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THIS MONTH’S PUZZLER 

We have that 4 22 4 . Is this the only 
example of a pair of distinct positive 

integers satisfying
b aa b ? Are there 

rational solutions to this equation?   
 

 

THE GRAPH OF 

1

xy x FOR 0x  .  

 
Using graphing software we see that the 

equation 

1

xy x  produces the graph 

shown, at least to the right of the vertical 
axis. (What happens to the left?) 
 

 
 
The graph appears to have a maximum 

value of about 1.4  somewhere near 

2.7x  , and decreases towards the value 

1  as x  grows. It also looks as though it 

“wants to” adopt the value 0  at 0x  .  
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With the aid of calculus one can prove that 
the maximal value of the graph is actually 

1

1.444ee   occurring at 2.71828x e  , 

and that, indeed, 
1

0
lim 0x

x
x

  and 

1

lim 1x
x x  .  One can also prove that 

the graph is increasing on the interval 

 0,e  and decreasing on  ,e  , as the 

picture suggests. This means, that for any 

value M  between 1 and 

1

ee , there are 

precisely two values a e b   with 
1 1

a ba M b  . 
 

 
 

One checks that 
1 1

2 42 4  and, of course, 

that 
1 1

1 11 1 , and since 1 and 2  are the 
only positive integers below e  we have that 

2a   and 4b   give the only distinct 
positive integer solution to the equation 

1 1

a ba b . 
 
Are there distinct positive rational solutions 

to 

1 1

a ba b ?  
 
Yes! A wee bit of algebra shows, for any 

positive integer n ,  
1

n
n

a
n

 
  
 

 and 

1
1

n
n

b
n


 

  
 

 fit the bill.  

Comment: Since the first term is clearly less 
than the second term, we must have that 

1
1

n

a e
n

 
   
 

 and 

1
1

1

n

b e
n



 
   
 

. 

In fact, as one learns in calculus class, 

1
1

n

n

 
 

 
 is an increasing sequence 

converging to e . (So is 

1
1

1

n

n



 
 

 
a 

decreasing sequence also converging to e ?) 
 
We will prove at the end of this essay that 

Any rational solution to 

1 1

a ba b  with 

0 a b  , must be of the form 

1
n

n
a

n

 
  
 

 and 

1
1

n
n

b
n


 

  
 

 for some 

positive integer n .  
 

 

THE GRAPH OF y xx y FOR 0x  , 0y  .  

 

If a  and b  are positive numbers satisfying
1 1

a ba b , then “cross exponentiating” gives 
b aa b . (And conversely, positive reals 

satisfying 
b aa b  also satisfy 

1 1

a ba b .) 
 

As 2a   and 4b   are the only distinct 

positive integer solutions to 

1 1

a ba b , they 
are unique distinct positive integer 

solutions to 
b aa b  as well. This answers 

the opening puzzler. 
 

The graph of the equation y xx y , at least 

in the first quadrant, has two components: 
the diagonal line of points with equal 
coordinate values ( x y ) and a curve of 

points with distinct coordinate values.  
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As we have seen, for each positive integer 

n , the point 

1
1 1

1 , 1

n n

nP
n n

    
           

 

lies on the curve. As n  grows, these points 

approach  ,e e , which must thus be the 

point of intersection of the two 
components of the graph.  
 
The result we prove at the end of this essay 

establishes that points nP  and their 

reflections across the diagonal, are the only 
points on the graph off the diagonal with 

rational coordinates. (And the points  2, 4  

and  4, 2  are the only off-diagonal points 

with integer coordinates.)  
 

 

A CONNECTION TO 
wwww   

 
Given a positive real number w , set 

1a w  and 1
na

na w    for each 1n  . 

This gives the sequence 

w , 
ww , 

 ww
w , 

 ww
w

w

 
 
 
  , . 

 
This sequence can converge to a finite value 

(it does for 1w  , for instance) or grow 

without bound (say, for 2w  ).  
 

Comment: When people write
wwww  they 

mean the sequence w , ww , 
 ww

w , . To 

say that 
wwww converges means that the 

sequence has a finite limit. 
 
Swiss mathematician Leonard Euler (1707-
1783) proved that the sequence converges 

for all values w  between 
1
ee

  (which is 

about 0.066 ) and 

1

ee , which is the 

maximum value of the graph 

1

xy x  

(which is about 1.444 ). 
 

If w  is a value between 
1
ee

 and 

1

ee , set M  

to be the limit value of the sequence.  Since 

1
na

na w   and 1na   and na  each converge 

to M  as n  grows, we have 
  

 
MM w  

 

giving 

1

Mw M . 
 
Comment: It is fun to write this line of 
reasoning as follows: 
 

wwww M  

 

www

w M

 
 
 
     

 
Mw M   

 

1

Mw M   
  
So we have shown:  

If w  is a value between 
1
ee

 and 

1

ee , then 

the sequence 
wwww converges to some 

value M . And this value M  is the input 
that produces the output w  on the graph 

of 

1

xy x .    
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As my colleague Tim Pettus recently 

pointed out, if M  is a value between 1  and 
1

ee , then there are two values w a  and 

w b , for which 
wwww converge to M . 

 

 
 
This resolves the paradox of the popular 

“proof” allegedly establishing that 1 2 . It 
goes as follows: 
 

Task 1: Solve 2
www  . 

 

If 2
www  , then 

22
w

w w
ww w w

 
 
    , and so 2w  . 

Task 1 thus establishes that 
2

2

2 2 . 
 

Task 2: Solve 4
www  . 

 

If 4
www  , then 

44
w

w w
ww w w

 
 
    , and so 2w  . 

Task 2 thus establishes that 
2

2

2 4 . 
 

Thus both 2  and 4 equal 
2

2

2 and so

2 4  or, equivalently, 1 2 . 
 
 
 
   
 
    

 
RESEARCH CORNER 
 
Are there negative number solutions to 

y xx y ? How does the graph of this 

equation appear in all four quadrants? 
 
Describe the complex number solutions to   

y xx y . For example, x i  , y i   is a 

solution. (We have  

 2 2 2

i i
i i iii e e e i

  



   

       
   

.) 

   
 
 

 
APPENDIX: A swift tricky proof! 
 
We claimed that if x  and y  are positive 

rational solutions to 

11

yxx y  with x y , 

then we must have 
1

n
n

x
n

 
  
 

 and 

1
1

n
n

y
n


 

  
 

 for some positive integer n . 

Let’s prove this. 
 
 
Assume x  and y  are rationals with 

0 x y   satisfying 

11

yxx y . 

 
We can write y rx  for some number 

1r  . Since / xr y , it too is rational. 

 

From  
1 1

x rxx rx  we get  

 

 
ln ln lnx r x

x rx


       

giving 
1

1
ln

ln ln
1

r
r

x r
r


 

   
  

. 

Hence 
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1

1rx r   

 1

r

ry rx r   . 

 

Since 1r   we can write 1
m

r
n

   for 

some rational number 
m

n
. (Let’s assume 

here m  and n  are positive integers with no 

common factor different from 1.)  Thus we 
have 

 

n

mn m
x

n

 
  
 

  

 

1
n

mn m
y

n


 

  
 

. 

 

We need to prove that 1m  . 
 
We are assuming that x  is a rational 

number. So let’s write 
a

x
b

 , a reduced 

fraction. Then we have 

n

mn m a

n b

 
 

 
, or  

 

n m
n m a

n b

   
   

   
. 

 
Since n  and m  share no common factor 

other than 1, 
n m

n


 is also a reduced 

fraction.  
 

Actually 
 

n

n

n m

n


 and 

m

m

a

b
 reduced 

fractions too, and they are equal. We must 
have then that 

 
n mn m a    

and 
n mn b . 

 
Look at the second equation. If n  has prime 

factorization 1 2

1 2n p p   and b  has 

prime factorization 1 2

1 2b p p  , then 

we have 
1 2 1 2

1 2 1 2

n n m mp p p p    . 

From this it follows that  

 i in m    

for each i . Since n  and m  have no 

common factors, it follows that i  is a 

multiple of m  for each i . If we write 

i imk   we get that 

 1 2 1 2

1 2 1 2

m
mk mk k kn p p p p  , an m th 

power. 
 
In the same way, the first equation gives 
that n m  equals an m th power too. 
 
Thus we can write 

 
 

m

m

n c

n m c d



  
   

for some positive integers c  and d . 
 
Now we get 

 
m mm c d c   .   

 
This is problematic if m  is an integer 

greater than 1  because then 
 

 

1 2 2

1

1 2

1

m m

m m

m m
m c d c d

m
cd d

m

 



   
     
   

 
  

 

   

 
is a sum of m  positive integers not all equal 

to 1. 
 
So it must indeed be the case that 1m  , 
just as we hoped.    
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