Peak Turning Velocity As a Marker of Balance Confidence and Walking Limitation in Persons with MS

Gautam Adusumilli¹, Samantha Lancia¹, Victoria Levasseur², Joanne M. Wagner PhD^{3,4}, Robert T. Naismith MD¹

¹Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA ²School of Medicine, University of Missouri, Columbia ³Program in Physical Therapy, Doisy College of Health Sciences, Saint Louis University, St. Louis, MO, USA ⁴Acorda Therapeutics, Inc., Ardsley, NY, USA

Washington University in St. Louis
School of Medicine

Disclosures

- Wagner
 - Acorda Therapeutics (salary, stock, honorarium), Genzyme Corporation: Advisory board member
- Naismith
 - Consulting: Acorda, Bayer, Biogen, EMD Serono, Genentech, Genzyme, Novartis, Questcor

Background

- Ambulation in MS is commonly assessed in clinic and trials by the 25 foot timed walk (25FTW)
 - Measure of straight-line walking velocity.
- pwMS with impaired postural transitions reported more difficulties with balance and ambulation (Adusumilli et al, CMSC 2014)
 - Assessed by Timed-Up and Go (TUG), Activities-Specific Balance Confidence Scale (ABC), MS Walking Scale-12 (MSWS12)
- Turns are an important component of ambulation and balance, but are challenging to quantify.

Background

- Turning may be impaired even in mild MS which may not be noticeable using stopwatch based assessments (Spain et al 2012).
- Body worn motion sensors are able to detect differences between MS and Healthy Controls when traditional timed tests do not (Spain et al, 2012).
- Impairments in turning may be related to self-perceived balance and walking (King et al, 2012).

Sensor Technology

- Spatiotemporal gait analysis with APDM Opal wireless sensors
 - IWalk software of Mobility Lab (APDM©, Portland, Oregon, USA)

The APDM Mobility Lab gait analysis system.

Left: Sensors worn on the ankles, wrists, lower back, and chest.

Right: Wireless device receives signals from sensors for storage on laptop.

Sensor Technology (Cont.)

Accelerometer

 Measures applied acceleration acting along a sensitive axis (Spain et al, 2012)

Gyroscope

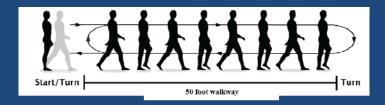
- Measure orientation around a fixed point (Ozdemir, 2014)
- Provides torque, angular momentum, and angular velocity

Magnetometer

- Measures magnetic field disturbance as magnetic flux density (Ozdemir, 2014)
- Provides position of extremities in a magnetic field coordinate system

Timed Up and Go (TUG)

- Gait and Postural Transition Test (7 Meters)
 - 3 trials
- Sensor Technology:
 - Provides gait information occurring during each clinical measure
 - Able to analyze and output data derived from each stage of a clinical test
 - Straight path walking
 - Postural transitions
 - Sit-to-stand
 - Turn-to-sit
 - Turns



Washington University in St. Louis
SCHOOL OF MEDICINE

Six Minute Walk Test (6MWT)

- Test of Walking Endurance and Turning
 - Walk around two cones 50 feet apart

MS Sensor Study

- Aim: Determine clinical measures that predict patient-reported balance and walking ability in MS patients
 - · Evaluate the contribution of turns and self-reported ambulation

Tests:

Timed Up and Go (TUG) Six Minute Walking Test (6MWT)

Clinical Disability:

Expanded Disability Status Scale (EDSS)

Questionnaires:

Activities-specific Balance Confidence Scale (ABC) 12-Item MS Walking Scale (MSWS-12)

Activities-specific **Balance Confidence** Scale (ABC) The Activities-specific Balance Confidence (ABC) Scale* For each of the following activities, please indicate your level of self-

confidence by choosing a corresponding number from the following rating scale:

0% 10 20 30 40 50 60 70 80 90 100% completely confident

"How confident are you that you will not lose your balance or become unsteady when you...

1. ...walk around the house? ____%

- cannot hold onto the railing? ____%
 16. ...walk outside on icy sidewalks? ____%

MS Walking Scale 12 (MSWS 12)

MSWS-12 Questionnaire

Over the last 2 weeks, how much has your MS:

- 1. Limited your ability to walk?
- Limited your ability to run?
- Limited your ability to climb up and down stairs?
- Made standing when doing things more difficult? Limited your balance when standing or walking?
- 6. Limited how far you are able to walk?
- Increased the effort needed for you to walk?
- Made it necessary for you to use support when walking indoors? Made it necessary for you to use support when walking outdoors?
- 10. Slowed down your walking?
- 11. Affected how smoothly you walk? 12. Made you concentrate on your walking?

Patient Reported Outcomes (PROs)

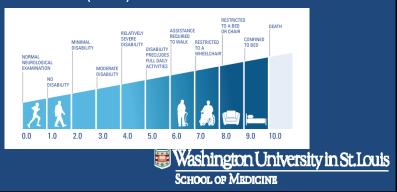
- Patient's perception of abilities at home and in community
- Clinical measures sometimes correlate poorly with PROs
- FDA, NIH, and Insurance Providers require clinical outcomes linked to patient experience and abilities

Washington University in St. Louis
SCHOOL OF MEDICINE

Hypothesis

- Turns add important information to the assessment of walking and balance in MS patients.
 - Better correspond to PROs
 - Important clinical assessment of balance and gait stability
- How much does Peak Turn Velocity <u>add</u> to the prediction of ABC and MSWS-12 questionnaires?

Analysis


- Stride Velocity as a baseline predictive variable
- Spearman correlations to evaluation relation between variables
- Stepwise linear regression to determine predictive ability of gait parameters

Patient Characteristics

91 Subjects:

- EDSS 0-2.5 (n = 60)
- EDSS 2.5-4.5 (n = 26)
- EDSS 4.5-6.5 (n = 5)

Results

Correlations:

- ABC and MSWS-12
 - R = -0.80 (p<0.0001)
- 6MWT Stride Velocity (SV) and 6MWT Peak Turning Velocity (PTV)
 - R = 0.53 (p < 0.0001)
- TUG SV and TUG PTV
 - R = 0.58 (p < 0.001)

Results

Prediction of ABC

Step 1: 6MWT SV; $R^2 = 0.20$

Step 2: 6MWT SV + 6MWT PTV; $R^2 = 0.33$

65% improvement in predictive power (p < 0.0001)

Step 1: TUG SV; $R^2 = 0.19$

Step 2: TUG SV + TUG PTV; $R^2 = 0.28$

47% improvement in predictive power (p < 0.001)

Results (Cont.)

Prediction of MSWS-12

Step 1: 6MWT SV; $R^2 = 0.28$

Step 2: 6MWT SV + 6MWT PTV; $R^2 = 0.41$

46% improvement in predictive power (p < 0.0001)

Step 1: TUG SV; $R^2 = 0.27$

Step 2: TUG SV + TUG PTV; $R^2 = 0.36$

33% improvement in predictive power (p < 0.001)

Conclusions

- Turning is important in the assessment of gait and balance
- Similar results were found for TUG (1 turn) and 6MWT (multiple turns)
- Clinicians should incorporate a qualitative assessment of turning within their gait assessment

A clinician's goal is to efficiently collect enough clinical information to determine the best therapy.

Acknowledgements

Supported by:

- -CMSC ACTRIMS 2015
- -John L. Trotter MS Clinic
- -National Multiple Sclerosis Society
- -Washington University in St. Louis School of Medicine

Washington University in St. Louis
SCHOOL OF MEDICINE