
Written in the run up to the FACE consortium’s annual Technical Interchange 
Meeting and Exhibition in September 2020, this white paper provides some 
background on the FACE architecture with a focus on Wind River and Rapita 
Systems’ “one stop shopping” ecosystem for Units of Portability (UoP) and the 
tools to test, integrate, and certify systems based on the FACE Technical Standard.
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In this chapter, we summarize the FACE architecture 
to illustrate how the Operating System Segment (OSS) 
provides a foundation to the other segments. 

The US Department of Defense continues 

to push for the use of open architecture 

solutions as a means to get better avionics 

hardware into the field more quickly and at 

lower cost. One source of such solutions is 

the Future Airborne Capability Environment 

(FACE™) consortium, which was founded 

in 2010 to develop an open architecture 

technical standard and business models for 

implementing this standard. 

The consortium is managed by the Open 

Group and has members from government, 

education, and industry sectors.  Member 

organizations must be incorporated in 

the US, and individual members must be 

US citizens, although the annual FACE 

Technical Interchange Meeting typically 

includes an exhibition that is open to all.  

The publications released by the FACE 

Consortium are publicly available and free 

to download.  Currently, 91 organizations 

and over 1,000 individuals are members of 

the consortium. The consortium sponsors 

four general working sessions a year, called 

the FACE F2F.  Volunteer members do the 

detailed work of the consortium through 

technical and business working groups 

overseen by a steering committee and 

advisory board.

One of the most significant products 

of the FACE consortium has been the 

development of a technical standard, which 

is currently at revision 3.0.  According to 

the FACE website, “The FACE Technical 

Standard is the open avionics standard for 

making military computing operations more 

robust, interoperable, portable and secure. 

The standard enables developers to create 

and deploy a wide catalog of applications 

for use across the entire spectrum of 

military aviation systems through a common 

operating environment.”

The FACE standard 

originated from US 

Navy open architecture 

programs to improve 

interoperability and 

software portability 

for avionics software 

applications. 

The goal of FACE is 

to drastically reduce 

the development and 

deployment cycle 

of new capabilities 

in military airborne 

platforms from six 

years to as little as six 

months. 

FACE 
Consortium

1. Operating System Segment
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1.1  FACE Architectural Segments
The concept of the FACE standard is to provide a reference architecture based on 

segments, which can be composed to meet final system requirements. Variations in 

the content of the segments, including application code, allows the system architect 

flexibility in designing and building the end system. FACE provides the logical interfaces 

between these segments to allow for portability and re-use. Figure 1, modified from a 

figure in V3.0 of the FACE Technical Standard (TS), shows how segments are related in 

the TS.

The standard contains five segments:

1. Operating System Segment (OSS) – foundational services provided by an 

operating system; we will cover this in more detail below. The remaining four 

segments depend on the OSS and thus it is shown beneath the others in  

Figure 1.

2. I/O Services Segment (IOSS) – normalizes the interface to I/O devices.

3. Platform-Specific Services Segment (PSSS) – provides platform services, 

such as data services, logging, health management and graphics (interface to 

GPU). 

4. Transport Services Segment (TSS) – provides communication services.

5. Portable Components Segment (PCS) – offers capability or business logic.

Figure 1 – FACE architectural segments
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The interfaces between these segments,as defined by the FACE TS, are key to 

constructing a FACE-compliant system. For the OSS, we are interested in the supported 

APIs, and which fit into different profiles: Security, Safety, and General Purpose.

• The Security Profile is most restricted and has a minimal set of Application

Programming Interfaces (APIs) for high assurance applications.

• The Safety Profile is a superset of the security profile, with more APIs, and is

intended for applications that require safety certification, this also has 2 further 

profiles, Base and Extended.

• The General Purpose profile has the most APIs and supports applications

that do not necessarily need RT or deterministic response.

To maintain commonality across different FACE component suppliers, solutions are 

tested against these API sets and given a certificate of conformance. For example, 

Wind River has FACE 2.0 conformance for VxWorks 653 (Safety Base Profile), FACE 3.0 

conformance for Helix Virtualization Platform (Security & Safety Base Profiles) and FACE 

3.0 for Wind River Linux (General Purpose Profile). In fact, Wind River VxWorks 653 was 

the first product to go through FACE certification, and Wind River Linux is the only  

Linux-based system to achieve FACE Conformance.

The FACE standard builds on existing standards rather than creating new ones, so for 

the OSS it builds on the POSIX (Figure 2) and ARINC 653 standards.

Wind River’s VxWorks 

653 Platform was the 

first COTS RTOS to 

achieve the Future 

Airborne Capability 

Environment (FACE™) 

conformance 

certification for the 

FACE Operating 

System Segment 

(OSS) Safety Base 

Profile. 

Vxworks 653

Figure 2 – POSIX standards of 2003 and 2008
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1.2  Partitioning
The FACE standard also requires partitioning, depending on the profile. Partitioning 

is used in many types of computing systems; Wind River has a good white paper on 

this subject, titled “Enabling the migration to Future Aerospace & Defense Systems”. 

Partitioning supports modularity, including support for the concept of Integrated 

Modular Avionics (IMA).  The isolation properties provided by the partitioning of distinct 

applications are essential to achieve the promise of the FACE standard.  Why is this? 

First, interoperability and smooth integration require isolation so that there are no 

surprises (due to unanticipated interactions) when new independent functions are added 

to a system. Second, certification of mixed-criticality systems is founded on the isolation 

of partitions.

The General Purpose Profile uses space partitioning, while the Safety and Security 

Profiles require both Time and Space Partitioning. These requirements stem from the 

ARINC 653 standard for the Safety Profiles, the FACE standard says “Time partitioning 

must be used when running Safety Profile-based software components that are 

dependent upon an ARINC 653 operational environment.”

With the advent of powerful multi-core processors, the drive to use partitioning to 

separate critical applications is accelerating. With single core processors, the ability to 

host applications at different criticalities was achieved using time & space partitioning 

in an Integrated Modular Avionics (IMA) architecture developed to overcome issues of 

Space, Weight, and Power (SWaP) in commercial aircraft. This was needed to meet the 

increasing requirements for greater functionality within the airframes at the time, such as 

the Airbus A380 and Boeing 787.

However, what this basically did was “share” the CPU resource across multiple 

applications, and while this achieved the goals of an IMA Architecture, it also impacted 

the performance allocated to applications. With the latest multicore applications, 

however, this performance impact can be mitigated by allocation across multiple cores. 

These systems are breaking ground on safety certification of complex systems.

1.3  No performance requirements
The FACE standard intentionally avoids dictating performance or quality of applications, 

focusing instead on developing systems with a standard interface with defined behavior.  

This open standard approach has a significant benefit in that it levels the playing field. 

All vendors must meet the same API and must then compete on performance, quality, 

tool support, depth of airworthiness evidence, etc. For example, multiple vendors might 

provide a FACE OSS that has been certified conformant to the FACE technical standard, 

with each providing the same expected API to interface with other elements of the 

system. However, the timing characteristics – such as response time, partition window 

jitter, etc. – may vary widely between systems produced by different vendors. Some 

vendors might provide a package of flight certification artifacts, while others do not, and 

the strength of the tool ecosystem related to the OSS may vary significantly between 

vendors.

The Avionics 

Application Standard 

Software Interface 

(ARINC 653) is a 

software specification 

designed for space 

and time partitioning 

in safety-critical 

systems, which allows 

for hosting 

applications on 

multiple cores of the 

same processor 

using the  Integrated 

Modular Avionics 

architecture. 

About ARINC 653
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In this chapter, we focus on the benefits of modularity in an 
open architecture and discuss the features that distinguish 
offerings by different vendors, with a focus on the 
Operating System Segment (OSS) component of the FACE 
architecture. 

For the OSS, Wind River provides a competitive advantage while maintaining modularity. 

Part of that advantage is a rich ecosystem of tools to validate the performance of the 

system and provide assurance evidence for airworthiness. Since the OSS is foundational 

to the architecture, it is important that the ecosystem for it is closely aligned with the 

operating system. For example, flight certification of multicore avionics systems require 

assurance that multicore interference channels have been mitigated. The Rapita 

Systems CAST-32A Compliance Solution provides that assurance with tools and artifacts 

that validate and verify the system.

2.1 FACE modularity leads to interchangeability
The modular concepts of the FACE standard provide a reference architecture based 

on segments that can be integrated to meet final system requirements. Variations in 

the content of each segment, including application code, allows the system architect 

flexibility in designing and building the end system out of compatible modules. The 

FACE standard defines the logical interfaces between these segments to allow for 

modularity.  This promotes the re-use of software components and enables common 

functionality across military systems. By using the defined API standards described in 

the previous chapter, this allows components to be easily moved between conformant 

systems developed by different vendors. 

In order to ensure the segments can be used in a modular fashion, it is vital that 

components are tested against the applicable FACE Standard. Conformance is verified 

by checking that a component conforms to the FACE Technical standard as a “Unit of 

Conformance” or “UoC”. (The term “Unit of Portability” is sometimes used instead of 

“Unit of Conformance” to highlight the portable aspects of these components.) 

Rapita Systems 

CAST-32A Compliance 

Solution provides an 

end-to-end solution for 

supplying certification 

evidence to satisfy 

DO-178C and  

CAST-32A objectives.

For more information, 

visit rapitasystems.

com/products/

cast-32a

Commercial solution for  
CAST-32A Compliance

2. FACE components
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This is done by running a FACE Conformance Test Suite, achieving certification of 

conformance through reviews by a FACE Verification Authority and a FACE Certification 

Authority, and registering the result on the FACE Registry with the FACE Library 

Administrator.

If a system architect starts designing a system and needs to use an OS with a specific 

profile, then they can look at the FACE Registry and choose one of the UoCs that have 

been certified against that profile.  There are multiple revisions of the FACE Technical 

Standard, so a Version Number is also specified for each product in the registry.  

Figure 3 shows certificates for UoC in the General Purpose Profile and Safety Profile 

which is compliant with the FACE Technical Standard 3.0.

A System Architect will typically choose several UoCs that will integrate into the final 

software system. Of note here is that several UoCs could coexist within the same 

processor address space, and so integration considerations and coordination of these 

UoCs is vital. This is particularly true of performance and interference challenges at 

integration time. FACE conformance testing only checks the UoC against an OSS profile 

and within a single segment, and so will not check all software behavior or performance. 

It’s also worth noting that if you have several UoCs, then you would need UoC to UoC 

communications, which requires use of the FACE Transport Services Interface. Inter-UoC 

communication ishown in Figure 4 from the FACE Technical Standard 3.0.

Figure 4 – Example PCS inter-UoC and Intra-UoC communications

The FACE 

Conformance Test 

Suite exists to help 

verify a software 

components 

compliance with the 

standard. 

Conformance is 

verified through 

automated testing 

and inspection of 

specific software 

artifacts. 

FACE Conformance  
Test Suite

Figure 3 – Certification of conformance for UOCs tested againts FACE profiles
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2.2  Benefits of interchangeability
The FACE approach aligns well with the concept of Open Systems Architectures (OSAs). 

The OSA approach enables several business drivers:

• Better buying power

• More affordability

• Faster time to deploy

• Rapid capability injection

• Software reuse

One interesting aspect of the FACE Consortia was the early decision to develop not only 

a Technical Standard, but also a Business Standard that provides guidance in the value 

proposition and business case for the FACE approach. This is currently at Version 2.0 

and is available on the FACE Documents Web Site.

Being certified conformant to a UoC in the FACE standard provides confidence that 

system integrators have choices – they can drop a particular UoC from any vendor into 

their system and it should work “out of the box” with other components.  This fulfils 

several of the business drivers (reuse of components, rapid capability injection, and 

more affordability) as the cost of development of the UoC is spread across several 

programs. An added benefit is that the system integration cost should also be lower due 

to the well-defined layers between UoCs within the standard.

Competition is generated between vendors to provide their value add and capability 

expertise while still conforming to the FACE standard. This in turn gives government 

procurement agents better buying power when looking for alternative or complementary 

solutions.

At the same time, it means that the government is no longer stuck with one vendor, 

breaks out of vendor lock-in, and is able to choose the best solution rather than being 

forced into using the same vendor.

For vendors producing products, this also provides benefits of standardization across 

projects, which reduces development costs and risks of schedule slips that could impact 

multiple programs. The reuse of components means better return on investment and 

allows vendors to focus on their core strengths and innovation.

However, having functional components that adhere to the standard does not provide 

everything you need. Each component will have different performance, quality, 

certification artifacts, and tools. Each will also have different business models and 

lifecycle support solutions. These must be taken into account when making final 

selections.

This guide serves as 

a reference for 

executives, military 

executive officers, 

and senior leadership 

from both the 

Government and 

industry to 

understand the value 

proposition of the 

FACE approach. 

FACE Business Guide
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2.3  Interchangeability is the minimum
The benefits of interchangeable parts are clear in everyday society.  Metric wrenches 

all fit a metric socket.  Street legal automobiles all fit on public roads. The benefits of 

such standardization are clear for wrenches and cars.  The benefits for software are 

also clear.  However, interchangeable parts set the minimum expectation. All wrenches 

should fit their sockets and all automobiles should fit the road. All wrenches, however, 

vary in strength and durability and all cars vary in top speed and fuel efficiency. So too, 

interchangeability for standardized software is the minimum. An OSS that is certified to 

be conformant to the FACE Technical standard has merely been shown to “fit the road”. 

Specifically, the Application Programming Interface (API) specified by the standard 

confirms that the software components that make up the system will fit together and 

communicate with each other correctly. This compatibility in itself, however, does not 

indicate anything about the quality of the component, such as its speed or efficiency.

Thus, interchangeability through conformance to standards such as the FACE Technical 

Standard is the ticket for entry to the FACE market, but this is the minimum. Vendors 

that meet this starting criterion for a specific FACE UoC compete on a level playing field. 

For example, customers seeking a FACE OSS will likely make decisions on purchasing 

based on the following:

• Performance: Components produced by different vendors will vary in their 

performance metrics such as end-to-end latency, response time, determinism, reliability, 

etc.

• Certification: Conformance to the FACE technical standard may provide some 

testing and artifacts that may be useful for demonstrating airworthiness, but this is only 

a start. The packages offered by vendors in support of flight certification will vary. On 

this note, the FACE EA-25 subcommittee outlines advice on which FACE activities and 

artifacts may contribute to flight certification evidence.

• Ecosystem: The tools associated with each vendor will vary widely. Especially 

for the OSS, a rich ecosystem of tools is important to the successful development and 

integration of the system. The standardization provided by the FACE technical standard 

can sometimes mean that tools work across any vendor offering, but this is not always 

the case, as tools may need to connect “under the hood” as well.  

 

Example: Tools

Example tools include the Integrated Development Environment (IDE), 

debugging tools, testing tools to support requirements-based and functional 

testing, structural coverage analysis tools, timing analysis tools, requirements 

traceability tools, etc.
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2.4  Assuring partitioning

2.4.1 The FACE standard requires partitioning

The FACE standard requires that compliant systems in the Safety and Security Profiles 

include support for time and space partitioning. Partitioning is an isolation technique 

used in many types of computing systems.  This technique supports modularity, for 

example through Integrated Modular Avionics (IMA).  The separation properties provided 

by the partitioning of distinct applications are essential to achieve the promise of the 

FACE standard.

With the advent of powerful multi-core processors, the drive to use partitioning to 

separate critical applications is accelerating. With single core processors, the ability to 

host applications at different criticalities was achieved using time and space partitioning 

in an Integrated Modular Avionics (IMA) architecture developed to overcome issues of 

Space, Weight, and Power (SWaP) in commercial aircraft. This was needed to meet the 

increasing requirements for greater capability within common airframes at the time such 

as the Airbus A380 and Boeing 787. However, on a unicore system, the CPU resource 

was shared (time-sliced) across multiple applications, and while this achieved the goals 

of an IMA Architecture, it also impacted the performance allocated to applications. With 

the latest multicore applications, this performance impact can be mitigated by allocation 

across multiple cores. At the same time, the use of multicore processors introduces new 

challenges to assuring airworthiness.

Figure 5 – Integrated modular avionics
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2.4.2 The FACE standard does not assure partitioning

Although the FACE technical standard requires partitioning in several of its defined 

profiles, the standard only requires an interface to a partitioned operating environment 

(ARINC 653). It does not require assurance that the environment correctly implements 

the isolation mechanisms that provide the primary benefit of partitioning. This makes 

sense as the FACE technical standard is intended to foster interchangeability and 

modularity: it is not a substitute for flight certification, but only a starting point. The FACE 

EA-25 Airworthiness subcommittee is currently working on a white paper to “ensure that 

FACE conformant software, associated artifacts, and the process to produce them … 

contribute towards evidence of Air Worthiness where possible, explicitly citing common 

requirements, processing and guidance.”

The system integrator would be wise to consider the significant hurdles to prove 

airworthiness from the earliest stages of design, especially for features central to the 

overall architecture such as partitioning. When implemented correctly, partitioning 

simplifies integration and certification because each partition can be considered one 

at a time.  However, this approach requires that the partitioning itself is proven to a very 

high level of rigor. Rigorous isolation of partitions is not something that can be tacked 

on at the end, but must be incorporated as a fundamental design feature from the 

beginning. Certification of software for Civilian flight in the US and Europe is guided by 

the RTCA DO-178C/ED-12C standard. The DO-297 and ARINC 653 standards provide 

guidance on partitioning environments to isolate independent software functions. Military 

airworthiness authorities use similar approaches to evaluate software.

The challenge to assure the isolation of partitions is even greater for computing 

platforms that use multicore processors. On a unicore processor, only one partition can 

run at a time, providing some natural isolation. On a multicore processor, partitions can 

run simultaneously on different cores, creating multiple channels of potential interference 

between functions. Multicore interference can degrade the isolation between partitions 

and thus must be mitigated. While the use of multi-core systems for critical software 

is a relatively new technology, the US Federal Aviation Administration (FAA) currently 

provides guidance for assuring multicore systems in a position paper, CAST-32A.

“Rigorous isolation of 

partitions is not 

something that can 

be tacked on at the 

end: it must be 

incorporated as a 

fundamental design 

feature from the 

beginning.” 

Planning for 
Isolation

Figure 6 – CAST-32A position paper
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Avionics system designers and integrators designing to 

the FACE standard under the Safety, Safety-Extended or 
Security Profiles must include an ARINC 653 partitioned 
operating environment in their architecture. System 
integrators need guidance on how to be successful with 
implementing partitioning while maintaining performance 
and achieving flight certification.

3.1  Benefits of partitioning
In the commercial aerospace world, since the first days of Integrated Modular Avionics, it 

was recognized that partitioned systems could provide benefits in terms of both mixed-

criticality systems and recertification of future systems (for updates and changes to 

applications).

The ARINC 653 standard was developed to define how to construct partitioned systems, 

which support hosting multiple applications at different design assurance levels on the 

same computing platform.

3. Assured partitioning for  
FACE systems

Wind River, together 

with Rapita Systems, 

can help you build a 

FACE system with the 

performance and 

determinism you 

need, along with the 

assurance artifacts 

you need to achieve 

flight authorization 

cost-effectively. 

For more information, 

visit rapitasystems.

com/cast-32a

 

Example: Partitioning applications on multicore processors

The flight management system application and the flight navigation application 

might have been hosted on separate Line Replaceable Unit (LRU) computing 

hardware in the past, the modern processors are fast enough to host both 

applications, provided partitioning ensures they do not interference with one 

another’s functionality. Partitioning enforces modularity and provides portability 

through a standard API, as well as contains faults, thus easing integration and 

certification.
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3.2  Partitioning required but not assured
In Supplement 5 of ARINC 653 Part 1, the scope of the standard is well defined: 

“ARINC 653 is intended for use in a partitioned environment. To assure a high degree of 

portability, aspects of the partitioned environment are discussed and assumed. However, 

this specification does not define the complete system, hardware, and software 

requirements for partitioning, nor does it provide guidance on proper implementation 

of partitioning, and in particular, robust partitioning. It must not be construed that 

compliance to ARINC 653 assures robust partitioning.”

FACE requires compliance with the ARINC 653 Part 1 standard. Thus, conformance to 

the FACE technical standard implies that partitioning is provided, but robust partitioning 

is not assured. Further work beyond simply meeting the FACE and ARINC 653 standards 

is necessary to provide safety assurance evidence toward flight certification of such a 

system.

3.2.1 Assurance of partitioning

Because ARINC 653 defines the interfaces and functionality of partitioning but not 

the assurance, this lack of guidance for safety certification of Integrated Modular 

Avionics systems led to the development and creation of RTCA DO-297 (EUROCAE 

ED-124) “Integrated Modular Avionics (IMA) Development Guidance and Certification 

Considerations”, which sets out guidance on safety certification of IMA systems. This 

document introduced the concepts of roles and responsibilities such that you could 

allocate resources where needed and have clear guidelines on who does what to ensure 

compliance with the safety standards.

The standard states that “The IMA Platform should be capable of providing robust 

partitioning and other protection means that allow multiple applications to share a 

platform and its resources.” Further, it introduces the concept of Robust Partitioning 

which “will ensure that any hosted application or function has no unintended effect 

on other hosted applications or functions.” The standard includes a complete section 

(3.5) on robust partitioning and how to ensure that it meets the requirements of an IMA 

system.

Time partitioning allows a unicore system to support multiple partitions, each hosting an 

independent application, as shown in Figure 7. A fixed schedule of partitions is repeated 

each major time frame (e.g., every 50 ms). Within the major time frame, each partition 

is scheduled within a minor frame that is a fixed offset from the start of the major frame. 

Time partitioning, also known as time slicing or multiplexing, ensures that only one 

partition is using the computing platform at a time.

Figure 7 – Software partitioning mechanism

Robust partitioning 

assures that any 

hosted application or 

function has no 

unintended effect on 

other hosted 

applications or 

functions. 

If partitioning is 

sufficiently robust, 

then each partition 

runs independently, 

without knowledge of 

the other partitions or 

interference from 

them.

Robust Partitioning
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Proving the correctness of time partitioning, even on a unicore is challenging. Although 

only one partition can run at a time with only a single core, partitions could still interfere 

with each other directly by causing unconstrained partition jitter, i.e. variation in the time 

for each partition scheduled time slot without a deterministic bound. The end of each 

minor time frame is enforced by the partitioned Operating System (OS), usually using 

an interrupt-based system timer that invokes the OS at the end of the minor time frame, 

allowing it to perform a partition switch. During this partition switch, the OS saves the 

state of the partition that is finishing its minor frame, then determines which partition 

should be run in the next minor frame, sets a new timer, and then begins execution of the 

new partition. If partitioning is sufficiently robust, then each partition runs independently, 

without knowledge of the other partitions or interference from them.

Partitions on different cores can also interfere with each other indirectly. For example, 

one partition could start an operation using a bus master other than the CPU, whose 

activity extends past the end of the partition’s scheduled time slot and thus overlaps 

and possibly contends with another partition’s activity. For example, in Figure 8, each 

partition running on the unicore during its minor time frame likely accesses main 

memory. While the other partitions might have data in some parts of that memory, they 

do not interfere with each other as they are not running simultaneously. However, if 

Partition 1 starts a DMA access between locations in main memory, this access has 

the potential to continue running past the end of the minor time frame for Partition 

1, potentially interfering with memory access by Partition 2. This interference allows 

Partition 1 to impact the performance of Partition 2, thus the system would not have 

robust partitioning. A well-designed partitioned OS will thus need to curtail all access by 

a partition to shared resources in the system outside of the partition’s assinged minor 

time frame.

Figure 8 – Unicore computer architecture hosting three applications
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In this chapter, we will discuss the benefits of using 
multicore processors in the avionics industry and how 
partitioning can be applied to complex multicore systems. 

Avionics system designers and integrators designing to the FACE standard are adopting 

the Multicore processors (MCPs) to meet future performance demands. MCPs provides 

the avionics industry with platform that can provide greater performance in a lower 

footprint, translating to systems with lower Size, Weight, and Power (SWaP).

Regardless of these benefits, OEMs in the avionics industry are pressured to adopt 

MCP technology when making upgrades to replace legacy single-core designs because 

nearly every new processor on the market today is based on multicore technology. 

The benefits of partitioning still hold even when implemented on an MCP, including 

portability, modularity, reduced integration effort, and reduced certification effort (due 

to incremental and compartmentalized assurance). However, MCPs also introduce 

additional complexity in implementation and certification, prompting a need for guidance 

that helps system integrators develop and certify systems using MCP technology.

4. Assured multicore partitioning for 
FACE systems

The critical 

embedded industry is 

moving towards the 

use of multicore 

rather than singlecore 

processors due to 

improved 

performance and 

diminishing 

availability of their 

singlecore 

counterparts.

The increased 

performance of 

multicore systems per 

unit area is sought 

after in the embedded 

aerospace industry 

due to the physical 

space constraints 

and increasing 

complexity of such 

systems.
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4.1  Guidance for assurance of multicore 
systems

DO-178C, DO-297, and ARINC 653 were all written in the context of single core 

processors, so the introduction and use of MCPs adds further complexity. The FAA 

CAST-32A position paper addresses MCP assurance and a recently proposed FAA 

advisory circular intends to formalize that guidance, harmonizing with the European 

Union Safety Agency (EASA). The new guidance will be  referred to as AC 20-193 in the 

US under the FAA and the same document will be referred to as AMC 20-193 in Europe 

under EASA.

CAST-32A extends the partitioning concept for multicore processors: “Robust Time 

Partitioning (on an MCP) is achieved when, as a result of mitigating the time interference 

between partitions hosted on different cores, no software partition consumes more 

than its allocation of execution time on the core(s) on which it executes, irrespective 

of whether partitions are executing on none of the other active cores or all of the other 

active cores.”

Although each US military service has its own airworthiness authority, evidence of 

airworthiness according to FAA guidelines is often accepted as part of the certification 

effort. Specifically, CAST-32A is one of the FAA guidance documents that some military 

programs are currently using when considering the adoption of MCP systems. In 

addition, starting in 2019, augmentation has been underway on Section 15 “Computer 

Systems and Software” of MIL-HDBK-516C Airworthiness Certification Criteria. Of the 

42 criteria listed in section 15 of the document, 20 have been identified as needing 

augmentation to account for the use of MCPs. An update to MIL-HDBK-516C is expected 

in the coming year.

The certification applicant for a FACE conformant system running on a multicore 

processor will need to meet either civilian flight certification guidelines  

(such as DO-178C, DO-297, and AC 20-193) and/or military airworthiness guidance 

(such as the augmented MCP requirements for MIL-HDBK-516C). Conformance to 

the FACE technical standard in itself does not ensure that these standards are met, 

though, at the time of writing, the FACE EA-25 subcommittee is currently working on a 

white paper to provide more detailed advice on which FACE activities and artifacts may 

contribute to flight certification evidence for standards such as DO-178C and MIL-H.

A(M)C 20-193 will be 

a document that is a 

joint effort by EASA 

and the FAA to 

provide guidance on 

certification of 

multicore systems. 

A(M)C 20-193 will 

build on industry 

advancements that 

are aiding the 

certification process 

for multicore 

processors and will 

recommend best 

practices to consider 

when dealing with 

MCPs.

For more information, 

visit rapitasystems.

com/amc-20-193

A(M)C 20-193
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4.2  Assuring partitioned multicore systems
When multicore processors first started appearing in avionics, early adopters avoided 

some of the certification issues by simply deactivating all but one of the cores. This 

worked, because in many cases that single core offered better performance than older 

unicore processors. However, as the years have gone by, the individual cores have not 

improved much further in performance, meaning that significant gains in functionality 

through higher processor computational throughput can only be achieved by using more 

than one of the cores in an MCP.

Proving the correctness of time partitioning on even a unicore system is challenging, 

as we discussed on page 15. In an MCP system, multiple applications can run 

simultaneously, each on its own core. Some resources are private and exclusive to a 

single core, such as the L1 cache, as shown in the example four-core architecture in 

Figure 9. However, other resources are shared, such as the L2 cache, main memory, 

and I/O devices. The applications on different cores can thus contend for access to 

these shared resources, potentially impacting each other’s performance, which breaks 

down the isolation between partitions.

Figure 9 – Multicore computer architecture hosting three applications
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One simplified approach to achieving time partitioning is by only scheduling a single 

partition at any given time but allowing that partition to use more than one core. This 

approach is limited, as only multi-threaded application software can take advantage of 

multiple cores, while single-threaded cores leave the other cores idle during their time 

window of the schedule, as shown in Figure 10.

Only recently have early adopters of MCPs attempted to use all cores with mixed-

criticality software by following the guidance in DO-297 and A(M)C 20-193. Figure 11 

illustrates the complex nature of this approach, where multiple independent applications 

can run within the same partition window (each on its own core), even if the applications 

are certified at different design assurance levels. In this case, independent partitions with 

different criticality, i.e. different software levels, are able to run simultaneously on different 

cores within the same minor time frame of the schedule. An example of this complex 

approach is given by the work Collins Aerospace has done with Wind River as described 

in their joint white paper.

Figure 11 - Complex multicore ARINC653 schedule

Figure 10 – Simplified multicore ARINC653 schedule restricted to one partition at a time
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Proving the correctness of time partitioning on a mixed-criticality multicore system is 

quite challenging since partitions can run simultaneously on different cores. In multicore 

systems, independent partitions running on distinct cores can compete for shared 

resources. That contention can cause delays, thus increasing the software’s Worst-

Case Execution Time (WCET). While an application running in a partition may meet 

its requirements when no other cores are active, interference from functions running 

on other cores may increase the application’s WCET to the point that it no longer 

meets its requirements. A variety of resources may cause such interference because 

the processor cores share access, including lower levels of cache memory, the main 

memory, I/O devices, and bus interconnects.

A(M)C 20-193 provides guidance on assuring a multicore system, listing ten objectives 

that must be met to demonstrate that multicore interference channels have been 

mitigated. The planned additions to MIL-HDBK-516C also include criteria to analyze 

interference channels. CAST-32A defines an interference channel as a property of the 

computing platform “that may cause interference between independent applications.” 

All interference channels within the avionics system must either be eliminated or else 

their impact must be sufficiently reduced such that all applications meet their timing 

requirements even in the presence of the worst-case level of interference from other 

cores. Similarly, the MIL-HDBK-516C additions require that “execution rates provided 

by the executive/control structure … are consistently obtainable and sufficient to safely 

provide the required performance.” That is, even in the face of multicore interference, 

timing requirements must be met. Successfully meeting the objectives of these 

standards requires both attention to mitigation of interference channels during the early 

life cycle stage of design and careful attention to measurement methods during the later 

life cycle stage of verification.

Worst-case execution 

time is the maximum 

length of time a task 

takes to execute on a 

specific hardware 

platform. WCET is a 

metric commonly 

used in reliable 

real-time systems 

which have a non-

negotiable deadline 

for execution.

For more information, 

visit rapitasystems.

com/wcet

Find out more about 
WCET

Figure 12 – MIL-HDBK-516C document
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4.3  Mitigating multicore interference
Mitigation of multicore interference requires that partitions be isolated from each other. 

Multiple separation mechanisms to achieve partitioning are available to the system 

designer and integrator, which may be implemented in hardware and/or software.

Some isolation mechanisms are provided by the hardware. Selecting a processor that 

gives each core exclusive resources can eliminate contention for those resources. 

For example, at least one level of cache memory is typically provided that is distinct 

and exclusive to each core. For CPU-intensive applications with strong locality of 

access, a private L1 cache is often sufficient to render the software largely insensitive 

to interference from other cores. When resources must be shared, the hardware may 

provide isolation by ensuring equitable access. Even then, one core’s access may 

impact access by another core, breaking down the separation. Unfortunately, silicon 

providers may not provide better determinism in cases like this because it would impact 

raw performance.

Although hardware can provide some isolation mechanisms, most processors are 

designed to optimize the average execution time on all cores, often at the expense of the 

WCET on any one core. While this is a good trade-off for many commercial applications, 

it is a problem for safety-critical avionics as it represents a form of multicore interference. 

Thus, additional isolation approaches beyond those implemented through hardware are 

necessary.

Some isolation mechanisms are provided by the RTOS. A multicore RTOS can 

manage processor cores, ensuring that the usage of any one hosted application 

is deterministically bounded within its partition so that all applications meet their 

requirements – even when multicore interference is present. An example of such an 

RTOS is the Wind River VxWorks 653 Multi-Core edition. (Figure 13)

Figure 13 – Wind River VxWorks 653 Multi-Core edition time scheduler

VxWorks 653 is an 

integrated modular 

avionics platform that 

enables workload 

consideration of 

safety-critical 

applications.

For more information 

about Wind River and 

VxWorks, visit 

windriver.com

Find out more about 
VxWorks 653
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4.4  Verifying mitigation of multicore interference
Verification that multicore interference channels have been mitigated is an essential 

step in meeting A(M)C 20-193 objectives. As no one has yet flight-certified a civilian 

aircraft with a mixed-criticality multicore system, approaches to verification are only 

just appearing. Nevertheless, best practices for verification are emerging based on 

interference generators.

Interference generators are carefully crafted software applications with a small code 

footprint that create high bandwidth use of a targeted resource. For example, Rapita 

Systems has a library of interference generators called RapiDaemons that target 

resources such as a shared L3 cache, DDR main memory, or DMA. These interference 

generators are used to create inter-core stress on the targeted resource. For example, 

Figure 14 shows RapiDaemons running on cores 1, 2, and 3 with the application 

running on core 0, where the RapiDaemons create interference for access to the main 

memory as well as any shared resource along the logical path to that resource, including 

interconnects and cache.

Comprehensive analysis of multicore interference requires the identification of all 

potential interference channels. The system architecture must be reviewed for shared 

resources, including potentially obscure or hidden channels where cores can contend, 

such as interconnects that are not equitably arbitrated or last level caches with 

insufficient write ports. For each interference channel identified, an interference generator 

must be designed and calibrated to stress that channel. For systems at the highest 

design assurance levels, such as DO-178C Levels A and B, this testing must be done 

with independence.

Figure 14 – Measuring multicore interference with RapiDaemons



page 23 | Compliance with the Future Airborne Capability Environment

4.5  The Rapita approach to multicore  
 timing analysis

The Rapita Systems approach to multicore timing analysis uses two phases within a test 

methodology for measuring multicore interference channels. The first phase is platform 

characterization, wherein the platform is defined as both the computational hardware 

as well as the RTOS. In this phase, the outer bounds of possible multicore interference 

are checked by competing RapiDaemons against each other on all cores. Because 

RapiDaemons are tuned to stress a single targeted shared resource, this provides 

a signature of the performance possible when cores compete continuously for that 

resource. This phase can be done even before application software is available.

The second test phase is software characterization. Individual software applications 

intended for use in flight are first measured running alone on a core while the other 

cores are dormant, providing a baseline measurement of the software timing behavior. 

Next,  the increase in WCET is measured in the presence of RapiDaemon adversaries 

running on the other cores. By comparing the WCET with and without the RapiDaemons 

adversaries running, worst-case multicore interference can be quantified. Furthermore, 

the WCET with multicore interference can be compared with system requirements to 

determine if they are still met –– thus demonstrating whether or not interference channels 

have been sufficiently mitigated.

Integrated Modular Avionics (IMA) designed with robust partitioning according to 

DO-297 allow for the incremental acceptance of assurance evidence, accumulating 

certification artifacts over the course of several independent verification efforts. That 

is, each application can be measured independently of the other applications to verify 

the mitigation of multicore interference channels. No partition application will produce 

contention higher than that produced by the RapiDaemons. 
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Assurance evidence can be collected for each partition application by itself, although 

all planned applications will be integrated together in the final system. Furthermore, the 

timing tests for existing partitions need not be repeated when new software is added in 

the future when allocated to spare partition slots. This incremental verification approach 

enabled by robust partitioning is a key factor in reducing the number of tests that must 

be performed. 

Even with incremental verification benefits, the complexity and number of interference 

channels in a typical multicore avionics system can still lead to a large number of tests 

that must be completed. Thus, tool automation is important to keep the schedule and 

cost of verification reasonably constrained. The Rapita Systems approach to multicore 

timing analysis automates key stages of the workflow using both RapiDaemons 

interference generators and the Rapita Verification Suite software, as illustrated in  

Figure 15.

However, not everything can be automated. Human wisdom from the system and test 

engineers is still needed to identify interference channels in the system architecture at 

the start of the process and to properly interpret results at the end of the process.

Figure 15 - Tool automation through RapiDaemons and the Rapita Verification Suite 

Produce and run tests that  excercise 

MC software for execution time.

Automatically calculates execution time 
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RapiDaemons create interference while 

analyzing a multicore task.

Automatically measures and reports 

scheduling metrics.
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The previous chapter focused on partitioning in multicore 
processors and guidance for safety certification of avionics 
systems based on multicore processors, including 
multicore aspects of partitioning. 

Airworthiness is discussed in a range of documents, including:

• RTCA DO-178C “Software Considerations in Airborne Systems and Equipment 

Certification” – describes the process of developing software that will be flight certified

• RTCA DO-254 “Design Assurance Guidance for Airborne Electronic Hardware” – 

describes the process of developing complex electronic hardware that will be flight 

certified. Referenced by AC 20-152.

• RTCA DO-248C “Supporting Information for DO-178C and DO-278A” – provides 

additional details on concepts in DO-178C, including using previously developed 

software, MC/DC coverage, independence and partitioning.

• RTCA DO-297 “Integrated Modular Avionics (IMA) Development Guidance and 

Certification Considerations” – describes roles and processes for developing IMA 

systems and the importance of partitioning.

• ARINC 653 Part 1, Supplement 5 – adds support for multicore, but in terms of 

partitioning and assurance it is clear that “It must not be construed that compliance to 

ARINC 653 assures robust partitioning”.

• FAA AC 20-193 “Use of Multi-Core Processors“ – formalizes the objectives from 

CAST-32A related to certifying avionics systems based on multicore processors. A 

draft of this Advisory Circular was released in October 2020. After a comment period, 

the final version is expected to be published in 2021.

• US DoD MIL-HDBK-516C “Airworthiness Certification Criteria” – provides guidance for 

certification of avionics systems (including hardware and software). An update is in 

progress to address multicore considerations, but this has not yet been published.

• US Army “Multi-Core Processor (MCP) Airworthiness Requirements” – this guidance 

is in draft form and has not yet been formally released.

5. Leveraging conformance artifacts 
for airworthiness 
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5.1  FACE conformance is not 
airworthiness

As explained in previous chapters, certification of FACE conformance only guarantees 

that a Unit of Conformance (UoC) honors the FACE standard. It is not intended as a 

solution for meeting airworthiness requirements. Indeed, the FACE standard recognizes 

that some systems do not require safety certification, such as systems built on the FACE 

General Purpose Profile using Linux as the operating system. The Safety and Safety-

Extended Profiles intentionally limit the breadth of functionality included in a FACE UoC, 

which can help limit the scope of effort needed to generate certification evidence, but 

using this profile is simply a starting point.

This brings us to some important conceptual differences when comparing FACE 

conformance to flight certification (approval of airworthiness). Conformance to the FACE 

standard is granted to a component, not to an entire system. The FACE Verification 

Authority (VA) verifies conformance for a UoC, which may be a FACE architectural 

segment or part of a segment. A UoC cannot span more than one architectural segment, 

though a “UoC Package” can be comprised of UoCs that span certain FACE segments 

to form a single logical entity. Thus, FACE conformance is not granted to the entire 

system, even if it is made up partially or entirely of FACE-conformant UoCs; only the 

individual UoCs can be claimed to be conformant.

On the other hand, airworthiness is granted to an entire system, not to components. 

Certification artifacts may be associated with one component, such as the OS, and 

these artifacts may be accumulated into the overall certification package for the aircraft. 

An individual component can be described as certifiable, or perhaps as certified within a 

named system, but the stand-alone component cannot be labeled as “certified”.

For example, certification artifacts for Wind River VxWorks 653 v2.5 on PowerPC (which 

is FACE-conformant to the Safety Base Profile against Technical Standard v2.0) include 

all documentation required to satisfy the requirements of RTCA DO-178C, consisting 

of over 65,000 hyperlinked files. This includes items such as the Plan for Software 

Aspects of Certification (PSAC) and Software Accomplishment Summary (SAS) along 

with all design reviews, code review, test reviews, functional tests and coverage results. 

In addition to supporting evidence for the OS, there is also evidence for qualified 

development tools, and for newer releases, evidence supporting CAST-32A for multicore.

“FACE conformance 

is not granted to the 

entire system, even if 

it is made up partially 

or entirely of FACE 

conformant UoCs. 

Only the individual 

UoCs can be claimed 

to be conformant.” 

How does FACE 
conformance work?
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5.2  FACE conformance supports 
airworthiness

The job of the FACE UoC supplier is to provide the software as well as associated 

certification artifacts. The job of the system integrator includes pulling together FACE 

UoCs to form the overall avionics system design. If acting as the certification applicant, 

they must also collate the certification artifacts for each UoC into the overall certification 

package for the system.

The FACE Consortium has two committees whose work helps smooth this process. 

First, the Technical Working Group (TWG) on Software Safety has been active since 

nearly the beginning of the consortium. Currently led by Glenn Carter and Joe Wlad, 

this committee has a mandate to ensure that each edition of the FACE Technical 

Standard does not interfere with subsequent efforts to obtain flight certification. That 

is, this group uses a “do no harm” approach, employing preventative measures and 

eliminating potential airworthiness issues from the technical standard. Second, the 

EA-25 Airworthiness committee was formed in 2020 with a mandate to augment the 

preventative maintenance of the TWG Safety group by further identifying how the effort 

toward FACE Conformance could be leveraged to aid in demonstrating airworthiness. 

The deliverable for this team is a white paper identifying activities and associated design 

artifacts generated while pursuing FACE conformance that map to evidence appropriate 

to support flight certification. Thus, “do no harm” is expanded to “do some good”. The 

white paper from this committee is expected sometime in 2021.

One high-level example of FACE conformance supporting airworthiness can be found in 

the FACE reference architecture, which is shown in Fugure 1 on page 4. Both civilian and 

military airworthiness guidance typically require a software architecture to be defined. 

A system designed using FACE UoCs inherently builds on a reference architecture that 

has been publicly reviewed and standardized. The documentation of the architecture, 

its interfaces, and specification are all artifacts that can contribute to meeting the 

architecture definition expectations for airworthiness. The system integrator still has 

some work to do to demonstrate that the architecture is implemented correctly and to 

ensure that architecture-related requirements are reviewed and pass normal verification 

and validation.

A more specific example of FACE conformance supporting airworthiness can be found 

in the FACE technical standard requirements for time partitioning and space partitioning 

under the Safety and Security Profiles. The isolation provided by partitioning not only 

contributes to portability and reusability but also eases certification for Integrated 

Modular Avionics (IMA) systems. A number of airworthiness standards expect 

partitioning as a means of breaking down a complex system into separate logical 

components that can be independently and incrementally assured. Partitioning cannot 

be an afterthought; it is a fundamental mechanism of the computing hardware and 

RTOS and thus must be part of the design philosophy from the beginning. Because the 

FACE technical standard requires it, this helps to ensure that a development program 

starts out on the right track. The OSS supplier provides much of the evidence to verify 

The system integrator 

has to demonstrate 

that the architecture is 

implemented 

correctly and to 

ensure that 

architecture-related 

requirements are 

reviewed and pass 

normal verification 

and validation 

process.

System integrator
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and validate the partitioning environment. The system integrator must then demonstrate 

that the partitioning environment is implemented and configured appropriately so that 

the supplier evidence can be accepted. In addition, the system integrator must allocate 

system resources to partitions and demonstrate that the total resource usage is within 

the system capacity. Resource allocations include a portion of time on one or more 

processor cores, a portion of main memory etc.

5.3 Tools
Flight certifying a system comprised of FACE-conformant elements can be a daunting 

task. Wind River can support your efforts by supplying the Operating System Segment 

(OSS) along with certification artifacts (as listed in the FACE library/registry) including 

DO-178 plans such as the PSAC and Software Development Plan (SDP) as well as 

verification evidence, such as Software Verification Test Cases and Procedures, and 

Software Test Results. A qualified development tools suite is also included that allows 

you to develop, configure, build, debug, test, re-test, and certify each independent 

application independently, incrementally, and asynchronously.

Rapita Systems can support your certification efforts with its suite of verification tools 

that automate much of the Verification & Validation (V&V) process, including tools 

for generating unit and system tests, automating test runs and reporting, analyzing 

structural coverage, and measuring and reporting timing behavior. For multicore 

systems, Rapita also provides a CAST-32A Compliance Solution that addresses 

airworthiness for avionics systems by verifying that multicore interference channels are 

properly mitigated.

The RVS RapiTest 

plugin provides an 

easy-to-use platform 

for managing and 

executing multicore 

timing analysis tests.

RapiTest

The RVS RapiTime 

plugin automates the 

collection of on-target 

timing metrics 

including WCET.

RapiTime
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6. Want to learn more?
If you are interested in finding out more about aerospace and defense solutions, visit the 

Wind River Aerospace & Defense webpage where you gain access to a wide range of 

white papers and videos about this topic.

www.windriver.com/solutions/aerospace-and-defense

Rapita Systems regularly releases new material and runs training courses on multicore 

timing analysis worldwide. To make sure you’re notified, sign up to our mailing list.
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