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Abstract—Ambient, non-intrusive approaches to smart home
health monitoring, while limited in capability, are preferred by
residents. More intrusive methods of sensing, such as video and
wearables, can offer richer data but at the cost of lower resident
uptake, in part due to privacy concerns. A radio frequency-
based approach to sensing, Channel State Information (CSI),
can make use of low cost off-the-shelf WiFi hardware. We have
implemented an activity recognition system on the Raspberry Pi
4, one of the world’s most popular embedded boards. We have
implemented an classification system using the Pi to demonstrate
its capability for activity recognition. This involves performing
data collection, interpretation and windowing, before supplying
the data to a classification model.

In this paper, the capabilities of the Raspberry Pi 4 at
performing activity recognition on CSI data are investigated.
We have developed and publicly released a data interaction
framework, capable of interpreting, processing and visualising
data from a range of CSI-capable hardware. Furthermore, CSI
data captured for these experiments during various activity
performances have also been made publically available. We then
train a Deep Convolutional LSTM model to classify the activities.
Our experiments, performed in a small apartment, achieve 92%
average accuracy on 11 activity classes.

Index Terms—Activity Recognition, Smart Home, IoT, RF

I. INTRODUCTION

The available choice for sensing technologies in smart home
health monitoring environments has increased in variety over
the last decade. Typically basic technologies such as passive
infrared sensors (PIRs) for motion detection, and magnetic
switches for tracking doors have been deployed in dense
configurations, with commercial offerings largely matching the
state of the art [1]. These sensors produce simple activation
events which can be used to indicate presence and activity
levels in the home [2]. Many basic sensors are also considered
to be ambient in that residents do not perceive them to be
invasive. While their ambient nature is a strength, these sensors
produce comparatively very little data. Sensor technologies
capable of producing richer data representations, such as
cameras and wearables, are becoming popular but can be
considered too invasive for some tasks. As a result, this reduces
their overall uptake and residents may modify their behaviour
if they are continuously aware that they are being monitored.
Ambient sensor technologies which can produce large amounts

of rich data could overcome this limitation, especially in health
monitoring.

Channel State Information (CSI) captured from off-the-shelf
WiFi devices is a developing area of research, with significant
progress being made in Gesture [3] and Activity Recognition
[4], [5]. This technology leverages the ambient nature of RF
transmissions, while also potentially allowing for a system
which benefits from the existing WiFi infrastructure in smart
homes. While commercial applications are only now becoming
practical [6], many publications in this area address the issues
facing practical deployment. One such issue is the specific
hardware/software combination which is necessary to facilitate
the extraction of CSI data.

Since the Linux 802.11n CSI Tool was released in 2011
[7], CSI research has primarily been performed using the Intel
IWL5300 wireless card. This hardware has been the cheapest
and most consistent way to extract CSI data from off-the-shelf
hardware. Over time, this hardware configuration has become
less relevant as embedded hardware boards are used more
in sensor configurations. Following the release of Nexmon
CSI [8], it has now become possible to extract CSI from a
Raspberry Pi 3B+/4, which makes it easier to conduct research
in this area. As this is a recent release, the CSI capabilities of
the Raspberry Pi 4 have not yet been fully established.

The Raspberry Pi 4’s price and potential capabilities posi-
tion it as a powerful tool in smart home health monitoring. If
it can offer health monitoring data of similar value to more
standard technologies such as vision and wearables, then its
completely ambient nature would allow for more ubiquitous
deployment in smart housing. Establishing the capabilities of a
technology can be a slow, iterative process. To address whether
further research will be necessary, it would be beneficial to
identify the Pi’s performance in activity recognition. This is
a good challenge for the hardware. In our experiments, we
aim to establish the Pi 4’s activity recognition capabilities in
a home environment, in both Line of Sight and Non-Line of
Sight scenarios (NLOS).

While CSI research has been developing over the past
decade, it can be difficult for researchers to start working
with this technology. Many of the tools and scripts written
for interacting with this technology are written for specialised



languages or tools such as MATLAB. There are few public
CSI datasets, which have a variety of activity classes that may
not be relevant to specific scenarios. Hence, it is difficult to
perform research without assembling hardware configurations
and collecting your own data. To address this, alongside
the code used for our experiments, we are making a CSI
interaction framework available for use, called CSIKit1. This
framework is written in Python, and uses Numpy and Scipy
which should improve accessibility for data science-focussed
research. The data used for these experiments, and some
others, will also be made available alongside CSIKit. This is
aimed at allowing researchers to get started with CSI research,
without spending significant amounts of time assembling their
own configuration.

The key contribution of this work is to establish the
Raspberry Pi 4 as a capable device for ambiently monitoring
activities in the home. Further contributions from this work
are:

• CSIKit, a Python framework for interacting with data
from a range of CSI hardware;

• A public dataset of generated CSI and activity annotations
from Raspberry Pi 4 hardware;

• and an implementation of an established activity classifi-
cation model structure on the above dataset.

In this paper, we examine the placement of the Raspberry
Pi 4 in CSI hardware deployment and the differences in
performance we could expect to see in targeted scenarios.
The activity recognition task is then outlined, including how
it is distinguished from gesture recognition. We then outline
the selected activities given the available environment and
hardware, and how they were varied to represent realistic
activity performances. The configuration used for the deep
learning model structure is detailed. Finally, the results from
our experiments are discussed, followed by a discussion on
how they will affect our future work.

II. RELATED WORK

The Internet of Things offers improved inter-connectivity
between devices which has allowed for basic off-the-shelf sen-
sors which can form cohesive networks throughout an entire
home. These networks have assisted researchers in performing
more long-term smart home monitoring studies, which previ-
ously could be limited in scope and size due to communication
overhead [9]. Early studies looking at residential healthcare
informatics highlighted subject behaviour using simple sensor
equipment [10]. In doing so, they were able to identify regular
behavioural routines. As the underlying technologies used in
these studies improved, such as video, the richness of the
data produced by sensor equipment improved. This allows
for more insights to be extracted from the same behaviours
demonstrated by a resident. However activity tracking still
lacked the richness necessary for accurate health monitoring.

Assessments of deteriorating health condition, such as mo-
bility, are traditionally performed under laboratory conditions

1https://github.com/Gi-z/CSIKit

[11], [12]. For example, Vestergaard found a link between
performance in the 400-Meter Walking Test and remaining
life span. However, these methods are slightly artificial in that
the assessments are outwith the normal environment and can
be treated as a one-off performance rather than a measure of
day-to-day capabilities. If an approximation of these tests can
be achieved in a home environment, not only would perfor-
mative behaviour be greatly reduced, but deteriorating health
conditions could be caught sooner. While the measurements
taken for these tests are not easily replicated using basic sensor
equipment, newer technologies can be used to extract similar
metrics.

Sensor technologies which are capable of producing richer
data have typically more intrusive modalities, such as video
or wearable sensors. The rich data streams they produce can
be used to extract similar measurements to those taken during
hospital testing, such as gait speed in video [13], and heart
rate from wearables [14], [15]. This data is valuable, however
residents tend to resist these sensor modalities as they are
intrusive or inconvenient. Residents have privacy concerns
with long term video capture, and wearable sensors require
upkeep and maintenance.

Conversely, many uninstrusive sensor modalities are limited
to more basic technologies, such as infrared motion detectors,
or magnetic switches. Researchers have had varying success in
performing measurements using these sensors [16], however
these technologies appear to be better suited to behavioural
tracking rather than physiological estimations [9], [17]. The
basic technology used in these sensors is often cheap, however
IoT-connected versions of these sensors can be much more ex-
pensive due to the additional wireless hardware and branding.

Another form of ambient sensing technology, radio fre-
quency (RF) transmissions can travel through the air and
walls, with solid objects leaving an imprint on the resultant
signal as collected at receiving antennas. Research in RF-
based sensing technologies has experienced a recent in activity
after a significant challenge with interference in through-wall
transmissions was overcome [18]. Since this breakthrough,
RF has seen wider applications in ambient sensing, such
as gait recognition, imaging and human localisation [19],
[20]. Software defined radios have demonstrated capabilities
for gait tracking, respiration and heart rate monitoring, and
even accurate localisation. However from both a research and
deployment perspective, the radio equipment used can be pro-
hibitively expensive. The potential applications for RF-based
technologies in smart home health monitoring are numerous
but a cheaper hardware solution is needed to improve the
accessibility of this technology.

As a cheaper option, common off-the-shelf (COTS) WiFi
devices communicate using radio waves, usually in the 2.4GHz
or 5GHz range. Internally, many WiFi devices measure the
quality of their connection using a metric called Channel State
Information (CSI). For each channel in the given spectrum,
the device collects the measured phase and gain of the signal
at each antenna, which allows for the identification of signal
disturbances. Typically, CSI is used at an engineering level



to optimise WiFi network links and identify more efficient
connection solutions. CSI has also been used to monitor
respiration, heart rate, and for gesture recognition [21], [22]
in contact-free scenarios. CSI collection from COTS WiFi
devices offers an inexpensive method for ambient RF-based
sensing, which can benefit from the existing WiFi infrastruc-
ture available in most houses.

III. CHANNEL STATE INFORMATION

CSI has been shown to be effective in performing a range
of activity monitoring tasks, such as smoking recognition [23]
and crowd counting [24]. Medically-focussed studies have also
shown it to be effective in monitoring respiration and heart rate
[21]. We plan to use CSI for activity recognition in an ambient
smart home environment to assist health monitoring.

While the key objective of this paper is to establish the
capabilities of the Raspberry Pi 4 for activity recognition, a
brief outline of the fundamentals of CSI assists the discussion.

A. Preliminaries

The available frequency space for 802.11 WiFi is sepa-
rated into component carrier frequencies through Orthogonal
Frequency-Division Multiplexing (OFDM), by which each
subcarrier is used to encode and transmit data independently.
As each subcarrier can serve separate data streams, CSI will
be different as captured from each subcarrier. In a hardware
configuration using t transmit antennas and r receiving anten-
nas, this can be represented in a matrix as CSI for a given
packet transmission i.

CSIi =

∣∣∣∣∣∣∣∣∣
H1,1 . . . H1,r

H2,1 . . . H2,r

...
...

Ht,1 . . . Ht,r

∣∣∣∣∣∣∣∣∣ (1)

Ht,r for a given transmit and receive pair represents a
vector containing complex pairs captured for each subcarrier.
The number of subcarriers available depends on the hardware
configuration used for both the transmitting and receiving
device and the channel bandwidth they operate on. Popular
CSI hardware such as the Intel IWL5300 can access 30
subcarriers when paired with a device over 2.4GHz, whereas
newer devices which can access 802.11ac and 5GHz channels
can access around 256 subcarriers. Notably, some subcarriers
function as guard carriers (or guard bands) to reduce interfer-
ence, and so these remain empty by design. If the number of
available subcarriers is S, a given Ht,r pair can be expressed
as:

Ht,r = [ht,r,1, ht,r,2, . . . , ht,r,S ] (2)

The complex number hs generated for each subcarrier con-
tains the effect of transmission on the signal from a subcarrier,
from which phase θ and gain |hs| can be derived.

hs = |hs| exp (j · θ) (3)

Multi-path propagation is an effect inherent to wireless
transmission systems, as transmitted signals do not travel
directly to the receiving antenna. The combination of these
external factors make up the effect of multi-path propagation:

• Reflection - Change in phase as the signal rebounds;
• Scattering - Variations in path affecting signal shape;
• Attenuation - Reduction in observed amplitude.
Static objects in the environment will affect multi-path

propagation in a consistent manner, whereas dynamic objects
such as human bodies will have a variable effect. This variation
in the observed CSI data can be interpreted as impacts on the
multi-paths caused by human activity. This may be through
passive motion such as respiration, or active movement such
as walking. While both phase and gain are modulated by this
activity this paper will focus on the use of gain.

B. Hardware Accessibility

While most WiFi hardware could potentially generate CSI
data for third party use, in practice this is usually not the
case. The IEEE 802.11n standard defines CSI as a method of
communicating phase and gain information for each subcarrier
across a transmit and receive antenna pairing [25], however
few manufacturers make this data available to developers. This
may, in part, be as the standardised implementation of CSI
was designed to facilitate link quality monitoring. More non-
standard applications for CSI became relevant as commercial
CSI solutions became more accessible.

When the Linux 802.11n CSI Tool was released in 2011
[7], it became the most accessible way to extract CSI using
a standard hardware configuration with an Intel IWL5300.
This has fostered a field of research through which alternative
applications for CSI, beyond the original purpose, have been
explored. Researchers have experimented with CSI systems
capable of monitoring respiration [26], heart rate [22], and
sleep posture [21] using off-the-shelf hardware. While many
approaches to CSI data interaction make use of digital sig-
nal processing techniques, recent research has been shifting
towards deep learning approaches for use in more general
classification tasks. This has lead to significant performance
improvements in variable domain application spaces, such
as activity recognition, where signal processing and manual
feature extraction had previously been the state of the art.
Domain adaptation continues to present a pervasive challenge
in the CSI space, as RF technologies are significantly affected
by their surrounding environment, which can make it difficult
to train general models which can be adapted for different
environments.

One typical deployment scenario for IWL5300 hardware
consists of a host and an access point (AP). The Linux
802.11n CSI Tool allows the IWL5300 to operate in managed
mode, which is standard WiFi functionality by which a device
connects directly to an access point. The host, configured
with the IWL5300, which will generate traffic and capture
CSI, and the access point, which provides a transmit surface.
The host device sends a stream of packets to the AP at
a consistent rate, which generates CSI frames containing



connection information for the link between the host and AP.
For example, in activity recognition scenarios, the host and
AP will be placed at opposing ends of the room to ensure a
significant portion the signal will be altered by disturbances
created by subject movement inside the room.

Linux 802.11n CSI Tool is limited to older linux kernels
which can introduce significant inconvenience. Similarly, the
IWL5300 was a well-equipped wireless chipset at the time of
release, including support for the draft 802.11n specification,
however the wireless field has moved on significantly over
the last decade. The IWL5300 supports MIMO antenna in-
puts, with many standard configurations using a 2x3 antenna
array. However, the IWL5300 does not support many widely
available wireless technologies, including 802.11ac. In a study
exploring activity recognition performance with the IWL5300,
Wang simulated the additional bandwidth offered in 802.11ac
by operating two 40MHz channels [27]. They concluded that
the additional frequency space and subcarriers could improve
recognition accuracy. This indicates that research currently be-
ing performed with IWL5300 could be held back by hardware
limitations.

High end hardware solutions for generating CSI data do
exist in the form of USRP software defined radios (SDRs).
Ettus’s USRP N210 SDRs can be used to manually implement
the 802.11 specification, which can be used to generate CSI.
While a deployment configuration using this hardware is not
economical, there is value in the research which can be
performed using precise radio equipment due to the flexibility
of implementation. This indicates that high end hardware can
be used to perform useful research, and that there is a gap
in the research space for research performed using modern
mid-range wireless hardware.

The Nexmon project run by the Secure Mobile Networking
Lab [8] aims to provide enhanced functionality for a wide
range of wireless hardware, through chipset-specific firmware
patches. These patches can be used to enable monitor mode (as
opposed to managed mode), frame injection, and some basic
SDR functionality. Notably, the Nexmon CSI offshoot allows
for CSI extraction on a small subset of Broadcom chipsets.
Originally Nexmon CSI supported extraction on Google Nexus
5 hardware [28], however this is similarly inaccessible as
IWL5300. Recently, Nexmon CSI has been updated with
patches for the BCM43455C0, which is the wireless chipset
used in the Raspberry Pi 3B+/4. This version of Nexmon
CSI is also supported on modern publicly available linux
kernels. One of the most ubiquitous embedded boards in
production, the Raspberry Pi 4 supports newer technologies
which were released after the IWL5300 including 802.11ac.
As an embedded solution, the Raspberry Pi makes use of
a single transmit/receive antenna pairing. This may reduce
potential quality of its CSI data output, as compared to the
IWL5300. The Raspberry Pi 4 is a cheaper and significantly
more accessible CSI capture solution than other available
options, which positions it as a potentially useful device for
deployment in a smart home health monitoring scenario.

IV. METHODOLOGY

The aim is to identify whether the Pi 4 can effectively
be used to perform ambient smart home activity recognition
in a representative environment, as has been demonstrated is
possible with IWL5300. To do this, a device configuration will
be assembled to allow data to be collected. CSI data can then
be captured as activities are performed in the environment.
Once this data has been collected, a classification model
can be trained on the labelled examples. The efficacy of
this model can then be identified using labelled examples
from the test set. This method is similar to how many deep
learning activity recognition studies were performed using
the IWL5300, however the Pi benefits from a deep learning
approach as it has access to significantly more subcarriers.

Fig. 1: Activity capture layout, showing CSI as captured at
each device.

The device configuration for data collection can have a
massive impact on the quality of the activity performance
captures. The chosen configuration aligns with what would
be expected in a realistic in-home monitoring scenario and
is similar to those used in other CSI activity recognition
studies. Figure 1 details how each device in the configuration
communicates. The role of the PC is to generate traffic, from
which CSI can be captured. As the PC sends ping packets to
the Access Point (AP), the AP will reply with pong packets.
The Pi will then capture CSI for each pong packet as they
are sent out, which will contain information on the RF and
physical disturbances between the AP and Pi.

No data preprocessing was performed on the collected
CSI amplitude values. This is because any preprocessing or
filtering could affect the performance of a real-time system
in a way that may reduce overhead for other simultaneous
applications. If the results of this experiment are found to be
disappointing, then basic signal preprocessing such as a low
pass filter could be applied to reduce high frequency noise



components. The raw CSI amplitude values are compiled into
a 256 x 1 vector and passed to the model for training.

These CSI vectors can then be packed into windows, which
are ready for training and classification with a model. Training
this model can be performed on a dedicated system. This
allows for far more complex models to be produced than
would be possible on the Pi hardware alone. While training
a deep learning model can be very intensive, the completed
models can be easily deployed on the Pi hardware at runtime
with fast classification performance. Traditionally, standard
machine learning classification algorithms such as SVM have
been used on CSI data for activity recognition [29]. However
recent research has shown that CSI data is well suited for
use with convolutional LSTMs [30]. We use a deep variant of
this model which requires more training and can potentially
learn higher level concepts. As part of setup, the structure
of our model will be established experimentally based on the
available data for the task. It is expected that the Pi-based
system will benefit more from a convolutional structure due
to the increased number of available subcarriers.

V. EXPERIMENTAL SETUP

In this experiment, we aim to measure the Pi’s ability at
classifying a set of performed activities. A range of activities
were each performed 100 times in a home environment. CSI
data was captured at 100Hz while these activities were being
performed. This data is then read into overlapping windows
and passed to a model for training.

A. Equipment

The Raspberry Pi 4 is configured with Debian 10
(Buster/Linux 4.19.97) with the main branch of nexmon csi2

installed. Nexmon was configured with the following filter
options: Channel 36/80, Core 1, NSS mask 1, 30us Delay. The
MAC address filter was set for the AP. Data collection was
controlled from another device connected to the Pi over SSH,
communicating over a separate 2.4GHz network to reduce
interference.

The AP used is a Sky ER110 wireless router operating
a 5GHz WiFi network on channel 36 at 80MHz. Finally, a
separate wireless device is paired with the AP to generate
traffic for which the Pi can capture CSI. This is accomplished
by sending flood pings at a consistent 0.01s interval to the
AP. While this does not guarantee a consistent sampling
rate, the resultant timestream can be linearly interpolated to
approximately 100Hz.

B. Environment

This experiment was performed in a small apartment within
a terraced block. Due to COVID-19 lockdown, these exper-
iments were limited to a single home enivronment and a
single subject. The building has granite outer walls, with a
drywall interior. These factors may have an effect on the
overall performance of this system, however the extent of
this has not been fully explored [29]. The apartment has an

2https://github.com/seemoo-lab/nexmon csi/

open plan layout and doors were kept open for the dura-
tion of the experiments. Five other 5GHz wireless networks
were operating at the time of the experiment, however this
was deemed to be indicative of realistic interference which
might be observed in an occupied smart home environment.
Similarly, the apartment is also shared with a small housecat
which operated autonomously throughout and moved between
rooms during activity performances. This was also deemed to
be representative interference.

Fig. 2: Layout of the environment and activity locations.

Figure 2 shows the placement of the Pi and AP in relation
to where activities were performed in the apartment. As the
largest room in the space, the devices were placed in there at
opposing corners. Both devices were placed at the same height
1m above the ground to ensure there was an unobstructed
signal path.

C. Activity Performances

Each activity being performed in the dataset has been
designed to both be easily repeatable and representative of
realistic in-home behaviour. The selected activities were also
chosen to provide a wide range of both similar and distinct
activities to effectively assess the performance of the classifier,
and the quality of the data the Pi produced. These activities are
as listed: nothing, standup, sitdown, getintobed, cook, wash-
ingdishes, brushteeth, drink, petcat, sleeping, walk. Data was
produced by commencing capture as the activity was about to
be performed and concluded once the activity was completed.
This can observed in Figure 3(b), with data remaining mostly
stable at the start of the capture before significantly changing,
and then returning to a stable state. The capture procedure was
controlled by the subject, and so there may be slight variations
in the length of time taken before the activity fully begins and
after it concludes. The overlapping windows being used for
the model should mitigate this in some fashion.

The “nothing” activity was designed to allow the system
to classify instances where there is no clear activity being



(a) still

(b) walking

Fig. 3: Comparison of still and walking CSI readings.

performed, however this method may not be fully effective
at providing a null space representation. These captures were
performed with the subject sitting on the floor in the living
room with no significant movements.

Figure 2 details the location at which each activity was
performed. This shows that activities which took place in the
Bedroom, Bathroom and Kitchen would be considered NLOS
in that neither the Pi or AP have a direct line of sight with the
activity space. It is expected that performance will be reduced
on these activity classes due to this.

D. Data Representation

CSI data is captured using nexmon and rendered with
tcpdump, which produces a pcap file. This file is then in-
terpreted using our CSIKit which generates 256 x 1 numpy
matrices, which can then be used in Tensorflow. From these,
the CSI amplitude is derived. The raw amplitude values are

then windowed using a sliding window of 1 second at 100Hz,
with a .5 second overlap.

E. Model

The DeepConvLSTM model was implemented in Keras,
using the Tensorflow backend running on a system using an
Nvidia GTX 1080 GPU. Our implementation of the model is
defined as 2 x Conv1D, 1 x MaxPooling1D, 4 x Bidirection-
alLSTM. The Conv1D layers were configured using the “relu”
activation function, 128 filters and a kernel size of 5. The
BiLSTM layers used 200 units. The model was then trained
to 200 epochs, with a batch size of 128. Multiclass macro f1
scores were calculated using 10-fold cross validation.

VI. RESULTS

Fig. 4: Confusion Matrix for 100Hz results.

Activity Precision Recall F1 Support

nothing 1.00 1.00 1.00 517
standup 0.68 0.62 0.65 425
sitdown 0.66 0.72 0.69 446

getintobed 0.99 0.92 0.96 473
cook 0.92 0.99 0.96 482

washingdishes 1.00 1.00 1.00 527
brushteeth 1.00 1.00 1.00 476

drink 0.98 0.99 0.98 321
petcat 0.82 0.81 0.82 221

sleeping 1.00 1.00 1.00 516
walk 1.00 1.00 1.00 498

Accuracy 0.92 4902
Macro Avg. 0.92 0.91 0.91 4902

Weighted Avg. 0.92 0.92 0.92 4902

TABLE I: Classification report.
Overall, strong multiclass performance can be observed. Sev-
eral classes show clear certainty with complete precision,
recall and F1. The largest overlap can be observed in Figure



4 as “standup” and “sitdown” show a clear overlap in confu-
sion. Activities performed in NLOS scenarios appear to show
no clear performance trend, with both “washingdishes” and
“brushteeth” working well, while “cook” shows a slight drop.
It is noted that classes with the largest numbers of instances
show strong performance. The average accuracy across all
classes is 92% which indicates this system functions well.

VII. DISCUSSION

The key objective of this experiment was to identify the
Raspberry Pi 4 can effectively be used for smart home activity
recognition. The strong performance observed in these results
indicate that the CSI data produced by the Pi 4 does appear
to be nuanced enough to allow our DeepConvLSTM model
to classify activity instances well. Even considering some of
the classes are quite similar we achieved 92% accuracy which
demonstrates effective performance.
The clearest overlap in confusion, as seen in Figure 4, is
between “standup” and “sitdown” classes. These activities do
appear to be very similar. They take place on the same chair in
the environment. One aspect which may affect this confusion
is the style of windowing being used here. As there is a
very short, but variable amount of time taken both before the
action in the activity capture occurs and after, there may be
additional windows being passed to the classifier that actually
do not contain the act of standing up or sitting down. In
these instances, the windows will still be labelled which may
serve to further confuse the classifier at training. By more
tightly controlling the data collection procedure and ensuring
windows do contain activity behaviours, this may mitigate
some of the observed confusion here.
Another area of confusion concerns two somewhat dissimilar
activities, “petcat” and “cook”. Each activity takes place in
a different room and at different heights, but it appears the
repetitive arm movements may have some impact on this. As
a NLOS activity, “cook” activity performances may produce
less distinct data patterns for the model.

A. Real-world Performance

While this system performed well in this experiment, this may
not be fully representative of real world performance. We ac-
knowledged many factors in this experiment that may have an
impact on performance which has not been quantified, such as
the impact of interior wall materials. Furthermore, this system
would be deployed across many smart home environments
and so it cannot be expected that training examples can be
provided specifically for each resident/environment combina-
tion. Training a general model which can be deployed across
each home will be necessary. A recent study has addressed
this issue by performing domain adaptation in order to learn
different environments [31]. Potentially transfer learning may
be of interest here.
In a real-world scenario, it is expected that classification
models will be deployed and run on the Pi hardware itself.
As the Pi has limited processing power compared to the
systems on which our models are typically run, we will need

to consider the sampling rate and window sizes being used
for classification. Several studies have investigated the effect
of sampling rate on CSI system performance, and this seems
to indicate anything up to a 20% drop in performance when
dropping from 100Hz to 10Hz [21], [29]. Downsampling our
activity capture data to 10Hz, we repeated our experiments
with a similar model structure. In Figure 5, we compare per-
formance observed for each activity class for both our 100Hz
and 10Hz configurations. Overall, we can see a slight reduction
in performance in some tougher classes like “standup” and
“sitdown”. However, some classes such as a “cook” show no
reduction in performance despite the significant reduction in
sampling rate. Additionally, operating at this sampling rate
would allow for the removal of the separate PC for traffic
generation in the system, and the Pi could capture CSI for
the beacon frames ambiently generated by the AP which are
produced at 9.5Hz. This would allow for deployed Pi systems
to utilise the existing WiFi infrastructure in smart homes.

Fig. 5: Comparison of per-class performance on data captured
at 100 and 10Hz (macro F1 scores).

VIII. CONCLUSION

Our results confirm the Rasberry Pi 4 has capabilities for
use in ambient activity recognition in smart homes, and can
be deployed in similar environments to those used in studies
using the IWL5300. It appears the DeepConvLSTM model is
well-suited to the CSI data produced by the Pi 4. Potentially,
other models may be worth investigating, such as autoencoder
recurrent networks. An exciting aspect of these results is
the performance observed when using the model with data
captured at 10Hz. This potentially further reduces the cost of
a Pi-based system for real-world deployment, allowing it to
benefit from the existing WiFi infrastructure in most smart
homes.
Planned future work is centred on performing direct compar-
isons between IWL5300 and the Pi hardware in activity recog-
nition performance. Given the extensive research available
regarding activity recognition on the IWL5300, establishing
the differences in performance in LOS and NLOS scenarios
will better facilitate discussion on deployment opportunities
for both hardware solutions.



Finally, many non-standard applications have been explored
for CSI. Targeted research implementations may in fact have
value in residential health informatics where it may not be
immediately obvious, such as smoking recognition [23] and
crowd counting [24]. These applications have demonstrable
value in ambient health monitoring and the strength of a
deployed in-home solution would be in merging these capa-
bilities given they make use of the same input data stream.
Combination CSI extraction and analysis systems making
use of several health monitoring solutions would represent a
significant step forward in this field.
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