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Abstract

We propose a model of banks' exposure to movements in interest rates and their

role in the transmission of monetary shocks. Since bank deposits provide liquidity,

higher interest rates allow banks to earn larger spreads on deposits. Therefore, if risk

aversion is higher than one, banks' optimal dynamic hedging strategy is to take losses

when interest rates rise. This risk exposure can be achieved by a traditional maturity-

mismatched balance sheet, and ampli�es the e�ects of monetary shocks on the cost of

liquidity. The model can match the level, time pattern, and cross-sectional pattern of

banks' maturity mismatch.
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1 Introduction

Banks typically have maturity-mismatched balance sheets, with long-duration nominal assets

(like �xed-rate mortgages) and short-duration nominal liabilities (like deposits). This means

that an increase in interest rates leads to a fall in banks' net worth, measured in mark-

to-market terms. In this paper we argue that banks choose this exposure deliberately as

part of a dynamic hedging strategy. We propose and quantify a model of risk sharing

between banks and households and show that it can successfully explain banks' average

maturity mismatch, its time-series properties, and the cross-sectional evidence. It provides

a laboratory to understand how monetary policy determines banks' risk taking decisions.

Our baseline model is a �exible-price monetary economy where the only source of shocks

is monetary policy. The economy is populated by banks and households. The distinguishing

feature of banks is that they are able to provide liquidity by issuing deposits that are close

substitutes to currency, up to a leverage limit. Importantly, because markets are complete,

banks are able to choose their exposure to risk independently of their liquidity provision. In

particular, we don't make any assumptions about what kind of securities banks hold. We

show that if relative risk aversion is high (larger than one) banks optimally choose to sustain

mark-to-market losses when interest rates rise. This exposure to risk can be achieved with

a portfolio of long-duration nominal assets and short-duration nominal liabilities, as in a

traditional bank balance sheet.

The mechanism works as follows. Because deposits provide liquidity services, banks earn

the spread between the nominal interest rate on illiquid bonds and the lower interest rate

on deposits. If nominal interest rates rise, the opportunity cost of holding currency goes up,

so agents substitute towards deposits. This drives up the equilibrium spread between the

nominal interest rate and the interest rate on deposits, increasing banks' return on equity.

Because risk aversion is higher than one, banks want to transfer wealth from states of the

world with high return on equity to states of the world with low return on equity. They

are willing to take capital losses when interest rates rise because spreads going forward will

be high. Since the supply of deposits is tied to banks' net worth, the cost of liquidity rises

further, amplifying the e�ects of the monetary shock.

We calibrate the model to match the observed behavior of interest rates, deposit spreads,

bank leverage and other macroeconomic variables. We �nd that an increase in the short-term

interest rate of 100 basis points produces losses of around 30% of banks' mark-to-market net

worth. These mark-to-market losses need not show up in banks' �nancial statements, which

do not mandate marking to market for assets in the banking book. We show that standard
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accounting can disguise both the fall in mark-to-market net worth and the increase in spreads

that result from a rise in interest rates, so that book values and measured net interest margins

will be almost constant. This is consistent with the recent �ndings by Drechsler et al. (2018),

who document that the response of banks' net interest margins to changes in interest rates

is approximately zero.

We �nd that the endogenous response of banks' net worth ampli�es the e�ects of mone-

tary shocks on the cost of liquidity. An increase of 100 bp in interest rates has a direct e�ect

on deposit spreads of 62 bp, and an additional indirect e�ect through lower bank net worth

and deposit supply of 15 bp (an ampli�cation by a factor of 1.25). The e�ect is non-linear,

however. The ampli�cation through banks' net worth is larger when banks' net worth or

interest rates are high.

The model can match the level, time pattern, and cross-sectional pattern of banks' ma-

turity mismatch. First, the model can account for the average maturity mismatch. In the

model, banks' exposure to movements in interest rates can be implemented with an average

maturity mismatch between assets and liabilities of 3.9 years. We compare this to banking

data following the approach of English et al. (2018) and �nd an average maturity mismatch

for the median bank of 4.4 years. Second, the model reproduces the time pattern in the

data. Banks' maturity mismatch rises during periods of low interest rates. While this may

look like �reaching for yield�, it is actually what our model predicts. The sensitivity of de-

posit spreads to interest rate movements is higher when interest rates are low, so banks'

dynamic hedging motive is larger at these times. The time-series correlation between the

model and the data is 0.77. Third, the model successfully accounts for the cross-sectional

evidence. Banks with a higher deposit-to-net-worth ratio should have a stronger dynamic

hedging motive and therefore choose a greater maturity mismatch. In the model, increasing

the deposit-to-net-worth ratio of a bank by one unit leads to an increase in the maturity

mismatch of 0.42 years. In the data, it leads to an increase of 0.43 years.

The baseline model with only monetary shocks is intended as a benchmark to examine

the mechanisms at play. We also study an arguably more realistic setting where the central

bank follows an in�ation targeting policy. The economy is hit by real shocks that move the

equilibrium real interest rate and force the central bank to adjust the nominal interest rate

in order to hit its in�ation target. The quantitative results are similar to the benchmark

model, with an average maturity mismatch of 4.7 years, a time-series correlation with the

data of 0.51, and an increase of 0.55 years in additional maturity mismatch per unit of

deposit-to-net-worth ratio.
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There are several alternative explanations for banks' exposure to interest rate risk. First,

one could conjecture that a maturity-mismatched balance sheet is inherent to the banking

business and the resulting interest rate risk is an inevitable side e�ect. However, banks can

easily adjust the interest rate exposure of their assets without changing their maturity, for

example, by using adjustable-rate mortgages. Moreover, there are deep and liquid markets

for interest rate derivatives that banks can use to hedge their interest rate risk. In fact,

Begenau et al. (2015) show that banks hold positions in these derivatives, but they use them

to amplify their exposure. Here we assume complete markets. Banks' maturity mismatch,

and the resulting interest rate risk, is an endogenous choice.

Second, a traditional view is that maturity mismatch is a way for banks to take advantage

of the term premium. But in general equilibrium this explanation is insu�cient, because

households are also able to take advantage of the term premium, for example, by investing in

long-term bonds. Our model does produce a term premium, and both banks and households

have incentives to take advantage of it. But in equilibrium the term premium simply re�ects

the fact that periods with high interest rates are bad for everyone because liquidity is ex-

pensive. Banks have a natural hedge against this risk because they earn the deposit spread,

so in equilibrium they take interest rate risk and earn the term premium, while households

pay the term premium to insure themselves against high interest rates.

Third, interest rate risk could be evidence of risk-seeking behavior, which regulators

should be concerned about. Our �ndings suggest an alternative, more benign, interpretation.

Banks are essentially insuring against the underlying risk in their deposit taking business.

Our model provides a quantitative benchmark to assess whether banks are engaging in risk-

seeking. Large deviations from this benchmark in either direction would be indicative of

risk-seeking. In particular, if banks did not expose their balance sheet to interest rates at

all (for instance by having no maturity mismatch) they would in fact be taking on a large

amount of risk due to the sensitivity of deposit spreads to interest rates. Our quantitative

results show no evidence of risk-seeking by the aggregate banking sector: the size of banks'

exposure to interest rate risk is consistent with a dynamic hedging strategy by highly risk

averse agents.1

More generally, our theory provides a lens to understand banks' risk exposures beyond

interest rate risk. It predicts that banks will choose exposure to risks that are correlated

with their investment opportunities. While in this paper we focus on banks' role as providers

1Of course, banks may very well be engaging in risk-seeking behavior on other dimensions. Also, the
aggregate evidence does not rule out risk-seeking by individual banks.
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of liquidity, banks are also involved in the origination and collection of loans and earn the

spread between risky and safe bonds. The same logic implies that they should be willing to

take losses when this spread goes up because they expect a higher return on wealth looking

forward. In fact, Begenau et al. (2015) report that banks are highly exposed to credit-spread

risk: they face large losses when the spread between BBB and safe bonds rises. In contrast,

when we add TFP shocks to the model, we �nd that these are shared proportionally by

banks and households. Our model therefore provides a theory not only of how much, but

also what type of risk banks take.

Our paper �ts into the literature that studies the role of the �nancial sector in the prop-

agation and ampli�cation of aggregate shocks (Brunnermeier and Sannikov (2014), He and

Krishnamurthy (2011), He and Krishnamurthy (2012), Di Tella (2017), Gertler and Kiyotaki

(2015)). Relative to this literature, the main innovation in our paper is that we model banks

as providers of liquidity through deposits. This allows us to study the role of the banking

sector in the transmission of monetary policy. An important question in this literature is

why the �nancial sector is so exposed to certain aggregate shocks. Our approach has in

common with Di Tella (2017) that we allow complete markets; the equilibrium allocation of

aggregate risk re�ects agents' dynamic hedging of investment opportunities. The economics,

however, are very di�erent. Explicitly modeling the banking business allows us to understand

banks' dynamic hedging incentives, which are di�erent from other �nancial institutions, and

to assess them quantitatively.

An important ingredient of the mechanism is that the equilibrium spread between illiquid

bonds and deposits is increasing in the nominal interest rate. We �nd this stylized fact is

borne out by the empirical evidence. In our data, a 100 bp increase in interest rates is

associated with a 66 bp increase in the deposit spread (our model produces 62 bp). This has

been observed before. Hannan and Berger (1991) and Driscoll and Judson (2013) attribute

it to a form of price stickiness; Drechsler et al. (2017) attribute it to imperfect competition

among bank branches; Yankov (2018) attributes it to search costs. Nagel (2016) makes a

related observation: the premium on other near-money assets (besides banks deposits) also

co-moves with interest rates. He attributes this, as we do, to the substitutability between

money and other liquid assets. Krishnamurthy and Vissing-Jorgensen (2015) document a

negative correlation between the supply of publicly issued liquid assets and the supply of

liquid bank liabilities, also consistent with their being substitutes. Begenau and Landvoigt

(2016) study substitution between bank deposits and shadow bank liabilities. We choose the

simplest possible speci�cation to capture this: substitution between physical currency and
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deposits, but this literature suggests that the phenomenon is broader.

There is also a large theoretical literature studying the nature of bank deposits (Diamond

and Dybvig (1983), Diamond and Rajan (2001), etc.) and money (Kiyotaki and Wright

(1989), Lagos and Wright (2005), etc.). We make no contribution to this literature, and

simply assume that currency and deposits are substitutes in the utility function. Relative to

this literature, the contribution of our work is to derive the implications for equilibrium risk

management in a model where the underlying risk is modeled explicitly. It is worth stressing

that there is no necessary link between liquidity provision via maturity transformation and

exposure to interest rate risk. A bank could, for example, issue demand deposits backed by

illiquid, long-term, variable rate loans: maturity transformation without interest rate risk.

Interest rate swaps are another way of achieving the same outcome.

Other studies have looked at di�erent measures of banks' interest rate risk exposure.

Drechsler et al. (2018) focus on book net interest margins and show that they almost don't

respond to interest rates, a �nding that our model replicates. Ho�mann et al. (2018) propose

also looking at a marked-to-market balance sheet, but where (unlike in our exercise) deposits

are also marked to market, taking into account how deposit rates co-move with interest rates.

By this measure, the average bank is not exposed to interest rate risk, although there is

cross-sectional heterogeneity. English et al. (2018) use high-frequency data around FOMC

announcements to study how bank stock prices react to unexpected changes in the level and

slope of the yield curve, and �nd that bank stocks fall after interest rate increases. Paul

(2020) extends this analysis by decomposing the slope of the yield curve into an expectations

term and a term premium term.

Also relatedly, Rampini et al. (2015) provide an alternative explanation for why banks

fail to hedge the exposure to interest rate risk that arises from their traditional business.

They argue that collateral-constrained banks are willing to give up hedging to increase

investment, and provide empirical evidence showing that banks who su�er �nancial losses

consequently reduce their hedging. Our model explicitly abstracts from these considerations

in the sense that all banks are equally constrained and never face a tradeo� between hedging

and investment. Gomez et al. (forthcoming) show cross-sectional evidence that exposure to

interest rate risk has consequences for bank lending. Haddad and Sraer (2019) propose a

measure of banks' exposure to interest rate risk and �nd that it is positively correlated with

the term premium.
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2 The Model

Preferences and technology. Time is continuous. There is a �xed capital stock k which

produces a constant �ow of consumption goods yt = ak. There are two types of agents:

households and bankers, a continuum of each. Both have identical Epstein-Zin preferences

with intertemporal elasticity of substitution equal to 1, risk aversion γ and discount rate ρ:

Ut = Et
[� ∞

t

f (xs, Us) ds

]
with

f (x, U) = ρ (1− γ)U

(
log (x)− 1

1− γ
log ((1− γ)U)

)
The good x is a Cobb-Douglas composite of consumption c and liquidity services from money

holdings m:

x (c,m) = cβm1−β (1)

Money itself is a CES composite of real currency holdings h (provided by the government)

and real bank deposits d, with elasticity of substitution ε:2

m (h, d) =
(
α

1
εh

ε−1
ε + (1− α)

1
ε d

ε−1
ε

) ε
ε−1

(2)

Formulation (2) captures the idea that both currency and deposits are used in transactions,

so they both provide liquidity services. Substitution between these types of money will

determine the behavior of deposit interest rates.

Currency and deposits. The government supplies nominal currency H, following an

exogenous stochastic process
dHt

Ht

= µH,tdt+ σH,tdBt

where B is a standard Brownian motion. The process B drives equilibrium dynamics. The

government distributes or withdraws currency to and from agents through lump-sum trans-

fers or taxes.

Deposits are issued by bankers. This is in fact the only di�erence between bankers and

households. Deposits pay an equilibrium nominal interest rate id and also enter the utility

2Throughout, uppercase letters denote nominal variables and their corresponding lowercase letter are real
variables. Hence h ≡ H

p and d ≡ D
p where p is the price of consumption goods in terms of currency, which

we take as the numeraire.
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function according to equation (2). The amount of deposits bankers can issue is subject to

a leverage limit. A banker whose individual wealth is n can issue deposits dS up to

dS ≤ φn (3)

where φ is an exogenous parameter. Constraint (3) may be interpreted as either a regulatory

constraint or a level of capitalization required for deposits to actually have the liquidity

properties implied by (2). This constraint prevents bankers from issuing an in�nite amount

of deposits, and makes their balance sheets important for the economy.

Monetary policy. The government chooses a path for currency supply H to implement

the following stochastic process for the nominal interest rate i on short-term, safe but illiquid

bonds:

dit = µi (it) dt+ σi (it) dBt (4)

where the drift µi (·) and volatility σi (·) are functions of i. Shocks B are our representation

of monetary shocks, and they are the only source of risk in the economy.

There is more than one stochastic process H that will result in (4). Let

dpt
pt

= µp,tdt+ σp,tdBt

be the stochastic process for the price level (which is endogenous). We assume that the

government implements the unique process H such that in equilibrium (4) holds and σp,t = 0.

Informally, this means that monetary shocks a�ect the rate of in�ation µp but the price level

moves smoothly.

Markets. There are complete markets where bankers and households can trade capital

and contingent claims. We denote the real price of capital by q, the nominal interest rate by

i, the real interest rate by r, and the price of risk by π (so an asset with exposure σ to the

process B will pay an excess return σπ). All these processes are contingent on the history

of shocks B.

The total real wealth of private agents in the economy includes the value of the capi-

tal stock qk, the real value of outstanding currency h and the net present value of future

government transfers and taxes, which we denote by g. Total wealth is denoted by ω:

ω = qk + h+ g
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Total household wealth is denoted by w and total bankers' wealth is denoted by n, so

n+ w = ω (5)

and we denote by z ≡ n
ω
the share of the aggregate wealth that is owned by bankers.

2.1 Discussion of assumptions

Risk averse bankers. The assumption that bankers are agents with preferences deserves

some discussion. After all, many banks are publicly held and their shares are owned by

diversi�ed outside investors. Without any frictions, Modigliani-Miller implies that banks'

exposure to risk is undetermined. Instead, bankers in this model represent bank insid-

ers�management and board members�who control the bank and have an undiversi�ed

stake through share ownership or incentive contracts. This type of incentive scheme is

widespread. He and Krishnamurthy (2014) report that insiders hold around 20% of banks'

equity.3 Di Tella and Sannikov (2016) show that the combination of a retained equity stake

and a leverage constraint implement the optimal dynamic incentive contract when agents

have access to hidden savings. Here we use a reduced-form approach and take bankers' lack

of diversi�cation as given. We purposefully assume that bankers and households have the

same preferences, so the mechanism that governs risk exposure in the model does not depend

on di�erential attitudes towards risk.

Money and monetary policy. We model money in a highly stylized way, with a simple

�currency and deposits in the utility function� speci�cation. In addition, we assume the

market for deposits is perfectly competitive, but bankers are limited in their ability to sup-

ply deposits by the leverage constraint. This prevents them from competing away deposit

spreads, e�ectively acting like market power for bankers as a whole. Our objective is not to

develop a theory of money nor to account for all features of deposit contracts or the deposit

market, but rather to write down the simplest framework where banks provide liquidity and

deposit spreads increase with the nominal interest rate.

In this model there is no real reason for monetary policy to do anything other than follow

the Friedman rule.4 The choice to model random monetary policy as the only source of risk

3Notice, however, that the size of insider's equity stake is not itself important, because the problem is
linear. What matters is that bank pro�ts are a large, undiversi�ed share of insiders' wealth, not that insiders
keep a large fraction of those pro�ts.

4The CES formulation (2) implies that currency demand is unbounded at i = 0 but the Friedman rule is
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in the economy is obviously not driven by realism but by theoretical clarity. In Section 7 we

instead look at a variant of the model where monetary policy follows an in�ation targeting

rule and only responds to real shocks that a�ect the equilibrium real interest rate, and show

that our results also hold in this more realistic monetary policy regime.

Complete markets. The assumption of complete markets is theoretically important. We

want to avoid mechanically assuming the result that banks are exposed to interest rate

risk.5 In our model, banks are perfectly able to issue deposits without any exposure to

interest rate risk, for example by investing only in short term or adjustable-rate assets, or

by trading interest rate swaps. More generally, banks are completely free to take any risk

exposure, independently of their deposit supply. Relatedly, while we specify deposit contracts

in nominal terms, this is without loss of generality because banks could trade in�ation swaps.

One possible concern is that in practice households may not be able to trade interest rate

swaps or other derivatives that allow them to share interest rare risk with bankers. However,

households can share interest rate risk with bankers by adjusting the maturity of their assets

and liabilities, or using adjustable rate debt.

We also don't make any assumptions on the kind of assets banks hold: both banks and

households can hold capital. In our model banks are not particularly good at holding long

term �xed rate nominal loans, or any other security. Finally, with complete markets it is

not necessary to specify who receives government transfers when the supply of currency

changes: all those transfers are priced in and included in the de�nition of wealth. Notice

also that while banks can go bankrupt (if their net worth reaches zero), this never happens

in equilibrium. Continuous trading allows them to scale down as their net worth falls and

always avoid bankruptcy.

3 Equilibrium

Households' problem. Starting with some initial nominal wealth W0, each household

solves a standard portfolio problem:

max
W,x,c,h,d,σW

U (x)

optimal in a limiting sense.
5Even though markets are complete, there is no claim that the competitive allocation is e�cient. Bankers'

ability to produce deposits is limited by their wealth, which involves prices. A social planner would want to
manipulate these prices to relax the constraint.
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subject to the budget constraint:

dWt

Wt

=
(
it + σW,tπt − ĉt − ĥtit − d̂t

(
it − idt

))
dt+ σW,tdBt

Wt ≥ 0

(6)

and equations (1) and (2). A hat denotes the variable is normalized by wealth, i.e. ĉ = pc
W

=
c
w
. The household obtains a nominal return it on its wealth. It incurs an opportunity cost

it on its holdings of currency. It also incurs an opportunity cost
(
it − idt

)
on its holdings

of deposits. Let st = it − idt denote the spread between the deposit rate and the market

interest rate. Furthermore, the household chooses its exposure σW to the monetary shock

and obtains the risk premium πσW in return.

Constraint (6) can be rewritten in real terms as

dwt
wt

=
(
rt + σw,tπt − ĉt − ĥtit − d̂tst

)
dt+ σw,tdBt (7)

where rt = it − µp,t is the real interest rate.

Bankers' problem. Bankers are like households, except that they can issue deposits

(denoted dS) up to the leverage limit and earn the spread st on these. The banker's problem,

expressed in real terms, is:

max
n,x,c,h,d,dS ,σn

U (x)

subject to:
dnt
nt

=
(
rt + σn,tπt − ĉt − ĥtit +

(
d̂St − d̂t

)
st

)
dt+ σn,tdBt

d̂St ≤ φ

nt ≥ 0

(8)

and equations (1) and (2).

Equilibrium de�nition Given an initial distribution of wealth between households and

bankers z0 and an interest rate process i, a competitive equilibrium is

1. a process for the supply of currency H

2. processes for prices p, id, q, g, r,π

3. a plan for the household: w, xh, ch, mh, hh, dh, σw
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4. a plan for the banker: n, xb, cb, mb, hb, db, dS, σn

such that

1. Households and bankers optimize taking prices as given and w0 = (1− z0) (q0k + h0 + g0)

and n0 = z0 (q0k + h0 + g0)

2. The goods, deposit and currency markets clear:

cht + cbt = ak

dht + dbt = dSt

hht + hbt = ht

3. Wealth holdings add up to total wealth:

wt + nt = qtk + ht + gt

4. Capital and government transfers are priced by arbitrage:

qt = EQt
[
a

� ∞
t

exp

(
−
� s

t

rudu

)
ds

]
(9)

gt = EQt
[� ∞

t

exp

(
−
� s

t

rudu

)
dHs

ps

]
(10)

where Q is the equivalent martingale measure implied by r and π.

5. Monetary policy is consistent

it = rt + µp,t

σp,t = 0

Aggregate state variables. We look for a recursive equilibrium in terms of two state

variables: the interest rate i (exogenous), and bankers' share of aggregate wealth z (endoge-

nous) which is important because it a�ects bankers' ability to issue deposits and provide

liquidity. Using the de�nition of z = n
n+w

, we obtain a law of motion for z from Ito's lemma
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and the budget constraints:

dzt
zt

=

(
(1− zt)

(
(σn,t − σw,t)πt + φst − (x̂bt − x̂ht )χt + σw,t(σw,t − σn,t)

)
− zt

1− zt
σ2
z,t

)
︸ ︷︷ ︸

≡µz,t

dt

(11)

+ (1− zt) (σn,t − σw,t)︸ ︷︷ ︸
≡σz,t

dBt

where χ is the minimized cost of the bundle good x, de�ned by equation (13) below. The

law of motion of i is given by (4). All other equilibrium objects will be functions of i and z.

Static Decisions and Hamilton-Jacobi-Bellman equations. We study the banker's

problem �rst. It can be separated into a static problem (choosing c, m, h and d given x)

and a dynamic problem (choosing x and σn).

Consider the static problem �rst. Given the form of the aggregators (1) and (2), we

immediately get that the minimized cost of one unit of money m is given by ι:

ι(i, s) =
(
αi1−ε + (1− α) s1−ε

) 1
1−ε (12)

the minimized cost of one unit of the good x is given by χ:

χ (i, s) = β−β
(
ι(i, s)

1− β

)1−β

(13)

and the static choices of c, m, h and d are given by:

c

x
= βχ (14)

m

x
= (1− β)

χ

ι
(15)

h

m
= α

(ι
i

)ε
(16)

d

m
= (1− α)

( ι
s

)ε
(17)

Turn now to the dynamic problem. In equilibrium it will be the case that id < i so
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bankers' leverage constraint will always bind. This means that (8) reduces to

dnt
nt

= (rt + σn,tπt − χ (ii, st) x̂t + φst)︸ ︷︷ ︸
≡µn,t

dt+ σn,tdBt (18)

Given the homotheticity of preferences and the linearity of budget constraints the problem

of the banker has a value function of the form:

V b
t (n) =

(ξtn)1−γ

1− γ

ξt captures the value of the banker's investment opportunities, i.e. his ability to convert

units of wealth into units of lifetime utility, and follows the law of motion

dξt
ξt

= µξ,tdt+ σξ,tdBt

where µξ,t and σξ,t are equilibrium objects.

The associated Hamilton-Jacobi-Bellman equation is

0 = max
x,σn,µn

f
(
x, V b

t

)
+ Et

[
dV b

t

]
Using Ito's lemma and simplifying, we obtain:

0 = max
x̂,σn,µn

ρ (1− γ)
(ξtnt)

1−γ

1− γ

[
log (x̂nt)−

1

1− γ
log
(
(ξtnt)

1−γ)]
+ ξ1−γt n1−γ

t

(
µn + µξt −

γ

2
σ2
n −

γ

2
σ2
ξt + (1− γ)σξtσn

)
s.t. µn = rt + σnπt + φst − x̂χt

The household's problem is similar. The only di�erence is that the term φst is absent

from the budget constraint. The value function has the form

V h
t (w) =

(ζtw)1−γ

1− γ

where
dζt
ζt

= µζ,tdt+ σζ,tdBt
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and the HJB equation is

0 = max
x̂,σw,µw

ρ (1− γ)
(ζtwt)

1−γ

1− γ

[
log (x̂wt)−

1

1− γ
log
(
(ζtwt)

1−γ)]
+ ζ1−γt w1−γ

t

(
µw + µζt −

γ

2
σ2
w −

γ

2
σ2
ζt + (1− γ)σζtσw

)
s.t. µw = rt + σwπt − x̂χt

Total wealth, spreads and currency holdings. The �rst order conditions for x̂ in the

banker and household problem are both given by:

x̂t =
ρ

χt
(19)

Since the intertemporal elasticity of substitution is 1, both bankers and households spend

their wealth at a constant rate ρ independent of prices.

Using (19) and the goods market clearing condition we can solve for total wealth:

ω =
ak

βρ
(20)

Hence in this economy total wealth will be constant. This follows because the Cobb-Douglas

form of the x aggregator implies that consumption is a constant share of spending (the rest

is liquidity services), the rate of spending out of wealth is constant and total consumption

is constant and equal to ak.

Using (15) and (17), the fact that deposit supply is φn and (19), the deposit market

clearing condition can be written as:

ρ(1− α)(1− β)ι(i, s)ε−1s−ε = φz (21)

Solving (21) for s implicitly de�nes bank spreads s (i, z) as a function of i and z. It's easy to

show from (21) that the spread is increasing in i as long as ε > 1. If currency and deposits are

close substitutes, an increase in i, which increases the opportunity cost of holding currency,

increases the demand for deposits, so the spread must rise to clear the deposit market.

Likewise, (21) implies that the spread is decreasing in z. If bankers have a larger fraction

of total wealth, they can supply more deposits so the spread must fall to clear the deposit

market.

Finally, using (15), (16), (19) and (20), the currency market clearing condition simpli�es
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to:

h =
ak

β
α(1− β)ι(i, s)ε−1i−ε (22)

Having solved for s(i, z), (22) immediately gives the level of real currency holdings h (i, z).

Risk sharing. The �rst order conditions for bankers' choice of σn and households' choice

of σw are, respectively:

σn,t =
πt
γ

+
1− γ
γ

σξ,t (23)

σw,t =
πt
γ

+
1− γ
γ

σζ,t (24)

The �rst term in each of (23) and (24) relates exposure to B to the risk premium π; this is

the myopic motive for choosing risk exposure: a higher premium will induce higher exposure.

The second term captures the dynamic hedging motive, which depends on an income and

a substitution e�ect. If the agent is su�ciently risk averse (γ > 1), then the income e�ect

dominates. The agent will want to have more wealth when his investment opportunities

(captured by ξ and ζ respectively) are worse.

Figure 1 illustrates the basic dynamic hedge from the point of view of a banker, based on

the calibrated model. It plots the evolution of a banker's net worth after a 100 bp movement

in interest rates (up or down) starting from the steady state, under two possible strategies.

The dotted line represents a zero exposure strategy, σn = 0. The banker's net worth is

not a�ected by the shock, but it's return on wealth is because the deposit spread moves

with the interest rate. So after an increase in interest rates the banker's net worth starts

to grow; after a fall in interest rates it starts to shrink. As a result, the banker's net worth

is dynamically very volatile, and therefore so is his consumption. In contrast, the solid line

represents the optimal strategy. The bank realizes a �nancial loss when interest rates go

up, which is subsequently made up with higher returns. In exchange, after interest rates go

down the bank realizes a �nancial gain. Overall, the banker's net worth and consumption is

less volatile.
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Figure 1: Impulse response of bank net worth to a 100 bp change in interest rates, with and
without dynamic hedging.

From (23) and (24) we obtain the following expression for σz:
6

σz,t = (1− zt)
1− γ
γ

(σξ,t − σζ,t) (25)

The object σz measures how the bankers' share of wealth responds to the aggregate shock.

The term σξ,t − σζ,t in (25) captures the relative sensitivity of bankers' and households'

investment opportunities to the aggregate shock. How this di�erential sensitivity feeds into

changes in the wealth share depends on income and substitution e�ects. If agents are highly

risk averse (γ > 1) they will shift aggregate wealth towards bankers after shocks that worsen

their investment opportunities relative to households', i.e. ξ
ζ
goes down. Notice that the

premium π does not appear in equation (25). Households and bankers are equally able to

earn any term premium, and have the same incentives to do so, so the level of the premium

does not a�ect their relative exposure.

It is worth stressing that we cannot understand banks' risk taking behavior in isolation.

Some other agent needs to take the other side (households in our model), so what matters is

how monetary shocks a�ect their investment opportunities relative to households, as equa-

tion (25) shows. In other words, it is perfectly possible that neither banks nor households

6At this level of generality, this condition for aggregate risk sharing is analogous to the one in Di Tella
(2017). However, the economic mechanism underlying the response of relative investment opportunities to
aggregate shocks is speci�c to each setting.
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prefer losses after interest rates increases (liquidity is scarcer and the economic environment

therefore worse for all agents), but banks dislike this less than households.

We can use Ito's lemma to obtain an expression for σξ − σζ :

σξ − σζ =

(
ξz
ξ
− ζz
ζz

)
σzz +

(
ξi
ξ
− ζi
ζ

)
σi (26)

Notice that σz enters the expression for σξ − σζ : the response of relative investment oppor-
tunities to aggregate shocks depends in part on aggregate risk sharing decisions as captured

by σz. This is because in equilibrium investment opportunities depend on the distribution

of wealth z, so we must look for a �xed point. Replacing (26) into (25) and solving for σz:

σz =
(1− z)1−γ

γ

(
ξi
ξ
− ζi

ζ

)
1− z(1− z)1−γ

γ

(
ξz
ξ
− ζz

ζ

)σi (27)

Implementation. With complete markets, there is more than one way to attain the ex-

posure dictated by equations (23) and (24). As long as σn is always negative the desired

exposure can be implemented with a �traditional� banking balance sheet: long-term nomi-

nal assets, deposits as the only liability, and no derivatives. To be concrete, we'll imagine

a banker's balance sheet with net worth n, φn deposits as the only liability and (1 + φ)n

nominal zero-coupon bonds that mature in T years as the only asset.

In the model, the price pB (i, z;T ) of a zero-coupon nominal bond of maturity T obeys

the following partial di�erential equation:

pBi µi + pBz µzz + 1
2

[
pBiiσ

2
i + pBzzσ

2
zz

2 + 2pBizσiσzz
]

pB
− pBT
pB︸ ︷︷ ︸

Nominal Capital gain

−i = π
pBi σi + pBz σzz

pB︸ ︷︷ ︸
Risk Premium

(28)

with boundary condition pB (i, z, 0) = 1 for all i, z. We use equation (28) to price bonds of

all maturities at every point in the state space. The exposure to B of a traditional bank

whose assets have maturity T is

σn = (1 + φ)σpB

= (1 + φ)
pBi (i, z;T )σi + pBz (i, z;T )σzz

pB (i, z;T )
(29)

We then �nd T (i, z) for each point in the state space by solving (29) for T , taking σn
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from the equilibrium of the model. We also consider an alternative implementation with

geometric-coupon bonds.

4 Calibration

We make two minor changes to the baseline model to obtain quantitative results. First, we

let productivity follow a geometric Brownian motion:

dat
at

= µadt+ σ̃adB̃t

where B̃t is a standard Brownian motion, independent of Bt.
7 The economy scales with a

so this change does not introduce a new state variable. The main e�ect of this change is

to lower the equilibrium real interest rate. Second, in order to obtain a stationary wealth

distribution we add tax on bankers' wealth at a rate τ that is redistributed to households as

a wealth subsidy. This tax can represent the administrative cost of running a bank.

We solve for the recursive equilibrium by mapping it into a system of partial di�erential

equations for the equilibrium objects and solve them numerically using a �nite di�erence

scheme. Appendix A explains the modi�cations to the model and the numerical procedure

in detail.

Parameter values. Table 1 summarizes the parameter values we use. We set the risk

aversion parameter γ = 10, consistent with the asset pricing literature (see for instance

Bansal and Yaron (2004)). We also perform a sensitivity analysis with di�erent values of

γ. EIS is 1 in our setting, in the interest of theoretical clarity and tractability, as explained

above. It is also close to values used in the asset pricing literature. We choose the rest of the

parameter values so that the model economy matches some key features of the US economy.

The details of the data we use are in Appendix D.

We assume interest rates follow the Cox et al. (1985) stochastic process, so that µi (i) =

−λ (i− ī) and σi (i) = σ
√
i. The concept of i in the model corresponds to a short term

rate on an instrument that does not have the liquidity properties of bank deposits. We

take the empirical counterpart to this to be the 6-month LIBOR rate in US dollars. We

choose ī = 3.5% to match the average LIBOR rate between 1990 and 2014. Estimating the

7We assume that monetary policy is carried out so that the price level is also not sensitive to B̃, i.e.
σ̃p = 0.
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Parameter Meaning Value
γ Risk aversion 10
ī Mean interest rate 3.5%
σ Volatility of i 0.044
λ Mean reversion of i 0.056
ρ Discount rate 0.055
φ Leverage 8.77
α CES weight on currency 0.95
β Cobb-Douglas weight on consumption 0.93
ε Elasticity of substitution between currency and deposits 6.6
µa Average growth rate of TFP 0.01
σ̃a Volatility of TFP 0.073
τ Tax on bank equity 0.195

Table 1: Parameter values

persistence parameter λ in a short sample has well known econometric di�culties (Phillips

and Yu 2009). This parameter is very important in the model, for two related reasons.

First, more persistence means that a change in interest rates has a long-lasting e�ect on

bank spreads, which drive bankers' relative desire to hedge. Second, more persistence means

that a change in interest rates will have a large e�ect on the prices of long-term bonds, so the

maturity T needed to implement any desired σn shortens. We set λ = 0.056 and σ = 0.044 to

match the standard deviation of the LIBOR rate (2.4%) and 10-year Treasury yields (1.8%)

for the period 1990-2014.

We use equation (20) to choose a value for the discount rate ρ. The Flow of Funds

reports a measure of aggregate wealth. To be consistent with our model which has no

labor, we adjust this measure by dividing by 0.35 (the approximate capital share of GDP)

in order to obtain a measure of wealth that capitalizes labor income. We then compute an

average consumption-to-adjusted-wealth ratio between 1990 and 2014, taking consumption

as consumption of nondurables and services from NIPA data. This results in ak
ω

= 5.1%,

which, given the value of β set below, leads to ρ = 0.055.

We use data on bank balance sheets from the Flow of Funds to set a value of the leverage

parameter φ. In the model there is only one kind of liquid bank liability (�deposits�) whereas

in reality banks have many type of liabilities of varying degrees of liquidity, so any sharp

line between �deposits� and �not deposits� involves a certain degree of arbitrariness. We

choose the sum of checking and savings deposits as the empirical counterpart of the model's

deposits, leaving out time deposits since these are less liquid and the spreads that banks
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obtain on them are much lower. We set φ = 8.77 to match the average ratio of deposits to

bank net worth between 1990 and 2014.

We construct a time series for z using data on banking sector net worth and total wealth

from the Flow of Funds (total wealth is divided by 0.35 as before to account for labor income).

The Flow of Funds data uses book values, which is the right empirical counterpart for n in

the model (market value of banks' equity includes the value of investment opportunities

which is not part of n). We then use the data from Drechsler et al. (2017) on interest rates

paid on checking and savings deposits and weight them by their relative volumes from the

Flow of Funds to obtain a time series for the average interest rate paid on deposits.8 We

subtract this from LIBOR to obtain a measure of spreads. We set β (the Cobb-Douglas

weight on consumption as opposed to money), α (the CES weight on currency as opposed

to deposits), and ε (the elasticity of substitution between currency and deposits) jointly to

minimize the sum of squared distances between the spreads predicted by equation (21), given

the measured time series for i and z, and the measured spreads. The data seem to prefer

very high values of α so we, somewhat arbitrarily, �x α = 0.95 (letting α take even higher

values does not improve the �t very much). Minimizing over β and ε leads to β = 0.93 and

ε = 6.6.

We set the growth rate of productivity µa = 0.01 and its volatility σ̃a = 0.073 for the

model to match the average real interest rate between 1990 and 2014, which was 1%. This

value of σ̃a is close to that used by He and Krishnamurthy (2012), who use σ̃a = 0.09.

Finally, we set the tax rate of bank capital to τ = 0.195 for the average value of z in

the model to match the average value in the data between 1990 and 2014, which is 0.56%.

Given φ = 8.77, this is equivalent to 2% of assets, equal to the administrative expenses ratio

reported by Drechsler et al. (2018).

Spreads. Since the behavior of deposit spreads plays a central role in the mechanism, it is

worth checking how our model accounts for them. Figure 2 shows the spread as a function

of i and z for our parameter values. As we know from equation (21), it is increasing in i

and decreasing in z. Furthermore, it is concave in i. When i is high, agents are already

holding very little currency, so further increases in i do not generate as much substitution

into deposits and therefore don't lead to large increases in spreads.

These properties of s (i, z) are consistent with the data. Table 2 shows the results of

regressing spreads on interest rates and banks' share of total wealth. The �rst column,

8The data ranges from 1999 to 2008. We thank Philipp Schnabl for kindly sharing this data with us.
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Figure 2: Spreads in the model as a function of i and z.
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Figure 3: Spreads in the data compared to spreads implied by the s (i, z) function given our
parameter values and the measured time series of i and z.
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without a quadratic term, shows that a one percentage point increase in LIBOR is associated

with a 66 basis points increase in bank spreads, while a one percentage point increase in

banks' share of total wealth is associated with a 99 basis points fall in bank spreads. The

second column, including a quadratic term, shows that there is indeed evidence that bank

spreads �atten out slightly as i increases.

(1) (2)
Constant 0.3% −0.3%

(0.22%) (0.44%)

i 0.66 0.98
(0.028) (0.17)

i2 − −4.07
(2.02)

z −0.99 −0.71
(0.25) (0.32)

R2 0.89 0.90
N 430 430

Note: The dependent variable is the spread. Newey and West (1987) standard errors are in parentheses.

Table 2: Spreads, interest rates and banks' share of aggregate wealth.

The model is able to match the time series behavior of spreads quite closely. Figure 3

compares the time series for s (i, z) produced by the model with the time series of measured

spreads from the Drechsler et al. (2017) data.

5 Exploring the Mechanism

In this section we describe, quantitatively, how the model works. Bankers' mark-to-market

net worth is exposed to interest rate risk as part of equilibrium risk-sharing. After an

increase in interest rates, bankers' net worth falls, which forces them to reduce their supply

of deposits, amplifying the e�ects of the monetary shock on the cost of liquidity.

Aggregate risk sharing. Bankers' mark-to-market net worth is highly exposed to move-

ments in interest rates. The top panels of Figure 4 show bankers' exposure. If the nominal

interest rate rises by 100 basis points, bankers' net mark-to-market net worth changes by σn
σi

percent. It is always negative, so banks face falls in net worth after an increase in nominal

interest rates. Quantitatively, the e�ect is quite large. At the mean levels of i and z, if

interest rates rise by 100 basis points, banks lose about 30% percent of their mark-to-market
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net worth. As discussed in Section 6, this magnitude is consistent with what we observe in

bank balance sheets.

To understand the mechanism, note that because aggregate wealth is insensitive to B,

σn = σz so movements in bankers' net worth and in their share of total net worth are

equivalent. We know from (21) that an increase in the nominal interest rate raises the

spread s. Since bankers earn this spread and households don't, bankers' relative investment

opportunities ξ
ζ
improve when the interest rate i rises, as shown in the middle-left panel of

Figure 4. Equation (25) implies that z must fall in response, which further raises the spread

s, amplifying the e�ect of monetary shocks on the cost of liquidity. As a result, bankers'

relative investment opportunities ξ
ζ
improve even more, as shown in the middle-right panel

of Figure 4, which ampli�es bankers' incentives to choose a negative σn (this is the reason

the denominator in equation (27) is less than one).

The hedging motive weakens at higher levels of i and z; σn
σi
is greater (in absolute value) for

low i and z. This re�ects the behavior of spreads. As shown in Figure 2, the spread �attens

out for higher i and z. As a result, relative investment opportunities are less sensitive to i

when i or z are high, so bankers choose lower exposure. To see the link between �attening

spreads and lower exposure, we re-solved the banker's problem replacing the equilibrium

s (i, z) by the linear form s (i, z) = 0.3%+0.66i−0.99z, which is the best linear approximation

to the data, as shown on Table 2. Since the sensitivity of spreads to i is constant in this

experiment, the banker's exposure σn
σi

is almost constant as a function of i and z.9

While bankers choose a large exposure to interest rate risk, TFP shocks B̃ are shared

proportionally by both banks and households: σ̃n = σ̃w = σ̃a. The reason for this is that

these TFP shocks don't a�ect the investment opportunities of banks relative to households,

so there is no relative hedging motive as in equation (26). Our theory therefore provides

not only an explanation for why banks are exposed to risk in general, but also why they are

exposed to interest rate risk in particular. A similar line of argument indicates that if banks

also earn a credit spread, dynamic hedging motives would explain why they choose to be

exposed to changes in this spread, as documented by Begenau et al. (2015).

Maturity mismatch. We can implement banks desired exposure to interest rate risk

σn with a traditional maturity-mismatched balance sheet as explained in Section 3. The

resulting maturity mismatch is shown on the third row of Figure 4. At the mean levels of i

and z, the maturity mismatch T needed to implement the desired exposure σn
σi

is 3.6 years.

9Available upon request.
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T is decreasing in both i and z. This re�ects the higher desired exposure when i and z are

low, which in turn results from the higher sensitivity of spreads to i in this region.10 Notice

that the increase in the desired maturity mismatch when interest rates are low may look like

�reaching for yield�, but it's precisely what risk averse agents should do to insure against

greater deposit spread risk.

Ampli�cation. The endogenous response of bankers' net worth to movements in interest

rates ampli�es the e�ect of monetary shocks on the cost of liquidity. Low net worth limits

bankers' ability to supply liquidity, and drives up the equilibrium spread on deposits. In

other words, equilibrium risk exposures imply that the quantity of deposits falls in response

to interest rate increases, as documented by Drechsler et al. (2017). As a result, an increase

in nominal interest rates has a direct e�ect on deposit spreads and an indirect e�ect through

weaker bank balance sheets z. We can decompose the response of spreads to monetary shocks

as follows:
σs
σi

=
∂s

∂i︸︷︷︸
Direct E�ect

+
∂s

∂z

σzz

σi︸ ︷︷ ︸
Indirect E�ect

If interest rates go up by 100 bp, the direct e�ect on the deposit spread is ∂s
∂i
× 100 bp, and

the indirect e�ect is ∂s
∂z

σzz
σi
×100 bp. In the calibrated model, the average (over the stationary

distribution) e�ect of a 100 bp increase in interest rates is an increase in deposit spreads of

77 bp. This is decomposed into a direct e�ect of interest rates of 62 bp and an indirect e�ect

through the the endogenous response of banker's net worth of 15 bp.11 Banks' exposure to

interest rate risk therefore ampli�es the e�ect of monetary shocks on deposit spreads by a

factor of 1.25 on average.

The endogenous ampli�cation is non-linear, however, as shown in Figure 5. The direct

e�ect of interest rates on deposit spreads is decreasing in both i and z because in both cases

currency becomes a smaller fraction of total liquidity. The strength of the indirect e�ect is

governed by two opposing forces. First, when i or z is high, deposits are a larger fraction

of total liquidity, so changes in their supply have a bigger e�ect on spreads. On the other

hand, banks' hedging motive weakens for high i or z, so z itself is less sensitive to i. On

balance, the indirect e�ect is increasing in i and slightly decreasing in z. The ampli�cation

10T depends on both the desired exposure σn and the sensitivity of bond prices σpB for each maturity;
the latter does vary with i but not by much, so the movement in T re�ects mostly the movement in σn

σi
.

11The direct e�ect can be compared directly to the OLS coe�cient on i from Table 2, which is 66 basis
points. The indirect e�ect can be compared to the OLS coe�cient on z, which is −99 basis points, times
the average value of σzz

σi
, which is −0.16.
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factor is computed simply as the ratio of the total e�ect to the direct e�ect, and is increasing

in both i and z. For example, when nominal interest rates are 5.5% and z = 1%, a 100 bp

increase in interest rates has a total e�ect on deposit spreads of 57 bp, of which the direct

e�ect of interest rates is 35 bp and the indirect e�ect through banks' balance sheets is 22 bp.

The ampli�cation factor in this case is 1.62.

Dynamics. Agents' endogenous exposure to interest rate risk leads to the equilibrium

dynamics shown in Figure 6. The upper panels show the drift of bankers' share of aggregate

wealth z and the bottom panels its sensitivity to B. The drift of z is positive for small z

and high i, because in this region the spread is high.

On impact, banks take losses when interest rates rise. Since total wealth ω is �xed, their

share of aggregate wealth z falls. This is re�ected in the bottom panels of Figure 6, where σz

is negative. Over time, higher interest rates mean higher spreads and bank balance sheets

strengthen. The resulting stationary distribution is shown in Figure 7.

6 Quantitative Evaluation

In this section we test the model by comparing its quantitative predictions to the empirical

evidence. The model can successfully account for the level, time pattern, and cross-sectional

pattern of banks' maturity mismatch.

Measuring banks' maturity mismatch. Following the methodology of English et al.

(2018), we construct an empirical measure of banks' maturity gap. Using Call Reports data,

we record the contractual maturity (in case of �xed-rate contracts) or repricing maturity (in

case of �oating-rate contracts) for each line of the balance sheet, take weighted averages of

assets and liabilities, and subtract. We then compute an aggregate measure by taking the

asset-weighted median across banks for each quarter.12 See Appendix D for details.

Time-series evidence. The model closely matches the empirical behavior of banks' ma-

turity mismatch. Figure 8 compares the time series for T predicted by the model with the

12The maturity gap measures the on-balance-sheet exposure, not the exposure through derivatives. English
et al. (2018) show that for the majority of banks, this makes no di�erence since they do not trade derivatives.
However, the evidence in Begenau et al. (2015) indicates that, especially for the largest banks, derivatives
amplify interest rate exposure, so just measuring the on-balance-sheet positions underestimates the maturity
mismatch. On the other hand, the option to re�nance �xed-rate mortgages lowers their e�ective maturity.
Using the contractual maturity therefore overestimates the maturity mismatch.
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Figure 8: Maturity mismatch of banks in the data and in the model.

data. For the model values, we simply plug in the measured time series of i and z into the

function T (i, z) produced by the model. This is a way to test the goodness of �t of the

function T (i, z) over the range of i and z in the data. The average T in the data is 4.4 years;

in the model, it's 3.9 years.13,14 The model is less successful at the beginning of the �nancial

crisis in 2007, where it underpredicts T .

The model also reproduces the time pattern in the data. The correlation between the

model and the data is 0.77. To understand this time pattern, recall from Figure 4 that

the model predicts that banks' maturity mismatch T should be larger during periods of low

interest rates because deposits spreads are more sensitive to movements in interest rates. This

basic correlation is borne out by the data. Table 3 shows the results of an OLS regression of

banks' maturity mismatch T on i and z. A 100 bp increase in i is associated with decrease

in T of 0.12 years; a 100 bp increase in z is associated with a decrease in T of 0.019 years.

13T and σn

σi
are alternative metrics for risk exposure. For example, at the mean of the stationary distri-

bution, where the model predicts T = 3.6, a 100 bp increase in interest rates results in a 3.2% fall in the
price of a 3.6-year bond. Ampli�ed by leverage of φ = 8.77, this results in a fall in bank net worth of 31%,
consistent with Figure 4.

144.4 years is the time-series average of the asset-weighted cross-sectional median. The time-series average
of the asset-weighted cross-sectional mean is 4.5.
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Higher maturity mismatch during periods of low interest rates may look like �reaching for

yield�. But it's precisely what the dynamic hedging mechanism calls for.

(1)
Constant 4.4

(0.1)

i −11.7
(6.8)

z −1.9
(0.4)

R2 0.63
N 78

Note: The dependent variable is the asset-weighted cross-sectional median maturity mismatch T . Newey
and West (1987) standard errors are in parentheses. i and z are demeaned.

Table 3: Maturity mismatch of banks, interest rates, and banks' share of aggregate wealth.

Cross-sectional evidence. We can use cross-sectional data to further test the mechanism.

Although the model features banks with identical deposit-to-net-worth ratios, its logic implies

that banks with a larger deposit base (relative to net worth) should have a larger maturity

mismatch in order to hedge their larger exposure. This prediction is borne out by the cross-

sectional data.

First we compute the quantitative relationship between the deposit-to-net-worth ratio φ

and the maturity mismatch T predicted by the model. We re-solve the individual banker's

problem for di�erent values of the deposit-to-net-worth ratio φ, taking the model's equilib-

rium prices as given. For each value of φ we then compute the time series of the maturity

mismatch T as above. We then compute a time-series average T for each φ. We �nd that

a unit increase in φ (i.e. increasing deposits by one time net worth) is associated with an

increase in average T of 0.42 years. The relationship is almost linear in the range φ ∈ [4, 13].

We then measure the same relationship in the data. For each bank in our sample, we

compute the time-series average of the maturity mismatch and the deposit-to-net-worth

ratio. We then run an (asset-weighted) median regression of the maturity mismatch on the

deposit-to-net-worth ratio, on the cross-section of banks. The results are reported in Table

4. A unit increase in the deposit-to-net-worth ratio is associated with an increase in the

weighted median maturity mismatch of 0.43 years, which coincides almost exactly with the

quantitative prediction of the model. Table 4 also reports the results of an OLS regression;

a one unit increase in the deposit-to-net-worth ratio is associated with an increase in the

weighted average maturity mismatch of 0.26 years. The di�erence between the median and
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Median OLS
Constant 2.6 3.6

(0.0023) (0.063)

φ 0.43 0.26
(0.0004) (0.013)

N 10, 351 10, 351
Note: The dependent variable is the time-averaged maturity mismatched. Standard errors are in parentheses.

Table 4: Maturity mismatch of banks and deposit-to-net-worth ratio

OLS regressions is evidence that the distribution of the maturity mismatch is more right-

skewed for banks with higher deposit-to-net-worth ratio. Our model cannot speak to this

interesting fact, since we assume all banks with the same deposit-to-net-worth ratio to be

identical.

Term premium. A traditional argument for why banks take interest rate risk is that

they do so to take advantage of the term premium. In general equilibrium, this argument is

incomplete: the fact that there is a term premium cannot explain why banks choose to earn

it and households choose to pay it. Households could earn the term premium just as easily

as bankers (for example, by investing in long-term bonds), but in equilibrium choose not to.

Our model does produce a term premium, and banks do earn it, but it does not play any

role in determining their risk exposure. The equilibrium term premium re�ects that states

of the world with high interest rates are bad for everyone because liquidity, which is part of

the consumption bundle, is expensive. Bankers' deposit-taking business is a natural hedge,

so high interest rate states of the world are relatively better for bankers than for households.

This creates a relative hedging motive, so banks end up taking risk and earning the premium

while households are willing to pay the premium to partially insure themselves against high

interest rates.

This is re�ected in FOCs (23) and (24). The premium π does appear on both of these

equations: both agents want to take advantage of the term premium. But the premium is

endogenous, the market has to clear. As a result π drops out of equation (25) for σz and

only the relative hedging motive matters.

Quantitatively, the premium in the model is signi�cant but lower than in the data. We

can compute the excess return on a long term nominal bond simply as

ER = σpBπ
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Piazzesi and Schneider (2007) report an average excess return on 5-year treasuries of 99 basis

points. In the model, this excess return is 22 basis points, so the forces in the model explain

about a �fth of the term premium.15

The role of risk aversion and risk-seeking. Since the mechanism in this model is

related to dynamic hedging, and more broadly to asset pricing, we use a value for the

coe�cient of relative risk aversion γ = 10 in the range that has been found useful in matching

asset pricing data, as in Bansal and Yaron (2004) or Bansal et al. (2009). However, there is

no consensus in the literature on the appropriate value for this parameter, and lower values

are more typical in macroeconomic models. We therefore perform a sensitivity analysis with

γ = 3 , γ = 6 and γ = 20. In each case, we set the rest of the parameter values to match

the same targets and re-compute the time series for T predicted by the model. The results

are shown in Table 5. Even with γ = 3, we get a signi�cant maturity mismatch T = 2.6.

Note that the maturity mismatch increases with risk aversion: banks take interest rate risk

to insure against their stochastic investment opportunities. The e�ect is therefore stronger

the higher risk aversion is. This can be seen in equation (25) (in particular, with γ = 1 we

would get T = 0).

A widespread concern among regulators is banks' potentially risk-seeking behavior. Our

quantitative results show no evidence of risk-seeking by the aggregate banking sector, at least

with respect to interest rate risk. Banks' exposure to interest rate risk is consistent with

a dynamic hedging strategy by highly risk averse agents. The main insight is that banks

have a large underlying exposure to movements in interest rates arising from the deposit

spread. If banks did not expose their balance sheet to interest rates at all (for instance by

having no maturity mismatch) they would in fact be taking on a large amount of risk due

to the sensitivity of deposit spreads to interest rates, as illustrated in Figure 1. A back-of-

the-envelope calculation shows that a 100 bp fall in interest rates would make banks lose in

net present value of future deposit spreads about 49% of their net worth.16 Their maturity

mismatch leads them to recover about 30% of net worth up front. This partially o�sets the

underlying risk.

15See Haddad and Sraer (2019) and Paul (2020) for futher discusion of banks and term premia.
16A fall in interest rates of 100 bp results in a fall in spreads of about 66 bp and a fall in the return on

equity of φ× 66 = 579 bp. The NPV of 49% follows from applying a mean reversion rate of λ = 5.6% and a
discount rate of 6.4%.
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Figure 9: Spreads resulting from di�erent values of α, �xing z at the sample mean.

The role of currency. In order to account quantitatively for the positive co-movement

of spreads and interest rates, the model requires a high value of ε (i.e. a high elasticity

of substitution between currency and deposits). Furthermore, unless α is high (i.e. there

is a strong preference for currency), the co-movement weakens rapidly as the interest rate

rises. The reason is that as interest rates rise, there is less and less currency to substitute

away from. Therefore unless there is a lot of currency to begin with, substitution between

currency and deposits weakens, and with it the co-movement of interest rates and deposit

spreads. Hence the better �t of the model with high values of α.

Figure 9 shows the function s (i, z) that results from re-calibrating ε and β to best match

the spread data while �xing di�erent values of α, together with a scatterplot of spreads

against interest rates (after controling for z). For lower values of α, the model-produced

s (i, z) function can still match observed spreads fairly well at low interest rates, but the

relationship �attens out too much relative to the data at interest rates higher that about

5%.17

One consequence of setting α = 0.95 is that the model produces high and variable

17This implies that setting a lower value of α in the model would make banks' maturity mismatch too
sensistive to interest rates relative to the data, and too low at higher interest rates.
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currency holdings, much more so than in the data. The model just cannot simultaneously

match the behavior of spreads and the quantity of currency. Overall, we conclude that

our microeconomic model of bank spreads is probably too simplistic and the observed co-

movement of interest rates and bank spreads is also driven by imperfect competition between

banks (Drechsler et al. 2017), stickiness in deposit rates (Hannan and Berger 1991, Driscoll

and Judson 2013), search costs (Yankov 2018), or other factors.

For the purposes of bank risk management, the exact microeconomic mechanism that

drives spreads is not so essential. What matters is how these co-move with interest rates

and banks' share of wealth, and the model matches this quite well. Furthermore, the model

also matches the quantity of deposits because we target bank leverage, and consumption-to-

wealth and bank-equity-to-wealth ratios in our calibration.

Alternative maturity structure. The model pins down banks' exposure to interest rate

risk, but this exposure can be implemented in many ways. The baseline implementation has

a single zero-coupon bond of maturity T . This is a simple portfolio structure that is easy to

interpret. Another simple implementation uses bonds with a geometric maturity structure.

A bond with coupon payments δe−δt has average maturity 1/δ. We can compute the value

of such a bond as a bundle of zero-coupon bonds,

pGB(i, z; δ) =

� ∞
0

δe−δTpB(i, z;T )dT

Then we �nd the δ(i, z) that implements the desired exposure to interest rate risk, σn =

(1 + φ)σpGB(δ), for every (i, z).

Table 5 summarizes the average maturity 1/δ(i, z) for di�erent values of γ. The results

are very similar, but the average maturity mismatch is a little higher with geometric bonds.

The reason is that the duration of geometric bonds is lower than the average maturity of

their coupon payments, so a longer average maturity is necessary to obtain the same risk

exposure (with zero-coupon bonds, duration and maturity coincide). For example, with a

constant nominal interest rate, the duration of a geometric bond is 1/(i + δ) which is less

than its maturity 1/δ.

Non mark-to-market accounting and net interest margins. Our model is cast en-

tirely in mark-to-market terms. However, accounting rules do not require marking to market

for the majority of long term assets held in the �banking� book, and these accounting rules

determine how �nancial statements will respond to interest rate shocks.
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γ 3 6 10 20 data
Average T (zero-coupon) 2.6 3.5 3.9 4.3 4.4
Average T (geometric) 3.1 4.5 5.1 5.8 4.4

Table 5: Average maturity mismatch for di�erent values of risk aversion and zero-coupon vs.
geometric bonds

Suppose there is an increase in interest rates. In mark-to-market terms, banks experience

an immediate capital loss.18 Afterwards, they accrue interest on long-term assets at the new

rate, so net interest margins increase. Under non-mark-to-market accounting, banks keep

their long-term assets on their books at par, record no capital loss, and continue to accrue

interest on them at the old rate. On the liability side, since they pass on part of the

rate increase to depositors, interest expenses increase. Therefore, the measured net interest

margin would initially fall. As long-term assets mature and are replaced by new assets

yielding the new rate, the measured net interest margin would start rising, eventually exceed

its initial level and then level o� as the interest rate mean-reverts.

The exact time pattern of this impulse response is indeterminate. Banks in the model can

implement the equilibrium risk exposure with di�erent maturity pro�les, such as zero-coupon

bonds, geometric bonds, combinations of long and short bonds, etc. Each of these would

yield a di�erent time path for the book net interest margin. Figure 10 shows the impulse

response of the net interest margin under a particular implementation, which approximates

banks' observed maturity pro�le. We consider a bank which invests 37% of its assets in an

instantaneous bond (this is the fraction of bank assets that mature within one quarter in our

data) and the remainder in a geometric bond with δ = 0.127 (or 7.9 years maturity). This

portfolio produces the equilibrium risk exposure at the rest point of the state space. The

�gure shows the impulse response of book net interest margins after a 100 b.p. increase in

the interest rate (see Appendix C for details of the calculation). The �gure shows that, even

initially, net interest margins barely respond. The fraction of assets held in short-term bonds

(whose book yields respond immediately) is very close to the pass-through of interest rates

to deposit rates, so even in the short run the book yields of assets and liabilities respond

similarly. Over time, as the geometric bond matures and is reinvested, book yields on the

18When we mark to market, we treat deposits at face value because that's what the bank would have
to pay if it were liquidated. Ho�mann et al. (2018) propose an alternative marking-to-market approach.
They estimate deposits' e�ective duration, which is longer than zero because deposit rates respond less than
one for one to market rates. This means that the present value of payments on deposits falls with interest
rates, and deposits are market to market accordingly. On the basis on this calculation for European banks,
Ho�mann et al. (2018) �nd that the average the interest rate risk exposure of banks' net worth is close to
zero, which is consistent with a fall in net worth under our mark-to-market measure.
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Figure 10: Impulse response of net interest margins to a 100 b.p. increase in interest rates

bank's assets start to increase, and the net interest margin is back to its original level after

precisely one year. Book yields on assets then continue to increase for some time, before

falling again as interest rates mean revert. Overall, the net interest margin is never more

than 9 b.p. away from its starting point.

Drechsler et al. (2018) estimate impulse responses of changes in book net interest margins

to changes in interest rates and report the cumulative response over four quarters (i.e. the

change in net interest margins after one year). They �nd it to be almost exactly zero, which

is precisely in line with the predictions from our model under this particular implementation.

Other implementations produce slightly di�erent but qualitatively similar impulse responses.

For instance, if the bank uses a single geometric bond, the net interest margin falls more

initially and rises more slowly, returning to its original level after 2.1 years.

7 Real Shocks under In�ation Targeting

Up to this point we have assumed that the only source of changes in interest rates is monetary

policy shocks. This benchmark was useful to examine the mechanisms at play without

confounding factors. In this section we look at the opposite case, where monetary policy

follows an in�ation targeting rule and changes in interest rates are the result of real shocks.

There are many possible real shocks that could have an e�ect on equilibrium real interest

rates. We will focus on a simple case, where the only shock is a change in the expected

growth rate of TFP.
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In particular, we assume that the growth rate of productivity µa is stochastic and follows:

dµa,t = −λ (µa,t − µ̄a) dt+ σ
√
µa,t − µmina dBt

This is a Cox et al. (1985) stochastic process for the growth µa,t − µmina . µ̄a is the mean

growth rate and µmina is a, possibly negative, lower bound.

Monetary policy consists of targeting a constant rate of in�ation µ̄p (keeping σp = σ̃p = 0

as before). Therefore the nominal interest rate is just:

it = rt + µ̄p

where rt is the endogenous real interest rate.

Instead of shocks to monetary policy, changes in the interest rate re�ect the central bank's

endogenous response to changes in the equilibrium real interest rate, which is driven by

shocks to the expected growth rate. During booms when growth rates are high, equilibrium

real interest rates must be high to clear the goods market. In order to maintain constant

in�ation, the central bank raises nominal interest rates.

The model can be solved along the same lines as the baseline model. The main di�erence

is that the state variables are now µa (exogenous) and z (endogenous). Appendix B shows

the details of the solution method.

Parameter values. Wemaintain most of the parameter values from the baseline model. In

particular, we keep the same values for γ, ρ, φ, α, β and ε. We again set σ̃a to match average

real interest rates, which results in σ̃a = 0.073 and we set τ = 0.146 to match the average

level of z. We set the in�ation target µ̄p = 2.53% to match average in�ation for 1990-2014.

We set µ̄a = 0.01 as in the baseline model and set λ = 0.013 and σ = 0.024 to match the

standard deviation of LIBOR and the 10-year bond yield. This implies a very persistent and

volatile process for the expected growth of the economy, much more so than the data. The

goal is to match movements in both short and long interest rates that we observe, and which

are central to the mechanism; a full theory of why equilibrium real interest rates move so

much is beyond the scope of this exercise. The lower bound µmina = γσ̃2
a− βρ− µ̄p = −0.023

is set to ensure that it's always possible to attain the in�ation target.19

19Equilibrium requires a positive nominal interest rate i = r + µ̄p. If the expected growth rate µa is very
negative, the required equilibrium real interest rate could be too negative, r < −µ̄p for some (i, z), which
would force the central bank to miss its in�ation target.
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Figure 11: Maturity mismatch of banks in the English et al. (2018) data and in the model,
under in�ation targeting.
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Results. Lower growth rates lead to lower equilibrium real rates and, since in�ation is

constant, to lower nominal rates. Since holding currency is always an option, the nominal

interest rate is always positive. Banks' exposure is always negative and quite large, as in

the baseline model. At the average values of µa and z, a change in the growth rate that

induces a 100 basis point rise in the nominal interest rate results in banks losing about 35%

of their net worth. The underlying mechanism is the same as in the baseline model and the

magnitude of the e�ect is similar.

Figure 11 compares the time series for T predicted by the model with the data. For the

model values, we take the measured time series for i and z and back out the level of µa in the

model that would generate the observed i given the observed z. We then plug in the imputed

µa and the measured z into the function T (µa, z) produced by the model. Again, the model

matches the behavior of T quite closely, both in terms of average levels and in terms of time

pattern. The average T in the data is 4.4 years; in the model, it's 4.7 years. The correlation

between the model and the data is 0.51. We also compare the model predictions with the

cross-sectional evidence. In the model an increase of the deposit-to-net-worth ratio of a bank

is associated with an increase in the maturity mismatch of 0.55 years. In the data it's 0.43

years.

We conclude from this that the explanatory power of the mechanism does not depend on

random monetary policy being the driver of interest rates. Real shocks under an in�ation

targeting regime have approximately the same e�ect, as long as they imply similar movement

in nominal interest rates.

8 Conclusion

Banks' mark-to-market net worth is highly exposed to movements in interest rates and this

plays an important role in the transmission of monetary shocks. We propose an explanation

for banks' exposure to interest rate risk based on their role as providers of liquidity. Since the

spread between (liquid) deposits and (illiquid) bonds rises after the interest rate increases,

their exposure to interest rate risk is part of a dynamic hedging strategy. Banks are willing

to take large losses after interest rates increase because they expect better investment oppor-

tunities looking forward (relative to households). This risk exposure can be achieved with a

traditional banking balance sheet with a maturity mismatch between assets and liabilities.

Since banks' supply of deposits depends on their net worth, the endogenous response of

banks' balance sheets ampli�es the e�ects of monetary shocks on the cost of liquidity.
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When we calibrate the model to US data, we �nd an average maturity mismatch of 3.9

years, compared to 4.4 years in the data. The model also reproduces the time and cross-

sectional patterns in the data. The maturity mismatch is larger during periods of low interest

rates, and for banks with higher deposit-to-net-worth ratios. This is true both when interest

rates are driven by monetary policy shocks and when they are driven by real shocks under an

in�ation targeting regime. Seen through the lens of our model, banks' exposure to interest

rate risk does not constitute risk seeking, bur rather a form of insurance, and increases with

risk aversion.

More generally, our theory has implications for banks' risk exposure beyond interest

rate risk. Banks will choose exposure to risks that are correlated with their investment

opportunities. The approach in this paper can therefore be useful in studying not only how

much, but also what type of risks banks take.
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Appendix A: Modi�ed Model and Solution Method

Modi�ed model with taxes and stochastic productivity. Let σ̃ denote exposure to

the productivity shock B̃t and let π̃t denote the risk premium for exposure to this shock.

Since the model scales linearly with the level of a we rede�ne ω as total wealth divided by

a and likewise for h, g, k and q.

If τ is the tax rate on bankers' wealth, the government budget implies that τ zt
1−zt is the

subsidy rate on households' wealth. The budget constraints thus become, respectively:

dnt
nt

= (rt − τ + σn,tπt + σ̃n,tπ̃t − χtx̂t + φst) dt+ σn,tdBt + σ̃n,tdB̃t

dwt
wt

=

(
rt + τ

zt
1− zt

+ σn,tπt + σ̃n,tπ̃t − χtx̂t + φst

)
dt+ σn,tdBt + σ̃n,tdB̃t

and the HJB equations are, respectively:

0 = max
x̂,σn,σ̃n,µn

ρ (1− γ)
(ξtnt)

1−γ

1− γ

[
log (x̂nt)−

1

1− γ
log
(
(ξtnt)

1−γ)]
+ ξ1−γt n1−γ

t

(
µn + µξ,t −

γ

2
σ2
n −

γ

2
σ2
ξ,t + (1− γ)σξ,tσn −

γ

2
σ̃2
n −

γ

2
σ̃2
ξ,t + (1− γ)σ̃ξ,tσ̃n

)
s.t. µn = rt − τ + σnπt + σ̃nπ̃t + φst − x̂χt
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and:

0 = max
x̂,σw,σ̃w,µw

ρ (1− γ)
(ζtwt)

1−γ

1− γ

[
log (x̂wt)−

1

1− γ
log
(
(ζtwt)

1−γ)]
+ ζ1−γt w1−γ

t

(
µw + µζ,t −

γ

2
σ2
w −

γ

2
σ2
ζ,t + (1− γ)σζ,tσw −

γ

2
σ̃2
w −

γ

2
σ̃2
ζ,t + (1− γ)σ̃ζ,tσ̃w

)
s.t. µw = rt + τ

zt
1− zt

+ σwπt + σ̃wπ̃t − x̂χt

The �rst order conditions (19), (23) and (24) are una�ected so formula (27) still applies.

The �rst order conditions for σ̃n and σ̃w are:

σ̃n =
π̃t
γ

+
1− γ
γ

σ̃ξ,t

σ̃w =
π̃t
γ

+
1− γ
γ

σ̃ζ,t

The same steps that lead to (27) imply:

σ̃z =
(1− z)1−γ

γ

(
ξi
ξ
− ζi

ζ

)
1− z(1− z)1−γ

γ

(
ξz
ξ
− ζz

ζ

) σ̃i
and since, by de�nition, σ̃i = 0, this implies σ̃z = 0.

Its easy to see from the market clearing conditions that

ω =
k

βρ
(30)

h =
k

β
α(1− β)ιε−1i−ε (31)

and condition (21) still applies.

Using Ito's lemma,

σ̃ξ =
ξi
ξ
σ̃i +

ξz
ξ
zσ̃z

This implies that σ̃ξ = 0 and similarly σ̃ζ = 0, so

σ̃n = σ̃w =
π̃t
γ
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And since n = zaω, then σ̃n = σ̃z + σ̃a + σ̃ω = σ̃a. Therefore:

π̃t = γσ̃a (32)

Replacing the �rst order conditions in the HJB equations and simplifying, these reduce

to:

ρ log (ξt) = ρ log

(
ρ

χt

)
+ rt − τ − ρ+ φst + µξ,t −

γ

2
σ2
ξ,t +

γ

2
σ2
n,t +

γ

2
σ̃2
a (33)

ρ log (ζt) = ρ log

(
ρ

χt

)
+ rt + τ

zt
1− zt

− ρ+ µζ,t −
γ

2
σ2
ζ,t +

γ

2
σ2
w,t +

γ

2
σ̃2
a (34)

The price of capital q follows the stochastic process:

dqt
qt

= µq,tdt+ σq,tdBt + σ̃q,tdB̃t (35)

but σ̃q,t = 0, because the TFP shock a�ects neither i nor z. Likewise for g and ψ below, we

have σ̃g,t = 0 and σ̃ψ,t = 0.

Arbitrage pricing implies:

1 + µaqt + µq,tqt − rtqt = πtσq,tqt + π̃tσ̃aqt (36)

Similarly, the value of government transfers g follows the stochastic process:

dgt = µg,tdt+ σg,tdBt + σ̃g,tdB̃t (37)

The real �ow of transfers is dHt
pt

and since ht ≡ Ht
atpt

and σp = σ̃p = 0, arbitrage pricing of g

implies:

ht (µh,t + µa + it − rt) + (µg,t + gtµa)− gtrt = πt (σh,tht + σg,t) + π̃t (ht + gt) σ̃a (38)

where
dht
ht

= µh,tdt+ σh,tdBt + σ̃h,tdB̃t (39)

is the stochastic process followed by h.

Let ψ ≡ q + g follow the stochastic process:

dψt = µψ,tdt+ σψ,tdBt + σ̃ψ,tdB̃t (40)
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Adding (36) and (38) and rearranging:20

[1 + ht (µh,t + µa + it − rt)] + [µψ,t + ψtµa]− rtψt = πt [σψ,t + σh,tht] + π̃tσ̃aω (41)

Solution procedure. The solution method �nds endogenous objects as functions of state

variables. We divide the equilibrium objects into three groups. The �rst are the objects that

we can �nd statically before knowing the value functions: s, h, r and ψ. The second group

consists of π, σn and σw. These variables can be solved statically if we know ξ and ζ. The

last group consists of the two value functions ξ and ζ. We'll express these as a system of

di�erential equations and solve it backwards.

Objects solved statically. s (i, z) comes from (21). h (i, z) comes from (31). By de�-

nition, ψ = q + g = ω − h, so ψ (i, z) follows from subtracting h (i, z) from (30). Finally,

rearranging (41), using ψ = ω − h and using (32) to replace π̃ we obtain r:

r =
1 + hi

ω
+ µa − γσ̃2

a (42)

Solving for π, σn and σw given ξ, ζ, s, h, r and ψ Suppose we had found any function

X(i, z) that is a function of i and z. By Ito's Lemma it follows that the law of motion of X

is:

dX (i, z) = µX (i, z) dt+ σX (i, z) dB (43)

where the drift and volatility are

µX (i, z) = Xz (i, z)µz (i, z) +Xi (i, z)µi (i)

+
1

2

[
Xzz (i, z)σ2

z (i, z) z2 +Xii (i, z)σ
2
i (i) + 2Xzi (i, z)σi (i) zσz (i, z)

]
σX = Xz (i, z)σz (i, z) z +Xi (i, z)σi (i)

or, in geometric form:
dX (i, z)

X (i, z)
= µX (i, z) dt+ σX (i, z) dB (44)

20Note that in expressions (36), (38) and (41), the stochastic processes for, g and ψ are expressed in
absolute terms, as set out by (37) and (40). The stochastic processes for q and h are expressed in geometric
terms, as set out by (35) and (39).
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where the drift and volatility are

µX (i, z) =
Xz (i, z)

X (i, z)
µz (i, z) +

Xi (i, z)

X (i, z)
µi (i)

+
1

2

[
Xzz (i, z)

X (i, z)
σ2
z (i, z) z2 +

Xii (i, z)

X (i, z)
σ2
i (i) + 2

Xzi (i, z)

X (i, z)
σi (i) zσz (i, z)

]
σX =

Xz (i, z)

X (i, z)
σz (i, z) z +

Xi (i, z)

X (i, z)
σi (i)

Hence if we know µz (i, z) and σz (i, z) and we know the functions ξ, ζ, s, h and ψ and

their derivatives, we know their drifts and volatilities at every point of the state space.

Numerically, we approximate the derivatives with �nite-di�erence matrices Di, Dz, Dii and

Dzz such that for any set of values of ξ on a grid, the values of the derivatives on the grid

are:

ξi ≈ Diξ

ξz ≈ ξDz

ξii ≈ Diiξ

ξzz ≈ ξDzz

ξiz ≈ DiξDz

The variables π, σn and σw can be found as follows. First, in order to apply formulas

(43) or (44) we need to know µz (i, z) and σz (i, z). We get σz (i, z) from equation (27). Since

n = zaω and ω is a constant and σa = 0, we have that σn = σz. Using the FOC (23), we

can solve for

π = γσn − (1− γ)σξ

and using the FOC (24) we can solve for σw. Now, to obtain µz, note that

z

1− z
=
n

w

and therefore

µz = (1− z) [µn − µw + σw(σw − σn)]− z

(1− z)
σ2
z
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which, using the FOCs, reduces to

µz = (1− z)

[
(σn − σw) π + φs− τ

1− z
+ σw(σw − σn)

]
− z

(1− z)
σ2
z

Solving for ξ and ζ. We need to solve (33) and (34). To do so, we de�ne time derivatives

such that the equations hold exactly:

ξ̇ = −
[
ρ log

(
ρ

χ

)
+ r − τ − ρ+ φs+ µξ −

γ

2
σ2
ξ +

γ

2
σ2
n +

γ

2
σ̃2
a − ρ log (ξ)

]
ξ (45)

ζ̇ = −
[
ρ log

(
ρ

χ

)
+ r + τ

z

1− z
− ρ+ µζ −

γ

2
σ2
ζ +

γ

2
σ2
w +

γ

2
σ̃2
a − ρ log (ζ)

]
ζ (46)

The algorithm for �nding ξ and ζ is as follows.

1. Guess values for ξ and ζ at every point in the state space

2. Compute the derivatives with respect to i and z by a �nite di�erence approximation

3. Compute values for π, σn and σw at every point in the state space given the guess for

ξ and ζ.

4. Compute ξ̇ and ζ̇ at every point in the state space using (45) and (46)

5. Take a time-step backwards to de�ne a new guess for ξ and ζ. We use a Runge-Kutta

4 procedure.

6. Repeat steps 1-5 until ξ̇ ≈ ζ̇ ≈ 0.

The condition ξ̇ ≈ ζ̇ ≈ 0 is equivalent to saying that equilibrium conditions hold.

Finding the stationary distribution. Once we solve for the equilibrium, this de�nes

drifts and volatilities for the two state variables: µi (i, z), σi (i, z), µz (i, z), σ (i, z). The

density f (i, z) of the steady state distribution is the solution to the stationary Kolmogorov

Forward Equation:

0 = − ∂
∂i

[µi (i, z) f (i, z)]− ∂

∂z
[µz (i, z) f (i, z)] (47)

+
1

2

(
∂2

∂i2
[
σi (i, z)

2 f (i, z)
]

+
∂2

∂z2
[
σz (i, z)2 f (i, z)

]
+ 2

∂2

∂i∂z
[σi (i, z)σz (i, z) f (i, z)]

)
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We solve this equation by rewriting it in matrix form.21 The �rst step is to discretize the

state space into a grid of Ni×Nz points and then convert it to a NiNz× 1 vector. Let vec(·)
be the operator that does this conversion. We then convert the di�erentiation matrices so

that they are properly applied to vectors:

Dvec
i ≡ INi ⊗Di

Dvec
ii ≡ INi ⊗Dii

Dvec
z ≡ M ′ (INz ⊗Dz)M

Dvec
zz ≡ M ′ (INz ⊗Dzz)M

Dvec
iz ≡ Dvec

i Dvec
z

where ⊗ denotes the Kroenecker product and M is the vectorized transpose matrix such

that Mvec (A) = vec (A′).

Now rewrite (47):

−Dvec
i · (diag (vec (µi)) vec (f))−Dvec

z (diag (vec (µz)) vec (f))

+
1

2

[
Dvec
ii · (diag (vec (σ2

i )) vec (f)) +Dvec
zz (diag (vec (σ2

z)) vec (f))

+2Dvec
iz (diag (vec (σi)) diag (vec (σz)) vec (f))

]
= 0

and therefore

Avec (f) = 0 (48)

where

A = −Dvec
i · diag (vec (µi))−Dvec

z · diag (vec (µz))

+
1

2

[
Dvec
ii · diag

(
vec
(
σ2
i

))
+Dvec

zz · diag
(
vec
(
σ2
z

))
+ 2Dvec

iz · (diag (vec (σi)) diag (vec (σz)))
]

Equation (48) de�nes an eigenvalue problem. We solve it by imposing the additional

condition that f integrates to 1.

21See Achdou et al. (2014) for details on this procedure.
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Appendix B: Solution of the Model with Shocks to the

Growth Rate

The steps that lead to equations (30) -(41) are unchanged, except for two di�erences. First,

all objects are functions of µa and z instead of i and z. For instance:

σz =
(1− z)1−γ

γ

(
ξµa
ξ
− ζµa

ζ

)
1− z(1− z)1−γ

γ

(
ξz
ξ
− ζz

ζ

)σµa
Second, since i is not a state variable, we need to solve for it. However, it can simply be

replaced by i = r + µp.

The solution procedure is also to divide the equilibrium objects into three groups. The

objects we can solve statically are: s, h, ψ and r. We can then �nd π, σn and σw if we know

ξ and ζ. We �nd ξ and ζ by solving a system of di�erential equations.

We use the market clearing condition for deposits (21), the market clearing condition for

currency (31), equation (42) for r and the de�nition ω = ψ + h to solve for h, s, r and ψ

simultaneously. π, σn and σw are obtained in the same way as in the baseline model and the

di�erential equations (45) and (46) still apply and can be solved the same way.

Appendix C: Projection of Book Values and Net Interest

Margins

We assume the bank invests a fraction κ of its assets in instantaneous bonds and a fraction

(1− κ) in geometric bonds of maturity 1
δ
. The yield-to-maturity of a geometric bond bought

in state (i, z) is:

iδ (i, z) = δ

(
1

pGB (i, z, δ)
− 1

)
In the bank's income statement, the bond will accrue this yield for its entire lifetime. If the

bond was bought at time s, its remaining book value at time t > s is:

e−δ(t−s)pGB (is, zs, δ)

Note that pGB (is, zs, δ) is the price at which the bond was purchased, not its current market

price.

51



Let bδ0 be a bank's initial stock of geometric bonds, n
δ
t its rate of purchases of these bonds

per unit of time and bIt its stock of instantaneous bonds (which are always valued at par).

It follows that the book value of the bank's assets will be:

aBt = bIt + e−δtbδ0p
GB (i0, z0, δ) +

t�

0

e−δ(t−s)nδsp
GB (is, zs, δ) ds (49)

The bank's total interest income, as shown on its income statement, will be:

rBt = bIt it + e−δtbδ0p
GB (i0, z0, δ) iδ (i0, z0) +

t�

0

e−δ(t−s)nδsp
GB (is, zs, δ) iδ (is, zs) ds (50)

so the book yield on assets will be:

iBt =
rBt
aBt

(51)

In order to compute rBt and aBt , we need to keep track of purchases of geometric bonds

over time. Since the bank always invests a fraction κ in short term bonds, we have that the

stocks of instantaneous and geometric bonds at time t are:

bSt = κ (1 + φ) zt (52)

bδt = (1− κ)
1

pGB (it, zt, δ)
(1 + φ) zt (53)

where zt is the bank's mark-to-market net worth, so (1 + φ) zt is the mark-to-market value

of the bank's assets. Taking the time derivative of (53):

ḃδtp
GB (it, zt, δ) + bδt ṗ

GB (it, zt, δ) = (1− κ) (1 + φ) żt (54)

and, since geometric bonds mature at a rate δ:

ḃδt = −δbδt + nδt (55)

Replacing (55) into (54) and rearranging:

nδt =
(1− κ) (1 + φ) żt − btṗGB (it, zt, δ)

pGB (it, zt, δ)
+ δbδt (56)
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The purchase rate nδt can be computed directly from an impulse response of it and zt (which

in turn imply impulse responses for pGB (it, zt, δ) and, using (54), for bδt ). Replacing (56) in

(49), (50) and (51), one can compute the book yield on assets iBt . The net interest margin

is just the di�erence between this book yield and the deposit rate.

Appendix D: Data Sources

• We take the weekly 6-month LIBOR rate (series USD6MTD156N) and 10-year bond

yields (series DGS10) from FRED.

• The wealth measure is �All sectors; U.S. wealth� (series Z1/Z1/FL892090005.Q) from

the quarterly Flow of Funds.

• Consumption is �Personal Consumption Expenditures, Nondurable Goods� plus �Per-

sonal Consumption Expenditures, Services� from NIPA.

• Total checking deposits and total savings deposits are, respectively �Private depos-

itory institutions; checkable deposits; liability� (series Z1/Z1/FL703127005.Q) and

�Private depository institutions; small time and savings deposits; liability� (series

Z1/Z1/FL703131005.Q) from the quarterly Flow of Funds.

• Total net worth of banks is the di�erence between �Private depository institutions;

total liabilities and equity� (series Z1/Z1/FL704194005.Q) and and �Private depository

institutions; total liabilities� (series Z1/Z1/FL704190005.Q) from the quarterly Flow

of Funds.

• The interest rates on checking and savings deposits are, respectively, the average rates

on �Interest checking 0k� and �Money market deposit 10k� reported by Drechsler et al.

(2017).

• In�ation, used to construct real interest rates, is the CPI in�ation from the BLS

Maturity mismatch data In order to construct the measures of maturity mismatch, we

take data from the quarterly Reports of Condition and Income (�Call Reports�) �led by banks

regulated by the Federal Reserve System, Federal Deposit Insurance Corporation, and the

Comptroller of the Currency (almost all U.S. commercial banks) from 2001:Q1 to 2016:Q3.

We then follow the procedure used by English et al. (2018):
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• The maturity mismatch measure Tjt for bank j in quarter t, is:

Tjt = ΞA
jt − ΞL

jt

� ΞA
jt is the weighted average asset repricing/maturity period, calculated according

to:

ΞA
jt =

∑
k

mk
AA

k
jt∑

k

Akjt

where k indexes the 26 interest-earning asset categories with information about

maturity or repricing (RCFDA549-RCFDA562,RCONA549-RCONA562,RCONA564-

RCONA575). Akjt is the value of asset category k and mk
A denotes the estimated

average maturity of that category. These 26 asset categories account, on average

for 92.5% of the total interest-earning assets per bank. The underlying assump-

tion on this calculation is that the average maturity of those assets for which no

repricing or maturity information is available is the same as the average maturity

of the 26 categories.

� ΞT
jt is the weighted average liability repricing/maturity period, calculated accord-

ing to:

ΞA
jt =

∑
k

mk
LL

k
jt

LIEjt

where k indexes the 11 interest-earning liability categories with information about

maturity or repricing (RCON6810, RCON0352 RCONA579-RCONA582, RCONA584-

RCONA587, RCON2215). Lkjt is the value of liability category k and mk
L denotes

the estimated average maturity of that category. These 11 asset categories ac-

count, on average for 92.9% of total liabilities per bank.

� The estimated maturity of each asset and liability category (mk
L and mk

A) is set

to the midpoint of that category's maturity or repricing range speci�ed on the

Call Report. For example, RCFDA550, the asset category of US Treasuries from

3 months to 12 months, is assigned a maturity of 7.5 months. Long-term assets

with no endpoint are assigned the same maturity as English et al. (2018). That

is, asset and liability categories labeled as �three years and more� are assigned a

duration of 5 years, and those labeled as ��fteen years and more� are assigned a
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duration of 20 years.

• From the original 475,220 bank-quarter observations extracted from the Call Reports,

all bank-quarter observations with zero loans and leases or zero liabilities were elimi-

nated, leaving us 467,620 observations that form our bank-quarter data set.

• For the period 2001 to 2016, we compute an asset-weighted median Tt for each quarter

from 2001 to 2016. For 1997-2000 (where we don't have detailed bank-level data), we

take the asset-weighted median measure directly from English et al. (2018), who kindly

shared their data with us.

• We construct the deposit leverage of each bank φj in the following manner:

� Bank's net worth (njt) is the dollar value of total assets (RCON2170 for banks

that don't have a foreign o�ce and RCFD2170 for those that do) minus total

liabilities (RCON2948 and RCFD2948 respectively).

� Bank's deposits (djt) is the sum of transaction accounts (RCON2215) and saving

accounts (RCON6810 and RCON0352)

� Deposit leverage φjt is just
djt
njt

� An extra �lter was used to screen for extreme observations. We trimmed the vari-

able φjt above the 99th percentile and below the 1st percentile of its distribution

over the entire set of observations.

� For each of the 10,351 banks in the sample, we construct φj and Tj by taking the

time average over the period 2001-2016.
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