

Wide Area Measurement Systems -Monitoring and Control for the Grid of the Future

Department of Energy Transmission Reliability Program

Third Annual Carnegie Mellon Conference on the Electricity Industry

March 13-14, 2007

Phil Overholt Office of Electricity Delivery and Energy Reliability

Transmission Reliability Mission

Develop technologies and technically-based policy options to enhance the reliability and economic efficiency of the Nation's electric power delivery system under competitive electricity markets

Transmission Reliability Projects Summary

Real Time Grid Reliability Management

- Reliability Adequacy Tools
 - NERC Performance metrics research, standards development support, and compliance monitoring prototypes, including visualization
- Advanced Measurement and Control
 - North American Synchro-Phasor Initiative
- Reliability and Markets
 - Market Design and Market Monitoring

Load as a Resource

Power System Reliability Analysis Gaps

- >Lack of wide-area visibility
- Lack of situational awareness
- >Need for time-synchronized data recorders
 - Phasor measurement technology is the solution

Lack of Visibility and Situational Awareness Led to Aug. '03 Blackout

North American Synchro-Phasor Initiative (NASPI) Elements

- Leadership Team (led by Phil Overholt/DOE and Stan Johnson/NERC)
- Participating operating entities investing in equipment and communications
- Executive Steering Group

The Work Group's mission is to create a robust, widely available and secure synchronized data measurement exchange network over the North American grid with associated analysis and monitoring tools for better planning and operation, and improved reliability.

PMU Deployment

Real Time Dynamic Monitoring System for Wide Area Phasor Monitoring

Warning Signs of the August 10, 1996 WSCC Breakup

AEP Kanawha River bus frequency for Aug14 Blackout 12:00-16:10 EDT

Frequency in Hertz

Visualization and Control -- Challenges and Needs for an Evolving Industry Structure

Summary of Research Goals and Milestones

Research	Near-Term(1-2 Years)	Mid-Term (2-5 Years)	Long-Term
Areas	 Wide-area visibility with common situational 	 Wide-area visibility with full coverage 	(5-10 Years)
 Visualization 	 awareness screens Baseline normal operating conditions, limits and alari 	 Approaching real-time state measurement for operators 	 Real-time protection Distributed closed
 Monitoring 	for El Demonstrate improved sta	te Dynamic system security assessment tools	Automatic smart-
 Planning 	estimation with phasor measurements	 Common operator tools deployed 	switchable networks
5	Model validation for better	Congestion management	
 Phasor Infrastructure 	 Identify human factors & 	Improved LMP	\rangle
Management	based operations tools	Work with industry to initiate major demonstration of real-time control	r /
Control	 Define best practices for enhanced grid "forensics" Design pext generation do 	for dynamic security	
 Protection 	 and communications infrastructure Define research and 	 Work with industry to demonstrate adaptive islanding protection concepts to improve protection fro wide-area blackouts 	e om
 Switching 	 demonstration approach for real-time control Identify research needs for federal investment 	 Develop strategy for next-generat operational tool concepts 	ion
2	2006 - 2007	2007 - 2010	2010 - 2015

Phasor Technology Vision & Roadmap -- Summary

Research Outcomes

- System visibility & situational awareness across entire interconnection
- Wide area grid monitoring common data & visualization platform
- Interconnection wide state estimation
- State measurement based grid operations & security management
- Uniform standards & protocols for data collection, communications & security
- Reliable & high quality phasor data to facilitate smart grid control & operations
- Dynamic system security assessment

Advanced Energy Initiative

- Develop advanced batteries for plug-in hybrid-electric vehicles
- Complete clean coal technology research funding and move resulting innovations into the marketplace
- Develop a new Global Nuclear Energy Partnership to address spent nuclear fuel, eliminate proliferation risks, and expand the promise of clean, reliable, and affordable nuclear energy
- Reduce the cost of solar photovoltaic technologies,.... and expand access to wind energy through technology

www.eere.energy.gov/cleancities/toolbox/pdfs/energy_booklet.pdf

