
Written in the run up to the FACE consortium’s annual Technical Interchange
Meeting and Exhibition in September 2020, this white paper provides some
background on the FACE architecture with a focus on Wind River and Rapita
Systems’ “one stop shopping” ecosystem for Units of Portability (UoP) and the
tools to test, integrate, and certify systems based on the FACE Technical Standard.

White Paper

Compliance with the
Future Airborne Capability

Environment™(FACE) Standard

page 2 | Compliance with the Future Airborne Capability Environment

Contents 2

1. Operating system segment 3
 1.1 FACE architectural segments 4

 1.2 Partitioning 6

 1.3 No performance partitioning 6

2. FACE components 7
 2.1 FACE modularity leads to interchangeability 7

 2.2 Benefits of interchangeability 9

 2.3 Interchangeability is the minimum 10

 2.4 Assuring partitioning 11

 2.4.1 FACE requires partitioning 11

 2.4.2 The FACE standard does not assure partitioning 12

3. Assured partitioning for FACE systems 13
 3.1 Benefits of partitioning 13

 3.2 Partitioning is required but not assured 14

 3.2.1 Assurance of partitioning 14

4. Assured multicore partitioning for FACE systems 16

 4.1 Guidance for assurance of multicore systems 17

 4.2 Assuring partitioned multicore systems 18

 4.3 Mitigating multicore interference 21

 4.4 Verifying mitigation of multicore interference 22

 4.5 The Rapita approach to multicore timing analysis 23

5. Leveraging conformance artifacts for airworthiness 25

 5.1 FACE conformance is not airworthiness 26

 5.2 FACE conformance supports airworthiness 27

 5.3 Tools 28

6. Want to learn more? 29

page 3 | Compliance with the Future Airborne Capability Environment

In this chapter, we summarize the FACE architecture
to illustrate how the Operating System Segment (OSS)
provides a foundation to the other segments.

The US Department of Defense continues

to push for the use of open architecture

solutions as a means to get better avionics

hardware into the field more quickly and at

lower cost. One source of such solutions is

the Future Airborne Capability Environment

(FACE™) consortium, which was founded

in 2010 to develop an open architecture

technical standard and business models for

implementing this standard.

The consortium is managed by the Open

Group and has members from government,

education, and industry sectors. Member

organizations must be incorporated in

the US, and individual members must be

US citizens, although the annual FACE

Technical Interchange Meeting typically

includes an exhibition that is open to all.

The publications released by the FACE

Consortium are publicly available and free

to download. Currently, 91 organizations

and over 1,000 individuals are members of

the consortium. The consortium sponsors

four general working sessions a year, called

the FACE F2F. Volunteer members do the

detailed work of the consortium through

technical and business working groups

overseen by a steering committee and

advisory board.

One of the most significant products

of the FACE consortium has been the

development of a technical standard, which

is currently at revision 3.0. According to

the FACE website, “The FACE Technical

Standard is the open avionics standard for

making military computing operations more

robust, interoperable, portable and secure.

The standard enables developers to create

and deploy a wide catalog of applications

for use across the entire spectrum of

military aviation systems through a common

operating environment.”

The FACE standard

originated from US

Navy open architecture

programs to improve

interoperability and

software portability

for avionics software

applications.

The goal of FACE is

to drastically reduce

the development and

deployment cycle

of new capabilities

in military airborne

platforms from six

years to as little as six

months.

FACE
Consortium

1. Operating System Segment

page 4 | Compliance with the Future Airborne Capability Environment

1.1 FACE Architectural Segments
The concept of the FACE standard is to provide a reference architecture based on

segments, which can be composed to meet final system requirements. Variations in

the content of the segments, including application code, allows the system architect

flexibility in designing and building the end system. FACE provides the logical interfaces

between these segments to allow for portability and re-use. Figure 1, modified from a

figure in V3.0 of the FACE Technical Standard (TS), shows how segments are related in

the TS.

The standard contains five segments:

1. Operating System Segment (OSS) – foundational services provided by an

operating system; we will cover this in more detail below. The remaining four

segments depend on the OSS and thus it is shown beneath the others in

Figure 1.

2. I/O Services Segment (IOSS) – normalizes the interface to I/O devices.

3. Platform-Specific Services Segment (PSSS) – provides platform services,

such as data services, logging, health management and graphics (interface to

GPU).

4. Transport Services Segment (TSS) – provides communication services.

5. Portable Components Segment (PCS) – offers capability or business logic.

Figure 1 – FACE architectural segments

page 5 | Compliance with the Future Airborne Capability Environment

The interfaces between these segments,as defined by the FACE TS, are key to

constructing a FACE-compliant system. For the OSS, we are interested in the supported

APIs, and which fit into different profiles: Security, Safety, and General Purpose.

• The Security Profile is most restricted and has a minimal set of Application

Programming Interfaces (APIs) for high assurance applications.

• The Safety Profile is a superset of the security profile, with more APIs, and is

intended for applications that require safety certification, this also has 2 further

profiles, Base and Extended.

• The General Purpose profile has the most APIs and supports applications

that do not necessarily need RT or deterministic response.

To maintain commonality across different FACE component suppliers, solutions are

tested against these API sets and given a certificate of conformance. For example,

Wind River has FACE 2.0 conformance for VxWorks 653 (Safety Base Profile), FACE 3.0

conformance for Helix Virtualization Platform (Security & Safety Base Profiles) and FACE

3.0 for Wind River Linux (General Purpose Profile). In fact, Wind River VxWorks 653 was

the first product to go through FACE certification, and Wind River Linux is the only

Linux-based system to achieve FACE Conformance.

The FACE standard builds on existing standards rather than creating new ones, so for

the OSS it builds on the POSIX (Figure 2) and ARINC 653 standards.

Wind River’s VxWorks

653 Platform was the

first COTS RTOS to

achieve the Future

Airborne Capability

Environment (FACE™)

conformance

certification for the

FACE Operating

System Segment

(OSS) Safety Base

Profile.

Vxworks 653

Figure 2 – POSIX standards of 2003 and 2008

page 6 | Compliance with the Future Airborne Capability Environment

1.2 Partitioning
The FACE standard also requires partitioning, depending on the profile. Partitioning

is used in many types of computing systems; Wind River has a good white paper on

this subject, titled “Enabling the migration to Future Aerospace & Defense Systems”.

Partitioning supports modularity, including support for the concept of Integrated

Modular Avionics (IMA). The isolation properties provided by the partitioning of distinct

applications are essential to achieve the promise of the FACE standard. Why is this?

First, interoperability and smooth integration require isolation so that there are no

surprises (due to unanticipated interactions) when new independent functions are added

to a system. Second, certification of mixed-criticality systems is founded on the isolation

of partitions.

The General Purpose Profile uses space partitioning, while the Safety and Security

Profiles require both Time and Space Partitioning. These requirements stem from the

ARINC 653 standard for the Safety Profiles, the FACE standard says “Time partitioning

must be used when running Safety Profile-based software components that are

dependent upon an ARINC 653 operational environment.”

With the advent of powerful multi-core processors, the drive to use partitioning to

separate critical applications is accelerating. With single core processors, the ability to

host applications at different criticalities was achieved using time & space partitioning

in an Integrated Modular Avionics (IMA) architecture developed to overcome issues of

Space, Weight, and Power (SWaP) in commercial aircraft. This was needed to meet the

increasing requirements for greater functionality within the airframes at the time, such as

the Airbus A380 and Boeing 787.

However, what this basically did was “share” the CPU resource across multiple

applications, and while this achieved the goals of an IMA Architecture, it also impacted

the performance allocated to applications. With the latest multicore applications,

however, this performance impact can be mitigated by allocation across multiple cores.

These systems are breaking ground on safety certification of complex systems.

1.3 No performance requirements
The FACE standard intentionally avoids dictating performance or quality of applications,

focusing instead on developing systems with a standard interface with defined behavior.

This open standard approach has a significant benefit in that it levels the playing field.

All vendors must meet the same API and must then compete on performance, quality,

tool support, depth of airworthiness evidence, etc. For example, multiple vendors might

provide a FACE OSS that has been certified conformant to the FACE technical standard,

with each providing the same expected API to interface with other elements of the

system. However, the timing characteristics – such as response time, partition window

jitter, etc. – may vary widely between systems produced by different vendors. Some

vendors might provide a package of flight certification artifacts, while others do not, and

the strength of the tool ecosystem related to the OSS may vary significantly between

vendors.

The Avionics

Application Standard

Software Interface

(ARINC 653) is a

software specification

designed for space

and time partitioning

in safety-critical

systems, which allows

for hosting

applications on

multiple cores of the

same processor

using the Integrated

Modular Avionics

architecture.

About ARINC 653

page 7 | Compliance with the Future Airborne Capability Environment

In this chapter, we focus on the benefits of modularity in an
open architecture and discuss the features that distinguish
offerings by different vendors, with a focus on the
Operating System Segment (OSS) component of the FACE
architecture.

For the OSS, Wind River provides a competitive advantage while maintaining modularity.

Part of that advantage is a rich ecosystem of tools to validate the performance of the

system and provide assurance evidence for airworthiness. Since the OSS is foundational

to the architecture, it is important that the ecosystem for it is closely aligned with the

operating system. For example, flight certification of multicore avionics systems require

assurance that multicore interference channels have been mitigated. The Rapita

Systems CAST-32A Compliance Solution provides that assurance with tools and artifacts

that validate and verify the system.

2.1 FACE modularity leads to interchangeability
The modular concepts of the FACE standard provide a reference architecture based

on segments that can be integrated to meet final system requirements. Variations in

the content of each segment, including application code, allows the system architect

flexibility in designing and building the end system out of compatible modules. The

FACE standard defines the logical interfaces between these segments to allow for

modularity. This promotes the re-use of software components and enables common

functionality across military systems. By using the defined API standards described in

the previous chapter, this allows components to be easily moved between conformant

systems developed by different vendors.

In order to ensure the segments can be used in a modular fashion, it is vital that

components are tested against the applicable FACE Standard. Conformance is verified

by checking that a component conforms to the FACE Technical standard as a “Unit of

Conformance” or “UoC”. (The term “Unit of Portability” is sometimes used instead of

“Unit of Conformance” to highlight the portable aspects of these components.)

Rapita Systems

CAST-32A Compliance

Solution provides an

end-to-end solution for

supplying certification

evidence to satisfy

DO-178C and

CAST-32A objectives.

For more information,

visit rapitasystems.

com/products/

cast-32a

Commercial solution for
CAST-32A Compliance

2. FACE components

page 8 | Compliance with the Future Airborne Capability Environment

This is done by running a FACE Conformance Test Suite, achieving certification of

conformance through reviews by a FACE Verification Authority and a FACE Certification

Authority, and registering the result on the FACE Registry with the FACE Library

Administrator.

If a system architect starts designing a system and needs to use an OS with a specific

profile, then they can look at the FACE Registry and choose one of the UoCs that have

been certified against that profile. There are multiple revisions of the FACE Technical

Standard, so a Version Number is also specified for each product in the registry.

Figure 3 shows certificates for UoC in the General Purpose Profile and Safety Profile

which is compliant with the FACE Technical Standard 3.0.

A System Architect will typically choose several UoCs that will integrate into the final

software system. Of note here is that several UoCs could coexist within the same

processor address space, and so integration considerations and coordination of these

UoCs is vital. This is particularly true of performance and interference challenges at

integration time. FACE conformance testing only checks the UoC against an OSS profile

and within a single segment, and so will not check all software behavior or performance.

It’s also worth noting that if you have several UoCs, then you would need UoC to UoC

communications, which requires use of the FACE Transport Services Interface. Inter-UoC

communication ishown in Figure 4 from the FACE Technical Standard 3.0.

Figure 4 – Example PCS inter-UoC and Intra-UoC communications

The FACE

Conformance Test

Suite exists to help

verify a software

components

compliance with the

standard.

Conformance is

verified through

automated testing

and inspection of

specific software

artifacts.

FACE Conformance
Test Suite

Figure 3 – Certification of conformance for UOCs tested againts FACE profiles

page 9 | Compliance with the Future Airborne Capability Environment

2.2 Benefits of interchangeability
The FACE approach aligns well with the concept of Open Systems Architectures (OSAs).

The OSA approach enables several business drivers:

• Better buying power

• More affordability

• Faster time to deploy

• Rapid capability injection

• Software reuse

One interesting aspect of the FACE Consortia was the early decision to develop not only

a Technical Standard, but also a Business Standard that provides guidance in the value

proposition and business case for the FACE approach. This is currently at Version 2.0

and is available on the FACE Documents Web Site.

Being certified conformant to a UoC in the FACE standard provides confidence that

system integrators have choices – they can drop a particular UoC from any vendor into

their system and it should work “out of the box” with other components. This fulfils

several of the business drivers (reuse of components, rapid capability injection, and

more affordability) as the cost of development of the UoC is spread across several

programs. An added benefit is that the system integration cost should also be lower due

to the well-defined layers between UoCs within the standard.

Competition is generated between vendors to provide their value add and capability

expertise while still conforming to the FACE standard. This in turn gives government

procurement agents better buying power when looking for alternative or complementary

solutions.

At the same time, it means that the government is no longer stuck with one vendor,

breaks out of vendor lock-in, and is able to choose the best solution rather than being

forced into using the same vendor.

For vendors producing products, this also provides benefits of standardization across

projects, which reduces development costs and risks of schedule slips that could impact

multiple programs. The reuse of components means better return on investment and

allows vendors to focus on their core strengths and innovation.

However, having functional components that adhere to the standard does not provide

everything you need. Each component will have different performance, quality,

certification artifacts, and tools. Each will also have different business models and

lifecycle support solutions. These must be taken into account when making final

selections.

This guide serves as

a reference for

executives, military

executive officers,

and senior leadership

from both the

Government and

industry to

understand the value

proposition of the

FACE approach.

FACE Business Guide

page 10 | Compliance with the Future Airborne Capability Environment

2.3 Interchangeability is the minimum
The benefits of interchangeable parts are clear in everyday society. Metric wrenches

all fit a metric socket. Street legal automobiles all fit on public roads. The benefits of

such standardization are clear for wrenches and cars. The benefits for software are

also clear. However, interchangeable parts set the minimum expectation. All wrenches

should fit their sockets and all automobiles should fit the road. All wrenches, however,

vary in strength and durability and all cars vary in top speed and fuel efficiency. So too,

interchangeability for standardized software is the minimum. An OSS that is certified to

be conformant to the FACE Technical standard has merely been shown to “fit the road”.

Specifically, the Application Programming Interface (API) specified by the standard

confirms that the software components that make up the system will fit together and

communicate with each other correctly. This compatibility in itself, however, does not

indicate anything about the quality of the component, such as its speed or efficiency.

Thus, interchangeability through conformance to standards such as the FACE Technical

Standard is the ticket for entry to the FACE market, but this is the minimum. Vendors

that meet this starting criterion for a specific FACE UoC compete on a level playing field.

For example, customers seeking a FACE OSS will likely make decisions on purchasing

based on the following:

• Performance: Components produced by different vendors will vary in their

performance metrics such as end-to-end latency, response time, determinism, reliability,

etc.

• Certification: Conformance to the FACE technical standard may provide some

testing and artifacts that may be useful for demonstrating airworthiness, but this is only

a start. The packages offered by vendors in support of flight certification will vary. On

this note, the FACE EA-25 subcommittee outlines advice on which FACE activities and

artifacts may contribute to flight certification evidence.

• Ecosystem: The tools associated with each vendor will vary widely. Especially

for the OSS, a rich ecosystem of tools is important to the successful development and

integration of the system. The standardization provided by the FACE technical standard

can sometimes mean that tools work across any vendor offering, but this is not always

the case, as tools may need to connect “under the hood” as well.

Example: Tools

Example tools include the Integrated Development Environment (IDE),

debugging tools, testing tools to support requirements-based and functional

testing, structural coverage analysis tools, timing analysis tools, requirements

traceability tools, etc.

page 11 | Compliance with the Future Airborne Capability Environment

2.4 Assuring partitioning

2.4.1 The FACE standard requires partitioning

The FACE standard requires that compliant systems in the Safety and Security Profiles

include support for time and space partitioning. Partitioning is an isolation technique

used in many types of computing systems. This technique supports modularity, for

example through Integrated Modular Avionics (IMA). The separation properties provided

by the partitioning of distinct applications are essential to achieve the promise of the

FACE standard.

With the advent of powerful multi-core processors, the drive to use partitioning to

separate critical applications is accelerating. With single core processors, the ability to

host applications at different criticalities was achieved using time and space partitioning

in an Integrated Modular Avionics (IMA) architecture developed to overcome issues of

Space, Weight, and Power (SWaP) in commercial aircraft. This was needed to meet the

increasing requirements for greater capability within common airframes at the time such

as the Airbus A380 and Boeing 787. However, on a unicore system, the CPU resource

was shared (time-sliced) across multiple applications, and while this achieved the goals

of an IMA Architecture, it also impacted the performance allocated to applications. With

the latest multicore applications, this performance impact can be mitigated by allocation

across multiple cores. At the same time, the use of multicore processors introduces new

challenges to assuring airworthiness.

Figure 5 – Integrated modular avionics

page 12 | Compliance with the Future Airborne Capability Environment

2.4.2 The FACE standard does not assure partitioning

Although the FACE technical standard requires partitioning in several of its defined

profiles, the standard only requires an interface to a partitioned operating environment

(ARINC 653). It does not require assurance that the environment correctly implements

the isolation mechanisms that provide the primary benefit of partitioning. This makes

sense as the FACE technical standard is intended to foster interchangeability and

modularity: it is not a substitute for flight certification, but only a starting point. The FACE

EA-25 Airworthiness subcommittee is currently working on a white paper to “ensure that

FACE conformant software, associated artifacts, and the process to produce them …

contribute towards evidence of Air Worthiness where possible, explicitly citing common

requirements, processing and guidance.”

The system integrator would be wise to consider the significant hurdles to prove

airworthiness from the earliest stages of design, especially for features central to the

overall architecture such as partitioning. When implemented correctly, partitioning

simplifies integration and certification because each partition can be considered one

at a time. However, this approach requires that the partitioning itself is proven to a very

high level of rigor. Rigorous isolation of partitions is not something that can be tacked

on at the end, but must be incorporated as a fundamental design feature from the

beginning. Certification of software for Civilian flight in the US and Europe is guided by

the RTCA DO-178C/ED-12C standard. The DO-297 and ARINC 653 standards provide

guidance on partitioning environments to isolate independent software functions. Military

airworthiness authorities use similar approaches to evaluate software.

The challenge to assure the isolation of partitions is even greater for computing

platforms that use multicore processors. On a unicore processor, only one partition can

run at a time, providing some natural isolation. On a multicore processor, partitions can

run simultaneously on different cores, creating multiple channels of potential interference

between functions. Multicore interference can degrade the isolation between partitions

and thus must be mitigated. While the use of multi-core systems for critical software

is a relatively new technology, the US Federal Aviation Administration (FAA) currently

provides guidance for assuring multicore systems in a position paper, CAST-32A.

“Rigorous isolation of

partitions is not

something that can

be tacked on at the

end: it must be

incorporated as a

fundamental design

feature from the

beginning.”

Planning for
Isolation

Figure 6 – CAST-32A position paper

page 13 | Compliance with the Future Airborne Capability Environment

Avionics system designers and integrators designing to

the FACE standard under the Safety, Safety-Extended or
Security Profiles must include an ARINC 653 partitioned
operating environment in their architecture. System
integrators need guidance on how to be successful with
implementing partitioning while maintaining performance
and achieving flight certification.

3.1 Benefits of partitioning
In the commercial aerospace world, since the first days of Integrated Modular Avionics, it

was recognized that partitioned systems could provide benefits in terms of both mixed-

criticality systems and recertification of future systems (for updates and changes to

applications).

The ARINC 653 standard was developed to define how to construct partitioned systems,

which support hosting multiple applications at different design assurance levels on the

same computing platform.

3. Assured partitioning for
FACE systems

Wind River, together

with Rapita Systems,

can help you build a

FACE system with the

performance and

determinism you

need, along with the

assurance artifacts

you need to achieve

flight authorization

cost-effectively.

For more information,

visit rapitasystems.

com/cast-32a

Example: Partitioning applications on multicore processors

The flight management system application and the flight navigation application

might have been hosted on separate Line Replaceable Unit (LRU) computing

hardware in the past, the modern processors are fast enough to host both

applications, provided partitioning ensures they do not interference with one

another’s functionality. Partitioning enforces modularity and provides portability

through a standard API, as well as contains faults, thus easing integration and

certification.

page 14 | Compliance with the Future Airborne Capability Environment

3.2 Partitioning required but not assured
In Supplement 5 of ARINC 653 Part 1, the scope of the standard is well defined:

“ARINC 653 is intended for use in a partitioned environment. To assure a high degree of

portability, aspects of the partitioned environment are discussed and assumed. However,

this specification does not define the complete system, hardware, and software

requirements for partitioning, nor does it provide guidance on proper implementation

of partitioning, and in particular, robust partitioning. It must not be construed that

compliance to ARINC 653 assures robust partitioning.”

FACE requires compliance with the ARINC 653 Part 1 standard. Thus, conformance to

the FACE technical standard implies that partitioning is provided, but robust partitioning

is not assured. Further work beyond simply meeting the FACE and ARINC 653 standards

is necessary to provide safety assurance evidence toward flight certification of such a

system.

3.2.1 Assurance of partitioning

Because ARINC 653 defines the interfaces and functionality of partitioning but not

the assurance, this lack of guidance for safety certification of Integrated Modular

Avionics systems led to the development and creation of RTCA DO-297 (EUROCAE

ED-124) “Integrated Modular Avionics (IMA) Development Guidance and Certification

Considerations”, which sets out guidance on safety certification of IMA systems. This

document introduced the concepts of roles and responsibilities such that you could

allocate resources where needed and have clear guidelines on who does what to ensure

compliance with the safety standards.

The standard states that “The IMA Platform should be capable of providing robust

partitioning and other protection means that allow multiple applications to share a

platform and its resources.” Further, it introduces the concept of Robust Partitioning

which “will ensure that any hosted application or function has no unintended effect

on other hosted applications or functions.” The standard includes a complete section

(3.5) on robust partitioning and how to ensure that it meets the requirements of an IMA

system.

Time partitioning allows a unicore system to support multiple partitions, each hosting an

independent application, as shown in Figure 7. A fixed schedule of partitions is repeated

each major time frame (e.g., every 50 ms). Within the major time frame, each partition

is scheduled within a minor frame that is a fixed offset from the start of the major frame.

Time partitioning, also known as time slicing or multiplexing, ensures that only one

partition is using the computing platform at a time.

Figure 7 – Software partitioning mechanism

Robust partitioning

assures that any

hosted application or

function has no

unintended effect on

other hosted

applications or

functions.

If partitioning is

sufficiently robust,

then each partition

runs independently,

without knowledge of

the other partitions or

interference from

them.

Robust Partitioning

page 15 | Compliance with the Future Airborne Capability Environment

Proving the correctness of time partitioning, even on a unicore is challenging. Although

only one partition can run at a time with only a single core, partitions could still interfere

with each other directly by causing unconstrained partition jitter, i.e. variation in the time

for each partition scheduled time slot without a deterministic bound. The end of each

minor time frame is enforced by the partitioned Operating System (OS), usually using

an interrupt-based system timer that invokes the OS at the end of the minor time frame,

allowing it to perform a partition switch. During this partition switch, the OS saves the

state of the partition that is finishing its minor frame, then determines which partition

should be run in the next minor frame, sets a new timer, and then begins execution of the

new partition. If partitioning is sufficiently robust, then each partition runs independently,

without knowledge of the other partitions or interference from them.

Partitions on different cores can also interfere with each other indirectly. For example,

one partition could start an operation using a bus master other than the CPU, whose

activity extends past the end of the partition’s scheduled time slot and thus overlaps

and possibly contends with another partition’s activity. For example, in Figure 8, each

partition running on the unicore during its minor time frame likely accesses main

memory. While the other partitions might have data in some parts of that memory, they

do not interfere with each other as they are not running simultaneously. However, if

Partition 1 starts a DMA access between locations in main memory, this access has

the potential to continue running past the end of the minor time frame for Partition

1, potentially interfering with memory access by Partition 2. This interference allows

Partition 1 to impact the performance of Partition 2, thus the system would not have

robust partitioning. A well-designed partitioned OS will thus need to curtail all access by

a partition to shared resources in the system outside of the partition’s assinged minor

time frame.

Figure 8 – Unicore computer architecture hosting three applications

page 16 | Compliance with the Future Airborne Capability Environment

In this chapter, we will discuss the benefits of using
multicore processors in the avionics industry and how
partitioning can be applied to complex multicore systems.

Avionics system designers and integrators designing to the FACE standard are adopting

the Multicore processors (MCPs) to meet future performance demands. MCPs provides

the avionics industry with platform that can provide greater performance in a lower

footprint, translating to systems with lower Size, Weight, and Power (SWaP).

Regardless of these benefits, OEMs in the avionics industry are pressured to adopt

MCP technology when making upgrades to replace legacy single-core designs because

nearly every new processor on the market today is based on multicore technology.

The benefits of partitioning still hold even when implemented on an MCP, including

portability, modularity, reduced integration effort, and reduced certification effort (due

to incremental and compartmentalized assurance). However, MCPs also introduce

additional complexity in implementation and certification, prompting a need for guidance

that helps system integrators develop and certify systems using MCP technology.

4. Assured multicore partitioning for
FACE systems

The critical

embedded industry is

moving towards the

use of multicore

rather than singlecore

processors due to

improved

performance and

diminishing

availability of their

singlecore

counterparts.

The increased

performance of

multicore systems per

unit area is sought

after in the embedded

aerospace industry

due to the physical

space constraints

and increasing

complexity of such

systems.

page 17 | Compliance with the Future Airborne Capability Environment

4.1 Guidance for assurance of multicore
systems

DO-178C, DO-297, and ARINC 653 were all written in the context of single core

processors, so the introduction and use of MCPs adds further complexity. The FAA

CAST-32A position paper addresses MCP assurance and a recently proposed FAA

advisory circular intends to formalize that guidance, harmonizing with the European

Union Safety Agency (EASA). The new guidance will be referred to as AC 20-193 in the

US under the FAA and the same document will be referred to as AMC 20-193 in Europe

under EASA.

CAST-32A extends the partitioning concept for multicore processors: “Robust Time

Partitioning (on an MCP) is achieved when, as a result of mitigating the time interference

between partitions hosted on different cores, no software partition consumes more

than its allocation of execution time on the core(s) on which it executes, irrespective

of whether partitions are executing on none of the other active cores or all of the other

active cores.”

Although each US military service has its own airworthiness authority, evidence of

airworthiness according to FAA guidelines is often accepted as part of the certification

effort. Specifically, CAST-32A is one of the FAA guidance documents that some military

programs are currently using when considering the adoption of MCP systems. In

addition, starting in 2019, augmentation has been underway on Section 15 “Computer

Systems and Software” of MIL-HDBK-516C Airworthiness Certification Criteria. Of the

42 criteria listed in section 15 of the document, 20 have been identified as needing

augmentation to account for the use of MCPs. An update to MIL-HDBK-516C is expected

in the coming year.

The certification applicant for a FACE conformant system running on a multicore

processor will need to meet either civilian flight certification guidelines

(such as DO-178C, DO-297, and AC 20-193) and/or military airworthiness guidance

(such as the augmented MCP requirements for MIL-HDBK-516C). Conformance to

the FACE technical standard in itself does not ensure that these standards are met,

though, at the time of writing, the FACE EA-25 subcommittee is currently working on a

white paper to provide more detailed advice on which FACE activities and artifacts may

contribute to flight certification evidence for standards such as DO-178C and MIL-H.

A(M)C 20-193 will be

a document that is a

joint effort by EASA

and the FAA to

provide guidance on

certification of

multicore systems.

A(M)C 20-193 will

build on industry

advancements that

are aiding the

certification process

for multicore

processors and will

recommend best

practices to consider

when dealing with

MCPs.

For more information,

visit rapitasystems.

com/amc-20-193

A(M)C 20-193

page 18 | Compliance with the Future Airborne Capability Environment

4.2 Assuring partitioned multicore systems
When multicore processors first started appearing in avionics, early adopters avoided

some of the certification issues by simply deactivating all but one of the cores. This

worked, because in many cases that single core offered better performance than older

unicore processors. However, as the years have gone by, the individual cores have not

improved much further in performance, meaning that significant gains in functionality

through higher processor computational throughput can only be achieved by using more

than one of the cores in an MCP.

Proving the correctness of time partitioning on even a unicore system is challenging,

as we discussed on page 15. In an MCP system, multiple applications can run

simultaneously, each on its own core. Some resources are private and exclusive to a

single core, such as the L1 cache, as shown in the example four-core architecture in

Figure 9. However, other resources are shared, such as the L2 cache, main memory,

and I/O devices. The applications on different cores can thus contend for access to

these shared resources, potentially impacting each other’s performance, which breaks

down the isolation between partitions.

Figure 9 – Multicore computer architecture hosting three applications

page 19 | Compliance with the Future Airborne Capability Environment

One simplified approach to achieving time partitioning is by only scheduling a single

partition at any given time but allowing that partition to use more than one core. This

approach is limited, as only multi-threaded application software can take advantage of

multiple cores, while single-threaded cores leave the other cores idle during their time

window of the schedule, as shown in Figure 10.

Only recently have early adopters of MCPs attempted to use all cores with mixed-

criticality software by following the guidance in DO-297 and A(M)C 20-193. Figure 11

illustrates the complex nature of this approach, where multiple independent applications

can run within the same partition window (each on its own core), even if the applications

are certified at different design assurance levels. In this case, independent partitions with

different criticality, i.e. different software levels, are able to run simultaneously on different

cores within the same minor time frame of the schedule. An example of this complex

approach is given by the work Collins Aerospace has done with Wind River as described

in their joint white paper.

Figure 11 - Complex multicore ARINC653 schedule

Figure 10 – Simplified multicore ARINC653 schedule restricted to one partition at a time

page 20 | Compliance with the Future Airborne Capability Environment

Proving the correctness of time partitioning on a mixed-criticality multicore system is

quite challenging since partitions can run simultaneously on different cores. In multicore

systems, independent partitions running on distinct cores can compete for shared

resources. That contention can cause delays, thus increasing the software’s Worst-

Case Execution Time (WCET). While an application running in a partition may meet

its requirements when no other cores are active, interference from functions running

on other cores may increase the application’s WCET to the point that it no longer

meets its requirements. A variety of resources may cause such interference because

the processor cores share access, including lower levels of cache memory, the main

memory, I/O devices, and bus interconnects.

A(M)C 20-193 provides guidance on assuring a multicore system, listing ten objectives

that must be met to demonstrate that multicore interference channels have been

mitigated. The planned additions to MIL-HDBK-516C also include criteria to analyze

interference channels. CAST-32A defines an interference channel as a property of the

computing platform “that may cause interference between independent applications.”

All interference channels within the avionics system must either be eliminated or else

their impact must be sufficiently reduced such that all applications meet their timing

requirements even in the presence of the worst-case level of interference from other

cores. Similarly, the MIL-HDBK-516C additions require that “execution rates provided

by the executive/control structure … are consistently obtainable and sufficient to safely

provide the required performance.” That is, even in the face of multicore interference,

timing requirements must be met. Successfully meeting the objectives of these

standards requires both attention to mitigation of interference channels during the early

life cycle stage of design and careful attention to measurement methods during the later

life cycle stage of verification.

Worst-case execution

time is the maximum

length of time a task

takes to execute on a

specific hardware

platform. WCET is a

metric commonly

used in reliable

real-time systems

which have a non-

negotiable deadline

for execution.

For more information,

visit rapitasystems.

com/wcet

Find out more about
WCET

Figure 12 – MIL-HDBK-516C document

page 21 | Compliance with the Future Airborne Capability Environment

4.3 Mitigating multicore interference
Mitigation of multicore interference requires that partitions be isolated from each other.

Multiple separation mechanisms to achieve partitioning are available to the system

designer and integrator, which may be implemented in hardware and/or software.

Some isolation mechanisms are provided by the hardware. Selecting a processor that

gives each core exclusive resources can eliminate contention for those resources.

For example, at least one level of cache memory is typically provided that is distinct

and exclusive to each core. For CPU-intensive applications with strong locality of

access, a private L1 cache is often sufficient to render the software largely insensitive

to interference from other cores. When resources must be shared, the hardware may

provide isolation by ensuring equitable access. Even then, one core’s access may

impact access by another core, breaking down the separation. Unfortunately, silicon

providers may not provide better determinism in cases like this because it would impact

raw performance.

Although hardware can provide some isolation mechanisms, most processors are

designed to optimize the average execution time on all cores, often at the expense of the

WCET on any one core. While this is a good trade-off for many commercial applications,

it is a problem for safety-critical avionics as it represents a form of multicore interference.

Thus, additional isolation approaches beyond those implemented through hardware are

necessary.

Some isolation mechanisms are provided by the RTOS. A multicore RTOS can

manage processor cores, ensuring that the usage of any one hosted application

is deterministically bounded within its partition so that all applications meet their

requirements – even when multicore interference is present. An example of such an

RTOS is the Wind River VxWorks 653 Multi-Core edition. (Figure 13)

Figure 13 – Wind River VxWorks 653 Multi-Core edition time scheduler

VxWorks 653 is an

integrated modular

avionics platform that

enables workload

consideration of

safety-critical

applications.

For more information

about Wind River and

VxWorks, visit

windriver.com

Find out more about
VxWorks 653

page 22 | Compliance with the Future Airborne Capability Environment

4.4 Verifying mitigation of multicore interference
Verification that multicore interference channels have been mitigated is an essential

step in meeting A(M)C 20-193 objectives. As no one has yet flight-certified a civilian

aircraft with a mixed-criticality multicore system, approaches to verification are only

just appearing. Nevertheless, best practices for verification are emerging based on

interference generators.

Interference generators are carefully crafted software applications with a small code

footprint that create high bandwidth use of a targeted resource. For example, Rapita

Systems has a library of interference generators called RapiDaemons that target

resources such as a shared L3 cache, DDR main memory, or DMA. These interference

generators are used to create inter-core stress on the targeted resource. For example,

Figure 14 shows RapiDaemons running on cores 1, 2, and 3 with the application

running on core 0, where the RapiDaemons create interference for access to the main

memory as well as any shared resource along the logical path to that resource, including

interconnects and cache.

Comprehensive analysis of multicore interference requires the identification of all

potential interference channels. The system architecture must be reviewed for shared

resources, including potentially obscure or hidden channels where cores can contend,

such as interconnects that are not equitably arbitrated or last level caches with

insufficient write ports. For each interference channel identified, an interference generator

must be designed and calibrated to stress that channel. For systems at the highest

design assurance levels, such as DO-178C Levels A and B, this testing must be done

with independence.

Figure 14 – Measuring multicore interference with RapiDaemons

page 23 | Compliance with the Future Airborne Capability Environment

4.5 The Rapita approach to multicore
 timing analysis

The Rapita Systems approach to multicore timing analysis uses two phases within a test

methodology for measuring multicore interference channels. The first phase is platform

characterization, wherein the platform is defined as both the computational hardware

as well as the RTOS. In this phase, the outer bounds of possible multicore interference

are checked by competing RapiDaemons against each other on all cores. Because

RapiDaemons are tuned to stress a single targeted shared resource, this provides

a signature of the performance possible when cores compete continuously for that

resource. This phase can be done even before application software is available.

The second test phase is software characterization. Individual software applications

intended for use in flight are first measured running alone on a core while the other

cores are dormant, providing a baseline measurement of the software timing behavior.

Next, the increase in WCET is measured in the presence of RapiDaemon adversaries

running on the other cores. By comparing the WCET with and without the RapiDaemons

adversaries running, worst-case multicore interference can be quantified. Furthermore,

the WCET with multicore interference can be compared with system requirements to

determine if they are still met –– thus demonstrating whether or not interference channels

have been sufficiently mitigated.

Integrated Modular Avionics (IMA) designed with robust partitioning according to

DO-297 allow for the incremental acceptance of assurance evidence, accumulating

certification artifacts over the course of several independent verification efforts. That

is, each application can be measured independently of the other applications to verify

the mitigation of multicore interference channels. No partition application will produce

contention higher than that produced by the RapiDaemons.

page 24 | Compliance with the Future Airborne Capability Environment

Assurance evidence can be collected for each partition application by itself, although

all planned applications will be integrated together in the final system. Furthermore, the

timing tests for existing partitions need not be repeated when new software is added in

the future when allocated to spare partition slots. This incremental verification approach

enabled by robust partitioning is a key factor in reducing the number of tests that must

be performed.

Even with incremental verification benefits, the complexity and number of interference

channels in a typical multicore avionics system can still lead to a large number of tests

that must be completed. Thus, tool automation is important to keep the schedule and

cost of verification reasonably constrained. The Rapita Systems approach to multicore

timing analysis automates key stages of the workflow using both RapiDaemons

interference generators and the Rapita Verification Suite software, as illustrated in

Figure 15.

However, not everything can be automated. Human wisdom from the system and test

engineers is still needed to identify interference channels in the system architecture at

the start of the process and to properly interpret results at the end of the process.

Figure 15 - Tool automation through RapiDaemons and the Rapita Verification Suite

Produce and run tests that excercise

MC software for execution time.

Automatically calculates execution time

metrics on-target.

RapiDaemons create interference while

analyzing a multicore task.

Automatically measures and reports

scheduling metrics.

page 25 | Compliance with the Future Airborne Capability Environment

The previous chapter focused on partitioning in multicore
processors and guidance for safety certification of avionics
systems based on multicore processors, including
multicore aspects of partitioning.

Airworthiness is discussed in a range of documents, including:

• RTCA DO-178C “Software Considerations in Airborne Systems and Equipment

Certification” – describes the process of developing software that will be flight certified

• RTCA DO-254 “Design Assurance Guidance for Airborne Electronic Hardware” –

describes the process of developing complex electronic hardware that will be flight

certified. Referenced by AC 20-152.

• RTCA DO-248C “Supporting Information for DO-178C and DO-278A” – provides

additional details on concepts in DO-178C, including using previously developed

software, MC/DC coverage, independence and partitioning.

• RTCA DO-297 “Integrated Modular Avionics (IMA) Development Guidance and

Certification Considerations” – describes roles and processes for developing IMA

systems and the importance of partitioning.

• ARINC 653 Part 1, Supplement 5 – adds support for multicore, but in terms of

partitioning and assurance it is clear that “It must not be construed that compliance to

ARINC 653 assures robust partitioning”.

• FAA AC 20-193 “Use of Multi-Core Processors“ – formalizes the objectives from

CAST-32A related to certifying avionics systems based on multicore processors. A

draft of this Advisory Circular was released in October 2020. After a comment period,

the final version is expected to be published in 2021.

• US DoD MIL-HDBK-516C “Airworthiness Certification Criteria” – provides guidance for

certification of avionics systems (including hardware and software). An update is in

progress to address multicore considerations, but this has not yet been published.

• US Army “Multi-Core Processor (MCP) Airworthiness Requirements” – this guidance

is in draft form and has not yet been formally released.

5. Leveraging conformance artifacts
for airworthiness

page 26 | Compliance with the Future Airborne Capability Environment

5.1 FACE conformance is not
airworthiness

As explained in previous chapters, certification of FACE conformance only guarantees

that a Unit of Conformance (UoC) honors the FACE standard. It is not intended as a

solution for meeting airworthiness requirements. Indeed, the FACE standard recognizes

that some systems do not require safety certification, such as systems built on the FACE

General Purpose Profile using Linux as the operating system. The Safety and Safety-

Extended Profiles intentionally limit the breadth of functionality included in a FACE UoC,

which can help limit the scope of effort needed to generate certification evidence, but

using this profile is simply a starting point.

This brings us to some important conceptual differences when comparing FACE

conformance to flight certification (approval of airworthiness). Conformance to the FACE

standard is granted to a component, not to an entire system. The FACE Verification

Authority (VA) verifies conformance for a UoC, which may be a FACE architectural

segment or part of a segment. A UoC cannot span more than one architectural segment,

though a “UoC Package” can be comprised of UoCs that span certain FACE segments

to form a single logical entity. Thus, FACE conformance is not granted to the entire

system, even if it is made up partially or entirely of FACE-conformant UoCs; only the

individual UoCs can be claimed to be conformant.

On the other hand, airworthiness is granted to an entire system, not to components.

Certification artifacts may be associated with one component, such as the OS, and

these artifacts may be accumulated into the overall certification package for the aircraft.

An individual component can be described as certifiable, or perhaps as certified within a

named system, but the stand-alone component cannot be labeled as “certified”.

For example, certification artifacts for Wind River VxWorks 653 v2.5 on PowerPC (which

is FACE-conformant to the Safety Base Profile against Technical Standard v2.0) include

all documentation required to satisfy the requirements of RTCA DO-178C, consisting

of over 65,000 hyperlinked files. This includes items such as the Plan for Software

Aspects of Certification (PSAC) and Software Accomplishment Summary (SAS) along

with all design reviews, code review, test reviews, functional tests and coverage results.

In addition to supporting evidence for the OS, there is also evidence for qualified

development tools, and for newer releases, evidence supporting CAST-32A for multicore.

“FACE conformance

is not granted to the

entire system, even if

it is made up partially

or entirely of FACE

conformant UoCs.

Only the individual

UoCs can be claimed

to be conformant.”

How does FACE
conformance work?

page 27 | Compliance with the Future Airborne Capability Environment

5.2 FACE conformance supports
airworthiness

The job of the FACE UoC supplier is to provide the software as well as associated

certification artifacts. The job of the system integrator includes pulling together FACE

UoCs to form the overall avionics system design. If acting as the certification applicant,

they must also collate the certification artifacts for each UoC into the overall certification

package for the system.

The FACE Consortium has two committees whose work helps smooth this process.

First, the Technical Working Group (TWG) on Software Safety has been active since

nearly the beginning of the consortium. Currently led by Glenn Carter and Joe Wlad,

this committee has a mandate to ensure that each edition of the FACE Technical

Standard does not interfere with subsequent efforts to obtain flight certification. That

is, this group uses a “do no harm” approach, employing preventative measures and

eliminating potential airworthiness issues from the technical standard. Second, the

EA-25 Airworthiness committee was formed in 2020 with a mandate to augment the

preventative maintenance of the TWG Safety group by further identifying how the effort

toward FACE Conformance could be leveraged to aid in demonstrating airworthiness.

The deliverable for this team is a white paper identifying activities and associated design

artifacts generated while pursuing FACE conformance that map to evidence appropriate

to support flight certification. Thus, “do no harm” is expanded to “do some good”. The

white paper from this committee is expected sometime in 2021.

One high-level example of FACE conformance supporting airworthiness can be found in

the FACE reference architecture, which is shown in Fugure 1 on page 4. Both civilian and

military airworthiness guidance typically require a software architecture to be defined.

A system designed using FACE UoCs inherently builds on a reference architecture that

has been publicly reviewed and standardized. The documentation of the architecture,

its interfaces, and specification are all artifacts that can contribute to meeting the

architecture definition expectations for airworthiness. The system integrator still has

some work to do to demonstrate that the architecture is implemented correctly and to

ensure that architecture-related requirements are reviewed and pass normal verification

and validation.

A more specific example of FACE conformance supporting airworthiness can be found

in the FACE technical standard requirements for time partitioning and space partitioning

under the Safety and Security Profiles. The isolation provided by partitioning not only

contributes to portability and reusability but also eases certification for Integrated

Modular Avionics (IMA) systems. A number of airworthiness standards expect

partitioning as a means of breaking down a complex system into separate logical

components that can be independently and incrementally assured. Partitioning cannot

be an afterthought; it is a fundamental mechanism of the computing hardware and

RTOS and thus must be part of the design philosophy from the beginning. Because the

FACE technical standard requires it, this helps to ensure that a development program

starts out on the right track. The OSS supplier provides much of the evidence to verify

The system integrator

has to demonstrate

that the architecture is

implemented

correctly and to

ensure that

architecture-related

requirements are

reviewed and pass

normal verification

and validation

process.

System integrator

page 28 | Compliance with the Future Airborne Capability Environment

and validate the partitioning environment. The system integrator must then demonstrate

that the partitioning environment is implemented and configured appropriately so that

the supplier evidence can be accepted. In addition, the system integrator must allocate

system resources to partitions and demonstrate that the total resource usage is within

the system capacity. Resource allocations include a portion of time on one or more

processor cores, a portion of main memory etc.

5.3 Tools
Flight certifying a system comprised of FACE-conformant elements can be a daunting

task. Wind River can support your efforts by supplying the Operating System Segment

(OSS) along with certification artifacts (as listed in the FACE library/registry) including

DO-178 plans such as the PSAC and Software Development Plan (SDP) as well as

verification evidence, such as Software Verification Test Cases and Procedures, and

Software Test Results. A qualified development tools suite is also included that allows

you to develop, configure, build, debug, test, re-test, and certify each independent

application independently, incrementally, and asynchronously.

Rapita Systems can support your certification efforts with its suite of verification tools

that automate much of the Verification & Validation (V&V) process, including tools

for generating unit and system tests, automating test runs and reporting, analyzing

structural coverage, and measuring and reporting timing behavior. For multicore

systems, Rapita also provides a CAST-32A Compliance Solution that addresses

airworthiness for avionics systems by verifying that multicore interference channels are

properly mitigated.

The RVS RapiTest

plugin provides an

easy-to-use platform

for managing and

executing multicore

timing analysis tests.

RapiTest

The RVS RapiTime

plugin automates the

collection of on-target

timing metrics

including WCET.

RapiTime

Tel (UK/International):

+44 (0)1904 413945
Rapita Systems Inc.
41131 Vincenti Ct.

Novi, MI 48375

Rapita Systems Ltd.
Atlas House, Osbaldwick Link Road

York , YO10 3JB

Registered in England & Wales: 5011090

Tel (USA):

+1 248-957-9801

Email: info@rapitasystems.com | Website: www.rapitasystems.com

5.3 About the authors
Steven H. VanderLeest

Principal Engineer for Multicore Solutions at Rapita

Systems.

Published on topics related to avionics safety and security

in the IEEE Digital Avionics Systems Conference as well

as SAE Aerotech. Dr. VanderLeest is also the vice-chair of

the FACE EA-25 committee on airworthiness.

Alex Wilson

Director of Aerospace and Defense Market Segment for

Wind River,

Responsible for A&D Market Segment in EMEA, APAC,

and Japan. As part of the Wind River Aerospace &

Defense Industry Solutions Team, Alex is responsible for

business strategy including product requirements, sales

growth strategy and ecosystem development.

Note: The views expressed in this white paper are the sole opinion of the authors and do

not represent official positions of the FACE consortium.

6. Want to learn more?
If you are interested in finding out more about aerospace and defense solutions, visit the

Wind River Aerospace & Defense webpage where you gain access to a wide range of

white papers and videos about this topic.

www.windriver.com/solutions/aerospace-and-defense

Rapita Systems regularly releases new material and runs training courses on multicore

timing analysis worldwide. To make sure you’re notified, sign up to our mailing list.

www.rapitasystems.com/newsletter

