abstract Syntax Tree

 Language systems usually store an
abbreviated version of the parse tree called
the abstract syntax tree

 Details are implementation-dependent
 Usually, there is a node for every operation,

with a subtree for every operand

Chapter Three Modern Programming Languages, 2nd ed. 44

Chapter Three Modern Programming Languages, 2nd ed. 45

parse tree

abstract syntax tree

Parsing, Revisited

 When a language system parses a program,
it goes through all the steps necessary to
find the parse tree

 But it usually does not construct an explicit
representation of the parse tree in memory

 Most systems construct an AST instead
 We will see ASTs again in Chapter 23

Chapter Three Modern Programming Languages, 2nd ed. 46

Conclusion
 Grammars define syntax, and more
 They define not just a set of legal programs,

but a parse tree for each program
 The structure of a parse tree corresponds to

the order in which different parts of the
program are to be executed

 Thus, grammars contribute (a little) to the
definition of semantics

Chapter Three Modern Programming Languages, 2nd ed. 47

