CS162 Operating Systems and Systems Programming Lecture 1

Overview

August 29th, 2011 Anthony D. Joseph and Ion Stoica http://inst.eecs.berkeley.edu/~cs162

Who Are We?

- · Ion Stoica
 - E-mail: istoica@cs.berkeley.edu
 - Web: http://www.cs.berkeley.edu/~istoica/
 - Office hours (tentative): M 3-4PM, W11-12 in 465D Soda
- Research focus
 - Cloud computing (Mesos, Spark)
 - Network architectures (i3, Declarative Networks, ...)
 - P2P (Chord, OpenDHT)
 - Tracing and debugging in distributed systems (ODR, Liblog, Friday)

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.3

Who Are We?

- · Professor Anthony D. Joseph
 - 465 Soda Hall (RAD Lab)
 - Web: http://www.cs.berkeley.edu/~adj/
 - Office hours (tentative): MTu 2-3pm in 465D Soda
- · Research areas:
 - Current: Cloud computing (Mesos), Secure Machine Learning (SecML), DETER security testbed
 - Other: P2P (Tapestry), Mobile computing, Wireless/ Cellular networking

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.2

TAs

- · Angela Juang
 - E-mail: cs162-ta@cory.eecs.berkeley.edu

- Sections: Tu 10-11am and 11-12pm

- Office hours: TBA (place: TBA)

- · Steve Hanna
 - E-mail: cs162-tb@cory.eecs.berkeley.edu

- Sections: Tu 11-12pm

- Office hours: TBA (place: TBA)

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

TAs (cont'd)

Karan Malik

- E-mail: cs162-tc@cory.eecs.berkeley.edu

- Sections: Tu 3-4pm and 6-7pm

- Office hours: TBA

Patrik Sundberg

- E-mail: cs162-td@cory.eecs.berkeley.edu

- Sections: Tu 9-10 and 10-11am

- Office hours: TBA

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.5

TAs (cont'd)

· Andrew Wang

- E-mail: cs162-te@cory.eecs.berkeley.edu

- Sections: Tu 4-5pm and 5-6pm

- Office hours: TBA

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.6

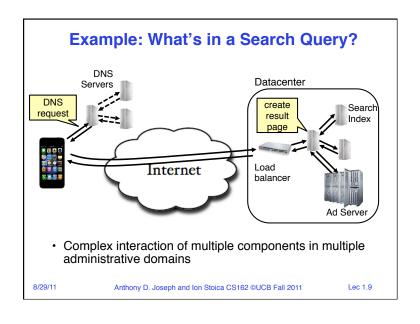
Goals of Today Lecture

- What are we going to learn and why?
- · What is an operating system?
- · How does this class operate?
- · Interactivity is important! Please ask questions!

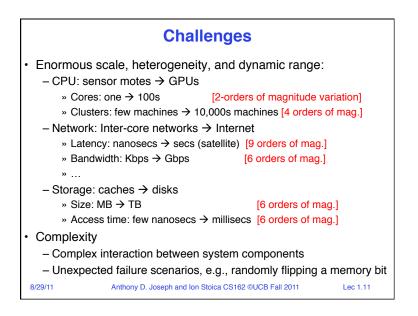
Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.

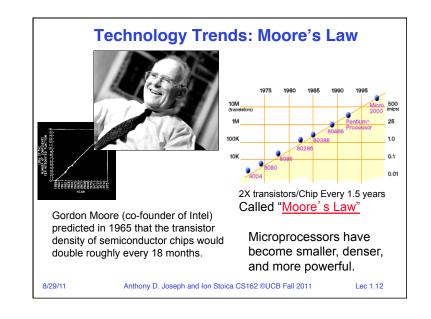
8/29/11

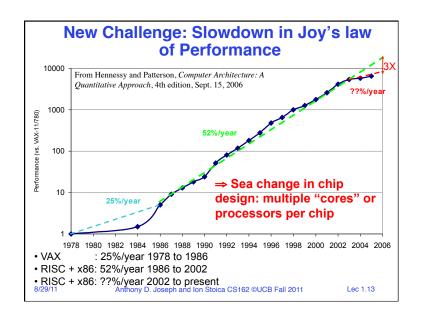
Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

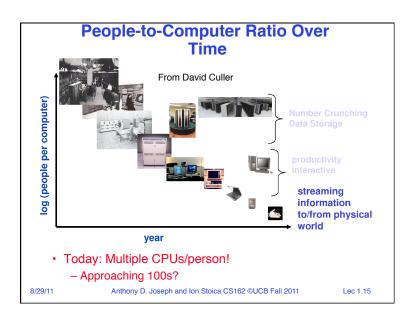

Lec 1.7

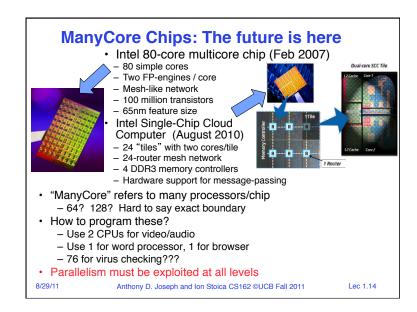
Goal of This Course

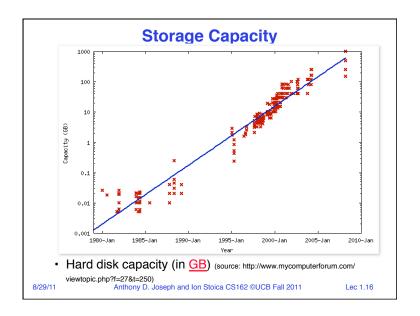

- · Learn how "systems" work
- · Main challenges in building systems
- Principles of system design, i.e., how to address to challenges
- · Learn how to apply these principles to system design

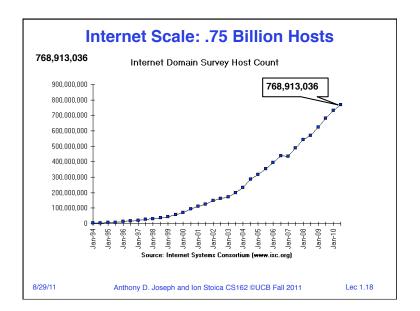

8/29/11


Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011









Breaking News: New IBM Storage Array


- · IBM's Almaden research lab
- 120 Petabyte array (120 million Gigabytes)
 - 200,000 conventional hard disk drives
- Perspective
 - Roughly one trillion files
 - Today's largest arrays: 15PB
 - 24 billion typical 5MB MP3 files
 - 60 copies of the 150 billion pages in the Internet Archive's WayBack Machine
 - GPFS handles many drive failures per day

Source: MIT Technology Review (http://www.technologyreview.com/computing/38440/)

8/29/11 Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Internet Scale: Two Billion Users! WORLD INTERNET USAGE AND POPULATION STATISTICS Users % of Table **World Regions** Population (2010 Est.) Dec. 31, 2000 1,013,779,050 4,514,400 110,931,700 2,357.3 % 5.6 % 3,834,792,852 114,304,000 825,094,396 21.5 % 42.0 % 621.8 105 096 093 58.4 % 352.0 9 24 2 % 813 319 511 475.069.448 Middle East 212,336,924 3,284,800 63,240,946 29.8 % 1,825.3 % 3.2 % 266,224,500 146.3 13.5 % 10.4 % Latin America/Caribbean 592,556,972 204,689,836 1,032.8 % 34,700,201 7.620.480 21,263,990 61.3 % 179.0 % 1.1 % Oceania / Australia 6.845.609.960 360.985.492 1,966,514,816 444.8 % 100.0 % 8/29/11 Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011 Lec 1.19

Class Schedule & Info

- · Class Time: MW 4-5:30pm, 4 Leconte
 - Please come to class; best part of class is interaction!
 - Also: 5% of grade is from class participation (section and class)
- Sections
 - Important information is in the sections
 - The sections assigned to you by Telebears are temporary!
 - Every member of a project group must be in same section
- Website: http://www-inst.eecs.berkeley.edu/~cs162/
- Newsgroup: http://www.piazza.com/
- Time-delayed Webcast (audio podcast with slides)

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.21

Lecture Goal

Interactive!!!

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.22

Syllabus

- Different emphasis from CS162 in previous years; beginning this year we have shifted to emphasize
 - End-to-end system design, rather than OS only
 - More networking, database, and security concepts
 - New projects to reflect this emphasis
- · Long term plan: make CS 162 a gateway course for
 - Database class (CS 186)
 - Networking class (EE 122)
 - Security class (CS 161)
 - Software engineering class (CS 169)
 - New operating systems class (cs16x)

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.23

Syllabus (cont'd)


- · 11 lectures on OS
- 4 lectures on Networking
- 3 lectures on Databases
- · 2 lectures on Security
- 1 lecture on Software Engineering
- 3 capstone lectures on "putting everything together" (client-server, cloud computing, P2P)

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Textbook

- Textbook: Operating Systems Concepts, 8th Edition Silbershatz, Galvin, Gagne
- · Online supplements
 - See "Information" link on course website
 - Includes Appendices, sample problems, etc
- Networking, Databases, Software Eng
 - Limited to lecture notes

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.25

Lec 1.27

Grading

· Rough Grade Breakdown

– Midterm: 20%– Final: 25%

- Four Projects: 50% (i.e. 12.5% each)

- Participation: 5%

 Four Projects: build a fully-functional game of Go hosted in the cloud (server and machine players)

- Phase I: Single-machine, single process Go game

- Phase II: Client-server communication

- Phase III: Go server on Amazon EC2 w/ game DB- Phase IV: Distributed Go client on Amazon EC2

- End of semester contest

Late Policy:

- No slip days!

- 10% off per day after deadline

29/11 Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.26

Computing Facilities

- Every student who is enrolled should get an account form at the end of lecture
 - Gives you an account of form cs162-xx@cory
 - This account is required
 - » Most of your debugging can be done on other EECS accounts, however...
 - » All of the final runs must be done on your cs162-xx account and must run on the x86 Solaris machines
- Make sure to log in into your new account this week

Group Project Simulates Industrial Environment

- Project teams have 4 or 5 members in same discussion section
 - Must work in groups in "the real world"
- Communicate with colleagues (team members)
 - Communication problems are natural
 - What have you done?
 - What answers you need from others?
 - You must document your work!!!
- Communicate with supervisor (TAs)
 - How is the team's plan?
 - Short progress reports are required:
 - » What is the team's game plan?
 - » What is each member's responsibility?

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.28

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Project Signup

- · Project Signup: Watch "Group/Section Signup" Link
 - 4-5 members to a group
 - » Everyone in group must be able to actually attend same section
 - » The sections assigned to you by Telebears are temporary!
 - Only submit once per group! Due Friday (9/2) by 11:59pm
 - » Everyone in group must have logged into their cs162-xx accounts once before you register the group
 - » Make sure that you select at least 2 potential sections
- New section assignments emailed next Monday/Tuesday
 - Attend new sections next week

Section	Time	Location	TA
107	Tu 9:00A-10:00A	320 Soda	Patrik
101, 108	Tu 10:00A-11:00P	87 Evans, 320 Soda	Patrik, Angela
102, 109	Tu 11:00A-12:00P	87 Evans, 320 Soda	Steve, Angela
103	Tu 3:00P-4:00P	85 Evans	Karan
104	Tu 4:00P-5:00P	85 Evans	Andrew
105	Tu 5:00P-6:00P	85 Evans	Andrew
106	Tu 6:00P-7:00P	259 Dwinelle (TEMP)	Karan
8/29/11 Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011 Lec 1.29			

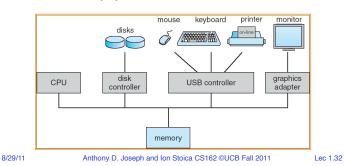
Complexity

- Applications consisting of...
 - ... a variety of software modules that ...
 - ... run on a variety of devices (machines) that
 - » ... implement different hardware architectures
 - » ... run competing applications
 - » ... fail in unexpected ways
 - » ... can be under a variety of attacks
- Not feasible to test software for all possible environments and combinations of components and devices
 - The question is not whether there are bugs but how serious are the bugs!

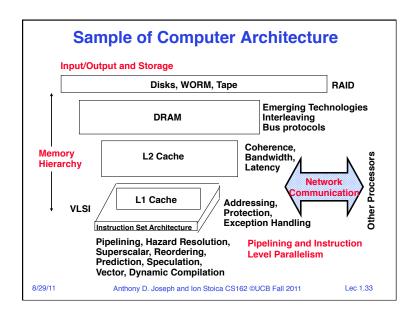
8/29/11 Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

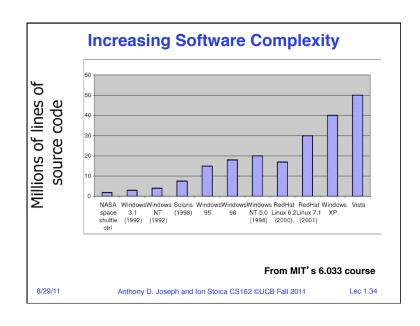
Lec 1.31

5min Break


8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011


Lec 1.30


Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Page 8

Example: Some Mars Rover ("Pathfinder") Requirements

- · Pathfinder hardware limitations/complexity:
 - 20Mhz processor, 128MB of DRAM, VxWorks OS
 - cameras, scientific instruments, batteries, solar panels, and locomotion equipment
 - Many independent processes work together
- · Can't hit reset button very easily!
 - Must reboot itself if necessary
 - Must always be able to receive commands from Earth
- · Individual Programs must not interfere
 - Suppose the MUT (Martian Universal Translator Module) buggy
 - Better not crash antenna positioning software!
- · Further, all software may crash occasionally
 - Automatic restart with diagnostics sent to Earth
 - Periodic checkpoint of results saved?
- · Certain functions time critical:
 - Need to stop before hitting something
 - Must track orbit of Earth for communication

8/29/11 Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

How do we tame complexity?

- · Every piece of computer hardware different
 - Different CPU
 - » Pentium, PowerPC, ColdFire, ARM, MIPS
 - Different amounts of memory, disk, ...
 - Different types of devices
 - » Mice, Keyboards, Sensors, Cameras, Fingerprint readers, touch screen
 - Different networking environment
 - » Cable, DSL, Wireless, Firewalls,...
- · Questions:
 - Does the programmer need to write a single program that performs many independent activities?
 - Does every program have to be altered for every piece of hardware?
 - Does a faulty program crash everything?
 - Does every program have access to all hardware?

8/29/11 Anthony

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Virtual Machine Abstraction

Application

Virtual Machine Interface

Operating System
Hardware

Physical Machine Interface

· Software Engineering Problem:

- Turn hardware/software quirks ⇒ what programmers want/ need
- Optimize for convenience, utilization, security, reliability, etc...
- For any OS area (e.g. file systems, virtual memory, networking, scheduling):
 - What's the hardware interface? (physical reality)
 - What's the application interface? (nicer abstraction)

8/29/11

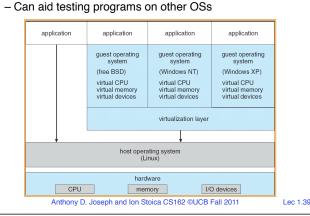
8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.37

Virtual Machines

- · Software emulation of an abstract machine
 - Make it look like hardware has features you want
 - Programs from one hardware & OS on another one
- · Programming simplicity
 - Each process thinks it has all memory/CPU time
 - Each process thinks it owns all devices
 - Different Devices appear to have same interface
 - Device Interfaces more powerful than raw hardware
 - » Bitmapped display ⇒ windowing system
 - » Ethernet card ⇒ reliable, ordered, networking (TCP/IP)
- · Fault Isolation
 - Processes unable to directly impact other processes
 - Bugs cannot crash whole machine
- · Protection and Portability
 - Java interface safe and stable across many platforms


8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.38

Virtual Machines (con't): Layers of OSs

- · Useful for OS development
 - When OS crashes, restricted to one VM

What does an Operating System do?

- · Silberschatz and Gavin: "An OS is Similar to a government"
 - Begs the guestion: does a government do anything useful by itself?
- · Coordinator and Traffic Cop:
 - Manages all resources
 - Settles conflicting requests for resources
 - Prevent errors and improper use of the computer
- · Facilitator ("useful" abstractions):
 - Provides facilities/services that everyone needs
 - Standard Libraries, Windowing systems
 - Make application programming easier, faster, less error-prone
- · Some features reflect both tasks:
 - File system is needed by everyone (Facilitator) ...
 - ... but File system must be protected (Traffic Cop)

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

What is an Operating System,... Really?

- · Most Likely:
 - Memory Management
 - I/O Management
 - CPU Scheduling
 - Synchronization / Mutual exclusion primitives
 - Communications? (Does Email belong in OS?)
 - Multitasking/multiprogramming?
- What about?
 - File System?
 - Multimedia Support?
 - User Interface?
 - Internet Browser? ☺
- Is this only interesting to Academics??

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.41

Summary

- Operating systems provide a virtual machine abstraction to handle diverse hardware
- Operating systems coordinate resources and protect users from each other
- Operating systems simplify application development by providing standard services and abstractions
- Operating systems can provide an array of fault containment, fault tolerance, and fault recovery
- CS162 combines things from many other areas of computer science:
 - Languages, data structures, hardware, and algorithms

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011

Lec 1.43

Operating System Definition (Cont'd)

- · No universally accepted definition
- "Everything a vendor ships when you order an operating system" is good approximation
 - But varies wildly
- "The one program running at all times on the computer" is the kernel
 - Everything else is either a system program (ships with the operating system) or an application program

8/29/11

Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011