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lan Turing’s crucial intelligence work

in the Second World War is well known.

His contribution to the interdisci-

plinary field of mathematics and the

biological sciences is less so. Turing
published only one paper related to biology, “The
chemical basis of morphogenesis”, in 1952 [64],
which has been seminal in several areas of spatial
patterning modeling in development, ecology, and
other biological areas since its rediscovery in the
1960s. He did not apply his model to any specific
biological situation.

Basically Turing showed how, in a system of
reacting chemicals where the chemicals can also
diffuse, the system can generate a steady-state
heterogeneous spatial pattern of chemical concen-
trations. He called these chemicals morphogens.
He hypothesized that these morphogenetic prepat-
terns could cue cell differentiation and result in
observed spatial patterns. His model is encapsu-
lated in the coupled system of reaction diffusion
equations, of the general form

1)

22_1: = yf(u,v) + DuV?y, a—‘; =yg(u,v) + DyV?v,

0
where the functions f (u, v) and g(u, v) denote the
reaction kinetics associated with the chemicals u,
called the activator, and v, called the inhibitor,
with D, and D, the diffusion coefficients of u
and v respectively. The parameter y, which arises
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when the system is written in this nondimensional
form, is an important measure of scale, as we shall
see below. A stability analysis of the steady states
of the kinetics shows that to generate spatial
patterns in u and v, it is necessary, among other
things, that the inhibitor have a higher diffusion
rate than the activator, that is D, > Dy; see,
for example, [44], [46]. A review article [35] is
specifically devoted to Turing’s theory.

To get an intuitive idea of how the reaction dif-
fusion patterning works, consider the following,
albeit unrealistic scenario, of a field of dry grass
in which there is a large number of grasshoppers.
If grasshoppers get warm, they can generate a
lot of moisture by sweating. Now suppose the
grass is set alight at several random points and
a flame front starts to propagate from each. We
can think of the grasshopper as an inhibitor and
the fire as an activator. If there were no mois-
ture to quench the flames, the fires would simply
spread over the whole field, which would result
in a uniform charred area. Suppose, however, that
when the grasshoppers get warm enough they can
generate enough moisture to dampen the grass
so that when the flames reach such premoistened
areas the grass will not burn. The scenario for
a heterogeneous spatial pattern of charred and
uncharred grass patches is then the following.
The fires start to spread; these represent one of
the “reactants”, the activator, with a fire “diffu-
sion” coefficient, which quantifies how fast the fire
spreads. The grasshoppers, which constitute the
inhibitor “reactant”, feel the flame fronts coming
and move quickly ahead of them. The grasshop-
pers then sweat profusely and generate enough
moisture to prevent the fires spreading into the
moistened area. In this way the charred areas
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are restricted to finite domains that depend on
the “diffusion” coefficients of the reactants—fire
and grasshoppers—and the various “reaction” pa-
rameters. If the grasshoppers and flame fronts
“diffused” at the same speed, no such spatial
pattern could evolve.

Closely related to Turing’s theoretical work,
and done independently, is the important exper-
imental work of Boris Belousov. Although the
exact date is not known, it was in the early 1950s
that he showed how a group of three reacting
chemicals could spontaneously oscillate between
a colorless and a yellow solution. His paper was
twice rejected for publication, and he was eventu-
ally persuaded to publish it in an obscure journal
of abstracts in 1959. This seminal work was re-
discovered by Anatol Zhabotinsky in 1961 [69],
and this classic groundbreaking reaction, known
as the Belousov-Zhabotinsky reaction, has been
widely studied experimentally (see, for example,
[52]) and mathematically (see, for example, [44]).

Avastnumber of papers refer to such oscillating
systems and to reactions that exhibit oscillatory
behavior and generate complex spatial patterns:
see, for example, the early work in 1972 [66]
that shows how spiral waves of reactants arose.
The books [44], [46] discuss the reaction diffusion
systems in detail. There are several webpages that
visually demonstrate these oscillating reactions
and their spatial patterning.

There are several classic examples of the math-
ematical models. One very early one appears in
the little-known paper (in French) [6], written by
Bernoulliin 1760, when smallpox was rampant. He
proposed a differential equation model to quan-
tify how cowpox inoculation affects the spread of
smallpox. As well as providing an interesting and
practical mathematical model, the article gives
some interesting data on the devastating child
mortality at the time. He used the model to assess
the practical advantages of a vaccination control
program. One wonders if he knew of the ancient
Chinese custom where children were made to
inhale a powder made from the crusts of skin
lesions of people recovering from smallpox. A
few researchers in the first half of the twentieth
century were getting involved in mathematical
modeling associated with population interaction
and epidemic models, but they seem not to have
known about Bernoulli’s remarkable paper [15],
[26], [27], [32], [65]. A major interdisciplinary
work, albeit not specifically mathematical but
heuristically so, is D’Arcy Thompson’s [63] monu-
mental book On Growth and Form, first published
in 1917, which discusses among other things
concepts associated with morphological patterns.
The rediscovery of Turing’s 1952 paper in the late
1960s had a major influence in the development
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of the field of mathematical biology, surprisingly
more than the experimentally justified model
of Hodgkin and Huxley published in 1952 [22]
on nerve conduction and excitation, which was
awarded a Nobel Prize.

Considerable interest in the study of pattern
formation had been developing by the time the re-
markable work of Geoffroy Saint-Hilaire appeared
in 1836 [55]. He was particularly interested in
teratology and was probably the first to introduce
the important concept of a developmental con-
straint, something we shall talk about below. His
emphasis on the parallels between the study of
form in physical systems and of biological form
was an early indication of later papers in the field.

Until around 1970 mathematical involvement
in the biomedical sciences was restricted to just
a few researchers who developed predator-prey
models, basic epidemic models and others associ-
ated with problems in body mechanics, facilitated
diffusion in tissues [37], and others. The use of
mathematics in biology really started to blossom
from the mid-1970s, with several thousand re-
searchers now actively involved and mathematical
modeling being used in practically every field in
the biomedical sciences.

Much of the research in the twentieth century
in the applications of mathematical modeling in
biology was in biological pattern formation, a field
about which there was no general acceptance but a
lot of controversy. With the burgeoning of genetic
studies, the belief that genetics would solve all
these developmental problems has certainly not
been borne out. There was, of course, considerable
research in the ecological and epidemiological
sciences, where the use of mathematical models
had a long history.

In the past twenty to thirty years, genetic studies
have spawned exciting, important, and genuinely
interdisciplinary research involving theoreticians
and experimentalists, with the common aim of
elucidating the underlying mechanisms involved
in developmental biology and medicine. How-
ever, most of the mechanisms are essentially still
unknown.

This interdisciplinary field is nowadays referred
to as mathematical biology, theoretical biology, or
systems biology. An increasing number of books
provide surveys of some of the early work in
the field as well as perspectives on the field’s
remarkable growth since the 1970s; examples
include [37], [44], [46] and the definitive text
[25] on the relatively recent growth area of
modeling in physiology. There are many other
books with author-contributed chapters, often as-
sociated with conference proceedings, that give a
picture of how the field developed, such as[7],[11],
[23], [29], [31], [33]. The book [36] is specifically
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devoted to reaction-diffusion theory. Research on
theoretical models in ecology and epidemiology
has also been growing; see, for example, the 1992
review [30]. With the ever-increasing number of
people getting involved in the field, the number
of genuinely practical examples has grown, as has
the number of essentially mathematics papers
where the primary interest is in the mathematics,
with scant connection to any real biology. By the
mid-1980s it was becoming more widely acknowl-
edged that any real contribution to the biological
sciences from modeling must be genuinely in-
terdisciplinary and hence related to real biology.
The best research helps our understanding of
real biological problems by developing models for
specific biological situations and providing pre-
dictions that are confirmed (or contradicted) by
experiment; a specific example is discussed below.

A significant influence on the development
of mathematical biology came from the seminal
experimental work on the importance of chem-
ical gradients in embryonic development [67],
which introduced the concept of “positional in-
formation”. The experiments showed that cells
react to a chemical concentration associated with
where they are in a chemical gradient. This work
stimulated a huge amount of experimental and
theoretical work, often controversial, that is still
going on. For a review, see the book [68] on the
author’s views on the principles of development.

Since the late 1990s there has been an ever-
increasing number of truly interdisciplinary stud-
ies covering a remarkably wide spectrum of topics.
One example is research on wound healing [14],
[16], [56], [57]. Another is on tumor growth, such
as brain tumors (see [47] for a short review), briefly
described below, which is being used medically to
quantify the efficacy of individual patient treat-
ment scenarios prior to treatment (see [46] for a
survey).

Many of these cancer studies involve modeling
the phenomena across many different scales. One
example is the seminal work [17]. The suggestion
here was that tumor cells create an environment
that allows certain mutations to be selected and
hence the evolution of mutant cell populations to
occur within the body; this is called somatic evo-
lution. The authors analyzed somatic evolution
in this context and showed a number of evolu-
tionary pathways in ductal carcinoma in situ. The
experimental colleagues suggested that different
mutant clones would emerge in a well-defined
temporal sequence, while the mathematical sim-
ulations showed that this was highly unlikely.
The simulations predicted that hypoxia (lack of
oxygen) should promote emergence of varying-
sized nodules of a mutant clone of a certain
type surrounded by other cell types and that over
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time these nodules would grow and merge. This
stimulated the experimental colleagues to carry
out experiments, which confirmed this prediction.
Another study highlights cellular adaptions of
cancer cells in colorectal cancer [24]. In the fol-
lowing section we briefly discuss one application
of reaction-diffusion theory. We shall point out
some of the limitations of Turing-type reaction-
diffusion mechanisms that necessitated a new,
and more experimentally verifiable, approach to
biological pattern formation, known as the me-
chanical theory of biological pattern formation
[40], [41], [50].

How the Leopard Gets Its Spots

A specific experimental reaction-diffusion mech-
anism proposed in 1975 [62] was used to study
how animal coat patterns might be formed [38],
[39], [43], [44]. The reaction terms used in (1) were

fu,v) =a—-u-h(u,v),

) gu,v) = x(b -v) - h(u,v),
_ puv
huv) = ke

where a, b, &, p, and K are constants and assigned
so that the solutions exhibited steady-state spa-
tially heterogeneous solutions. They were kept
fixed for all the calculations. Only the scale and
geometry of the domain were varied. The resulting
patterns in Figures 1 and 2 are colored dark and
light in regions where the concentration of one of
the morphogens is greater than or less than the
concentration in the homogeneous steady state.
Even with such limitations on the parameters, the
wealth of possible patterns is remarkable. For a
given domain size and geometry each set of initial
conditions gave a similar but unique pattern, a
fact reflected in nature.

It was shown that a single prepatterning mech-
anism was capable of generating the typical
geometry of mammalian coat patterns, from
the mouse to the badger to the giraffe to the
elephant and almost everything in between, with
the end pattern governed simply by the size and
shape of the embryo at the time the pattern
formation process was initiated. In solving these
reaction-diffusion systems, the domain size and
shape are crucial. If, given a particular mechanism,
one tries to simulate a solution in a very small
domain, one finds that it is not possible to obtain
steady-state spatial patterns; a minimum size is
needed to drive any sustainable spatial pattern.
Or, if the domain is long and thin, only stripes can
be generated.

Suppose the reaction-diffusion domain is a rec-
tangle. The rectangle must have a minimum size
for a simulation to exhibit spatial heterogeneity.
As the size of the rectangle is increased, a series of
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Figure 1. (@) Examples of a developmental constraint. Spotted animals can have striped tails but not
the other way round. From left to right are the typical tail of the leopard, of the cheetah, and of the
genet, together with the solutions from a reaction-diffusion system which can generate steady-state
spatial patterns. The geometry and scale when the pattern mechanism is activated play crucial roles
in the resulting coat patterns. Dark regions represent areas of high morphogen concentration. (Tail
art work reproduced from [43] with permission of Patricia Wynne.) (b) A cheetah (Acinonyx jubatus),
which is an example of the developmental constraint described in (a). (Photograph courtesy of
Professor Andrew Dobson.)
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Figure 2. (a) These show the result of numerical simulations of the reaction-diffusion model analysis
[38], [39], [43], [44] for the generation of coat markings on animals; it is the same mechanism used in
Figure 1. The model parameters were also the same; only the scale parameter was varied. The domain
sizes have been reduced to fit in a single figure, but in the simulations there was a scale difference of

1,000 between the smallest and the largest figure. (b) An example of the first bifurcation: Valais

Blackneck goat. (Photograph by B. S. Thurner Hof, Wikimedia Commons.) (c) Belted Galloway cows. (d)

Giraffes (Giraffa camelopardis) in the Serengeti. (Photograph courtesy of Professor Andrew Dobson.)
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increasingly complex spatial patterns emerge. The
concept behind the model is that the simulated
spatial patterns, solutions of a reaction-diffusion
mechanism, reflect the final morphogen melanin
landscape observed on animal coats. With this
scenario, the cells react to a given level in mor-
phogen concentration, thus producing melanin
(or rather becoming melanocytes, cells that pro-
duce melanin). In Figures 1(a) and 2(a), the black
regions represent high levels of melanin concen-
tration. It should be emphasized that this model
is a hypothetical one that has not been verified
experimentally but rather circumstantially. The
main purpose is to show how scale and shape
play major roles in animal coat patterns, as they
must in other developmental processes. Such an
approach has also been used to study butterfly
wing patterns [38],[39], [44], [49]. Importantly, the
work [49] presents experimental confirmation of
the theoretical predictions.

The solutions of the reaction-diffusion system
(1) and (2) in domains shown in Figure 1(a) were
first computed as an example of how the ge-
ometry constrains the possible pattern modes.
When the domain is very narrow, only simple,
essentially one-dimensional modes can exist. Two-
dimensional patterns require the domain to have
enough two dimensionality. Consider a tapering
cylinder as in Figure 1(a). If the radius at one end is
large enough, two-dimensional patterns can exist
on the surface. So, a tapering cylinder can exhibit
a gradation from a two-dimensional pattern to
simple stripes, as illustrated in Figurel(a).

This shows that the conical domain mandates
that it is not possible to have a tail with spots
at its tip and stripes at its base, but only the
converse; Figure 1(a) shows some examples of
specific animal tails. This is a genuine example of
a developmental constraint. The cheetah, a photo
of which is shown in Figure 1(b), is a prime
example of this, as are other spotted animals. If
the threshold level of the morphogen is changed,
a different but related pattern can develop. Such
mechanisms can thus form different but globally
similar patterns and could be the explanation for
the different types of spatial patterns observed on
different species of the same animal genre, such
as the spots of the cheetah in Figure 1(b) and the
spots of the giraffe in Figure 2(d).

The interpretation of Figure 2 is that if the
animal embryo is too small when the patterning
mechanism is activated, as in the mouse, or too
large, as in the hippopotamus and elephant, then
no clear pattern will be observed and these animals
are essentially uniform in color.

In between there is a progressively more com-
plex pattern as the size increases. The first two
bifurcations are illustrated in Figures 2(a) and 2(b),
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with the larger animals still showing coat pattern
but looking progressively uniform in color, as
shown in Figure 2(a).

There have been numerous developments and
an increased understanding of how patterns on
animals—fish and butterflies, for example—are
formed with the addition and combination of other
pattern-forming mechanisms, such as chemotaxis,
whereby there is movement of cells up chemical
gradients. Some examples of the numerous review
articles and books are [5], which discusses somite
formation; [53], which discusses fish stripes; [28],
which discusses evolving fish patterns and other
patterned species [10], [34], [35], [59].

It is pointed out in [4] that an understanding of
the diversity of animal coat patterns requires an
understanding of both the mechanisms that create
them and importantly their adaptive value. Among
other things, this paper discusses the advantages
of specific patterns in different environments. The
authors use a reaction-diffusion model, but their
conclusions are general and do not rely on any
specific reaction-diffusion models, as is essentially
the case with the above. They convincingly show
how different markings relate to specific natural
environments for the specific fields.

The areas of application of reaction-diffusion
models are now legion. One particular simple ap-
plication, which has turned out to be surprisingly
practical, was initially proposed in 1995 [9] and
pertains to the growth of gliomablastoma brain
tumors. The model is given by

(3) % =V.D(x)Vc + pc.

Here c(x,t) is the cancer cell density, measured
in cellsymm?3, at position x in the brain at time
t measured in months; D(x) is the cell diffu-
sion (invasion), measured in mm?2/month, which
quantifies the invasiveness of the cancer cells at
position x in the brain, since it varies depending
on position; and p is the net proliferation rate
(/month) of the cancer cells, which gives the cell
turnover time as log2/p (months). It is possible
with this model and patient brain scans to quan-
tify the efficacy of various treatment scenarios for
individual patients prior to treatment [60], [61].
These tumors are always fatal: see [46] for a full
discussion and [47] for a recent brief review.

Mechanical Theory of Biological Pattern
Formation in Morphogenesis

Because of the paucity of experimental verification,
the limitations of reaction-diffusion theory gave
rise to a totally new theory of biological pattern for-
mation (exceptions are ecology and epidemiology;
see, for example, [18], [29] for reviews). The theory
was based on extant biological facts about cells and
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Figure 3. Mechanical theory patterning scenario.
Here ECM denotes the extracellular matrix
through which the cells move, mitosis is cell
division, and haptotaxis is cell movement
directed by the deformed biological matrix.

the extracellular tissue matrix, namely, the Oster-
Murray mechanical theory of pattern formation
[40], [41], [50], [51]. A short introduction is given
in [42] with a full survey in [44], [46]. The class
of models captures the key interactions between
the mechanical forces generated by the cells and
their extracellular matrix milieu. Together they
give rise to developmental processes that could
be experimentally verified. The model shows that
a purely mechanical version of the theory could
be responsible for certain observed patterns and
how they are actually formed in development.
Such mechanical models are based on basic me-
chanical concepts and do not specify the type
of cells and matrix involved but instead consider
only possible mechanical interactions between the
various components.

The basic model hinges on two key experimen-
tally determined properties of mesenchymal cells
in vivo: (i) cells migrate within a tissue substratum
made up of fibrous extracellular matrix, the ECM,;
(ii) cells can generate large traction forces, thereby
deforming the matrix. The basic mechanism mod-
els the mechanical interaction between the motile
cells and the elastic substratum within which they
move. Mesenchymal cells move by exerting forces
on their surroundings, consisting of the elastic
fibrous ECM and the surface of other cells. They
use their cellular protrusions, which stretch out
from the cell in all directions, gripping whatever is
available and pulling. Due to the heterogeneity in
matrix and cell densities, cell traction tension lines
form between the cell clusters. These tension lines
correspond to aligned matrix fibers along which
cells actively move, thereby defining cellular high-
ways between the clusters. One of the major roles
of the modeling and its analysis was to indicate
what features are essential for biological pattern
formation.

The models consist of three nonlinear par-
tial differential equations; the cell conservation
equation; another for the cell-extracellular tissue

interaction, which incorporates cell movement,
that is, mechanotaxis or haptotaxis; and the third
equation, which quantifies the cell-matrix me-
chanical interaction. The models pose numerous
challenging mathematical problems, both analyti-
cal and numerical, as well as biological modeling
problems, many of which have not yet been inves-
tigated in any depth. Although the model system is
analytically formidable, its conceptual framework
is quite clear, as illustrated in Figure 3. The param-
eters in the model equations are all quantifiable
from experiment.

Several factors affect the movement of em-
bryonic mesenchymal cells. Among these are: (i)
convection, whereby cells may be passively carried
along on a deforming substratum; (i) diffusion,
where the cells move randomly but generally down
a cell density gradient; (iii) contact guidance, in
which the substratum on which the cells crawl
suggests a preferred direction; (iv) contact inhi-
bition by the cells, whereby a high density of
neighboring cells inhibits motion; (v) haptotaxis,
where the cells move up an adhesive gradient;
(vi) chemotaxis, whereby a chemical gradient can
direct cell motion both up and down a concentra-
tion gradient; (vii) galvanotaxis, where movement
from the field generated by electric potentials,
which are known to exist in embryos, provides a
preferred direction of motion. These effects are all
well documented from experiment. The analysis
of the field equations incorporating only (i)-(v)
showed how regular spatial aggregates of cells
come about.

Evolution and Morphogenetic Rules in
Cartilage Formation in the Vertebrate Limb:
Why Are There No 3-Headed Monsters?

One major application of this mechanical theory
was to limb development, the results of which
were also put into an evolutionary context [51].
Since the limb is one of the most morphologically
diversified of the vertebrate organs and one of
the more easily studied developmental systems,
it is not surprising it is so important in both
embryology and evolutionary biology, where there
is a rich fossil record documenting the evolution
of limb diversification.

Although morphogenesis appears determinis-
tic on a macroscopic scale, on a microscopic scale
cellular activities during the formation of the limb
involve considerable randomness. Order emerges
as an average outcome with some high probabil-
ity. It was shown that some morphogenetic events
are extremely unlikely, such as trifurcations from
a single chondrogenic condensation. Mathemati-
cally, of course, they are not strictly forbidden by
the pattern formation process but are highly un-
likely, since they correspond to a delicate choice of
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Figure 4. Morphogenetic rules. The three basic cell condensations: (a) a single condensation, F; (b) a
branching bifurcation, B; (c) a segmental condensation, S. Complicated patterns can be built from a
combination of these basic bifurcations, as in (d), which is one example of the complex
morphogenesis and digitations of the forelimb of the salamander Ambystoma mecicanum, which was

obtained experimentally [44], [58].

conditions and parameter tuning. This is another
experimentally verified example of a developmen-
tal constraint. The “morphogenetic rules” for limb
cartilage patterning are summarized in Figure 4.

A variety of limb buds were treated with the
mitotic inhibitor colchicines [3]. This chemical
reduces the dimensions of the limb by reducing
cell proliferation. It was predicted from the math-
ematical model that such a reduction in tissue
size reduces the number of bifurcation events.
Figure 5 quantitatively shows the consequence of
the inhibitor on limb cartilage growth.

Using the basic rules of cartilage pattern for-
mation in [3], a series of comparative studies [58]
were carried out with amphibians, reptiles, birds,
and mammals, which confirmed the mathemati-
cal predictions, or hypothesis, that tetrapod limb
development consists of iterations of the pro-
cesses of focal condensation, segmentation, and
branching. Furthermore, it was shown that the
patterns of precartilage cell condensation display
several striking regularities in the formation of
the limb pattern. The experimental results sup-
ported the theoretical conclusion that branching,
segmentation, and de novo condensation events
are reflections of the basic cellular properties of
cartilage-forming tissue.

We thus see the possibility of evolution moving
backward. It is clearly possible when we con-
sider evolution of form as simply variations
in mechanical (or rather mechanistic) parame-
ters. Figure 5 is an unequivocal example where
this has happened solely through changing the
morphogenetic processes.

The study of these theoretical mechanical mod-
els for pattern formation showed that there
are considerable restrictions as to the possible
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patterns of chondrogenesis (as well as other de-
velopmental aspects). From the morphogenetic
laws it is highly unlikely that a trifurcation is
possible, that is, a branching of one element into
three elements. There are numerous examples of
two-headed snakes and other reptiles, conjoined
twins, and so on. Although there is sometimes
an appearance of a 1-to-3 splitting, the theory
suggests that all branchings are initially binary.
This is because a trifurcation is possible only
under a very narrow set of parameter values and
conditions. Including asymmetries makes it even
more unlikely. This notion of the unlikelihood of
trifurcations is the reason we do not see any three-

Paedomorphism —

Figure 5. The effect of treating the foot of the
salamander Ambystoma mexicanum with the
mitotic inhibitor colchicine is to reduce the
number of skeletal elements. The effect of the
inhibitor is to reduce the cell number in the limb
and hence the size (after [1], [2]).
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(b)

Figure 6. Examples of branching in humans. (a)
The skeleton (19th century) of a Dicephalus, a
young boy. (b) An example (19th century) of a

Tricephalus.

headed monsters. Figure 6 shows two examples
of human branching.

Very few three-headed monsters have been
reported, and of these the veracity is usually
highly questionable. If we come back to the limited
bifurcations suggested by the morphogenetic laws
above, and specifically that a trifurcation is highly
unlikely, we can see how a three-headed monster
can arise, namely, via a bifurcation of the body
axis, such as we see in the skeleton in Figure 6(a),
followed by a further bifurcation of one of the
branches, as seems clear in the example in Figure
6(b). See [46] for a very brief history of writings
on monsters.

Teratology highlights some of the most fun-
damental questions in evolution: namely, why do
we not get certain forms in nature? The devel-
opmental process embodies various systems of
constraint that bias the evolution of the system.
Teratologies, among other things, provide an ex-
cellent source of information on the potential
of developmental processes. They also suggest
which monstrosities are possible and which are
not. It is interesting that specific morphologies
are found in quite different species, suggesting a
certain common developmental process for part
of their development.

Concluding Discussion

This has been a very short and personal choice
from the vast literature associated with the appli-
cation of mathematical models in the biomedical
sciences. In the 1980s, with most of the research
conclusions speculative, there was a decrease in
the new applications of reaction-diffusion models,
since demonstrating the existence of specific mor-
phogens was proving elusive. This resulted in the
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new mechanochemical theory of biological pattern
and form discussed briefly above, which was based
on experimental data on real cells and the forces
they could exert in the generation of pattern and
form. From the mid-1990s on, the practical use
of reaction-diffusion models again increased, with
the biological applications becoming much more
verifiable experimentally, as has research and de-
velopments of the Murray-Oster mechanochemical
theory of pattern formation as more experimental
data and confirmation of modeling predictions
have been found.

As seen in many of the papers referred to here,
models and their biological predictions encour-
agingly have been a major stimulant for guiding
critical experiments, which have resulted in signifi-
cant discoveries. This, of course, should be the aim
of any mathematical biology modeling, namely, to
stimulate in any way whatsoever any endeavor that
results in furthering our understanding of biology.
Although with the major developments in the past
twenty years we now know a lot more about pat-
tern development, most mechanisms involved in
development are still not fully understood. We do
not know, for example, the complete mechanisms
of how cartilage patterns in developing limbs are
formed or the specialized structures in the skin,
such as feathers, scales, glands, and hairs, or the
myriad of widely observed patterns. Many of the
rich spectrum of spatial patterns observed in de-
velopment evolve from a homogeneous mass of
cells that are orchestrated by genes that initiate
and control the pattern formation mechanisms;
genes themselves are not involved in the actual
physical process of pattern generation. The basic
philosophy behind practical modeling in biology is
to try to incorporate the physicochemical events,
which from observation and experiment appear to
be going on during development, within a model
mechanistic framework that can then be studied
mathematically and, importantly, the results re-
lated back to the biology. These morphogenetic
models provide the embryologist with possible
scenarios as to how and when pattern is laid
down, how elements in the embryo might be cre-
ated, and what constraints on possible patterns
are imposed by different models. Many of the
references in this article have greatly increased
our biological understanding.

Both the mechanochemical models and
reaction-diffusion models have been fruit-
fully applied to a vast range of biological
problems, not only in morphogenesis but else-
where, such as feather primordia arrangement,
wound healing mentioned above, wound scarring,
shell and mollusk patterns, and many others
[46]. It is almost certain that both mechanisms
are involved in development, and although they
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are in a sense competing theories, in fact the
mechanisms complement each other. Perhaps
the most fundamental difference between the
theories is that the elements involved directly
in the mechanical theory are all real biological
quantities: namely, cells, tissue, and the forces
generated by the cells. All quantities involved are
measurable. In the end, however, the key aspect
of these mechanisms is their ability to predict the
subsequent pattern and form. The final arbiter
of a model’s correctness and usefulness is how
consistent it appears in the light of subsequent
experiments and observations.

The explosion in biochemical techniques over
the last several decades has led to a still larger
increase in our biological knowledge but has
partially eclipsed the study of the intermediate
mechanisms that translate gene influence into
chemicals, into gradients, and into pattern and
form. As a result, there is much still to be done in
this area, both experimentally and theoretically.

We have clearly only scratched the surface of
a huge, important, and ever-expanding interdis-
ciplinary world. Biology, in its broadest sense, is
clearly the science of the foreseeable future. What
is clear is that the application of mathematical
modeling in the biological, medical, ecological,
psychological, and social sciences is going to play
an increasingly important role in future major
discoveries and epidemiological and population
control strategies. There is an ever-increasing
number of areas where theoretical modeling is
important, such as social behavior, adaption to
habitat changes, climate change, and so on. In the
case of zebras, for example, in [54] it is shown, by
unraveling how species adapt to specific environ-
mental changes such as land use, why of two types
of zebra in the same environment the Grevy zebra
(Equus grevyi) is nearing extinction, while another,
the plains zebra (Equus burchelli), has adapted its
behavior to survive. Behavioral ecology is another
important expanding area of research. How bird
flocks, schools of fish, and so on reach community
decisions is another exciting, relatively new area;
see [48] for research on fish community decisions
and [8] for locusts.

Mathematical biology now has active re-
searchers, numbering in the thousands, in
practically all of the biomedical sciences. Mathe-
matical modeling in the social sciences is another
growth area of the future. One example of this
involvement is the theoretical model developed
for a major study on marital interaction and
divorce prediction. The basic model and its prac-
tical application are based on a model proposed
in [12], developed and used in a major study of
seven hundred newly married couples (see [20],
[21] and for a survey [46]). The prediction of the
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future of marital stability proved surprisingly
accurate, with an accuracy of 94 percent. Its use
in marital therapy is proving highly successful.

Any mathematical or theoretical biological re-
search must have genuine interdisciplinary con-
tent. There is no way mathematical modeling can
solve major biological problems on its own. On
the other hand, it is highly unlikely that even a
reasonably complete understanding could come
solely from experiment.
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