

Why did I eat that? Obesity and the neuroscience of food craving

Carrie R. Ferrario, PhD Oct 13, 2020 BBRF Meet the Scientist Webinar Series

Most often used food word

http://compstorylab.org/share/papers/alajajian2014a/maps.html

Brain Systems Mediating Cue-Triggered Motivation

Outline:

Cue-triggered motivation is stronger in obesity susceptible rats *before* obesity.

- Food-seeking
- Approach

Effects of sugary, fatty "junk-foods"

Rodent models:

Rodent models:

Is cue-triggered food-seeking enhanced in obesity-prone rats?

(Levin et al., 1997)

Lever Press for Food (Food-Seeking)

Derman & Ferrario, Neuropharm., 2018

Learn Food/Cue Relationship

Derman & Ferrario, Neuropharm., 2018

Test: Does the food cue enhance food-seeking?

No Food Given

CS- (Control Cue)

CS+ (Food Cue)

Greater cue-triggered food-seeking in obesity-prone rats

Greater cue-triggered food-seeking in obesity-prone rats

Unpublished data

Standard Rats:

Cue-triggered food-seeking

no food given

Junk-Food

	Purina Lab Chow	Junk-Food Mash
Fat	4.5%	19.6%
Protein	23%	14%
Carbs	48.7%	58%
Calories	4 kcal/g	4.5 kcal/g

Standard Rats:

Cue-triggered food-seeking

no food given

Junk-Food

Gainer

Non-Gainer

Derman and Ferrario, Beh Brain Res 2020

Robinson et al., NPP 2015

Take-homes 1:

1) Vulnerability factor in humans

itsu

2) Provides a useful tool

Green=DRD1-CRE+ cells, rat

MSN image by Grazyna Gorney, Kolb lab

Glutamate Synapse

"Typical" AMPA Receptors Majority of AMPARs Allow Na⁺ into cell (excitation)

"A-typical" CP-AMPA Receptors

Very few in adult brain (~10%) Selectively blocked by NASPM Allow Ca²⁺ into cell (stronger excitation)

Do CP-AMPARs mediate cue-triggered food-seeking?

Derman & Ferrario, Neuropharm., 2018

Activity of CP-AMPARs is needed for cue-triggered food-seeking.

Derman & Ferrario, Neuropharm., 2018

Does eating junk-foods enhance AMPARs?

Do effects differ in obesity-prone & obesity-resistant rats?

Standard Rats:

3 months

Junk-food increases CP-AMPAR function

Selectively bred obesity-prone and obesity-resistant rats

10 days

Chow (2 weeks)

JF-Deprivation

Chow

Junk-food increases CP-AMAPRs in obesity-prone but not obesity-resistant rats

Take-homes 2:

1) Changes in bran function occur in response to eating junk-food

2) Obesity-prone more sensitive to these effects

Why different behavioral sensitivity & neural changes?

Inherent enhancements in Medium Spiny Neuron function

MSN image by Grazyna Gorney

Oginsky et al., *Psychopharm*, 2016 Oginsky et al., *J. Physiol*, 2019 Alonso-Caraballo & Ferrario, *Horm & Beh*, 2019

Why different behavioral sensitivity & neural changes?

Fire more easily, easier to induce changes in cell function.

Does junk-food enhance cue-triggered motivation?

Lab Chow Junk-Food

30 days

Chow (14 days)

JF-Deprivation

Control

Current Lab Members:

Tracy Fetterly, PhD[#] Julie Finnell, PhD Megan Wickens, PhD Amanda France Jacob Ormes Allison Nieto Anish Saraswat Sophia Dunlap Rachel Springsdorf^{\$}

Ongoing Collaborations: Travis Brown (U WY) Monica Dus (UM) Terry Robinson (UM)

Past Lab Members:

Yanaira Alonso-Caraballo, PhD[@] Rebecca Derman, PhD⁺ Peter Vollbrecht, PhD[#] Max Oginsky, PhD^{#,*} Emma Bergman

Cameron Nobile

Trainee Funding: +F31DK111194, @F99NS108549, *F32DK112627A, #T32DA007268,\$T32DA007281 Research Funding: R01-DK106188; R01-DK115526; R01-DA044204; R21-DA045277; Brain & Behavior Foundation

Take-homes:

1) Junk-food changes in brain function before obesity

2) Obesity-prone more sensitive to junk-food & cues

3) Vulnerability factor

4) Rodent models are useful tools

Cue-triggered motivation is greater in obesity-prone females & varies with the cycle in obesity-prone, but not obesity-resistant rats.

Work for Food

MD= Metestrus/Diestrus PE= Proestrus/Estrus

M/D P/E

OR