é 1.fm Page 1 Tuesday, January 23, 2001 4:46 PM g%

- i
I

Windows Script Host
Fundamentals

he Windows Script Host, or WSH for short, is one of the most
powerful and useful paris of the Windows operating system.
Strangely enough, it is also one of least well known, and is used
by only a small percentage of Windows users. This strange set of
circumstances is due in large part to the fact that Microsoft bas
not publicized the WSH in the same way that otbher parts of Win-
dows, such as its Web capabilities, have been publicized. It is also
because DOS and Windows users, unlike the Unix community),
bave no bistory of a powerful scripting language and therefore
usually don’t even think to look for one. Trust me — once you
learn bow to use WSH, you'll wonder bow you ever got along with-
out it! In this first chapter we take an introductory look at WSH:
what it is, bow it works, and what you can do with it. Then we
create a real, working script that you can put to use on your sys-
tem right awa).

Background

Computers are supposed to make your life easier, right? Generally they do,
but this does not mean computers are immune from errors. Many errors could
be avoided by automating the task at hand so that it runs with little or no
need for user intervention. This general idea applies not only to the typical
application programs that you run, such as word processing and graphics, but
also to the computer's operating system itself. If some of the operating system

1

4~ 4

*@ﬁ




g% 1.fm Page 2 Tuesday, January 23, 2001 4:46 PM

2 Chapter 1 Windows Script Host Fundamentals

tasks can be automated, particularly those tasks that are repetitive and need to
be performed regularly, that will be an additional increase in efficiency.
Almost from the very beginning, when JCL (Job Control Language) and REXX
were developed for mainframe computers, this has been a concern of operat-
ing system designers. Let's take a brief and incomplete look at the history of
scripting languages.

Unix Scripting

The Unix operating system, in its various implementations, has been around
for a long time, and recently has experienced a sort of renaissance with the
popularity of the open source code Linux version. From its beginnings, Unix
provided a powerful scripting language that could be used to automate a
wide variety of tasks. First came CScript, and then the more powerful and bet-
ter known Perl and Tcl, both of which are full-featured programming lan-
guages with support for variables, iteration, regular expressions, and looping
(I'll explain these terms soon). The things that could be done with these lan-
guages left many non-Unix users green with envy.

The DOS Batch Language

When the DOS operating system was first introduced along with the first PCs,
back in the early 1980s, it was provided with an extremely elementary script-
ing ability in the form of batch files. Batch files were simple text files that con-
tained a combination of operating system commands and simple
programming constructs. When you ran a batch file the effect was the same as
if you had typed those commands at the command prompt. Likewise, if a
batch file named autoexec.bat was present, it would be run automatically
each time the system was booted.

Batch files were widely used to automate a variety of tasks, but they
were extremely limited when compared with the scripting capabilities of
Unix. These limitations are as follows:

No support for looping or iteration (although some inelegant kludges

could be used to implement limited functionality)

Very limited variable support

No regular expressions

No direct support for structured programming (procedures)
Many DOS users managed to get a lot out of batch files, despite their inherent
limitations. Not having experience with a "real" scripting language, they didn't
know what they were missing!

4~ ~¢8



é 1.fm Page 3 Tuesday, January 23, 2001 4:46 PM

"

How WSH Works 3

Windows Scripting

In the early days of the Windows operating system, the term "Windows script-
ing" was a contradiction in terms because there was no Windows scripting —
not as part of the operating system at least. The old DOS batch file capabilities
were carried over into Windows, but given the additional features and capa-
bilities of the new operating system the limitations of batch files were even
more problematic. The Perl scripting language was available as a third party
product, but only a small percentage of users knew about it. This shortcoming
continued until the mid 1990s, when Windows 95 was the latest version of the
operating system. At this time, Microsoft introduced the Windows Script Host
as a powerful, full-featured scripting language for command scripting with
Windows 95. Finally, after too many years, users of PCs with the Microsoft
Windows operating system had a true command scripting language at their
disposal. There was no more need for Unix envy!

The initial release of WSH was configured as an add-on to Windows 95,
rather than being an integral part of the operating system. In other words, you
had to download the WSH files and install them before you could write
scripts. With Windows 98, Windows NT 4.0 (with the NT option pack), Win-
dows ME, and Windows 2000 the WSH is included as part of the operating
system.

Downloading WSH

If you are running Windows 95 and do not already have the WHS components installed, you
can download them from http://msdn.microsoft.com/scripting/.

How WSH Works

I think you'll agree that WSH sounds intriguing, but you probably want to
know more of the details. What can WSH do? How does it work? How do I
create and run scripts? Most of this book is devoted to answering these and
other questions in detail, but it's a good idea to have an understanding of the
overall picture before getting to those details. That's what we do in this sec-
tion.

What Can WSH Do?

An obvious question to ask at the start is what can be done with WSH? To be
honest, it might almost be easier to list the things you cannot do with WSH! It
is a very powerful and flexible tool, and in effect provides you with most of
the functionality of a full-featured programming language combined with the

4~ ~¢8



g% 1.fm Page 4 Tuesday, January 23, 2001 4:46 PM

4 Chapter 1 Windows Script Host Fundamentals

capabilities that are built into the Windows operating system. If you have
some familiarity with the old DOS batch files, it is definitely a mistake to think
of WSH as simply a souped-up version of batch files. You might as well think
of a Ferrari 360GT as a souped-up tricycle! Here are just some of the tasks that
can be easily and efficiently performed using WSH:

File management tasks, such as moving, copying, deleting, and
renaming files and folders

Reading data from, and writing data to, text files

Scheduling scripts to run at specified times

Administering user logins, operating system settings, and file short-
cuts

Automating the administration of Microsoft SQL Server and Internet
Information Server

Accessing the capabilities of the programs in Microsoft Office
Working with information stored in databases

Leveraging the power of ActiveX components

Automating messaging tasks

This is only a partial list, but I think you get the idea. WSH was designed from
the outset to impose as few limitations as possible, and to put the maximum
power and convenience in the hands of the users.

WSH Operation

At the heart of WSH is a set of scripting engines. These are the same scripting
engines that are used by the Microsoft Internet Explorer browser to execute
client-side scripts, and by Microsoft Internet Information Server (Microsoft's
Web server software) to execute Active Server Page scripts. WSH provides a
different environment in which these scripting engines can run, an environ-
ment designed for local user execution of scripts.

You may have noticed that T said "engines." Is there more than one
scripting engine for WSH? There is indeed. WSH was designed from the outset
to support different scripting languages, with each language supported by a
separate scripting engine. As supplied by Microsoft, WSH supports two lan-
guages (as detailed in the next section) but the WSH specification is open to
the development of other engines by third-party vendors. As an analogy,
think of a mail-order computer store that has telephone representatives who
can speak English, Spanish, and Chinese. Depending on the language you
want to speak, your order will be taken by a different person (analogous to a
scripting engine), but regardless of who takes your order, your order will be
packed and shipped by the same people in the warehouse (analogous to
WSH).

- il




g% 1.fm Page 5 Tuesday, January 23, 2001 4:46 PM

Scripting Technology 5

All WSH scripts are stored as plain text files, in a file whose extension
depends on the specific scripting language in use. When you execute a script,
here's what happens, in a somewhat simplified form:

1. Based on the extension of the script file, WSH searches the Windows
registry for information on the scripting engine that is associated with the
script language.

2. Using the information obtained in (1), an instance of the scripting engine
is created. At the same time, an instance of the script object (the host) is
also created.

3. WSH establishes two-way communication between itself and the script-
ing engine.

4. The script file is read and its commands carried out.

Scripting Technology

It would be an error to think of WSH as some sort of independent "extra" that
has been added to the Windows operating system. There is much integration
within the operating system, and nothing is truly independent. When you cre-
ate and use scripts, there are really several technologies coming into play:

Windows Script Host provides the full-system scripting environment
and object model that provides access to system and application
functionality.

The VBScript and JScript engines permit script authors to take advan-
tage of the power of these two modern and full-featured scripting
languages.

COM (Component Object Model) is a standard for creation of reusable
software components that expose an automation interface, and there-
fore can be controlled by scripts. COM is central to many aspects of
Windows and Windows applications.

Windows Script Components (previously called Server Scriptlets) sup-
ply the capability to provide COM objects in script code, which in
turn permits the creation of reusable script objects.

You can see from these descriptions that the term "Windows Script
Host," technically speaking, refers to only part of the picture. From the per-
spective of the script programmer, however, these distinctions are largely irrel-
evant, just like the details of a car's engine and transmission are irrelevant to
most drivers. For the remainder of this book I use the term "Windows Script
Host," or WSH, in the broad sense of referring to the full range of technolo-
gies that are utilized by scripts.

4~ ~¢8




WA éﬁ
% 1.fm Page 6 Tuesday, January 23,2001 4:46 PM

6 Chapter 1 Windows Script Host Fundamentals

Two Scripting Utilities

The WSH actually offers two scripting utilities. Under the surface they are
essentially identical. They differ in the interface between the utility and the
user. Cscript is the command line WSH scripting utility, which communicates
with the user by means of the DOS command line. In Windows, of course,
this is a "DOS box," which is identified on the Start menu as "MS-DOS
Prompt." Wscript is the Windows interface version of the script utility, which
communicates by means of screen windows.

Let's take a look at these two approaches to scripting, using a very sim-
ple script (Listing 1-1). Use any text editor, such as Notepad, to create a file
containing the code shown in the listing. Save the file using the name
List0101.vbs. You can use another name if you prefer, as long as you be sure
to use the .VBS extension.

m A simple script to display a screen message.

' List0101.vbs
' A very simple script!

Wscript.echo "Welcome to the Windows Scripting Host!"

Let's take a quick look at the code in this very simple script. The first two lines
are comments, which are not executed by WSH but serve only as a way for
the programmer to include comments and notes in a script file. The third line
is the only line of executable script code in this file. It uses the
Wscript.echo command to display text on the screen.

Create a scripts folder.

It is easier to keep your scripts organized if you keep them all in one place. For example, you
might create a folder named C:\Windows\Scripts to keep your scripts.

Once the script file has been created, here's how to run it using the
Cscript command line utility:

1. Open an MS-DOS window by selecting MS-DOS Prompt from the Win-
dows Start menu.

2. At the prompt, enter the command to change to the folder where your
script file is stored. For example, if your script file is in the folder
C:\Windows\Scripts, then the command will be

cd c:\windows\scripts

3. Enter the following command to start the Cscript utility and execute your
script:

Cscript 1ist0101.vbs

&

4~ 4



é 1.fm Page 7 Tuesday, January 23, 2001 4:46 PM

Scripting Technology 7

'3 MS-DOS Prompt I =] B

welcome to the wind

ocuments1iwindo

m The output when the sample script is run with Cscript.

4. Examine the output, which is shown in Figure 1-1.

When you examine the output of the script, you'll note several things
(your output may look slightly different depending on the folder where you
put the script file).

1. The first line is where you entered the command to run the script.

2. The second and third lines are the version and copyright notices dis-
played by the Cscript utility.

3. The fourth line is the output created by the script.

4. The fifth and last line is the command prompt, which returns after the
script terminates.

Now let's try out the Wscript utility. You could run it using the same
steps as just described, replacing the Cscript command in step 3 with Wscript.
However, it does not make a lot of sense to use the MS-DOS command line to
run a Windows interface program. Here's a better way to run a script using
Wscript:

1. Open the Windows Explorer.
2. Navigate to the folder where the script file List0101.vbs is located.
3. Double-click the name of the script file.

4~ ~¢8



é 1.fm Page 8 Tuesday, January 23, 2001 4:46 PM

8

Chapter 1 Windows Script Host Fundamentals

Script file actions

How does Windows know to run a script file with Wscript when you double-click the file
name in Explorer? Windows keeps a list of file extensions and the actions that are associated
with them. When WSH is installed, the action associated with opening a file with a .vbs or .js
extension is set to "execute with Wscript." A file is opened in Explorer by double-clicking it
or by selecting Open from its context (right-click) menu. Other actions are available on a
file's context menu, such as Edit, which, for script files, opens the file in Notepad for edit-
ing. You can view and edit the actions for various file extensions as follows:

1. Open My Computer.

2. Select Folder Options from the View menu.

3. In the dialog box, select the File Types tab.

The output of the script as created by Wscript is shown in Figure 1-2. You can
see that this is a lot more appropriate for the Windows environment, consist-
ing of a dialog box with the message and an OK button.

Now let's take a look at another script, the one in Listing 1-2. This script
does exactly the same thing as the one in Listing 1-1, but it is written in a dif-
ferent scripting language — JScript rather than VBScript. The two scripts look
quite similar, but you'll note some differences:

1. The JScript comment is enclosed between /* and */ rather than being
preceded by an apostrophe.

2. The text to be displayed by the WScript.Echo command is enclosed in
parentheses as well as double quotes.

3. Statements in JScript end with a semicolon.

4. JScript scripts are saved in files with the .JS extension.

5. It is not obvious from the listing, but JScript is case sensitive. Thus,
WScript.Echo must be entered exactly as shown; if you try
Wscript.echo or some other capitalization variant, it will not work.

Windows Scripting Host

Welcome to the Windows Scripting Host!

w The script file output pro-

duced by Wicript.

ﬁ%




¢ @

é 1.fm Page 9 Tuesday, January 23, 2001 4:46 PM

WSH Languages 9

m Another version of the simple script.

/* List0102.3js
A very simple script! */

WScript.Echo ("Welcome to the Windows Scripting Host!");

If you want to try this JScript example, follow the instructions for the VBScript
example that were given earlier. Since the file will have the .JS extension, the
scripting engine will know which language it contains and process it appro-
priately. The output will be exactly the same as it was for Listing 1-1 whether
you use Cscript or Wscript.

Two JScript comment styles

JScript supports two styles of comments. As mentioned in the text, anything between /* and
*/ is a comment. This style can span multiple lines. Also, a single line that begins with // is a
comment. To use this style with multiple lines, each line must begin with //.

WSH Languages

As you have seen, WSH as provided by Microsoft has support for two different
scripting languages: VBScript and JScript. VBScript is based on Microsoft's
Visual Basic and Visual Basic for Applications languages, which are used in the
Visual Basic programming environment and the Microsoft Office applications
suite, respectively. VBScript is not identical to Visual Basic but is very similar,
with most syntax and language elements in common. JScript is Microsoft's
implementation of the JavaScript language. Both JScript and JavaScript are, as
the names imply, based on the Java language, although there are significant
differences.

Do you need to know Visual Basic or Java to use WSH or to get the
most out of this book? Definitely not. If you do happen to know either of
these languages then you will certainly pick up VBScript and JScript more
quickly, but that's all. You'll find all of the information you need to master
both of these languages in this book.

Which language should you use? From a practical standpoint, it does not
really matter as neither of the languages is really better than the other. I
believe that VBScript is a little easier to learn and use, but that is a personal
opinion, and other experienced WSH programmers may feel differently. If
you are just going to write scripts for yourself and some friends, you can
probably get away with learning just one of the languages. If, however, you
will be doing WSH development at the professional level, I strongly suggest

ﬁ%



g% 1.fm Page 10 Tuesday, January 23,2001 4:46 PM

] 0 Chapter 1 Windows Script Host Fundamentals

that you develop at least a reasonable familiarity with both languages. Even
though you may write all your own scripts in your preferred language, you
never know when you may be called on to modify or debug a script that
someone else has written in the other language.

WSH and Objects

WSH development is closely based on the concept of objects. An object is a
self-contained tool that has been designed to perform a specific task. The
Windows operating system itself makes use of objects in most of the things it
does, as do most Windows applications programs such as Excel and Photo-
Shop. Most of the scripts you write will use objects to carry out their tasks.
The objects that are available to a script fall into three general categories:

Objects provided by WSH itself
Objects that are part of the Windows operating system

Objects that are part of applications programs, such as Microsoft
Office (ActiveX objects)

The beauty of working with objects is that the code required to perform
most of the actions you need to do has already been written, tested, and
tucked inside an object ready for you to use it when needed. For example,
one of the objects that is part of WSH is the FileSystemObject. This object
already "knows" how to perform all the file management tasks that a script
might need, such as copying and renaming files and folders. When your script
needs to perform a file management task, all you need do is write the VBScript
or JScript code to send the proper commands to the FileSystemObject.
You'll learn a lot more about working with objects in Chapter 2, and the details
of the various objects available to a script will be presented as needed
throughout the book.

Overview

The Windows Scripting Host is Microsoft's answer to the command scripting
needs of the millions of users of the Windows operating system. Compared
with other operating systems, such as Unix, scripting is a relatively new addi-
tion to Windows. It is, however, a very powerful addition, providing multiple
language support, a powerful object model, access to existing ActiveX objects,
and a powerful and flexible syntax. WSH puts you in command of your oper-
ating system and can simplify many tasks and save you time as well.

4~ ~¢8



