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Topic of this presentation

Which variabes predict future active mutual fund performance?

or, in other words:

How can we apply academic research for manager selection?

Academic research papers:

Focus: Actively-managed equity mutual funds

Market: USA

Performance measurement:

Net-of-fees

Risk-adjusted performance measures (Sharpe ratio, Treynor ratio, Sortino ratio)

Benchmark-adjusted performance measures (alphas to different factor models)

Variables: Fund-, fund firm-, and fund manager characteristics (all
quantitatively measured)
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Why is it so hard to predict fund performance? (I)

1. Arithmetic of active investment (Sharpe, 1991)

Before costs, benchmark-adjusted performance among active traders is a
zero-sum game; after costs, performance of the average active investor will be
lower than the performance of the average passive investor.

2. Efficient market hypothesis (Fama, 1970)

Asset prices reflect all publicly available information. ⇒ It is difficult to
cosistently earn superior (benchmark-adjusted) performance.

3. Asset pricing anomalies disappear after their public disclosure (McLean and
Pontiff, 2016)

Profitability of asset pricing anomalies (such as value, momentum, reversal,
earning announcement drift) decreases after their existence has been published
in a scientifc journal.
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Why is it so hard to predict fund performance? (II)

4. Performance chasing of investors

Disproportionally large inflows to well-performing funds can hinder fund
managers to implement their best investment ideas (decreasing returns to scale).

Figure: Berk and Green (2004)
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How to empirically investigate fund performance predictors

Data:

Historical data on fund returns and characteristics is obtained from commercial
databases (CRSP, Morningstar, Factset, Lipper) and other sources.

Notation:

Xi
t : Characteristic related to fund i in month t

αi
t+1: Performance of fund i in month t+ 1

Methodology 1: Portfolio Sorts

In month t, form quintile portfolios by sorting funds based on Xi
t .

Compute portfolio alphas over month t+ 1. Evaluate the spread in alphas
between portfolio 5 (funds with high X) and portfolio 1 (funds with low X).

Methodology 2: Regression Analysis

Run:

αi
t+1 = λ+ β ·Xi

t + Controls + εit+1

Check the sign of the coefficient estimate β̂ and examine whether it is
statistically significantly different from zero.
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Fund predictors: Past performance and costs
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Fund predictors: Activity and distinctiveness
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Predictors on the fund firm level
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Fund manager characteristics
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Fund manager characteristics: But...what about?
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Predictors of fund performance: Caveats

Sample region and period:

Displayed results are valid for a specific country (usually the USA) and for a
specific time period.

Data quality:

Fund returns and portfolio holdings are usually taken from commercial
databases; data extensions are frequently manually added from proprietary
sources.

Transaction costs:

Academic research does not focus on the practical implementation of empirical
findings.

Transaction costs are viewed as ”side constraints” or not considered at all.

Academic Bias:

Academics have to publish in scientific journals to be promoted.

Significant results are much more likely to be published than null results.
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Practical summary

Factors to consider when investing into an actively-managed fund:

15 / 28



Introduction Predictor Variables Combining Predictor Variables Conclusion

Table of contents

1 Introduction

2 Predictor Variables

3 Combining Predictor Variables

4 Conclusion

16 / 28



Introduction Predictor Variables Combining Predictor Variables Conclusion

Combining predictor variables

Given the established effect of different characteristics for future fund
performance, is there an optimal way to combine the predictors?

Machine learning (ML) approach:

ML in empirical finance: A collection of high-dimensional models for statistical
prediction, where

(i) the risk of in-sample model overfitting is mitigated, and

(ii) efficient algorithms search among potential model specifications.

ML methods allow for the detection of non-linearities and interaction effects
between the different predictors.
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Machine learning techniques

1. Baseline:
Simple unconstrained linear regression with all predictor variables.

2. Penalized linear regression:
Punishes the inclusion of new predictor variables and reduces potential
overfitting of the model (models: lasso and ridge regression).

3. Dimension reduction techniques:
Average the impact of all potential predictor variables to an aggregate predictor
(principal component regression and partial least squares).

4. Penalized generalized linear models:
Allow for nonlinearities in the predictor variables.

5. Boosted regression trees and random forests:
Nonparametric models that allow for interactions between the predictor
variables.

6. Neural networks (deep learning):
Nonparametric models that use activation functions and different layers to
account for nonlinearities and interactions between predictor variables.
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First results: ML in fund selection

Wu et al. (2021): US Hedge funds

The authors apply different ML techniques based on 21 predictor variables to
forecast hedge fund performance.

The top-decile neural network forecast portfolio outperforms the hedge fund
return (HFR) index by a large amount (e.g., by twice of its Sharpe ratio).

DeMiguel et al. (2021): Actively-managed US equity mutual funds

The authors apply different ML techniques based on 17 predictor variables to
forecast mutual fund performance.

The top-decile boosted regression tree portfolio earns benchmark-adjusted
alphas of approximately 4% per annum.

Own research (2021): Actively-managed US equity mutual funds

A portfolio strategy based on a dimension reduction technique and 8 predictor
variables yields a benchmark-adjusted alphas of approximately 5% per annum
(without taking account of transaction costs).
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Conclusion
Summary

Predicting mutual fund performance is a difficult task.

⇒ Arithmetic of active investment, efficient market hypothesis, disappearing
profitability of anomalies, return chasing of investors.

Nevertheless, academic research finds that some variables are significantly
related to future fund performance.

⇒ Fund characteristcs, fund firm characteristics, fund manager characteristics.

Combining different predictor variables with machine learning techniques seems
to be a promising approach to improve fund- and manager selection.

Outlook

Can we improve the predictability of fund performance and fund flows using machine
learning techniques for Swiss funds?
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Combining predictor variables

Active Mutual Funds in Switzerland: New Perspectives on the
Measurement and Prediction of Performance and Investor Flows

Jürg Fausch (Lucerne University of Applied Science), Moreno Frigg (Lucerne
University of Applied Science) & Florian Weigert (University of Neuchâtel)

Combining academic research with practical relevance:

Application for a science-based innovation project supported by Innosuisse
(Swiss Innovation Agency)

If you are interested in a collaboration, we are happy to discuss this opportunity
with you
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Thank you!

Please check out my personal homepage and blog:

https://www.florian-weigert.com/

https://www.florian-weigert.com/the-scientific-investor/
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