Wind Turbine Generator System Pika T701

Safety and Function Test Report

Conducted by

High Plains Small Wind Test Center Colby, KS

August, 2015

Approval By: ___

August, 2015 _____

Ruth Douglas Miller, Lead Engineer, Date

Review By: ____

Arlinda Huskey , NWTC, Date

TABLE OF CONTENTS	
1. BACKGROUND	3
2. TEST SUMMARY	3
3. TEST TURBINE CONFIGURATION	3
4. TEST SITE DESCRIPTION	8
5. DESCRIPTION OF TEST EQUIPMENT	11
6. DESCRIPTION OF TEST PROCEDURE	14
7. TEST RESULTS	15
GENERAL OPERATION	15
LOSS OF LOAD	16
COLD TEMPERATURE BEHAVIOR	17
HIGH-WIND BEHAVIOR	18
MANUAL SHUT-DOWN IN HIGH WIND	19
EMERGENCY SHUT-DOWN	20
MAINTENANCE AND COMPONENT REPLACEMENT PROVISIONS	20
PERSONAL SAFETY PROVISIONS	20
SPECIAL NOTE ON VIBRATION	21
8. DEVIATIONS AND EXCEPTIONS	22
APPENDIX A -CALIBRATION DATA SHEETS FOR Pika T701 TEST INSTRUMENTS	23
PRIMARY ANEMOMETER – PRE-TEST CALIBRATION	23
SECONDARY ANEMOMETER	25
WIND DIRECTION VANE	26
TEMPERATURE PROBE	28
PRESSURE TRANSDUCER	30
POWER TRANSDUCER	31
DAS BOARDS	34

LIST OF FIGURES

Figure 1. Pika T701 turbine installed at High Plains Small Wind Test Center	4
Figure 2. Pika T701 rotor showing radius measurement	6
Figure 3. One-line wiring diagram for the Pika T701 installation	7
Figure 4. Aerial View of High Plains Small Wind Test Center (Google Maps)	8
Figure 5. Panoramic photo from Pika turbine base, exclusion zones marked	8
Figure 6. High Plains Small Wind Test Center layout, to scale	9
Figure 7. Wind rose for High Plains Small Wind Test Center	10
Figure 8. Aerial view of test center (Google Maps) showing distances and site dimensions	10
Figure 9. Photos of Pika T701 met tower and instruments (all dimensions in meters)	13
Figure 10. Field notes on 21 October: inverter shutdown, loss of grid and restart	15
Figure 11. Field notes, 21 October: later, inverter shutdown and restart worked properly	16
Figure 12. Time trace of power and wind speed during shutdown at inverter	16
Figure 13. Time trace of power and wind speed during shutdown at inverter	16
Figure 14. Output power vs. wind speed with temperature 0° to -18°C	17
Figure 15. Strip chart of Pika T701 power, wind speed and temperature, 3-4 January, 2015	17
Figure 16. Turbine RPM vs. wind speed, 3-4 January, 2015. One-minute average data	18
Figure 17. Pika T701 RPM vs. output power, 3-4 January 2015, one-minute average data	18
Figure 18. Wind speed and power vs time during 14 April,2015 high-wind shutdown test	19
Figure 19. Wind speed and turbine RPM vs time during 14 April, 2015 high-wind shutdown test	20
Figure A1. Primary anemometer manufacturer calibration sheet pg 1 of 2	23
Figure A2. Primary anemometer manufacturer calibration sheet pg 2 of 2	24
Figure A4. Secondary anemometer 3rd party calibration sheet pg 1 of 1	25
Figure A5. Wind direction vane manufacturer specification sheet pg 1 of 2	26
Figure A6. Wind direction vane manufacturer specification sheet pg 2 of 2	27
Figure A7. Temperature probe manufacturer specification sheet pg 1 of 2	28
Figure A8. Temperature probe manufacturer specification sheet pg 1 of 2	29
Figure A9. Pressure transducer manufacturer calibration sheet pg 1 of 1	30
Figure A10. Power transducer manufacturer calibration sheet pg 1 of 3	31
Figure A11. Power transducer manufacturer calibration sheet pg 2 of 3	32
Figure A12. Power transducer manufacturer calibration sheet pg 3 of 3	33
Figure A13. Voltage module (temperature & pressure) mfger calibration certificate pg 1 of 1	34
Figure A14. Current module (for power transducer) mfger calibration certificate pg 1 of 1	35
Figure A15. Mfger specification sheet for NI 9421 digital input module (for anemometers)	36

LIST OF TABLES

Table 1. Summary of Pika T701 published specifications	4
Table 2. System Wiring Summary	7
Table 3. Structures on and near test site	9
Table 4. Summary of Instrumentation for Pika T701 Tests	11

1. Background

The Pika Wind T701 small wind turbine was tested in accordance with AWEA (American Wind Energy Association) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009) and IEC (International Electrotechnical Commission) 61400-2 ed 2.0 (2006-03) Wind Turbines Part 2: Design requirements for small wind turbines. This test report refers to these procedures collectively as the Standard.

Testing of the Pika T701 was conducted under contract as part of NREL's Regional Test Center (RTC) program.

2. Test Summary

The Pika T701 is a three bladed, Horizontal Axis Wind Turbine. It has a 3m diameter rotor resulting in a rotor swept area of 7.1 m2; peak power is 1.7kW and power at 11 m/s is 1.5kW. The data presented in this report was collected during a power performance test conducted at High Plains Small Wind Test Center ("High Plains SWTC") in Colby, KS from July 2014 through April, 2015.

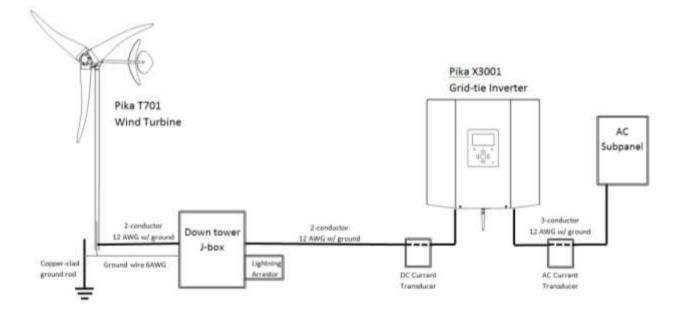
This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbines Part 2: Design Requirements for Small Wind Turbines, IEC 61400-2 Ed.2.0, 2006, part 9.6. The additional requirements of AWEA (American Wind Energy Association) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009) were also considered.

The following deviations from the Standard were taken during this test (details in Section 9): 1) The temperature probe is located at the DAQ box, 1.5m above ground and 15.4m below turbine hub height to keep it out of direct sunlight. The uncertainty associated with this move is included in the uncertainty calculations; it comes to 0.2° C. 2) A calibration certificate for the temperature sensor was not available at start of test; the sensor will be calibrated at end of test. 3) The pressure sensor is located on the met mast also at the instrument box, about 1.5m above ground. The air pressure was corrected for elevation according to the Standard. 4) The distance between turbine and met tower is 0.3m outside the Standard-specified 2-4D distance. The turbine and met tower foundations had been installed for a slightly larger turbine. We placed the primary anemometer on the leg of the tower closest to the turbine, so the exact distance between primary anemometer and turbine hub is 12.17m = 4.05 D. 5) The Ohio Semitronics power transducer does not have documents showing that it meets the IEC 60688 class 0.5 requirements. However documents from OSI show that the power transducer meets the minimum accuracy requirements of the Standard; this does not affect results or uncertainty. 6) Manufacturer's designed turbine shut down conditions of wind over 30 m/s, high temperature and high vibration were not tested because these conditions did not occur during the test period.

3. Test Turbine Configuration

The data presented in this report were collected during tests conducted from July 2014 through April, 2015 at the High Plains Small Wind Test Center in Colby, Kansas. The Pika Energy T701 model specifications are summarized in Table 1. This turbine will be referred to as the Pika T701 for the rest of this report. The turbine has a direct-drive, permanent-magnet generator which can be braked using back-EMF, and a single-use emergency centripetal brake that is factory-tested before each turbine is shipped. A photo of the Pika T701 turbine and met tower is included as Figure 1; Figure 2 shows the turbine rotor up close with a tape measure verifying radius as 1.51 m (diameter 3.0 m). For this test the turbine was installed on a 16.8m guyed tower.

Figure 1. Pika T701 turbine installed at High Plains Small Wind Test Center, met tower behind; view is towards the northwest.


Table 1. Summary of Pika T701 published specifications. *: rotor diameter was verified manually by measuring the radius of the rotor when it was on the ground.

Parameter	Value	Units
Manufacturer and address	Pika Energy Inc	
	35 Bradley Dr Stop 1	
	Westbrook, ME 04092	
Turbine Serial Number	T701-00021	
Inverter Serial Number	X3001-00044	
Production Date	2014	
Tower Type	Guyed monopole	
Tower Height	16.8	m
Hub Height	16.94	m
Blade make, type, serial number	Pika Energy, glass-filled	
	polypropylene, no serial number	
Turbine Control System	Pika Energy proprietary	Software v. 1030
Turbine Interface	Pika Energy Review (via	

	inverter)	
Rotor Diameter	3.0*	m
Rotor Swept Area	7.1	m²
Blade Pitching	Fixed	
11m/s Reference Power (REbus DC)	1.6	kW
11m/s Reference Power (AC after inverter)	1.48	kW
Cut-in Wind Speed	3.0	m/s
Rated Wind Speed	11	m/s
Rated Rotor Speed	420	RPM
Speed Regulation Type	Stall regulation w/ redundant	
	mechanical brake	
Yaw Control	Passive, upwind with tail	
IEC Turbine Design Class	11	
Turbine DC Output Voltage	380	V
(nominal)		
Turbine Max Output Current	7	A
Inverter Output Voltage	220/240	VAC
Inverter Output Current Max	13	А
Inverter Output Frequency	60	Hz

Figure 2. Pika T701 rotor showing radius measurement

Figure 3. Wiring diagram for Pika T701 turbine and inverter installation, from Pika literature.

A one-line diagram of the installation wiring for the turbine is shown in Figure 3. The Pika T701 was connected to the Pika X3001 grid-tie inverter via Pika's REbus DC Microgrid technology (internal to the inverter in Fig. 3) operating at approximately 380VDC, in accordance with the Pika T701 installation manual. The Pika X3001 inverter was connected to the electric utility at a nominal voltage of 240VAC and frequency of 60Hz. The inverter electrical connection to the grid was done in accordance with the Pika X3001 Installation manual. Wiring between the tower top and the inverter were provided by Pika Energy and installed as part of the turbine system. Specifications for the installed wires from the tower base control panel to the grid point of common connection (PCC) are listed in Table 2. The total length of the wire run was approximately 65 meters.

The Pika T701 has a nominal rated power of 1.8kW at 11 m/s per the user manual. At winds above design wind speed (11 m/s), the REBus controller controls generator torque to regulate speed and thus output power. The inverter shuts off at loss of grid or when the "disable" function is used at the inverter front panel. It will also shut down upon any fault condition including very high wind (>30 m/s), high temperature, or excessive vibration (such as due to imbalance from icing.) A redundant centripetal overspeed safety brake will deploy should primary control fail; this brake is a single-use part, individually factory-tested before shipping, and must be replaced by field-qualified personnel.

Segment	Туре	Approx. length
Turbine to tower base junction box	AWG-12 Type UF, 2 conductor + ground	16.9m
Tower base junction box to inverter	AWG-12 Type THHN, 2 conductor + ground	48m, compliant with AWEA minimum 8 rotor diameters
Inverter to subpanel	AWG-12 Type NM-B	2m

Table 2. System wiring summary

4. Test Site Description

The test site is located about 1 mile south and two miles west of the town of Colby, KS. It is essentially flat with no obstructions. Prevailing winds measured at the test site are from the north in winter, south in summer (see wind rose in Fig. 7); the average wind speed at 30m is over 7 m/s. Figure 4 shows an aerial view of the site, perimeter outlined in red. Figure 5 is a panoramic photo montage of the site from the base of the Pika turbine tower. Figure 6 shows a plot of the turbines, obstacles and data shed positions to scale. The turbine is located 122.3m east and 30m north of the SW corner of the site. Other obstacles on the property and their locations are listed in Table 3 below. A gravel road forms the property's southern border; the other borders are farm implement tracks.

Figure 4. Aerial view of High Plains SWTC (Google Maps). Red outlines the field allocated to the Test Center; arrows indicate the SW corner of the site (0,0) and the location of the datashed.

A summary of the test site conditions is listed in Table 6. The High Plains Small Wind Test Center annual wind rose in Figure 9 illustrates that wind on-site tends to come from the north-northwest and south-southeast.

Figure 5. Panoramic photo from Pika turbine base. Green lines mark western (≥238°-≤301°) exclusion sector and black lines mark eastern (≥60°-≤120°) exclusion sector. Red line marks power pole at SW corner of site. Data shed is due East, lattice met tower is due West, sun glare is at about 150°E. Apparent roll of horizon is a photographic artifact.

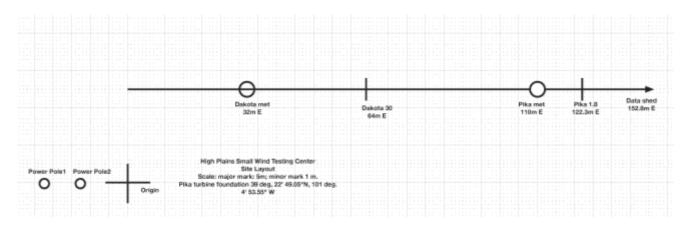


Figure 6. High Plains SWTC Site Layout, to scale. For text see Table 3 below.

Structure	Height	East Coordinate (m)	North Coordinate (m)
Pika T701	16.9m	122	30
Pika met	16.9m	110	30
2 nd turbine	30.48m	64	30
2 nd met	30.38m	32	30
Power pole 1	10m	-13.4	0
Power pole 2	10m	-12.4	0
Data shed	3m	152.8	30

Table 3. Structures on and near test site.

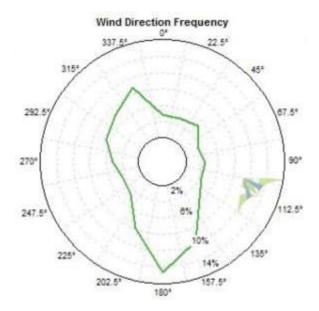


Figure 7. Wind rose for High Plains SWTC for the period May 2014-May 2015.

Figure 8. Aerial view of High Plains SWTC, from USDA/Google. Red box: initial SWTC area. Yellow box: 51-acre plot allotted to Test Center by KSU Agricultural Extension. Orange lettering indicates lengths of longest dimensions of yellow box.

5. Description of Test Equipment

All test equipment was calibrated except the temperature sensor (see Exceptions); calibration sheets are included in Appendix A. Table 4 shows the equipment used and calibration due dates. Figure 9 shows placement of the meteorological instruments on the met mast (note that one wetness sensor is employed for the entire site and is located outside the data shed, not on the met mast).

Since the pressure transducer is not located near hub height, the measured air pressure is corrected for pressure gradient in accordance with ISO 2533. According to ISO 2533 the gradient in the pressure at 1850m is 0.09996 mbar/m3. The hub height for the Pika701 is 16.94m, and the height of the pressure sensor is ~1.5m above ground level, which is a difference of 15.44m. Thus the correction is 0.09996 mbar/m*15.44m = 1.543mbar (0.154kPa).

The Data Acquisition System is comprised of National Instruments modules and LabVIEW programming. The National Instruments cards and chassis were located in the site's data shed, as was the computer running the LabVIEW VI. The power transducer measures power inside the data shed next to the kWh meter and breaker box shown in the one-line diagram of Figure 4.

End-to-end checks were conducted on all data channels and results are listed in the turbine commissioning report.

Relevant data for this test include wind speed (primary and secondary), electrical power and temperature. Grid voltage and RPM could be directly measured by the inverter, but a Labview program provided by Pika to pull those data into the primary program could not be made to work well—both programs would crash. So RPM data and grid voltage for those tests where they were needed were obtained separately from Pika's remote monitoring database. Both Pika's monitoring and the on-site Labview program use the internet's clock so data are synchronous; for tests of braking system clocks were checked by voice between Pika and test site engineers on the telephone at the time of test.

Channel	Instrument	Make & Model	Mfger Accuracy	Calibration Dates
Primary wind speed	Anemometer	NRG 1 st Class Ser #596700001838	+/-0.06 m/s @ 10m/s	13 Nov, 2013
Turbine power output	AC Watt transducer	Ohio Semitronics PC5-059EY25 Ser #11110431	+/-0.5% of full scale (=2kW)	23 Oct, 2013
Wind direction	Wind Vane	NRG #200P	1%	N/A
Turbine Status	Internal to Pika Inverter	Download from Pika web server	N/A	N/A
Reference wind speed	Anemometer	NRG #40H Ser. # 17970000907	1.48%	31 Oct, 2013
Air Pressure	Pressure sensor	NRG BP20 Ser. #180512465	+/- 0.218 kPa	15 Nov, 2010
Air Temperature	Temperature sensor	NRG #110S Ser. #3365	+/- 1.1 °C max	N/A
Rain	Wetness sensor	Novalynx 260-2590	N/A	N/A
Rotor speed	Status signal from Pika	Pika	0.003% (miss 1 click	N/A

	powerline data carrier		in 84/rev)	
Temperature and Pressure	DAS	NI-9205 (voltage: WS channel)	3,230 μV	28 Oct., 2013
Current (power transducer)	DAS	NI-9203	+/-0.18% slope +/- 0.06% offset	28 Oct., 2013
Wind Speed	DAS	NI-9421	digital	N/A

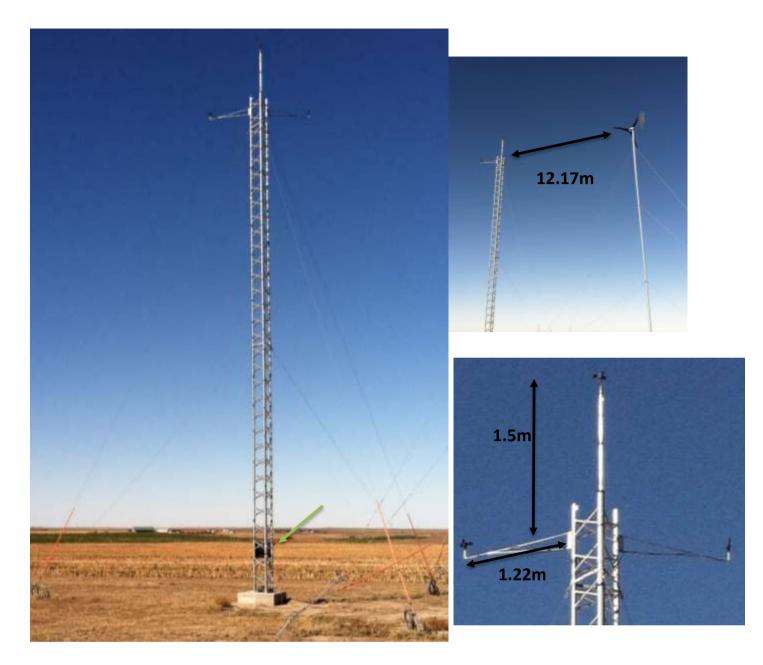


Figure 9. Photographs and measurements of met tower and Pika T701 turbine on High Plains SWTC site. Close-up shows primary anemometer on top, secondary to left and wind vane to right. Air pressure and temperature sensors are located at the black box at the base of the met tower, 1.5m above ground (green arrow). The met tower is a triangular Rohn 25G tower, center-to-center leg spacing 12.5" = 0.3175m, tube diameter 1.25" = 3.175cm. The center-to-center spacing between met tower and turbine tower is 12.3m = 4.1 turbine diameters; however, the primary anemometer is mounted on the leg closest to the turbine tower, so the exact distance between primary and turbine hub is 12.17m = 4.05 D. The primary anemometer is centered at turbine hub height, 16.94m.

6. Description of Test Procedure

The test was conducted with procedures designed to meet the Standard. None of the safety and function tests placed operators in unusual risk; shutdown tests that might risk the turbine hardware were conducted with Pika personnel monitoring turbine health remotely through the inverter.

The Pika T701 was installed and operated in a standard mode, and its configuration was not altered during the test. No alterations to the turbine (e.g. pitch angle) were made to compensate for reduced air density at the test site. A test log was kept to record maintenance and other events relating to testing the Pika T701.

Test Objectives

The objectives of the Safety and function test are to:

- verify that the turbine displays behaviour as predicted by design and in the user manual
- determine if provisions related to personal safety are implemented, and
- characterize the behaviour of the turbine in all wind speed conditions.

The AWEA Small Wind standard specifies that the turbine be observed for dynamic interactions between it and its tower, in particular watching for resonance behaviour at various wind speeds. Other safety aspects of the turbine shall be evaluated, including:

- procedures used to operate the turbine;
- provisions to prevent dangerous operation in high wind;
- methods to slow or stop the turbine in an emergency or for maintenance;
- adequacy of maintenance and component replacement provisions; and
- susceptibility to harmful reduction of control function at lowest claimed operating ambient temperature.

In addition, IEC 61400-2 ed.2 specifies that the following behaviours shall be tested:

- power and speed control,
- yaw control (turbine aligns with wind),
- designed behaviour on loss of load,
- overspeed protection at designed wind speed and above, and
- start-up and shut-down above design wind speed.

Measured Data

All measurements were sampled at a rate of 1 Hz. These data were then averaged into 1-minute or 10-minute mean and standard deviation and logged. The 1-minute or 10-minute minimum and maximum are also logged and are based on 1-second readings. In addition to automatically collected data, extensive field notes were logged and are included in this report as appropriate. Some data were analyzed in Excel; some analyses were performed in Windographer v. 3.3.7.

Procedures

• Dynamic tower interaction, yaw control, general operation, shut-down for maintenance: the turbine was observed regularly while operating at different wind speeds, turned on and off according to manual directions, and notes made in the log book.

- Loss of load: the grid connection was manually broken through the breaker switch and turbine manual directions were followed to restart, with notes in the logbook. A video was made of this test, while wind speeds were over 12 m/s; it is posted on the High Plains test center website here: http://wac.ece.ksu.edu/?q=node/28
- Cold temperature behaviour: check data for temperature, wind speed and turbine power through cold periods. Confirm with observation of turbine in cold weather, with notes in logbook.
- Behaviour in high wind: data collection through high wind periods combined with observation notes in log book and time-correlated RPM data from the manufacturer.
- Manual shut-down in high wind: during a period of wind over 12 m/s, with the Labview program collecting one-minute data, a video was made of the turbine while it was shut down using the manual disconnect; simultaneously but separately, the turbine RPM was recorded. The video is posted on the High Plains test center website here: http://wac.ece.ksu.edu/?q=node/28
- Emergency shut-down: each centripetal brake is tested by Pika in the shop before each turbine is shipped.
- Maintenance and component replacement: the user manual recommends only visual and auditory inspection yearly for the first 10 years of operation. These observations were carried out at the test site as part of acoustic and safety-and-function testing.
- Personnel safety measures: verify that owners' and installation manuals agree with hardware; check labelling and compare with expected use, that the turbine is safe to operate.
- Designed automatic shutdowns due to wind over 30m/s, high temperature and vibration were not tested as these conditions were not encountered during the test period (see Exceptions). While the turbine was on line, the highest 10-minute average wind speed encountered was 18.4 m/s; the highest gust encountered was 25.6 m/s; and the highest temperature recorded was 42°C (over 40°C for over 7 hours)

7. Test Results

General operation: During the entire period, daily observation saw no unusual tower or turbine vibration or failure to yaw. The turbine was turned off for background acoustics measurements and it nearly always shut down and came back up as expected. When inverter shutdown via control panel failed, grid disconnection by opening the main breaker did stop the turbine. Logbook notes on 8, 13, 14, 15 August, 16, 19 September, 27, 30 October, 22 December all state that the turbine shut down and restarted as expected without incident. Exceptions: 20 August, 21 October (Fig. 10), it was necessary to cut the grid power; inverter disable did not work. Pika believes the problem is at the inverter, not the turbine itself. Later on 21 October, inverter disable did work (Figs. 11, 12).

10/21,		is ELECTA aux 277/4			
170.	S: MET COMPLET	w/ cris	Sonteru	ULC SITE	-wark
R= : Monz	29'-6" = 171"+ : STAULADA	6°-20' =	1770-2	0	
1758.	TURBING DISABLE	STOP CA DID NOT	un to cut	T Pur - (INVERTER
= 1803 :		TION BACKGROW PWD RESTA		ε	

Figure 10. Field notes on 21 October: inverter shutdown did not work but loss of grid did; restart worked.

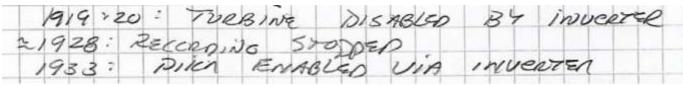


Figure 11. Field notes, 21 October: later, inverter shutdown and restart worked properly.

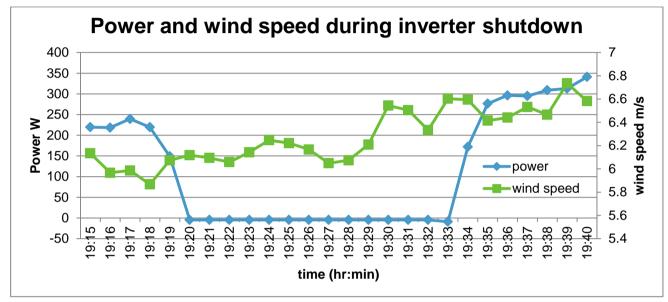


Figure 12. Time trace of power (left axis, blue diamonds) and wind speed (right axis, red squares) during shutdown at inverter, 21 October.

Loss of load: Besides the high-wind shutdown noted below the Pika T701 was shut down by opening the electric breaker at various times. Figure 10 notes one time when this method had to be used because the inverter switch did not work. Figure 13 records wind speed and turbine power from 5:45pm to 6:25pm on 21 October. Shutdown information with RPM data are described under high-wind shutdown.

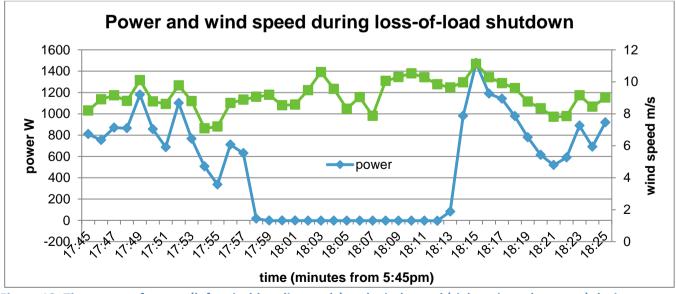


Figure 13. Time trace of power (left axis, blue diamonds) and wind speed (right axis, red squares) during shutdown by disconnecting main grid breaker, 21 October.

Cold temperature behaviour: Over the course of the test the minimum temperature recorded was -24°C. The turbine showed no change in behaviour with temperature. Figures below show power vs. wind speed (Fig. 14) and a strip chart of wind speed, power and temperature vs. time (Fig. 15), both for the period from midnight 3 January to 6:56 am 4 January (10-minute average data). The period was chosen nearly randomly; it is one that includes high wind for which Pika recorded turbine RPM, which coincidentally includes some very low temperatures, with -18.4°C being the lowest. Gaps in the wind speed trace in Fig. 15 are where the primary anemometer read zero (apparently froze); readings are omitted for clarity. Through this entire period and other similar windows the turbine behaved the same as it did during warmer temperatures.

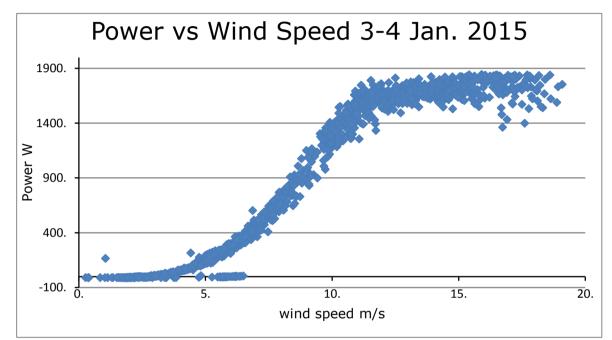


Figure 14. Output power vs. wind speed with temperature 0° to -18°C.

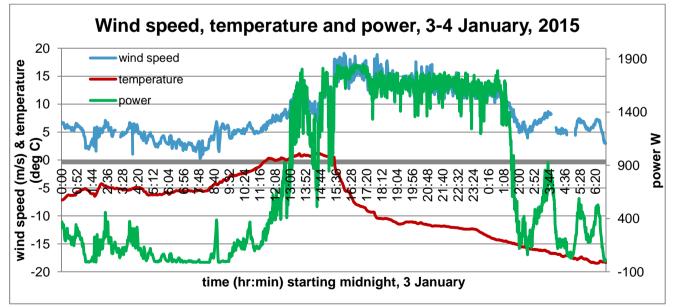


Figure 15. Strip chart of Pika T701 power, wind speed and temperature, 3-4 January, 2015. Gaps in the wind speed trace are where the primary anemometer froze, likely due to icing; zeroes deleted.

High-wind behavior: Figures 16 and 17 plot one-minute average rpm vs. wind speed and vs. transducer-measured power, over the same period as the cold temperature data above; during this period the highest recorded one-second wind speed was 22m/s. The turbine controller regulates rpm so that it does not exceed 400. The maximum one-second recorded rpm was 392.32.

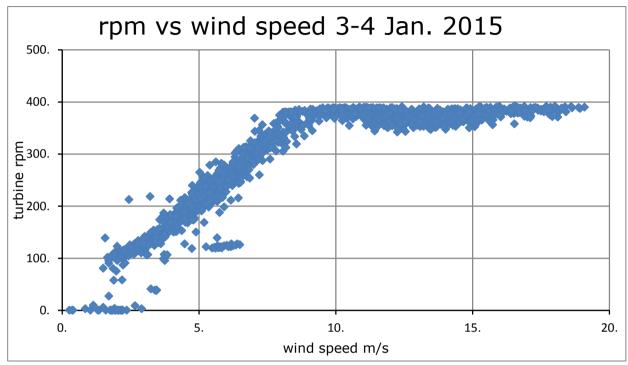


Figure 16. Turbine RPM vs. wind speed, 3-4 January, 2015. One-minute average data.

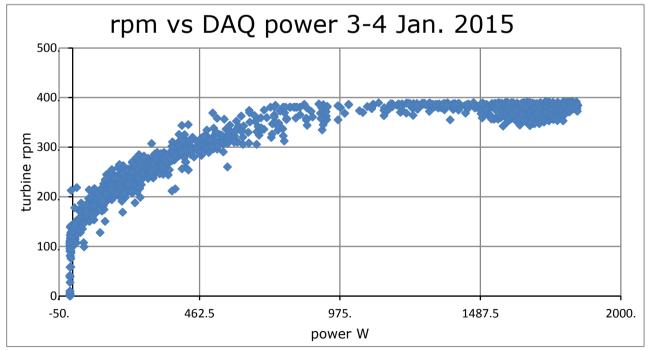


Figure 17. Pika T701 RPM vs. output power, 3-4 January 2015, one-minute average data.

Manual shut-down during high wind: While the turbine was shut down and restarted many times during certification testing, a formal test was conducted on 14 April, with Pika recording RPM and with the site manager making a video of the turbine at the same time. The videos are available on the High Plains Small Wind Test Center website (<u>http://wac.ece.ksu.edu/?q=node/28</u>). Graphs in Figures 18 and 19 show RPM, power and wind speed vs time during this test. Note that power and wind speed are averaged over one minute, while RPM numbers are instantaneous. Wind speed was over 12 m/s most of this time, gusting to 15.7 m/s maximum.

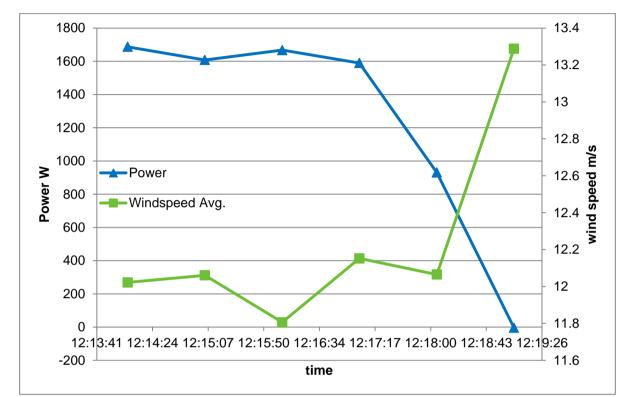


Figure 18. Wind speed (green squares, right axis) and power (blue triangles, left axis) vs time during 14 April, 2015 manual shutdown test during high wind. Time in fractions of a second.

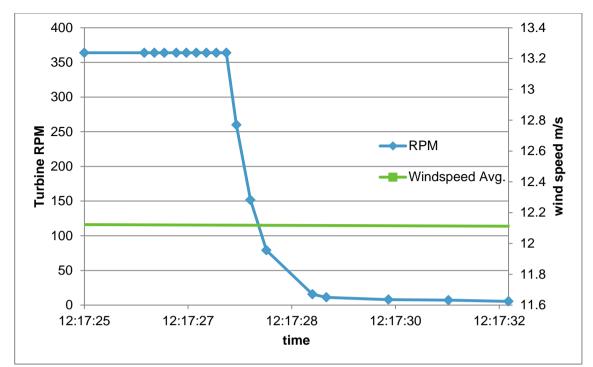


Figure 19. One-minute average wind speed (green, right axis) and one-second instantaneous turbine RPM (blue diamonds, left axis) vs time during 14 April, 2015 manual shutdown test during high wind. Time in fractions of a second. No one-second wind data are available in this time window. The recorded one-second maximum in this time window was 14.9m/s, minimum 11.1m/s.

Emergency shutdown: Pika includes a single-use centripetal brake on each turbine. If it must be used, it must be replaced by the manufacturer afterwards; we therefore did not try to test it at High Plains. This brake is tested on each turbine prior to turbine shipping. Pika will submit a video of this test.

Maintenance and component replacement provisions: The manual recommends visual and auditory inspection of the turbine annually for vibration and changes in behavior. Such inspections were carried out daily, and over the course of one year are certainly adequate for a turbine owner. No parts should or did need replacement.

Personal safety provisions: The Pika inverter is sealed and labeled that no user-servicable parts are inside. The control panel is a touch screen; inverter software does not permit changing of safety set points from the control panel. The inverter installation manual gives directions for installation that allow for cooling and warn that the heatsink may get hot, so install it where it won't be accidentally touched. It also gives warnings about checking line voltages with a meter; the warnings are sufficient to advise to a non-skilled person that an electrician should probably complete the installation. A warning is included that DC voltage will remain at the inverter DC terminals when disconnected, and time should be allowed for discharge; this is not different from other consumer electronics such as televisions. The manual does explicitly say that connection to the utility grid should be done by a licensed electrician; however the writing overall does not demand that.

The turbine installation manual is written in a manner suggesting that the owner might complete all installation; however it has plenty of warnings scattered throughout that would lead an insecure or non-skilled person to obtain expert help. We at High Plains are familiar with users who might follow these instructions themselves without difficulty (farmers, for example) and given the size of the Pika T701, feel that the directions are sufficient.

Special note on vibration and maintenance: prior to the beginning of the testing described in this report, a different Pika T701 turbine was installed at the test site, at the same hub height, on an experimental fibreglass monopole tower. During strong winds it was observed that this tower would oscillate significantly, though the turbine operation and energy production seemed unaffected. However, during a high-wind event (22-25 m/s) at night when no one was present, the tower snapped at about 2/3 of its height above ground, leaving the turbine and tower top hanging by the power wires from the tower 'stub'. The test site DAS recorded all instrumentation as well as all data from the inverter through the tower break. The turbine did stop producing power. The inverter remained awake for a while but its data stream froze, as it is programmed to do when data packets are not received. Unfortunately we cannot verify from the data collected that the controller stopped the turbine due to this extreme event, but the turbine certainly did stop and did not attempt to continue to operate, even while powered. We feel that this is worthy of mention even though we do not have solid data to verify that the turbine's control system functioned as designed. The turbine was replaced at the test site to ensure that no possible damage would interfere with continuing testing; however no damage to the turbine itself was noted after the tower failure: this is in extreme agreement with manual recommendations for part replacement.

8. Deviations and Exceptions

Exceptions to the Standard were taken during this test as explained below.

The height of the temperature probe on the met tower is specified in two places in the IEC 61400-12-1 Ed. 1 standard. In section 6.4 it specifies that "The air temperature sensor... shall be mounted within 10 m of hub height to represent the air temperature at the wind turbine rotor centre." In Annex H Power performance testing of small wind turbines, item j reads in part "the air temperature sensor... shall be mounted so that [it is] at least 1,5 rotor diameters below hub height even if such mounting results in a location less than 10 m above ground level." For the Pika T701 test unit, hub height is 16.94m, and the diameter is 3m. To be in compliance with Annex H, the sensor would need to be at least 4.5m below hub height. The temperature probe was placed approximately 1.5m above ground, at the DAQ box, in order to keep it out of direct sunlight. Previous experience has indicated that no sunshield is adequate against high summer Kansas sun. The uncertainty associated with this move is included in the uncertainty calculations; it comes to 0.2° C.

The center does not have a calibration report for the temperature sensor prior to start of test. The sensor will be calibrated at end of test. All other instruments were within two years of calibration and will be recalibrated at end of test.

The pressure sensor is located on the met mast also at the instrument box, about 1.5m above ground. The air pressure was adjusted for elevation according to the Standard.

The distance between turbine and met tower mast is 12.3m; with a turbine diameter of 3m this is 0.3m outside the Standard-specified 2-4D distance between turbine and met tower. The turbine and met tower foundations had been installed for a slightly larger turbine. We placed the primary anemometer on the leg of the tower closest to the turbine, so the exact distance between primary anemometer and turbine hub is 12.17m = 4.05 D.

The Ohio Semitronics power transducer does not have documents showing that it meets the IEC 60688 class 0.5 requirements. However documents from OSI show that the power transducer is substantially equivalent to units sold in Europe as the Camille Bauer M563/DME which does meet the IEC 60688 requirements.

Tests of emergency shutdown due to high temperature, excessive vibration and high wind (over 30 m/s) were not conducted because these conditions did not occur during the test period. See the special note on vibration above. The highest 10-minute average and instantaneous maximum temperatures recorded on site during the test were both 42°C, and the turbine operated normally through those intervals.

Appendix A - Calibration Data Sheets for Pika T701 Test Instruments

Primary Anemometer – Pre-Test Calibration

Svend Ole Hansen ApS

SCT. JØRGENS ALLÉ 7 - DK-1615 KØBENHAVN V - DENMARK TEL: (+45) 33 25 38 38 - FAX: (+45) 33 25 38 39 - WWW.SOHANSEN.DK

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 13.02.06054 Date of issue: November 5, 2013
Type: NRG Class 1 Serial number: 596700001838
Manufacturer: Renewable NRG Systems, Inc., 110 Riggs Road, Hinesburg, VT 05461, USA
Client: Renewable NRG Systems, Inc., 110 Riggs Road, Hinesburg, VT 05461, USA

Anemometer received: October 17, 2013	Anemometer calibrated: November 1, 2013
Calibrated by: ke	Procedure: MEASNET, referring to IEC 61400-12-1
Certificate prepared by: cea	Approved by: Calibration engineer, jtr
	Johan Taja Harman

 Calibration equation obtained: $v [m/s] = 0.76384 \cdot f [Hz] + 0.23751$

 Standard uncertainty, slope: 0.00193 Standard uncertainty, offset: 0.08439

 Covariance: $-0.0000277 (m/s)^5/Hz$ Coefficient of correlation: $\rho = 0.999980$

 Absolute maximum deviation: -0.045 m/s at 4.149 m/s

Barometric pressure: 1007.0 hPa Relative humidity: 30.1% Succession Velocity Wind Temperature in Frequency, Deviation. Uncertainty pressure, q. wind tunnel control room velocity, v. u. (k=2) f d [Pa] [°C] [°C] [m/s] [Hz] [m/s] [m/s] 5.1799 0.021 2 994 293 227 4 1 4 9 -0.045 15.08 29.2 22.7 -0.020 0.025 4 5.109 6 40 3 6 6 21.29 29.0 22.7 6.071 7.6380 -0.001 0.029 8 28.45 28.9 22.7 7.015 8.8548 0.014 0.033 10 37.25 28.8 22.7 8.027 10.1669 0.023 0.037 12 46.84 28.8 22.7 8.999 11.4478 0.018 0.042 57.49 22.7 13-last 287 9.969 12.7121 0 0 2 1 0.046 11 69.56 28.8 22.7 10.967 14.0119 0.027 0.051 9 81.96 28.9 22.7 11.906 15.2498 0.021 0.055 7 95.75 29.0 22.7 12.872 16.5320 0.006 0.059 0.064 5 110.02 291 22.7 13.800 17.7598 -0.003 127.82 22.7 -0.033 292 14.877 19.2092 0.068 3 144.08 29.5 22.7 15.803 20.4146 -0.028 0.073 1-first 20 0.1 [m/3] E 15

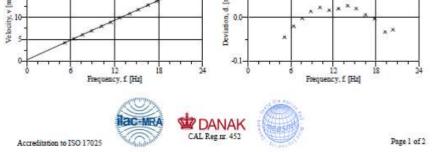


Figure A1. Primary anemometer manufacturer calibration sheet pg 1 of 2.

EQUIPMENT USED

Serial number	Description	
8	Boundary layer wind tunnel.	
1256	Control cup anemometer.	
-	Mounting tube, $D = 25 \text{ mm}$	
- t3	PT100 temperature sensor, wind tunnel.	
t4	PT100 temperature sensor, control room.	
950610	PPC500 Furness pressure manometer	
Z0420014	HMW71U Humidity transmitter	
U4220037	PTB100AVaisala analogue barometer.	
PS1	Pitot tube	
HB2835279	Computer Board. 16 bit A/D data acquisition board.	
	PC dedicated to data acquisition.	

Traceable calibrations of the equipment are carried out by external accredited institutions: Furness (PPC500) and Exova Metech. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup (hxb = 0.85x1.75 m). The shown anemometer is of the same type as the calibrated one.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the MEASNET procedure that prescribes an absolute uncertainty less than 0.1 m/s at a mean wind velocity of 10 m/s, that is 1%. See Document 97.00.004 "MEASNET - Test report on the calibration campaign" for further details.

Certificate number: 13.02.06054

This certificate must not be reproduced, except in full, without the approval of S. O. Hansen ApS

Page 2 of 2

Figure A2. Primary anemometer manufacturer calibration sheet pg 2 of 2.

Secondary Anemometer

\$

SOH Wind Engineering LLC

141 Leroy Road · Williston, VT 05495 · USA

Tel 802.999.3309 · Fax 802.735.9106 · www.softwind.com

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 13.US1.08710 Type: NRG #40HC Date of issue: October 31, 2013 Serial number: 179700000907

Manufacturer: Renewable NRG Systems Inc, 110 Riggs Road, Hinesburg, VT 05461, USA

Client: Renewable NRG Systems Inc, 110 Riggs Road, Hinesburg, VT 05461, USA

Anemometer received: October 25, 2013 Calibrated by: mej Anemometer calibrated: 11:55 October 31, 2013 Calibration procedure: IEC 61400-12-1:2005(E) Annex F Modified for 4-26 m/s Approved by: Calibration engineer, rds

ANENDMETER

Certificate prepared by: Software Revision 4

Standard uncertainty, slope: 0.00172

Covariance: -0.0000329 (m/s)3/Hz

Calibration equation obtained: v [m/s] = 0.75452 f [Hz] + 0.41550

[Hz] + 0.41550 Det D. Hard Standard uncertainty, offset: 0.06682

Coefficient of correlation: p = 0.999984

Absolute maximum deviation: 0.076 m/s at 22.092 m/s

Barometric p	ressure: 1001	.7 hPa	R	elative humidit	ty: 25.6%		
Succession	Velocity	Tempera	nture in	Wind	Frequency,	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	£.	d.	u _e (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[Hz]	[m/s]	[m/s]
1-first	9.44	25.9	26.5	4.026	4.8424	-0.043	0.069
12	20.96	26.6	26.5	6.008	7.4498	-0.028	0.047
2	37.67	25.7	26.5	8.043	10.1166	-0.006	0.036
11	58.77	26.7	26.5	10.065	12.7862	0.002	0.031
3	84.99	25.6	26.5	12.079	15.4575	0.001	0.028
10	115.32	26.9	26.5	14,105	18.0924	0.038	0.028
13-last	131.64	26.5	26.6	15.061	19.3330	0.059	0.028
4	150.50	25,7	26.5	16.079	20.7153	0.033	0.027
9	189.95	27.0	26.5	18.110	23,4005	0.038	0.029
5	235.13	25.9	26.5	20.110	26.0603	0.032	0.030
8	282.52	27.1	26.5	22.092	28.8291	-0.076	0.032
6	336.17	26.3	26.5	24.070	31.4068	-0.043	0.034
7	395.53	26,8	26.5	26.136	34.1003	-0.009	0.037

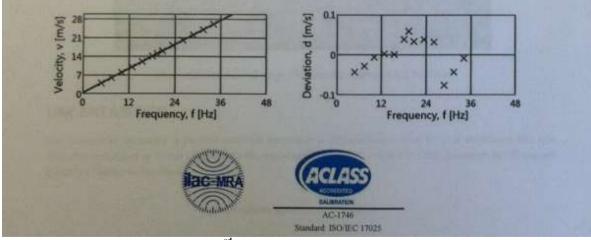


Figure A4. Secondary anemometer 3rd-party calibration sheet pg 1 of 1.

Wind Direction Vane

4/10/12

NRG Systems

Date: 4/10/2012

Product Specifications

Product #: 1904 http://www.nrgsystems.com/sitecore/content/Products/1904.aspx

NRG #200P Wind Direction Vane, 10K, With Boot

The industry standard wind direction vane used worldwide. Thermoplastic and stainless steel components resist corrosion and contribute to a high strength-to-weight ratio.

SPECIFICATIONS

	Description
Sensor type	continuous rotation potentiometric wind direction vane
Applications	 wind resource assessment meteorological studies environmental monitoring
Sensor range	360° mechanical, continuous rotation
Instrument compatibility	all NRG loggers
	Output signal
Signal type	Analog DC voltage from conductive plastic potentiometer, 10K ohms
Transfer function	Output signal is a ratiometric voltage
Accuracy	potentiometer linearity within 1%
Dead band	8º Maximum, 4º Typical
Output signal range	0 V to excitation voltage (excluding deadband)
Resp	onse characteristics
Threshold	1 m/s (2.2 miles per hour)
Po	wer requirements
Supply voltage	Regulated potentiometer excitation of 1 V to 15 V DC
	Installation
Mounting	onto a 13 mm (0.5 inch) diameter mast with cotter pin and set screw
Tools required	0.25 inch nut driver, petroleum jelly, electrical tape
	Environmental
Operating temperature range	-55 °C to 60 °C (-67 °F to 140 °F)
Operating humidity range	0 to 100% RH
Lifespan	50 million revolutions (2 to 6 years normal operation)
	Physical
Connections	4-40 brass hex nut/post terminals
Weight	0.14 kg (0.3 pounds)
Dimensions	 21 cm (8.3 inches) length x 12 cm (4.3 inches)
	height • 27 cm (10.5 inches) swept diameter
	Materials

www.nrgsystems.com/sitecore/content/StandAlonePages/Specifications.aspx?pid=1904

1/2

Figure A5. Wind direction vane manufacturer specification sheet pg 1 of 2.

/10/12	NRG Systems
Wing	black UV stabilized injection molded plastic
Body	black UV stabilized static-dissipating plastic
Shaft	stainless steel
Bearing	stainless steel
Boot	protective PVC sensor terminal boot included
Terminals	brass

110 Riggs Road - Hinesburg - VT 05461 USA - TEL (802) 482-2255 - FAX (802) 482-2272 - EMAIL sales@nrgsystems.com

Figure A6. Wind direction vane manufacturer specification sheet pg 2 of 2.

Temperature Probe

4/10/12

NRG Systems

Date: 4/10/2012

1/2

Product Specifications Product #: 1906 http://www.nrgsystems.com/sitecore/content/Products/1906.aspx

SPECIFICATIONS

Sensor type

Applications

Sensor range Instrument compatibility

gnal type Transfer function

Accuracy

Electrical time constant Output signal range

Thermal time constant

Supply voltage Supply current

Mounting **Tools** required

Operating temperature range Operating humidity range Lifespan

onnections

NRG #110S **Temperature Sensor** with Radiation Shield

Durable integrated circuit temperature sensor provides a high level voltage output signal. Ideal for collecting temperature data for energy density calculations and monitoring air temperature at remote sites.

Description

integrated circuit temperature sensor with six plate radiation shield

- wind resource assessment
- meteorological studies
- environmental monitoring
- -40 °C to 52.5 °C (-40 °F to 126.5 °F)

all NRG loggers

Output signal

linear analog voltage

Temp = (Voltage x 55.55) - 86.38 °C [Temp = (Voltage x 100) - 123.5 °F]

- offset is +/- 0.8 °C (1.4 °F) maximum
 nonlinearity is +/- 0.33 °C (+/- 0.6 °F) maximum
 total error +/- 1.1 °C (2 °F) maximum

- 250 µs
- 0 V to 2.5 V DC

Response characteristics

10 minutes

Power requirements

4 V to 35 V DC

300 µA max. (no load on output)

Installation

attaches to tower with included hose clamps

- 8mm (5/16 inch) nut driver or flat blade (-) screwdriver
- (to install hose clamps)
- sheet metal shears or similar (for trimming hose clamps)

Environmental

-40 °C to 52.5 °C (-40 °F to 126.5 °F)

- 0 to 100% RH
- 10 years +

Physical

- wire leads: signal (clear wire)
- ground (black wire)
- excitation (red wire)
- · shield wire for earth ground

www.nrgsystems.com/sitecore/content/StandAlonePages/Specifications.aspx?pid=1906

Figure A7. Temperature probe manufacturer specification sheet pg 1 of 2.

4/10/12	NRG Systems
Cable length	5 m (16 feet)
Weight	0.47 kg (1.04 pounds)
Dimensions	 sensor only: 30.5 mm (1.2 inches) height x 12.7 mm (0.5 inch) diameter sensor with radiation shield: 127 mm (5 inches) diameter x 127 mm (5 inches) height
	Materials
Cable	3 conductor 22 AWG, with overall foil shield and drain wire, chrome PVC jacket
Probe	aluminum, epoxy filled
Shield	UV-stabilized thermoplastic solar radiation shield

110 Riggs Road - Hinesburg - VT 05461 USA - TEL (802) 482-2255 - FAX (802) 482-2272 - EMAIL sales@nrgsystems.com

 \sim

www.nrgsystems.com/sitecore/content/StandAlonePages/Specifications.aspx?pid=1906

Figure A8. Temperature probe manufacturer specification sheet pg 2 of 2.

2/7

Calibration Report

NRG BP20 Barometric Pressure Sensor

NRG BP-20 Serial Number	1805 12465
Calibration Date	2010.11.15 10:38:44
Calibration performed by	PPC
NRG Reference BP Instrument No.	1044
NRG Digital Volt Meter (DVM) Instrument No.	102908
Uncertainty of Voltage Measurement	+/- 5 mV

Calibration of this BP-20 Absolute Pressure Sensor was performed against Reference Absolute Pressure Sensor, NRG Instrument #1044. Output voltage measured with B&K Model 391A, NRG Instrument #102908. Uncertainty of the voltage measurement is +/- 5 millivolts. Calibration of these instruments is traceable to the National Institute for Standards and Technology (NIST).

The output (in kPa) for this BP-20 sensor is defined by: P = (21.79 x Vout) + 10.53

BP-20 Slope	21.79	kPa / Volt
BP-20 Offset	10.53	kPa

BP-20 Slope and Offset Conversion Chart for NRG Symphonie Data Retriever, MicroSite, and BaseStation software

To Scale to	enter slope (scale factor)	and enter offset
mB	0.4255	650.029
kPa	0.04255	65.003
inches of mercury	0.01257	19.195

Global leaders in wind assessment technology

110 Riggs Road Hinesburg VT 05461 USA · TEL (802) 482-2255 · FAX (802) 482-2272 · EMAIL sales@nrgsystems.com

Figure A9. Pressure transducer manufacturer calibration sheet pg 1 of 1.

Power Transducer

ISO IKOI	2006 CERTIFIED DMS
	TIFICATE of COMPLIANCE AC TRANSFORM
A-7003	I-03 - with Traceability and Data Points
JSTOMER KANSAS STATE UNIVER	RSITY DATE October 23, 2013
O. NUMBER ECE2014-902F-YB	OSI NUMBER 132741/132742
DDEL PC5-059EY25	SERIAL NUMBER 11110431

Accuracy has been established by comparison with calibration standards traceable to the National Institute of Standards and Technology. Calibration standards have accuracy specifications greater than the specifications of the unit under test.

MANUFACTURER	MODEL	SERIAL NUMBER	DATE	DUE DATE	
Rotek	8000/8000-200A	173/2121	5/2/2013	5/2/2014	
Hewlett Packard	34401A	3146A27434	4/8/2013	4/30/2014	
OSI	Load Resistor 250 Ohm	9401	1/17/2013	1/17/2014	
Extech	RH520	CH21124	1/7/2013	1/7/2014	
ABOVE EQUIPME	NT IS TRACEABLE T	TO: SERIAL NUMBER	CALIBRATION	DUE DATE	REPORT
Rotek	8000/8000-200A	173/2121	5/2/2013	5/2/2014	23557/23558
Hewlett Packard	34401A	3146A27434	4/8/2013	4/30/2014	6051896
Agilent	34401A	MY47051127	8/2/2013	8/31/2014	48825-508
Extech		CH21124	1/7/2013	1/7/2014	WCS-17502-M
totek standards have an	uncertainty ratio of better tha	in four to one		FI STR	
EMPERATURE	76 °F		1. 1	n /	1. 1
HUMIDITY	29 %	Certified by		t. Ke	ame
ev-A	1243	www.ohiosemitronic Reynolds Drive, Hilliard, 0	spom 1	Quality Assurant	

Figure A10. Power transducer manufacturer calibration sheet pg 1 of 3.

CERTIFICATE of COMPLIANCE A-7003-03 - with Traceebility and Data Points DATE CCIODER 23, 2013 A-7003-03 - with Traceebility and Data Points DATE October 23, 2013 ansetucer Type wat X voltage Current P. O. No. ECE2014-9027-VB OSI No. 132741132742 ansetucer Type wat X voltage Current Frequency P. O. No. Colober 23, 2013 poolel No. P.55-058FY5 Senial NO. 11110431 Pre Other Diter pecified Accurrey 20 5% F.S. Output Load 2600 2600 Diter Diter prefined Accurrey 20 5% F.S. Output Load 2600 11110431 Data Status is As Found X. As Left prefined Accurrey 20 5% F.S. Output Load 2600 11110431 Data Status is As Found X. As Left prefined Accurrey 20 5% F.S. Output Load 2600 0.000 Duter prefined Accurrey 20 5% F.S. Output Load 2600 0.000 Duter precified Accurrey Actu M.	_ (<u>ö</u> /	Sol Ohio E	OSI Ohio Semitroni	cs, Inc.		\sim			(
ATE UNIVERSITY P.O. No. ECE2014-902F-VB X voltage Current Frequency PF Ott Serial No. 11110431 Prequency PT Data Status is A Serial No. 11110431 Prequency PT Data Status is A Serial No. 11110431 Prequency Prequency PT PT Input = 4 - 20mAdc Output 26000 101000 10000 10000 10000 PT PT AUENCY POWER NomINAL ACTUAL PASS PR PR PR AUENCY POWER NOMINAL ACTUAL PASS PS	,	7			TIFICATE o 3-03 - with Trac	of COMPL eability and D	-IANCE ata Points	DATE	October 23, 2013
X Voltage Current Frequency P Serial No. 1110431 Serial No. 1110431 Serial No. 1110431 Requency P Output Load 2500 1110431 Output Load 2500 110431 Output Load 2500 100431 Model 0.000 100404 NOMINAL ACTUAL 1 Recor 1000 10.000 19.800 16.820 0.000 10.400 10.404 10.404 0.000 10.400 10.404 10.404 0.000 10.400 10.404 10.404 0.000 10.400 10.404 10.404 0.000 10.400 10.404 10.404 0.000 10.400 10.404 10.404 0.000 10.400 10.406 10.404	CUSTOME		IS STATE UNI	VERSITY		P.O. No.	ECE2014-9(02F-YB	OSI No. 132741/132742
Serial No. I1110431 S. Output Load 250Ω Input = 4 - 20mAdc Output 250Ω Input = 4 - 20mAdc Output 250Ω NPUT Recondition NPUT Nominal No 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00	ransducer		\mathbf{x}	Voltage	Current	[Frequen	Cy [PF	Other
Simulation Cutput Load 2500 Input = 4 - 20mAdc Output 2500 NPUT Reconsidered QUENCY POWER NOMINAL AUENCY POWER NOMINAL POWER NOMINAL ACTUAL AUENCY REACON 1000 E0 1.000 12.000 E0 1.000 12.000 E0 1.000 12.000 E0 1.000 20.000 E0 1.000 20.000 E0 1.000 19.984	Model No.	PC5-059EY2	5	0		10431	ſ	Data Status	is As Found X As Left
It Scaling 0 - 20kW liput = 4 - 20mAdc Output Acadim Introduct Recorded by Introduct Introduct Power Nommal Recorded by CURRENT FREQUENCY POWER POWER Nommal Act vol OUTPUT CURRENT (rep) (rep) (rep) (rep) (rep) report Act vol <	Specified Ac		5% F.S.	Out		a	Ĩ]
INPUT NOMINAL ACTUAL CURRENT FREQUENCY FACTOR NOMINAL ACTUAL (AL1) (Hz) (PE) (MM) (mAdd) P (AL1) (Hz) (PE) (MM) (MAdd) P P (B1 (PE) (PE) (MM) (MM) (mAdd) P P (B1 (PE) (PE) (MM) (PE) (MM) (mAdd) P P (B5.667 60 1.00 12.000 15.800 16.820 P P (B6.667 60 1.00 12.000 13.616 P P (B0 1.000 10.000 8.000 10.400 10.404 P (B3.333 60 0.5 Lagging 10.000 12.000 12.000 P (B3.333 60 0.5 Lagging 10.000 12.000 12.000 P P (B5.3333 60 0.5 Lagging 10.000 20.0000 P	nput/Outpu	t Scaling 0 -	20kW Input = 4	- 20mAdc Outpu	ut		Rec	orded by	D. BORBRIDGE
CURRENT FREQUENCY (AL1) FREQUENCY (AL2) POWER (PF) NOMINAL ACTUAL (A11) (Hz) (PF) (KW) (mAdc) (mAdc) (A11) (Hz) (PF) (KW) (mAdc) (mAdc) (B5.657 60 1.00 20.000 19.988 (mAdc) 50.000 60 1.00 12.000 15.800 16.820 50.000 60 1.00 8.000 10.400 16.820 50.000 60 1.00 8.000 10.400 16.404 15.61 60 1.00 8.000 10.400 10.404 83.333 60 0.5.Leagging 10.000 12.000 12.000 83.333 60 0.5.Leading 10.000 12.000 19.984 83.333 60 0.5.Leading 10.000 12.000 19.984 83.333 60 0.5.Leading 10.000 20.000 19.984 100.000 80 1.00 20.000			INPUT					OUTPU	
8333 60 1.00 20.000 19.888 66.657 60 1.00 16.000 16.800 16.820 66.657 60 1.00 12.000 13.616 15.80 60 1.00 8.000 13.600 15.816 33.333 60 1.00 8.000 10.400 10.404 33.333 60 1.00 8.000 10.400 10.404 33.333 60 1.00 8.000 10.400 10.404 8.3.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 0.5 Lagding 10.000 12.000 12.000 83.333 60 0.5 Lagding 10.000 12.000 19.864 100.000 60 1.00 20.000 19.900 19.800 100.000 60 1.00 20.000 19.900 19.900	VOLTAGE	CURRENT	FREQUENCY	POWER FACTOR	POWER	NOMINAL (made)	ACTUAL	PASS/ FAIL	
66.667 60 1.00 16.000 16.800 16.820 16.820 50.000 60 1.00 12.000 13.616 13.616 33.333 60 1.00 8.000 10.400 13.616 33.333 60 1.00 8.000 10.400 13.616 16.667 60 1.00 8.000 10.400 10.404 0.000 60 N/A 0.000 4.000 12.000 83.333 60 0.5 Leaging 10.000 12.000 12.000 83.333 60 1.00 20.000 19.900 19.900 100.000 80 1.00 20.000 19.900 19.900 100.000 80 1.00 20.000 19.900 19.900 100.000 80 1.00 20.000 19.900 19.900	240.0	83.333	60	1.00	20.000	20.000	19.988	PASS	
50.000 60 1.00 1.2000 13.616 13.616 33.333 60 1.00 8.000 10.400 10.404 16.667 60 1.00 8.000 7.200 7.188 16.667 60 1.00 9.000 4.000 7.188 0.000 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 1.00 20.000 19.984 12.000 100.000 60 1.00 20.000 19.984 19.984 100.000 60 1.00 20.000 19.984 19.984 100.000 60 1.00 20.000 19.984 19.984 100.000 100.000 10.000 19.984 19.984 19.996 100.000 100 10 10.000 19.990 1	240.0	66.667	60	1,00	16.000	16.800	16.820	PASS	
33.333 60 1.00 8.000 10.400 10.404 16.667 60 1.00 4.000 7.200 7.188 0.000 60 N/A 0.000 4.000 7.08 83.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 1.00 20.000 12.000 19.984 100.000 80 1.00 20.000 19.984 10.000 100.000 80 1.00 20.000 19.984 10.000 100.000 80 1.00 20.000 19.984 10.000 19.984 100.000 80 1.00 20.000 20.000 19.984 10.990	240.0	50.000	60	1.00	12.000	13.600	13.616	PASS	
16.667 60 1.00 4.000 7.200 7.188 0.000 60 N/A 0.000 4.000 4.008 83.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 1.00 20.000 12.000 19.984 100.000 80 1.00 20.000 20.000 19.984 100.000 80 1.00 20.000 19.900 19.900	240.0	33.333	60	1.00	8.000	10.400	10.404	PASS	
0.000 60 N/A 0.000 4.000 4.008 83.333 60 0.5 Lagging 10.000 12.000 12.000 83.333 60 0.5 Lagding 10.000 12.000 12.000 83.333 60 0.5 Lagding 10.000 12.000 12.000 83.333 60 1.00 20.000 20.000 19.984 100.000 80 1.00 20.000 20.000 19.984	240.0	16.667	60	1.00	4.000	7.200	7.188	PASS	
83.333 60 0.5 Lagging 10.000 12.000 12.000 12.000 83.333 60 0.5 Leading 10.000 12.000 12.000 12.000 83.333 60 0.5 Leading 10.000 12.000 12.000 12.000 65.657 60 1.00 20.000 20.000 19.984 10.000 100.000 60 1.00 20.000 20.000 19.984 19.984 100.000 60 1.00 20.000 20.000 19.900 19.900	240.0	0.000	60	N/A	0.000	4.000	4.008	PASS	
83.333 60 0.5 Leading 10.000 12.000 12.000 12.000 12.000 13.984 66.567 60 1.00 20.000 20.000 19.984 19.900 100.000 80 1.00 20.000 20.000 19.900 19.900 100.000 80 1.00 20.000 20.000 19.900 19.900	240.0	83.333	60	0.5 Lagging	10.000	12.000	12.000	PASS	
	300.0	83.333 RF RF7	80	0.5 Leading	10.000	20.000	12.000	PASS	
	200.0	100.000	60	1.00	20.000	20.000	19.900	FAIL	
	REMARKS:								
					and the second	man anima			

Figure A11. Power transducer manufacturer calibration sheet pg 2 of 3.

Tanaducer Type Matt Voltage Current Fequency PF Other Model No. PE-056EY25 Serial No. 1110431 Erequency Other Other As found As found As found As found As left Specified Accurrey 40.5% F.S. Output Load 250.0 Tit10431 Data Status is As Found As left Input/Output Scaling 0-20kWinput = 4 - 20mdc Output 260.0 260.0 260.0 Dia Status is As Found As left Input/Output Scaling 0-20kWinput = 4 - 20mdc Output Recorded by Dia Status is As Found As left Input/Output Scaling 0-20000 0-0000 Current Recorded by Dia Status is As Found As left VILLAN Output = 4 - 20mdc Output Accorded by Dia Status is As Found As left As left VILLAN Output = 4 - 20mdc Output Accorded by Dia Status is As Found Dia Status is As Found As left VILLAN Output = 4 - 20mdc Output Accorded by Dia Status is As found Dia Status is As found Dia Status	Watt X Voltage Current Frequency P 595Y25 Serial No. 11110431 Frequency P 40.6% F.S. Serial No. 11110431 Recon I 40.6% F.S. Output Load 250.0 I I I 1 INPUT Recon I <td< th=""><th>OSI Ohio Semitronica The LEADER IN POWER IN POWER</th><th>Eronics, inc. Efficient resumment CE A-</th><th>ces, Inc. ar measurement CERT A-7003 NERSITY</th><th>CERTIFICATE of COMPLIANCE A-7003-03 - with Traceability and Data Points ITY P.O. No. ECE2014-6</th><th>of COMPL seability and D: P.O. No.</th><th>COMPLIANCE lity and Data Points P.O. No. ECE2014-902F-YB</th><th>DATE 02F-YB</th><th>October 23, 2013 OSI No. 132741/132742</th></td<>	OSI Ohio Semitronica The LEADER IN POWER IN POWER	Eronics, inc. Efficient resumment CE A-	ces, Inc. ar measurement CERT A-7003 NERSITY	CERTIFICATE of COMPLIANCE A-7003-03 - with Traceability and Data Points ITY P.O. No. ECE2014-6	of COMPL seability and D: P.O. No.	COMPLIANCE lity and Data Points P.O. No. ECE2014-902F-YB	DATE 02F-YB	October 23, 2013 OSI No. 132741/132742		
Serial No. I1110431 Data Status is As Found Output Load 2600 2600 Data Status is As Found Dut = 4 - 20mAdc Output Data Status is As Found Data Status is As Found Dut = 4 - 20mAdc Output Interview Recorded by D. BORBRID PUT Recorded by D. BORBRID Fut Recorded by D. BORBRID PUT Recorded by D. BORBRID PUT Recorded by D. BORBRID PUT OUTPUT Recorded by D. BORBRID PUT POWER NOMINAL ACTUAL Recorded by D. BORBRID PUT OUT COUT Scool Scool Scool Scool Scool Scool PUT OUT PUT PUT PUT PUT PUT PUT PUT OUT Scool Scool Scool PUT PUT PUT PUT PUT PUT PUT PUT PUT PUT PUT PUT PUT	Serial No. Ti110431 ±0.5% F.S. Output Load 2600 ±0.5% F.S. Output Load 2600 Journal 0utput Load 2600 Journal 2600 20.000 110 20.000 20.000 110 10.00 10.00 110 10.00 10.000 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 110 10.000 10.400 1	Watt		age	Current] Frequen	ley	PF	Other		
<th -="" 20.000<="" colspan="2" th="" th<=""><th>INDUT INDUT Record INDUT INDUT INDUT Record Record</th><th>60</th><th></th><th>outh S</th><th>10220 1023</th><th>10431 D</th><th></th><th>Data Status</th><th></th></th>	<th>INDUT INDUT Record INDUT INDUT INDUT Record Record</th> <th>60</th> <th></th> <th>outh S</th> <th>10220 1023</th> <th>10431 D</th> <th></th> <th>Data Status</th> <th></th>		INDUT INDUT Record INDUT INDUT INDUT Record Record	60		outh S	10220 1023	10431 D		Data Status	
INPUT CURRENT FREQUENCY POWER NOMINAL ACTUAL P (AL1) (Hz) (Hz) (PE) (KW) (mAdic) (mAdic) F (AL1) (Hz) (PE) (KW) (mAdic) (mAdic) F F (AL1) (Hz) (Hz) (100 1.000 20.000 20.000 P P (B6.657 60 1.00 12.000 15.820 P <th>INPUT CURRENT FREQUENCY FOWER NOMINAL ACTUAL CURRENT FREQUENCY FOWER POWER NOMINAL ACTUAL F (AL1) (Hz) (Hz) (FF) (KW) (mAdc) (mAdc) F (AL1) (Hz) (FF) (KW) (mAdc) (mAdc) F (B6.657 60 1.00 15.000 20.000 20.000 F F 50.000 60 1.00 12.000 16.000 10.400 10.400 F F 53.333 60 1.00 12.000 7.184 F F 53.333 60 1.00 7.000 7.000 7.184 F 83.333 60 0.5 Lagging 10.000 12.000 11.988 F 83.333 60 0.5 Lagging 10.000 12.000 11.988 F 83.333 60 0.5 Lagging 10.000</th> <th>put Scaling 0 - 20kW In</th> <th>nput = 4 - 20</th> <th>ImAdc Outpu</th> <th>t</th> <th></th> <th>Rec</th> <th>corded by</th> <th>D. BORBRIDGE</th>	INPUT CURRENT FREQUENCY FOWER NOMINAL ACTUAL CURRENT FREQUENCY FOWER POWER NOMINAL ACTUAL F (AL1) (Hz) (Hz) (FF) (KW) (mAdc) (mAdc) F (AL1) (Hz) (FF) (KW) (mAdc) (mAdc) F (B6.657 60 1.00 15.000 20.000 20.000 F F 50.000 60 1.00 12.000 16.000 10.400 10.400 F F 53.333 60 1.00 12.000 7.184 F F 53.333 60 1.00 7.000 7.000 7.184 F 83.333 60 0.5 Lagging 10.000 12.000 11.988 F 83.333 60 0.5 Lagging 10.000 12.000 11.988 F 83.333 60 0.5 Lagging 10.000	put Scaling 0 - 20kW In	nput = 4 - 20	ImAdc Outpu	t		Rec	corded by	D. BORBRIDGE		
CURRENT FREQUENCY POWER (N11) NOMINAL ACTUAL (AL1) (Hz) (FF) (KW) (mddc) (mddc) (B11) (Hz) (FF) (KW) (mddc) (mddc) (mddc) 83.333 60 1.00 20.000 20.000 20.000 20.000 20.000 83.333 60 1.00 16.000 16.800 16.820 16.820 50.000 60 1.00 10.000 16.000 16.820 16.820 53.333 60 1.00 10.000 10.400 16.820 16.830 16.867 60 1.00 20.000 12.000 11.988 10.400 83.333 60 0.5 Leaging 10.000 12.000 11.988 10.400 83.333 60 0.5 Leading 10.000 12.000 19.944 100.000 60 1.000 20.000 20.000 20.004 100.000 60 1.00 20.000 20.004<	CURRENT FREQUENCY POWER POWER NOMINAL ACTUAL (AL1) (Hz) (FE) (KW) (mAdc) (mAdc) (mAdc) (AL1) (Hz) (FE) (KW) (mAdc) (mAdc) (mAdc) 83.333 60 1.00 20.000 20.000 20.000 20.000 66.667 60 1.00 16.000 16.800 16.820 16.820 50.000 60 1.00 12.000 18.600 16.820 16.400 53.333 60 1.00 8.000 16.400 7.184 0.000 60 1.00 8.000 10.400 7.184 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Leading 10.000 12.000 11.988 11.988 83.333 60 0.5 Leading 10.000 12.000 19.944 19.944 100.000 60 1.00 20.000 20.000	2	NPUT					OUTPU.	L		
83.333 60 1.00 20.000 20.000 20.000 20.000 20.000 16.820 16.820 16.820 16.820 16.820 16.820 16.820 16.820 16.820 13.616 13.610 13.610 13.610 13.610 13.610 13.616	83.333 60 1.00 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 16.820 17.846 17.846 17.846 17.846 17.938 17.938 17.938 17.938 17.938 17.938 17.938 17.938 17.938 17.936 17.936 17.936 17.936 17.938 17.938 17.938 17.936 17.936 17.936 17.936 17.936	CURRENT (A L1)		POWER ACTOR (PF)	POWER (KW)	NOMINAL (mAdc)	ACTUAL (mAdc)	PASS/ FAIL			
66.667 60 1.00 16.000 16.800 16.820 50.000 60 1.00 12.000 13.616 13.616 53.333 60 1.00 8.000 10.400 13.616 33.333 60 1.00 8.000 7.200 7.184 16.667 60 1.00 4.000 7.200 7.184 0.000 60 1.00 4.000 7.200 10.400 83.333 60 0.5 Lagging 10.000 11.988 11.988 83.333 60 0.5 Leading 10.000 12.000 11.988 83.333 60 0.5 Leading 10.000 12.000 19.944 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 19.944 19.944 100.000 10 1.00 20.000 20.004 19.944 100.000 10 1.00 20.000 19.944 19.944 <td>66.667 60 1.00 16.000 16.800 16.820 50.000 60 1.00 12.000 13.616 13.616 53.333 60 1.00 8.000 10.400 13.616 33.333 60 1.00 8.000 7.184 10.400 16.667 60 1.00 8.000 7.200 7.184 0.000 60 N/A 0.000 4.000 7.184 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Lagging 10.000 12.000 13.984 83.333 60 0.5 Lagging 10.000 12.000 19.944 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 19.944 19.944 100.000 10 10.000 20.000 19.944 19.944 100.000 10 10.000 19.944 19.944 19.944<</td> <td>83.333</td> <td>90</td> <td>1.00</td> <td>20.000</td> <td>20.000</td> <td>20.000</td> <td>PASS</td> <td></td>	66.667 60 1.00 16.000 16.800 16.820 50.000 60 1.00 12.000 13.616 13.616 53.333 60 1.00 8.000 10.400 13.616 33.333 60 1.00 8.000 7.184 10.400 16.667 60 1.00 8.000 7.200 7.184 0.000 60 N/A 0.000 4.000 7.184 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Lagging 10.000 12.000 13.984 83.333 60 0.5 Lagging 10.000 12.000 19.944 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 19.944 19.944 100.000 10 10.000 20.000 19.944 19.944 100.000 10 10.000 19.944 19.944 19.944<	83.333	90	1.00	20.000	20.000	20.000	PASS			
50.000 60 1.00 12.000 13.616 13.616 33.333 60 1.00 8.000 10.400 10.400 16.667 60 1.00 8.000 7.200 7.184 16.667 60 1.00 8.000 7.200 7.184 0.000 60 N/A 0.000 12.000 4.000 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Leading 10.000 12.000 12.004 100.000 60 1.00 20.000 19.944 10.004 100.000 60 1.00 20.000 19.944 10.944 100.000 60 1.00 20.000 19.944 10.944 100.000 10.000 10.000 19.944 10.944 10.944	50.000 60 1.00 12.000 13.600 13.616 33.333 60 1.00 8.000 10.400 10.400 16.667 60 1.00 8.000 7.200 7.184 16.667 60 1.00 8.000 7.200 7.184 0.000 60 N/A 0.000 4.000 7.184 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Leading 10.000 12.000 11.988 83.333 60 1.00 20.000 12.000 10.944 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 19.944 1 100.000 60 1.00 20.000 19.944 1 100.000 10 1.00 20.000 19.944 1	66.667	60	1.00	16.000	16.800	16.820	PASS			
33.333 60 1.00 8.000 10.400 10.400 16.667 60 1.00 4.000 7.184 7.184 0.000 60 N/A 0.000 4.000 7.00 7.184 83.333 60 0.5 Lagging 10.000 12.000 11.988 7.004 83.333 60 0.5 Lagging 10.000 12.000 11.988 7.004 83.333 60 0.5 Leading 10.000 12.000 12.004 7.004 83.333 60 1.00 20.000 12.000 19.944 7.004 100.000 60 1.00 20.000 20.000 19.944 7.004 100.000 60 1.00 20.000 20.000 19.944 7.004	33.333 60 1.00 8.000 10.400 10.400 16.667 60 1.00 4.000 7.200 7.184 0.000 60 N/A 0.000 4.000 7.184 83.333 60 0.5 Lagging 10.000 11.988 4.000 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 1.00 20.000 12.004 13.004 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 19.944 1	50.000	60	1.00	12.000	13.600	13.616	PASS			
16.667 60 1.00 4.000 7.200 7.184 0.000 60 N/A 0.000 4.000 4.000 4.000 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 1.00 25.000 20.004 12.004 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 20.004 19.944	16:667 60 1.00 4.000 7.200 7.184 0.000 60 N/A 0.000 4.000 4.000 4.000 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Leading 10.000 12.000 13.004 83.333 60 1.00 20.000 20.004 13.004 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 20.004 19.944	33.333	60	1.00	8.000	10.400	10.400	PASS			
0.000 60 N/A 0.000 4.000 4.000 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Lagging 10.000 12.000 12.004 83.333 60 0.5 Leading 10.000 12.000 12.004 83.333 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 20.004 19.944	0.000 60 N/A 0.000 4.000 4.000 4.000 83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Lagding 10.000 12.000 12.004 83.333 60 0.5 Lading 10.000 12.000 12.004 83.333 60 1.00 20.000 20.004 12.004 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 19.944 19.944	16.667	60	1.00	4.000	7.200	7.184	PASS			
83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Leading 10.000 12.000 12.004 86.657 60 1.000 20.000 20.000 19.944 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 20.004 19.944	83.333 60 0.5 Lagging 10.000 12.000 11.988 83.333 60 0.5 Leading 10.000 12.000 12.004 83.333 60 1.00 20.000 20.004 12.004 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 20.004 19.944	0:000	60	N/A	0.000	4.000	4.000	PASS			
83.333 60 0.5 Leading 10.000 12.000 12.004 86.667 60 1.00 20.000 20.004 20.004 100.000 60 1.00 20.000 20.004 19.944	83.333 60 0.5 Leading 10.000 12.000 12.004 66.657 60 1.00 20.000 20.004 20.004 100.000 60 1.00 20.000 20.004 19.944 100.000 60 1.00 20.000 20.004 19.944	83.333		5 Lagging	10.000	12.000	11.988	PASS			
66.667 60 1.00 20.000 20.004 20.004 100.000 60 1.00 20.000 19.944 19.944	66.667 60 1.00 20.000 20.004 20.004 100.000 60 1.00 20.000 19.944 19.944	83.333		5 Leading	10.000	12.000	12.004	PASS			
100.000 60 1.00 20.000 20.000 19.944	100.000 60 1.00 20.000 19.944	66.667	60	1.00	20.000	20.000	20.004	PASS			
MARKS:		100.000	60	1.00	20.000	20.000	19.944	PASS			
MARKS:											
	MARKS:	S									

Figure A12. Power transducer manufacturer calibration sheet pg 3 of 3.

DAS Boards



Figure A13. Voltage module (for temperature & pressure), manufacturer calibration certificate pg 1 of 1.

17025 Accredit	ed Certificate	of Calibrat	tion	Cettificate #: 2516.01
Acct #: 123790 Customer: Advanced Manufacturing In Shipper #: 2074961 Address: 510 McCall Rd Contact: Manhattan, KS, 66502 PO #: NI RMA	nstitute	Manufacturer Model: Description: Serial Number Asset Number Barcode:	9203 8 Channe 153E128	
As Received As Returned In Tolerance X In Toleran Out of Tolerance Out of Toleran Malfunctioning Malfunctionin Operational Operation Damaged N N/A ncoming Remarks: ndo Damastic Accredited Calibration w/end bags	nce X Full Cal nce Special Cal mg Oper, Vers nal // VA F	libration X bibration	Cal Date: Due Date: Temperature: Humidity: Baro. Press.: Procedure: Reference:	10/28/2013 10/28/2014 71.10 deg. F 69.80 % DCN 09374 manufacaturers' manual
Technical Remarks: Cert.# Manufacturer Mo 2528850168 Fluke 570	Calibration Stand del # Descriptio 0A Multifunc		Cal Date 10/24/2013	Due Date 01/24/2014
ne above identified unit was calibrated in our lat a report applies only to the itera(s) identified above and shall not be reprodu- menter than 4 approximating a 05 % calibrate level with a coverage fies brough NIST or other recognized national informative, accepted fundamental b	end, except in full, without the wr	cines approval of Troscal T	This suit has been calibo or of Caliboron. The comparison to consense	104d utilizing standards with a Tex Uncertainty. R calibration was performed using reference means a standards. Transfit collibration program to no

Figure A14. Current module (for power transducer) manufacturer calibration certificate pg 1 of 1.

Technical Sales

(866) 531-6285 orders@ni.com

Ordering Information | Detailed Specifications | Pinouts/Front Panel Connections in and dry al develops, stat for product

Last Revised: 2014-11-08 07:14:33.0

NI 9421

24 V, Sinking Digital Input, 8 Ch Module

- 8 channels, 100 µs digital input

- 24 V logic, sinking digital input
- Compatibility with NI CompactDAQ counters

. 60 VDC, CAT I (D-6UB), or 250 Virms, CAT II (screw-terminal) isolation

- · 25-pin D-BUB or 10-position screw-terminal connectors available
- 40 °C to 70 °C operating, 5 g vibration, 50 g shock

Overview

The NI 9421 is an 8-channel, 100 µs sinking digital input module for any NI CompactDAQ or CompactRIO chassis. Each channel is compatible with 24 V signals and features transient overvoltage protection of 2,300 Vms between the input channels and earth ground. Each channel also has an LED that indicates the state of that channel. The Ni 5421 works with industrial logic levels and signals for direct connection to a wide array of industrial switches, transducers, and devices.

You can choose from two connector options for the Ni 9421; a 10-position screw-terminal connector and a 25-position D-8UB connector. This industry-standard 25-position D-3UB connector provides for low-cost cabling to a wide variety of accessories from NI or other vendors. A number of vendors with custom D-3UB cable fabrication services can deliver cables with a pinout that matches your exact application needs.

Recommended Accessories

-NI 9924 or other 25-pin D-SUB connector (for D-SUB variant)

-NI 9927 strain relief and operator protection (for screw-terminal variant)

Optional Accessories

-NI 9936 extra screw-terminal block (quantity 10)

-NI 9980 extra spring-terminal block (quantity 10)

Note: The NI 5980 is not compatible with the NI 5927 and must be used with low or nonhazantious voltages or installed in a property rated enclosure.

Box Contents

- -1 NI 9421 C Series module
- -1 NI 9421 Operating Instructions and Specifications manual
- -1 NI 9936 10-position connector (for screw-terminal variant)

Back to Top

Comp	arison	Tab	es

Product Name	Signal Levels	Direction	Channels	Update Rate	Isolation	Connectivity
NI 9375	24 V	Sinking Input, Sourcing Output	16 in, 16 Out	7 µs in, 500 µs Out	60 VDC Ch-Earth	Spring Terminal, 37-Pin D-BUB
NI 9411	±5, 24 V	Sinking/Sourcing DiffISE input	6	500 ns	60 VDC Ch-Earth	15-Pin D-8UB
NI 9421	24 V	Sinking Input	8	100 µs	60 VDC (D-8UB), 250 Vms (ST)	Screw Terminal, 25-Pin D-SUB
NI 9422	24, 48, 60 V	Sinking/Sourcing input	8	250 µs	258 Virms Ch-Ch	Screw Terminal
NI 9423	24 V	Sinking Input	8	1 μs	250 Virms Ch-Earth	Screw Terminal
NI 9425	24 V	Sinking Input	32	7 µs	60 VDC Ch-Earth	37-Pin D-BUB
NI 9425	24 V	Sourcing input	32	7 µs	60 VDC Ch-Earth	37-Pin D-8UB

www.ni.com

Figure A15. NI 9421 digital input module (for both anemometers) manufacturer data sheet pg 1 of 9. Remaining pages available on request.