

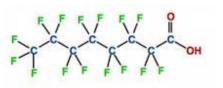
EMERGING CONTAMINANTS: POLY- AND PERFLUOROALKYL SUBSTANCES AND YOUR WATER SUPPLY

Harry Brenton, RPG Matrix New World Engineering

Why the Interest in PFAS?

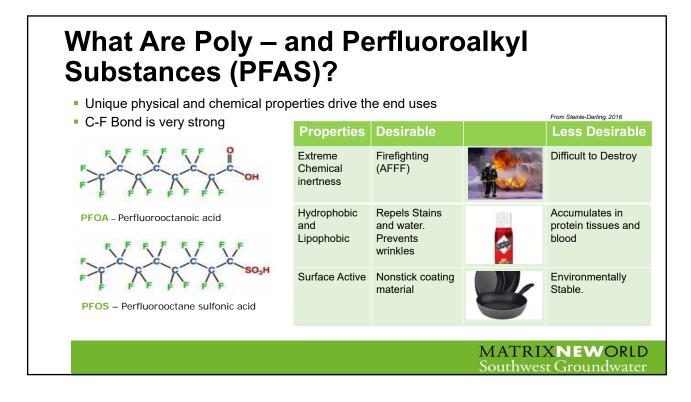
- Found widely distributed in the environment
 - Persistent and resistant to degradation
- Potential human toxicity
- Used in a wide range of industrial and commercial applications;
 - Non-stick cookware
 - Fabric protectors
 - Paints and coatings
 - Ski wax
 - Microwave popcorn bags and pizza boxes
 - Aqueous Film Forming Foam (AFFF)

MATRIX**NEWORLD** Southwest Groundwater


Agenda

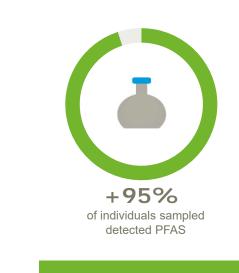
- What are PFAS?
- Where are they used?
- History of use
- Toxicology and Potential Health Effects
- Regulatory Framework
- Major Sources and Entrance into Water Supplies
- Site Characterization Considerations
- Fate and Transport in Groundwater
- Treatment Options

What Are Poly – and Perfluoroalkyl Substances (PFAS)?


- PFAS have been around for ~ 60 years
- Complex family of >3,000 chemicals
 - Long chain and short chain molecular structure
 - Greater than 8 C atoms Long Chain
 - Less than 8 C Atoms Short Chain
- Two currently regulated PFAS molecules
 - Perfluorooctane sulfonic acid (PFOS) and
 - Perfluorooctanoic acid (PFOA)
 - Sometimes referred to as C8

PFOA – Perfluorooctanoic acid

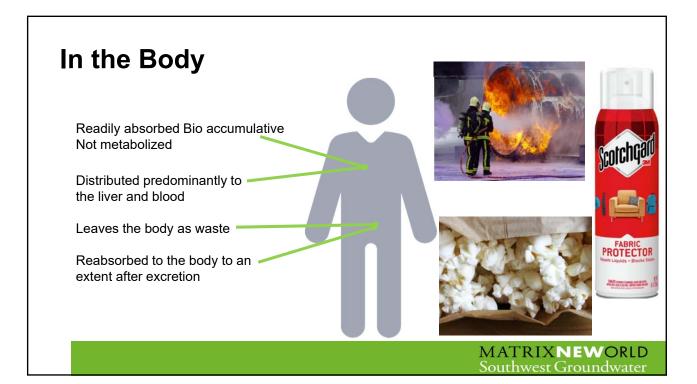
PFOS – Perfluorooctanesulfonic acid



History of PFAS

- 1940s Production 3M PFOS and PFOA; Dupont uses to make Teflon products
- 1960s Wide spread use Food packaging, water-repellent products, AFFF developed
- **1978 Health Effects** 3M finds PFOA in blood samples from workers
- 1980s Environmental Impacts Dupont finds PFOA in drinking water near WV Teflon Manufacturing Plant
- 2002 3M Phases out production of PFOS (2002) & PFOA (2008)
- 2015 All other PFOS & PFOA producers in US phase out production

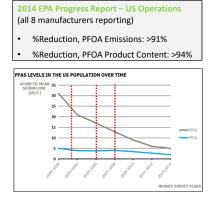
PFAS ¹	Development Time Period										
	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s			
PTFE	Invented	Non-Stick Coatings			Waterproof Fabrics						
PFOS		Initial Production	Stain & Water Resistant Products	Firefighting foam				U.S. Reduction of PFOS, PFOA, PFNA (and other select PFAS ²)			
PFOA		Initial Production		otective batings							
PFNA					Initial Production	Architectura	al Resins				
Fluoro- telomers					Initial Production	Firefighting	Foams	Predominant form of firefighting foan			
Dominant Process ³		Electrochem	ctrochemical Fluorination (ECF)								
Pre-Invention of Chemistry /			Initial Chemical Synthesis / Production			Commercial Products Introduced and Used					
PFOS, F 2. Refer to 3. The don	PFOA, and Section 3. ninant man	PFNA (perfluc 4. ufacturing pro	prononanoic	acid) are PFA	As. i; note, howev			a fluoropolymer, elomerization have			

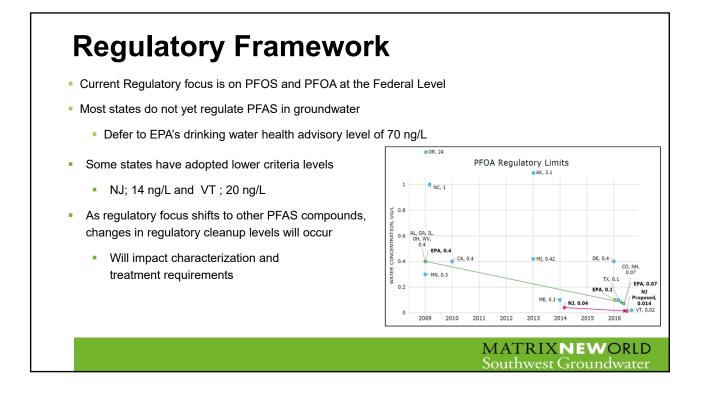

Toxicology and Potential Health Effects

Appear to be widespread across the globe

Contacts primarily through

- Food, Food packaging, drinking water
- Breathing air that contains contaminated dust from carpets, upholstery, clothing, etc.
- Will build up in body until exposure stops
- PFAS Reach the fetus or nursing infants of mothers who are exposed
- Are not significant through skin contact when bathing or showering

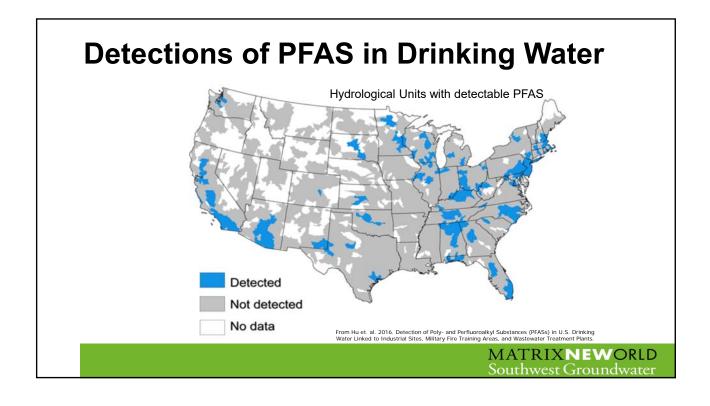

Potential Health Effects


- Animal studies indicate impacts to the liver, changes in hormone levels and adverse developmental outcomes
- Possible health effects include the following:
 - Increased cholesterol levels?
 - Increased risk for high blood pressure?
 - Liver disease?
 - Auto immune diseases?
 - ulcerative colitis?
 - thyroid disease?
 - Possibly carcinogenic?

There is still uncertainty regarding the toxicology effects in humans

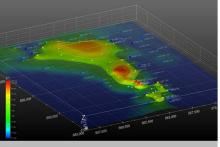
Regulatory Framework

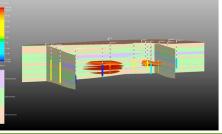
- 1990s EPA receives information on PFOS & PFOA blood levels in general population
- 2006 EPA launches PFAS Stewardship Program
 - Commit to achieve 95 percent reduction in emissions and product content by 2010
 - PFAS and precursor chemicals
 - Complete elimination by 2015
- 2009 EPA establishes drinking water Health Advisory Levels of 400 ng/L for PFOA and 200 ng/L for PFOS
- 2012 EPA initiates requirement for public drinking water supply monitoring of PFAS compounds through UCMR 3
- 2016 EPA lowered drinking water Health Advisory Level to 70 ng/L for combined PFOA & PFOS
- No Federal MCL established under Safe Drinking Water Act...yet



Major Sources of PFAS Soil and Groundwater Contamination

- Fire Training and Fire Response Sites that use AFFF
- Manufacturing Facilities and Industrial Sites
- Landfills
- Waste Water Treatment Plants


Site Characterization Considerations


Conceptual Site Model Development

Site History

- Source Identification
- Nearby receptors
- Other potential Sources
- Hydrogeologic Framework
 - Aquifer characteristics and architecture
 - Geochemical characteristics
 - Surface and groundwater interaction
- Contaminant mass distribution
- Groundwater flow directions and velocities
- Vertical gradients mass flux movement
- CSM is a living document

Goal: Develop understanding of known/potential distribution of PFAS contamination in context of hydrogeological conditions to help identify data gaps and uncertainties

Site Characterization Considerations

Investigative Strategies

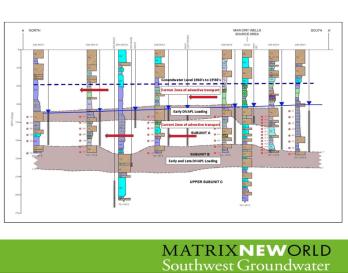
- Drilling and sampling methods
- High resolution characterization
 - Geoprobe
 - Continuous core
- Monitor well installation
- Hydropunch samples
- Other comingled contaminants
- Contaminant mass distribution

Equipment and Supply Considerations

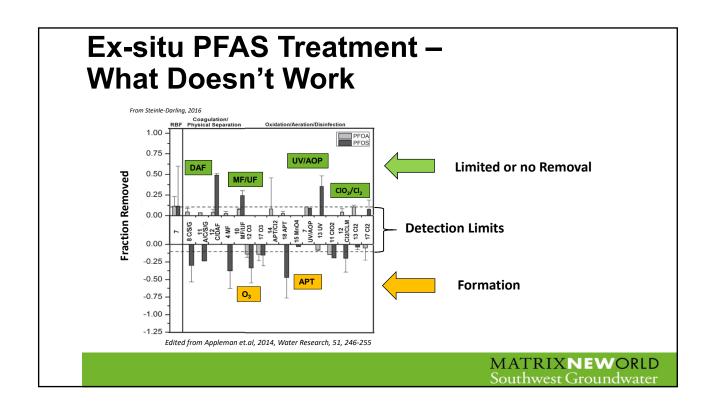
- Need to be mindful about sampling equipment that contains PFAS.
- MSDS Review of all materials that will be used in sampling

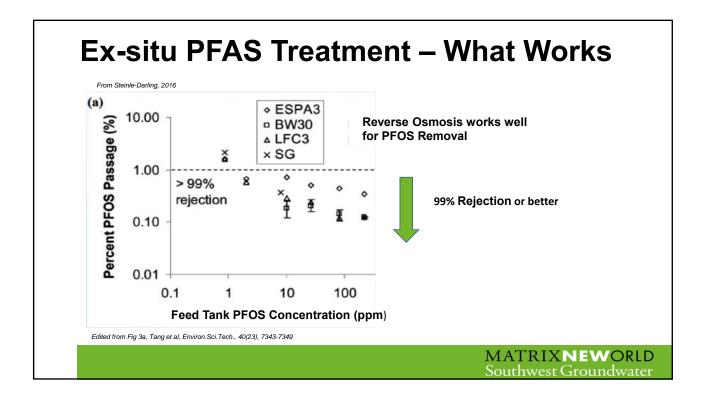
Goal of characterization is to define extent of contamination. Fill in data gaps to help guide remedial investigations.

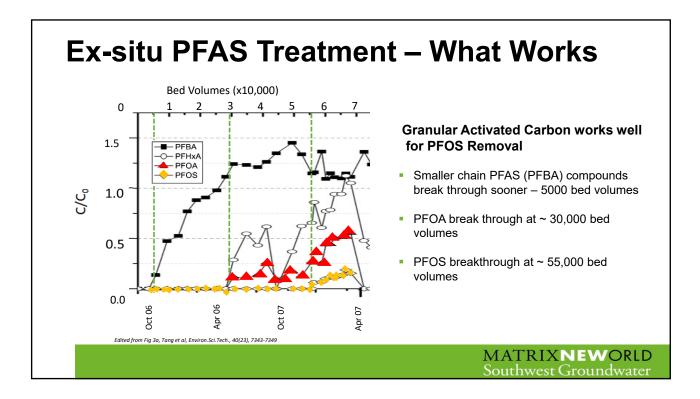
MATRIX**NEWORLD** Southwest Groundwater

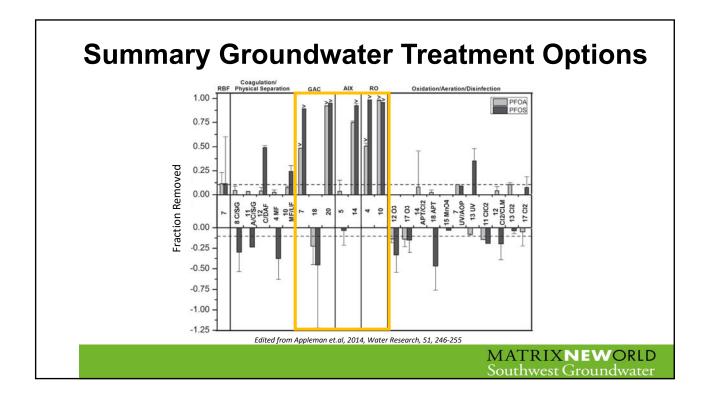

Laboratory Testing

- EPA Method 537 using LC-MS/MS is only commonly accepted laboratory analysis in US for groundwater
- Soil and sediment can also be analyzed via modified Method 537
- Cost per sample \$250 to \$500
 - Includes suite of 24 compounds, including PFOS & PFOA
 - Detection limits typically in low ppt range




Groundwater Fate and Transport


- PFAS are relatively mobile in groundwater
- Less volatile than other contaminants such as chlorinated solvents
- PFOS & PFOA molecular structure can lead to widespread distribution
- Partitioning Mechanisms
 - Hydrophobic effects
 - Associations with organic content in soils
 - Sorbed into finer grained deposits followed by matrix back diffusion


<section-header><section-header><text>

Process Selection Depends on
Depends on
Selection Depends on

GAC	Long chain PFAS	Lower	Low-Med	Spent Carbon/regeneration (\$)
AIX	Depends on Resin	Lower	Low-Med	Spent Resin/Regeneration (\$)
RO	Long and short chain PFAS	High	Med-High Range	Liquid Concentrate (\$\$\$)

Fundamental Flaw in these treatment options: Sequestration and not Destruction of PFAS

In situ Groundwater Treatment

- Many different In-situ remediation methods have been attempted with limited success
 - Thermal Treatment
 - Bio Remediation
 - Chemical Oxidation Persulfate
 - Injection of activated carbon slurry

MATRIX**NEWORLD** Southwest Groundwater

Some Takeaways

- Unique physical properties drive their end uses
 - Chemically stable, mobile, and degradation resistant
 - Bioaccumluative
- Found in waste water and groundwater in areas near landfills, manufacturing sites, and/or near fire training sites that use AFFF.
- Exposure predominantly via food or in drinking water in areas with impacted drinking water supplies.
- Site characterization efforts need to be mindful of sampling equipment.
- Regulatory Standards are changing State agencies are adopting their own standards.
- Proven ex-situ treatment technologies are currently limited to GAC, IX, and RO.
- Proven *insitu* treatment technologies are continuing to evolve.

Acknowledgements;

)r. Laurie Lapat-Polasko - Matrix New World Engin)r. Eva Steinle-Darling - Carollo Engineers Catherine Brown – US EPA Region 9