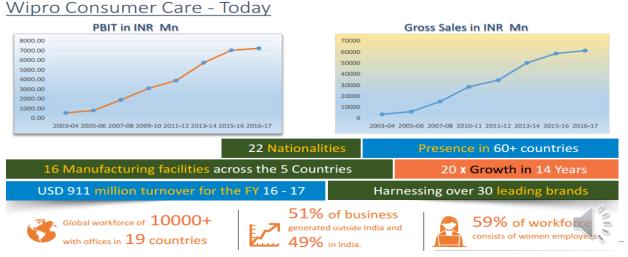
Wipro- A Introduction....



Journey so far... wipro NORTH-WEST STYLE & RELIABILITY UNZA CHANDRIKA Wipro Lighting established Recent Acquisition in China -Baby soft products launched Zhongshan Ma Er 2016 YARDLEY Establishment of oil crushing unit in Maharashtra, India Indian Acquisitions: Chandrika, North-West Switches, Glucovita. Indian Acquisitions Manufacturing of hydrogenated cooking International Acquisitions : Aramusk, Cleanray. International Acquisitio LD Waxson's group & medium (Vanaspati) at Unza, Yardley (India & Middle Amalner, India. east) Launch : Safewash liquid Introduced flexi packs. Yardley (UK & Europe) Santoor launched detergent and Furniture business 2010s

© 2017 Wipro wipro.com

confidential

Vision for Excellence

Wipro Leadership has given **vision of cost and quality leadership** to the organization & Six sigma will help to do so by means of

- Creating a sustainable change that would make Wipro world class organization.
- Significant improvement is delivering the value to its customers in terms of features, price and time.
- Achieve cost leadership and best in class efficiency.

Leadership role and Involvement in driving six sigma

Structure was created to drive, guide and remove the roadblocks by means of formation of Quality council

every quarter

Chaired by Chairman, Wipro Corporation meet

Business unit
Quality CouncilChaired by business Unit head meets every monthDivision Quality councilChaired by Division head, meet every month

The role and responsibilities of the Quality Council are :

- Review Six Sigma projects in the Business Unit / Division
- Remove obstacles/provide resources to projects at the initiative of the Champion
- Take stock of Financial Savings of Six Sigma projects

The Quality Council is formed at 3 levels

Corporation

Quality

council


Identify best practices and carry them across

Six Sigma structure

Role

- MQ head: Align business with six sigma, mentors Black Belts & is a guide for projects & source for technical competence. An accelerator for change.
- Champion: Accountable for all Quality initiatives, systems & Six Sigma projects in his/her BU / Division. Most are MBB/BB.
- LBB/BB: Attached to BU, trainer, facilitates in project selection, review & closure.
- GB is project leader and domain expert

Mission Quality: An umbrella covering all improvement initiative

Turbo

1
1
3

6

4

5

Leadership created vision for the Mission Quality

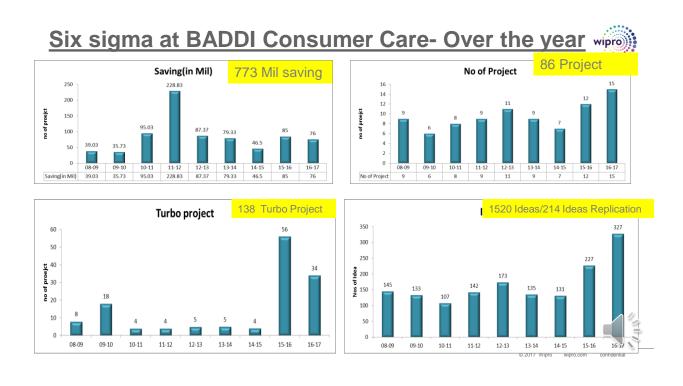
Business and Customer Leadership:

- 15% of PBIT Saving should be coming from Six Sigma
- · Cost Leadership- We should be cost competitive in market.
- All new products to be introduced using Six Sigma methodology and with a minimum Sigma

Process Leadersh

Overall OEE sho

People Leadershi


Achieve employ

Brand Leadership

Thought leader | Plant Target

Ca									
1	1								
Sr.	Department	Responsibility	Fin Saving (Mn)	Innovations /Kaizen	ВКРТ	Sio Sign			
1	HR	Arvind Chauhan	0.00	6	3	0			
2	Accounts	Puneet Wadhwa	0.50	6	3	0			
3	Production - Switches	Virender Negi	1.00	20	10	1			
4	Production - PCP/SW/GV/Bolt	Rishabh Kumar	8.00	40	20	2			
5	Production - TSP/CSP	Parag Panvelkar	35.00	48	24	3			
6	Production - FAGP	Ghulam Ghaus	30.00	40	20	1			
7	Quality - EWD/CC	Kalpana/Anusuya	0.00	30	15	4			
8	Plant Maintenance	Pardeep Kumar	12.50	60	30	3			
9	Utility	I B Bhargava	8.00	40	20	1			
10	Materials	Gouray Kataria	25.00	10	5	2			

MQ target than cascaded to Department & Individual Level.

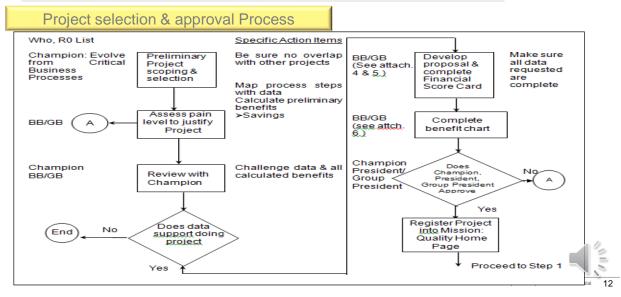
Reward & Recognition

Developing Right reward & recognition was another step toward internalization

- Recognition at **Quality Council** level by Top management.
- Good project sent for external competition.
- Certification after successful completion of the project.
- We also promote black belts to more **senior positions** such as factory managers etc.
- Most of department heads are green belts. So, just knowing that they have a **good career prospects** by being a black belt is good incentive for them to do well.

To Improve the performance of CSP plant to

exceed the Internal customer expectation.

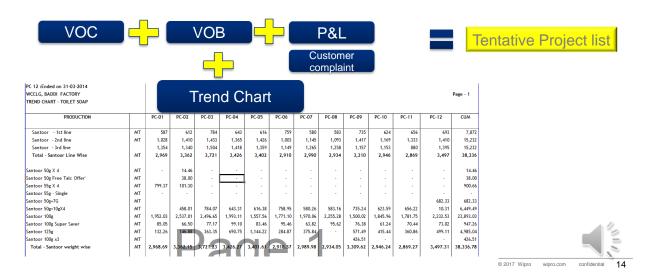

Project no.-LSSP.BCC1.1516.03

Methodology: DMAIC

Business: Badd	Business: Baddi Consumer Care and lighting					
Green Belt:	Venkatesaiah Gurram					
Team Members:	Omprakash, Ashwani Sharma, Jaswinder Sehgal, Dinesh Singh,Suresh P,Vikram Sharma					
Black Belt:	Sanjeev Kumar					
MBB:	Suresh Kaushal					
Champion:	Kalvanpur Rachunath					

1.1.0 Understanding the context for project selection

1.1.0.1 : Who was responsible for selecting the project??



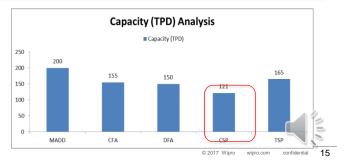
1.1.0.1 : Who was responsible for selecting the project?? (stakeholder Role)								
Role	Green Belt	Champion	Champion <u>Black Belt</u>		President / Group President			
Designation	Manager	Chief Executive or Location Head	-	-	President / Group President			
Appointment of Green Belt	-	*	~	-	-			
Appointment of Black Belt	-	*	-	~	~			
Selection of Critical Business	-	~	-	-	~			
Processes								
Project selection	-	~	~	-	~			
Goal Line definition	~	~	~	-	-			
Project review	Weekly	Twice in a month	Twice in a month	once in a Quarter	Once in Quarter			
Review methodology	Continuou s involverne nt with detail	Focuses on steps of the process (Step 1-Step 6) and implementation	Continuous involvement with detail	Solves difficult problems with advanced tools	Reviews Goal Line set by Champion, and checks status key of project for last 3 months. Checks for financial customer benefits.			
Desis et als sures	~	~	~	~				
Project closure	- ×	×	×	×	~			

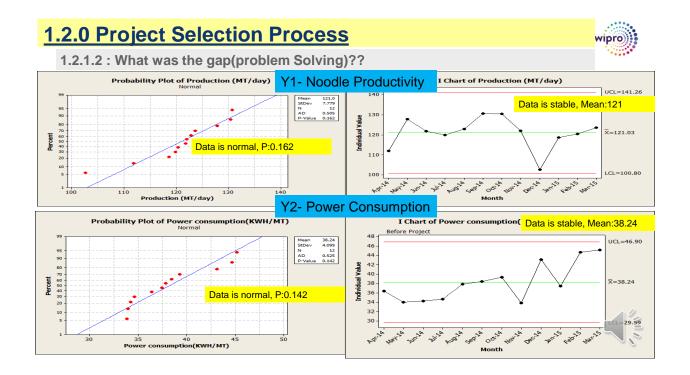
1.1.0 Understanding the context for project selection

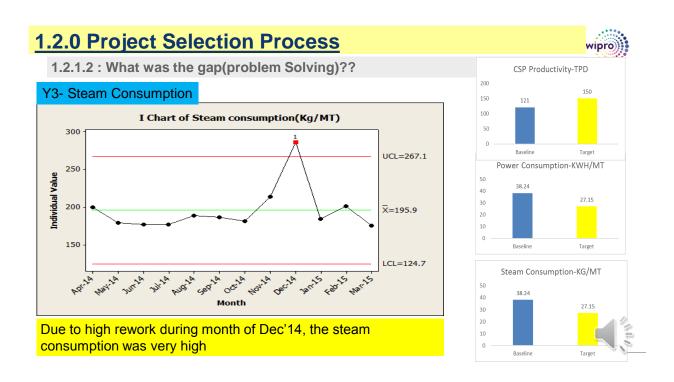
1.1.0 Understanding the context for project selection

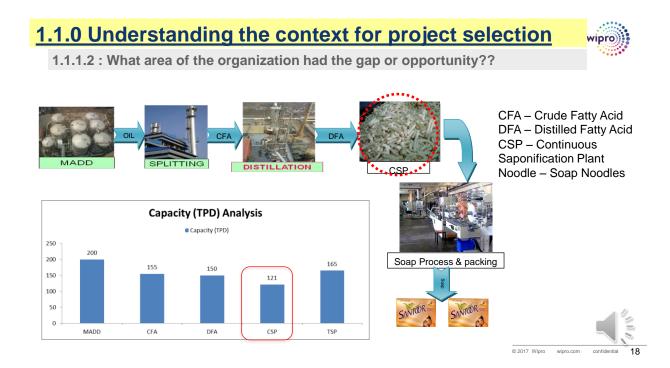
1.1.0.1 : What background information on the company or those who selected the project was provided to better understand the context of the project?

wipro


1.2.1.1 : How was the gap or opportunity brought to the attention of the project identification group?


P&L


Capacity Analysis


		What customer meant							
Who is the customer					How is the situation handled now				
	quality Soap noodles at minimal cost		Comparing Costing of Soap noodles	Cost of noodles is	Production at High Cost				

With the change in fiscal benefits The cost of production of the Soap noodles (SFG) for the Santoor Soap manufactured at Baddi unit has gone up by Rs 1500/MT (52.97 mil)

1.2.2.1 : What data was generated to help select the project?

What is the source (Measurement System) for collecting the Data?

- Production Report
- Power consumption report
- Steam consumption report

How many Data points are Required

01 Nos. for a Day

Which period data is collected?

Apr'14 to Mar'15

	CSP Noodle	Total Noodle	CSP Power	CSP+CVSP Utility (Power	Total Power	PER MT POWER	Base line	%AGE VARIATION
DATED		Production		Consumption)		CONSUMPTION		AS PER STD.
	(MT)	(MT)	(KWH)	(KWH)	(kwh)	KWH/MT(Noodle)	KVVH/MT(Noodle)	For Noodle
24-Nov-15	113	113	1413	2068	3605	32	27	-17
25-Nov-15	143	143	1922	2295	4326	30	27	-11
26-Nov-15	84	84	1118	1750	2963	35	27	-30
5-Dec-15	50	103	1168	2461	4670	45	27	-67
6-Dec-15	113	146	- Illust	rative	5753	40	27	-45
7-Dec-15	135	135	HIUS L	αινσ	3839	28	27	-5
8-Dec-15	146	146	1612	2353	3966	27	27	0
		•	•					© 2017 Wipro

1.2.0 Project Selection Process

1.2.2.2 : What methods and/or Tools were used to assess or prioritize the need for the project?

[Project evaluation criteria			Impac	t			1
	Project name	Customer	Profitability	Revenue	Internal customer	Strategic	Total	Rank
	To achieve FO in TP-15 as per standard							
1		2	3	1	1	3	2	6
2	Reduction in steam consumption in SWEP	2		1	2	2	1.75	7
3	Increase the Noodle productivity in CSP	3	5	4	5	5	4.4	1
4	Increase the soap production in TSP 1	3	5	5	4	4	4.2	2
5	To achieve steam consumption in MADD as per standard.	2	3	1	2	2	2	6
6	To achieve FO in ST-20 as per standard	2	3	1	2	2	2	6
7	To reduce power consumption by 5 % in FAGP	2	3	1	2	2	2	6
8	To reduce RM expenses (Rs in Lac-Total Baddi CC)	2	3	2	2	2	2.2	5
9	To use Pitch in Boiler	1	4	3	3	4	3	4
10	Reduce the DPMO on TSP line	5	3	3	4	5	4	3

1.2.2.3 : Why were these methods and/or tools used to select the project?

ТооІ	Why?
Brainstorming	To Identify the pain of the people
VOC/VOB	To understand the internal/external customer pain & Impact on the business.
Pareto chart	To identified the priority
Trend chart	To identified the trend & losses against standard

1.2.0 Project Selection Process

1.2.3.1 : What goals(organizational and/or local),performance measures, and/or strategies where the project expected to impact?

Business and Customer Leadership:

- 15% of PBIT Saving should be coming from Six Sigma
- Cost Leadership- We should be cost competitive in market.
- All new products to be introduced using Six Sigma methodology and with a minimum Sigma value of "5"

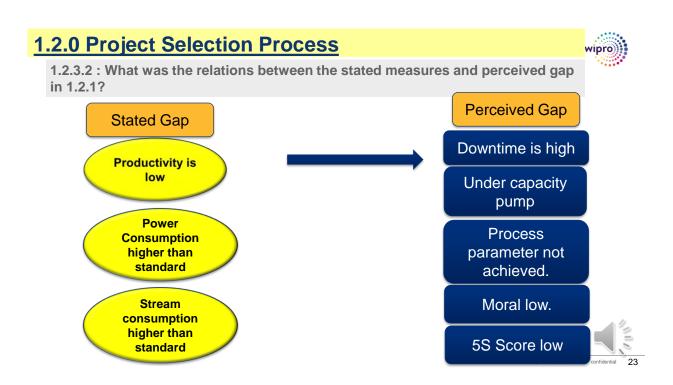
Process Leadership:

• Overall OEE should be greater than 85.

People Leadership:

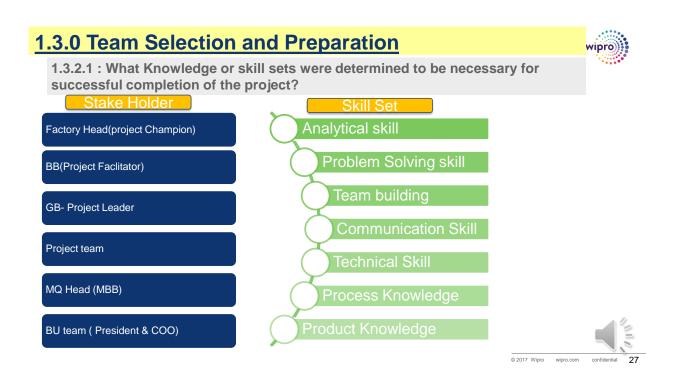
Achieve employee satisfaction by EPS showing overall satisfaction of 85

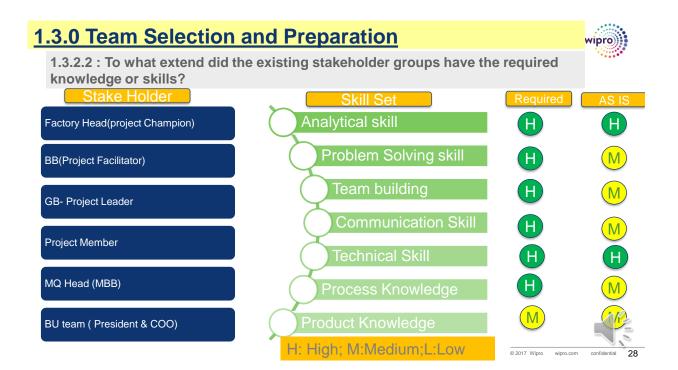
Brand Leadership:

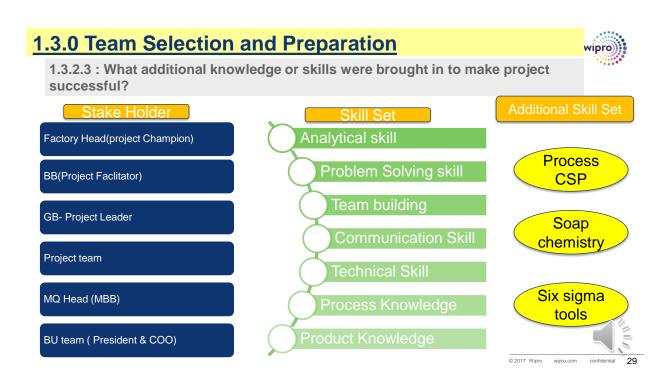

· Thought leader in Quality. Wipro to be synonymous with Six Sigma

1.2.3.3 : What was the problem/project objective statement that expresses where the organization wanted to be at the end of the project?

Primary Metrics & Objective:

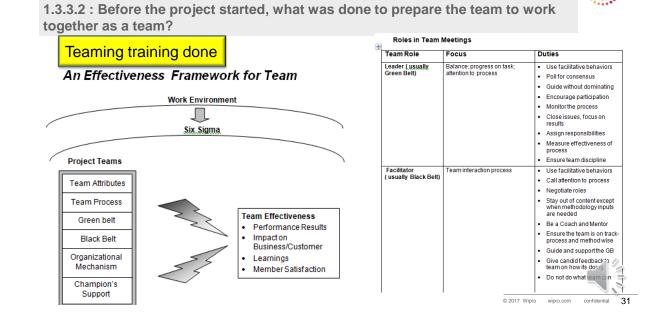

- Y1: Increase the productivity from 121 TPD to 150 TPD
- Y2 : Reduce the power cons. from 38.5 kwh/ton to 27.15 kwh/ton
- Y3: Reduce the Steam cons from 196 kg/ton to 175 kg/ton




1.3.1.1 : How	W	ere the stake	holo	der groups ide	enti	ified?			
	I			SIPOC DIAGRAM	1				
Supplier	►	Input	- ►	Process	►	Output	►	Customer	
		Salt Caustic lye		Material Receiving					
Store		Lauric Acid Glycerine		Pumping of ingredients					
		Codex611 DPFAD		Reactor (saponification)					
FAGP		DCPS DPKFAD		Heating Spraying		Soap Noodle		TSF	
		Power DM water		Drying & Scraping					
Utility department	nt Compre	Compresed Air Steam		Plodding Noodle conveying					
HR		Manpower		Noodle Bagging					

3.0 Team Selection and Preparation
1.3.1.2 : What or who were the stakeholder groups?
Factory Head(project Champion)
BB(Project Facilitator)
GB- Project Leader
Project team
MQ Head (MBB)
3U team (President & COO)

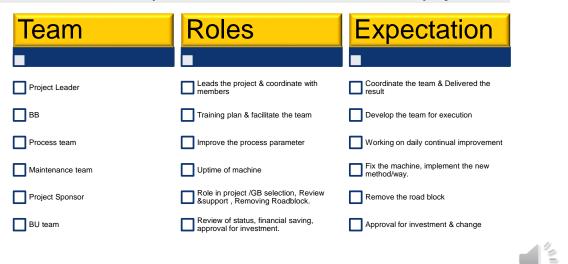
© 2017 Wipro wipro.com confidential 26



1.3.0 Team Selection and Preparation

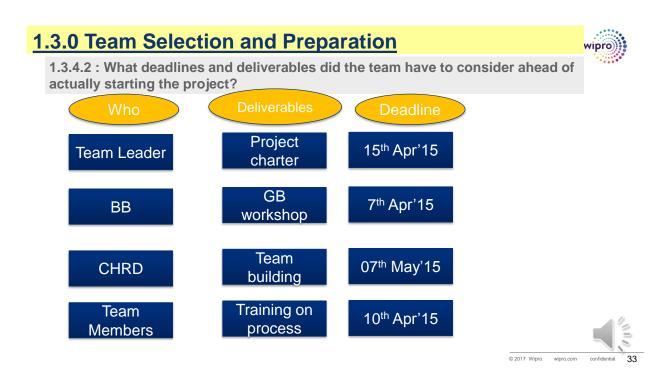
1.3.3.1 : Before the project started, what specific training was done?

- 1. GB training (3 days)
- 2. Process training.
- 3. Teaming training.



1.3.0 Team Selection and Preparation

1.3.0 Team Selection and Preparation


1.3.4.1 : What Roles and expectations were determined ahead of the project?

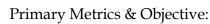
32

confidential

© 2017 Wipro wipro.com

1.3.0 Team Selection and Preparation

1.3.4.3 : Before the project started, what team routines, including communication, were established?


Team Meeting	Weekly (11:00 AM- 12:00 PM)
reammeeting	
Review -Factory Head/BB	Biweekly
Review -MQ head	Quaterly
	Quality
Status Review - COO	Quaterly
Status Review - President	Quarterly
	a dation j

Communication Plan							
Particular	Target	frequency	Media				
Review MoM-Factory Head/BB	Factory head, MQ head & team	Biweekly	Mail/Meeting				
Project status & Finanical Saving report	Factory head, MQ head & team	Monthly	Mail				
Review -MQ head -MoM	BO,Factory head, all managers & team	Quaterly	Mail/Meeting				
Status Review - COO- MoM	BO,Factory head, all managers & team	Quaterly	Mail/Meeting				
Status Review - President	BO,Factory head, all managers & team	Quaterly	Mail/Meeting				

2.1.0 Key Measures Expected of the Project

2.1.1.1 : What Specific goals and/or measures was the team trying to achieve with the project?

- Y1: Increase the productivity from 121 TPD to 150 TPD
- Y2 : Reduce the power cons. from 38.5 kwh/ton to 27.15 kwh/ton
- Y3: Reduce the Steam cons from 196 kg/ton to 175 kg/ton

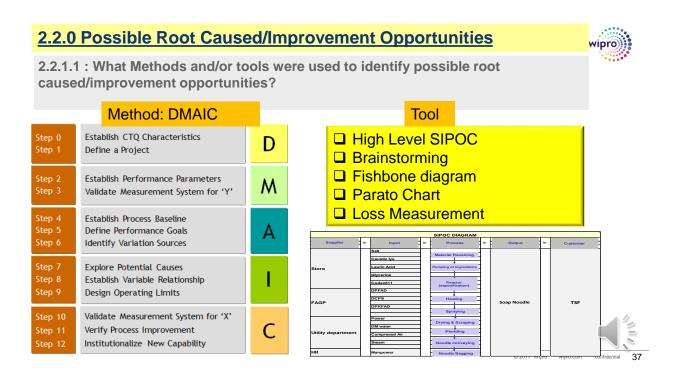
Potential Financial saving:

- FY15-16-9 mil
- FY16-17-13 mil

2.1.0 Key Measures Expected of the Project

2.1.1.2 : What additional potential benefits, other that the specific goals and/or measures, was the project expected to impact?

- Commitment of team to achieve the goal
- Team moral will be lifted to challenge our own benchmark
- Improve the 5S of the area.
- Working condition will be improve .
- Bring the can do attitude
- Survival of the factory
- Environmental concern



2.2.0 Possible Root Caused/Improvement Opportunities

wipro)

2.2.1.2 : Why were these methods and/or tools selected [to identify possible root caused/improvement opportunities]?

Tools Used	Why Tools Used
High Level SIPOC	To understand the input variable & possible cause.
Brainstorming	Identify the causes from experience
Fishbone diagram	Identify the causes from 5M & 1E
Parato Chart	To Prioritize the high opportunity area for further analysis
Loss Measurement	To identify the downtime/frequency losses

2.2.0 Possible Root Caused/Improvement Opportunities 2.2.1.3 : How was the team prepared to use these methods and/or tools[to identify possible root caused/improvement opportunities]? Reason for plant stoppage Fregeuncy High reactor pressure 13 11 Strainer chocking 9 Low Feed rate of pump Pipeline chocking 6 Training scrapper load high 4 Roatary jamming 3 Gasket rapture 2 Silo full 2 Noodle line chocking 1 Issues- June'15 Downtime (mins) Brainstorming Noodle conveying problem 977 Vacuum Pump problem 968 Mesh cleaning 760 Chiller Problem 735 Caustic Deviation 654 371 Barometric water temp high No space in silo 249 223 Lauric deviation 222 Steam Pressure low

145

71

45

Noodle bagging issue Coldwell pump trip

Lauric feedline gasket broken

2.2.0 Possible Root Caused/Improvement Opportunities 2.2.2.1 : What data was generated and how was the data analyzed to identify the possible root cause/improvement opportunities? Fishbone for potential Downtime & Process data for frequency analysis cause regression analysis Downtime (mins) Issues- June'15
 67.0
 43.3
 51.2
 65.7
 65.6
 56.7

 66.9
 43.2
 51.0
 65.5
 65.4
 56.7

 66.3
 43.2
 50.9
 65.4
 66.0
 56.5

 66.1
 43.2
 50.8
 65.6
 66.4
 56.5
 Noodle conveying problem 977
 51.2
 60.7
 60.8
 50.7

 51.0
 65.5
 65.4
 56.7

 50.9
 65.4
 66.0
 56.5

 50.7
 65.8
 66.4
 56.6

 50.7
 65.8
 66.7
 57.3

 50.6
 65.9
 66.1
 57.8
 Vacuum Pump problem 968 66,8 44.3 44.2 49.7 106.7 49.7 105.3 34,3 34,2 37,4 41.1 Mesh cleaning 760 50.5 Chiller Problem 735
 50.4
 65.8
 65.8
 57.5
 49.6
 203.1
 34.7

 50.3
 65.6
 57.7
 49.4
 103.9
 35.3

 50.3
 65.6
 55.7
 149.6
 102.6
 33.7

 50.2
 65.6
 55.7
 149.6
 102.6
 33.7

 50.2
 65.6
 55.7
 14.96.6
 102.6
 34.1

 50.1
 65.6
 65.2
 59.9
 63.0
 104.0
 340.1

 50.1
 65.6
 66.1
 57.8
 64.8
 103.6
 35.5

 50.0
 65.6
 660
 57.7
 64.1
 103.6
 35.5

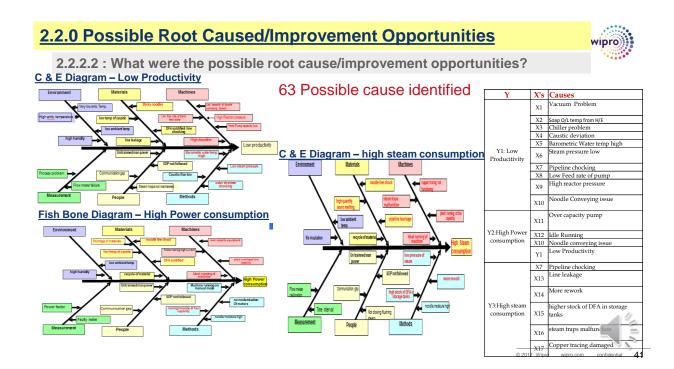
 38.2
 15.9
 41.7

 38.8
 14.4
 41.9

 36.7
 17.7
 40.3

 37.7
 11.6
 41.0
 106,5 66,7 106,7 66,5 114,7 66,4 43.9 43.9 Caustic Deviation 654 109.6 66.2 45.3 107.0 66.2 45.1 Barometric water temp high 371 37.9 13.2 41.3 38.9 14.4 42.5 42.9 107.4 66.2 45.1 51,5 65.5 66.2 57.8 63.9 103.8 34.8 38.4 15.3 42,1 100.0 35 249 No space in silo
 42.5
 105.9
 65.5
 44.9
 52.3
 65.5
 66.1
 57.7
 63.5
 103.5
 34.1

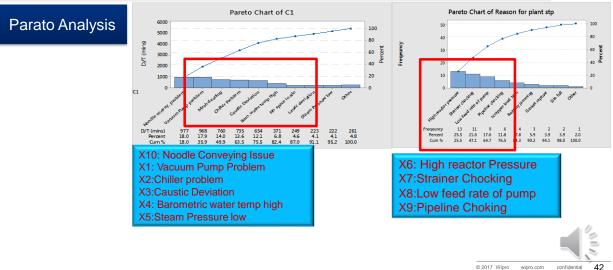
 42.5
 106.5
 65.1
 44.8
 52.7
 65.5
 66.0
 57.6
 63.1
 102.7
 33.8
 37,6 12,1 41,4 37,2 10,0 41,0 1,5 1,8 3,4 3,5 223 Lauric deviation
 425
 607
 649
 446
 511
 643
 651
 574
 647
 7029
 514
 677
 609
 457
 602
 517
 613
 643
 651
 574
 617
 7029
 514
 677
 609
 457
 609
 457
 609
 637
 609
 457
 609
 637
 609
 457
 609
 457
 609
 637
 649
 451
 643
 641
 631
 642
 531
 642
 531
 643
 645
 456
 645
 645
 645
 645
 646
 646
 645
 651
 642
 645
 645
 645
 645
 645
 645
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646
 646</ Steam Pressure low 222 145 Noodle bagging issue 52.8 37.2 2,0 Coldwell pump trip 71 34,1 37,6 11,4 41,3 1.9 34,3 37,7 9,7 41,5 1.8 100


45

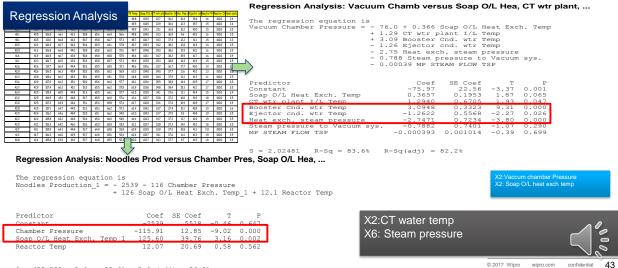
Lauric feedline gasket broken

© 2017 Wipro wipro.com confidential 40

39


wipro.con

2.3.0 Final Root cause(s)/Improvement Opportunity(ies)



2.3.1.1 : What methods and/or tools were used to identify the final root cause(s)/improvement opportunity(ies)?

2.3.0 Final Root cause(s)/Improvement Opportunity(ies)

2.3.1.1 : What methods and/or tools were used to identify the final root cause(s)/improvement opportunity(ies)?

S = 455.305 R-Sq = 58.6% R-Sq(adj) = 56.9%

2.3.0 Final Root cause(s)/Improvement Opportunity(ies)						
2.3.1.2 : Why were these methods and/or tools selected [to identify the final root cause(s)/improvement opportunity(ies)]?						
Y	X's	Causes	Validation Method	Why ?		
	X1	Vacuum Problem	Downtime & regression analysis	 Downtime Parato used to identify major downtime. 		
	X2	Soap O/L temp from H/E	regression analysis	Regression was used to identify the Critical factor.		
	X3	Chiller problem	Downtime Pareto Analysis			
	X4	Caustic deviation	Downtime Pareto Analysis			
Y1: Low	X5	Barometric Water temp high	Downtime Pareto Analysis			
	X6	Steam pressure low	Downtime & regression analysis			
Producitivity	X7	Pipeline chocking	Freq. Pareto Analysis			
	X8	Low Feed rate of pump	Freq. Pareto Analysis			
	X9	High reactor pressure	Freq. Pareto Analysis			
-	X10	Noodle Conveying issue	Gemba & Downtime Pareto Analysis			
		Over capacity pump	during motor load test it was	To identify the actual power load		

Dan der eitigeten	X6	Steam pressure low	Downtime & regression analysis	
Producitivity	X7	Pipeline chocking	Freq. Pareto Analysis	
	X8	Low Feed rate of pump	Freq. Pareto Analysis	
	X9	High reactor pressure	Freq. Pareto Analysis	
	X10	Noodle Conveying issue	Gemba & Downtime Pareto	
	X10		Analysis	
	X11	Over capacity pump	during motor load test, it was	To identify the actual power load.
Y2:High	711		taking less current	
Power	X12	Idle Running	Gemba	
consumption	X10	Noodle conveying issue	Pareto Analysis	
	Y1	Low Productivity	Production trend	Low productivity will affect the power consumption ratio
	X7	Pipeline chocking	Why why analysis	
	X13	Line leakage	Maintenance report	Line leakage was found to be regular issue mainly during the
	X15			winter.
	X14	More rework	Production trend	High rework is causing higher steam & power consumption as
Y3:High	714			well as low productivity.
steam		higher stock of DFA in storage	Fat stock report	due to planning mistakes, DFA which is raw material for the
consumption	X15	tanks	-	Noodle plant is storage for long time which needs steam for
consumption				heating
	X16	steam traps malfunction	Maintenance report	during the inspection it was found steam traps are
	A16	_	-	malfunctioning.
	X17	Copper tracing damaged	Maintenance report	Cu tracing is used to heat the fat mix, if it is damaged it will
	A17		-	lead to more stream consumption ^{2017 Wipro} wipro.com confidential 44

© 2017 Wipro

wipro.com

45

<u>2.3.0 Fi</u>	nal	Roo	t ca	use	(s)/lı	npr	ove	men	t Op	por	tuni	ty(ie	es)			wi	pro
2.3.2.1 : What data was generated and how was the data analyzed to identify the final root																	
cause(s)	/impro	ovemer	t oppo	ortunity	y(ies)?												
2.3.2.2 :	What a	are spe	cific e	xample	es of d	ata an	alysis	that lea	ad to tl	ne fina	l root c	ause?					
O/L Caustic Temp	PHE O/L F	Reactor Te	T1 Temp	T2 Temp	T3 Temp	T4 Temp	T5 Temp	T8 Temp	T9 Temp	Soap O/L	CT wtr pla	Booster C	n Vac, Pmp c	Ejector cn	Reactor Pr	Reactor O	Heat exch
40.9	40.9	106.6	67.0	43.3	51.2	65.7	65.6	56.7	49.8	103.9	32.7	36.2	10.4	39.4	1.6	100.0	3.4
40.6	40.7	106.4	66.9	43.2	51.0	65.5	65.4	56.7	49.5	104.5	32.9	36.6	12.3	39.7	1.5	100.0	3,4
40,3	40.6	106.4	66.3							00		36.8	10.2	40,0	1,5	100.0	3.5
40,1	40.5	106.5	66.1	∟ Pr	oces	s pa	aram	eter	of C	SP		36.9	9.6	40,3	1.6	100.0	3.5
40.1	40.5	113.0	66.8									37.4	12.2	41.1	1.5	100.0	3.3
gression A	naiysis	: vacu	um Cha	mb ver	sus So	ар О/L	неа, с	I wtr p	iant,		34.2	38.2	12.8	41.4	1.4	100.0	3.5
e regression		ion i-									35.0	38.6	15.9	42.1	1.6	100.0	3.5
cuum Chambei			76.0	+ 0.366	Soap O	/L Heat	t Exch.	Temp			34,7	38.2 38.8	15.9	41.7	1.6	100.0	3.5
					plant I						35,3	38.8	14.4	41.9	1.5	100.0	3.5
		+			Cnd. w						34.0	36.7	11.6	40.3	1.4	100.0	3.5
			2.75 1	Heat ex	ch. ste	am pres	ssure				34.0	37.7	13.2	41.0	1.3	100.0	3.5
					pressur TEAM FL		acuum s	ys.			35.5	37.9	13.2	41.3	1.1	100.0	3.5
			0.000			011 101					34.8	38.4	14.4	42.0	1.7	100.0	3.5
dictor				Coef	SE C	o e f	T	P			34.1	37.6	12.1	41.4	1.5	100.0	3.4
atant				-75.97	22	.56 -3	3.37 0	.001			22.0	37.0	10.0	44.0	1,0	100,0	0.1
wtr plant) oster Cnd. wector cnd. w			-		es Prod	versus	Chamb	er Pres,	Soap O	/L Hea,					ress		
at exch. ste STEAM FLOW	eanNoodl			= - 25	39 - 116 6 Soap C				+ 12.1 R	eactor I	lemp				angei		-
													ritical	l for p	orodu	ictior	ו
= 2.02481	R-Predi	lctor			Coef _2530	SE Co		T 46 0 6/	P			37.7	9.7	41.5	18	100.0	3.5
40,8	Chamb	per Pres:	sure		-115.91			02 0.00				37.7	9.7	41.5	1.8	100.0	3.5
	Soap	<u>O/L Heat</u> or Temp		Temp 1		39.	76 3.	16 0.00 58 0.56	12							(
	3 = 4	155.305			R-Sq(a									© 2017 W	lipro winn	p.com co	nfidential
	4 = 1		R-Sq =	: 58.6%	R-Sq (a	q]) = 2	56.98							© 2017 V	vipro wipro	0.00111 CO	nfidential

2.3.0 Final Root cause(s)/Improvement Opportunity(ies)

2.3.2.3 : What was (were)the final root cause(s)/Improvement opportunity(ies)?

2.3.3.1 : How was (were) the final root cause(s)/Improvement opportunity(ies) validated? 2.3.3.2 : What evidence showed that the final root cause(s)/Improvement opportunity(ies) were validated prior to solution development

Y	X's	Causes	Validation Method	Out Come
	X1	Vacuum Problem	Downtime & regression analysis	During the downtime analysis X1 to X9 came out as major cause of failure
	X2	Soap O/L temp from H/E	regression analysis	which is affecting the productivity. Also, regression anlysis was done to
[X3	Chiller problem	Downtime Pareto Analysis	validiate the some of the crtical factor.
	X4	Caustic deviation	Downtime Pareto Analysis	
Y1: Low	X5	Barometric Water temp high	Downtime Pareto Analysis	
Producitivit	X6	Steam pressure low	Downtime & regression analysis	
У	X7	Pipeline chocking	Freq. Pareto Analysis	During the why why analysis line chocking/ strainer chocking came out
[X8	Low Feed rate of pump	Freq. Pareto Analysis	as reason for less producitivity.
	X9	High reactor pressure	Freq. Pareto Analysis	high reactor pressure is also a reason for low productivity.
	X10	Noodle Conveying issue	Gemba & Downtime Pareto Analysis	
Y2:High	X11	Over capacity pump	during motor load test, it was taking less current	chiller pump was found to be high capacity.
Power	X12	Idle Running	Gemba	
consumptio	X10	Noodle conveying issue	Pareto Analysis	same as X1
n	Y1	Low Productivity	Production trend	Low productivity will affect the power consumption ratio
	X7	Pipeline chocking	Why why analysis	
	X13	Line leakage	Maintenance report	Line leakage was found to be regular issue mainly during the winter.
Y3:High	X14	More rework	Production trend	High rework is causing higher steam & power consumption as well as low productivity.
steam consumptio n	X15	higher stock of DFA in storage tanks	Fat stock report	due to planning mistakes, DFA which is raw material for the Noodle plant is storage for long time which needs steam for heating
	X16	steam traps malfunction	Maintenance report	during the inspection it was found steam traps are malfunctioning.
	X17	Copper tracing damaged	Maintenance report	during the inspection it was found cu tracing are getting damaged

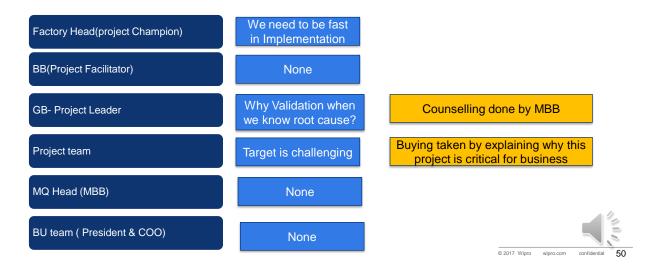
2.4.0 Project Management update

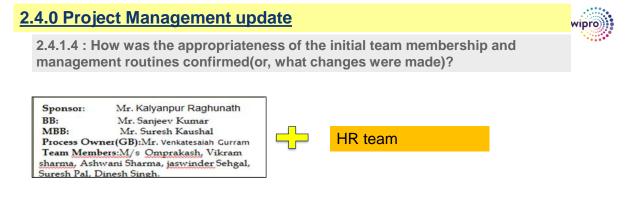
2.4.1.1 : How was the correctness of the initial project scope, deliverables, and timing confirmed (or, what changes were made)?

Problem Statement: With the change in fiscal benefits The cost of production of the Soap noodles (SFG) for the Santoor Soap manufactured at Baddi unit has gone up by Rs 1500/MT. We need to deliver the good quality noodle at low cost to the TSF lines. Defects and Metrics: Business Metric: Cost & Quality Primary Metrics & Objective: Y1: Increase the productivity from 121 TPD to 144 TPD Y2 : Reduce the power cons. from 38.5 kwh/ton to 27.15 kwh/ton	Sponsor: Mr. Kalyanpur Raghunath BB: Mr. Sanjeev Kumar MBB: Mr. Suresh Kaushal Process Owner(GB):Mr. Venkatesaiah Gurram Team Members:M/s Omprakash, Vikram sharma, Ashwani Sharma, jaswinder Sehgal, Suresh Pal, Dinesh Singh. Project Timeline:			
Y3: Reduce the Steam cons from 196 kg/ton to 175 kg/ton	Start Date : 01-04-2015			
Financial Impact:	Target C	ompletion Date : 3	0-09-2015	
89 Lacs(FY15-16);		(
222 lacs(FY16-17); 31 lacs (YTD17-18)	STEP	Estimated Date	Actual Signoff	
	Define	22/04/2015	25/04/2015	
Project Scope	Measure	22/05/2015	30/05/2015	
Process starts With : Tank yard Process ends With : Packed soap noodles	Analyze	30/06/2015	15/07/2015	
In scope : CSP Plant	Improve	15/08/2015	31/01/2016	
Out scope : trial run	Control	30/09/2015	31/03/2016	
		Delayed due to I	Rissue onfidential 48	

winro

2.4.0 Project Management update

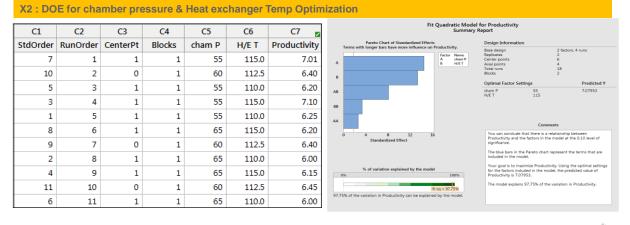

2.4.1.2 : How were stakeholders involved and/or communicated with during the root cause/improvement opportunity phase of the project?


Communication						
Particular	Target	frequency	Media			
Review MoM-Factory Head/BB	Factory head, MQ head & team	Biweekly	Mail/Meeting			
Project status & Finanical Saving report	Factory head, MQ head & team	Monthly	Mail			
Review -MQ head -MoM	BO,Factory head, all managers & team	Quaterly	Mail/Meeting			
Status Review - COO- MoM	BO,Factory head, all managers & team	Quaterly	Mail/Meeting			
Status Review - President	BO,Factory head, all managers & team	Quaterly	Mail/Meeting			

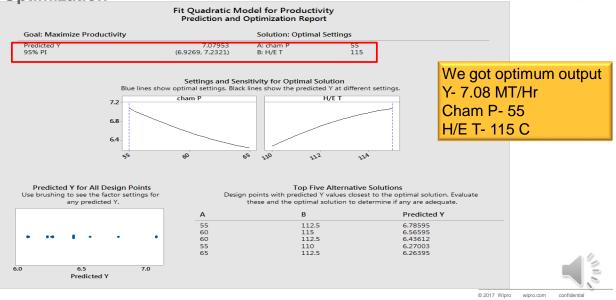
From:	Suresh Kumar Kaushal (WG01 - Wpro Consumer Care & Lighting) President COO	Sent: Wed 12/16/2015 4:26				
To:	🛽 Vineet Agrawal (WG01 - Wipro Consumer Care & Lighting)					
Сс	🔒 Kalyanpur Raghunath (WG01 - Wipro Consumer Care & Lighting); 🗟 Anilkumar Raina (WG01 - Wipro Consumer Care & Lighting); 🖉 PRAMOD MAHATME (WG01 - Wipro Consumer Care & Lighting); 🖉 Rainsh Daga (WG01 - Wipro Consumer Care & Lighting); 🖉 Satisev Kumar (WG01 - Wipro Consumer Care & Lighting); 🖉 Satisev Kumar (WG01 - Wipro Consumer Care & Lighting); 🖉 Rainsh Daga (WG01 - Wipro Consumer Care & Lighting);					
Subject:	: Baddi CC Dec 2015					
(d) Achi	Achieve Noodle Productivity in CSP – Led by Kuldeep Tyagi – Project in Improve phase – Baseline was 121TPD and target was 140TPD. Major c	hallanga was in tarms of the Dump downtimes - tripping i amming				

2.4.0 Project Management update

2.4.1.3 : What stakeholder resistance was identified and/or addressed in this phase of the project?


The weekly meeting disturbed due to IR issue. It was enforced again.

3.1.0 Possible Solutions or Improvements


3.1.2.1 : What data was generated and how was the data analyzed to determine the possible solutions/improvements?

© 2017 Wipro wipro.com confidential 53

wipro

X2 : DOE for chamber pressue & Heat exchanger Temp Optimization

3.1.0 Possible Solutions or Improvements

3.1.2.2 : What are the possible solutions/improvements?

X's	Causes	Solution Identified
X1	Noodle conveyer issue	Pneumatic conveying system consisting of Air blower with Rotary Air Lock Valve is replaced with belt Conveying System to convey noodles up to Silo
X2	CSP Vacuum pump downtime	RO water is given to csp vacuum pump .
	Downtime high due to vacuum pump tripping &	Water jet vacuum system installed to avoid vacuum pump tripping and low steam pressure
X2	low steam pressure	problems.
X4	Caustic flow low during winter	steam jacket provided on suction line
X4	Downtime due to caustic pump	Stand by Caustic pump.
X4	Caustic header Leakage	Caustic header replaced with new
X5	Barometric Water temp high	both cooling tower serviced
X6	Low Steam Pressure	Plant Operator need to communicate to utility person to correct low steam pressure situation.
X7	Pipeline chocking	Electrical heat tracing provided on the fat lines.
X8	Strainer chocking	cleaning frequency defined in log book and water pressure indication for control. operator trained.
X9	Lauric Pump not given requisite flow	Lauric pump repaired.
X9	Low flow rate of blend feed pump	Blend feed pump-3 replaced & T4 pump repaired with changed in part.
X10	High reactor Pressure	Heat exchangers caustic cleaning done
X11	Over capacity pump	11KW chilled water pump replaced with 5.5KW
X12	Idle running	Interlocking of hot well fan & pump with temp controller
X13	line chocking	Providing Electrical Heat Tracing to pipe lines.
X14	line leakage/Cu Tracing damaged	Copper tracing repaired
X15	Open steam pipeline chocking by FAT.	NRV Provided in flushing steam lines to avoid line choking by fat
X16	higher stock of DFA in storage tanks	Sync planning along with FAGP department to ensure lower stock of DFA in storage taxs
X17	steam traps malfunction	Lauric melting tank steam trap replaced with a new float type trap Wipro wipro.com confidential 55

3.1.0 Possible Solutions or Improvements

3.1.2.3 : What evidence showed that the solutions/improvements identified were possible instead of final?

X2	CSP Vacuum pump downtime	RO water is given to csp vacuum pump .
	Downtime high due to vacuum pump tripping & low steam pressure	Water jet vacuum system installed to avoid vacuum pump tripping and low steam pressure problems.
L		

There was high down time due to vacuum issue. After investigation we found It was happening due to scale formation due to DM water. RO water was given to CSP Vacuum pump. It reduced the downtime due to scaling, however other problem persist. So, we developed reengineering solution by using water jet vacuum system.

3.2.1.1 : What methods and/or tools were used to identify the final Solution(s)/Improvement (s)?

3.2.1.2 : Why were these methods and/or tools selected [to identify the final solution(s)/Improvement(s)]?

3.2.1.3 : How was the team prepared to use these methods and/or tools [to identify the final solution(s)/Improvement(s)]

Method/Tools	Why?	Team Preparedness
Cost benefit analysis for Water jet & conveying system	Cost effective solution	Training given to do payback calculation.
DOE (Process parameter optimization)	To choose the optimum solution	Doe Training (0.6 day)
Reengineering for conveying noodle & vacuum system	New solution is more effective for reducing power & steam as well as increasing output.	Training given by OEM.

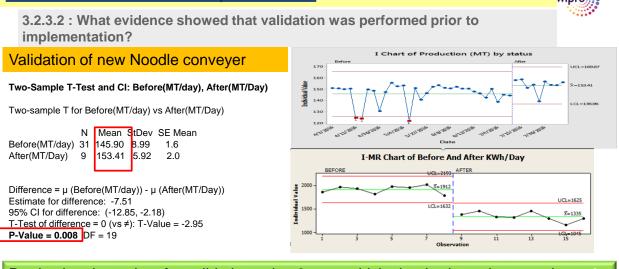
© 2017 Wipro

wipro.com

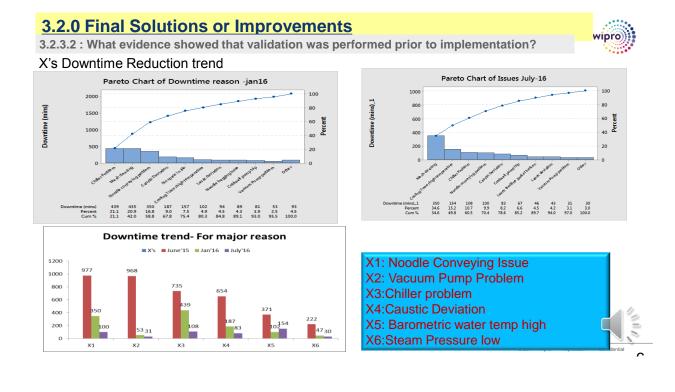
57

confidential

_	2.0 Final Solutions or Improvements						
X's	Causes	Solution Identified	Risk	Mitigation	Resp.	Target Date	
	NT II ·	Pneumatic conveying system consisting of Air blower with Rotary Air Lock Valve is replaced with belt Conveying System to convey noodles up to Silo	NT II III I	Collection tray provided & belt side bottoom covered		June'16	
2	CSP Vacuum pump jamming	RO water is given to csp vacuum pump .	No risk		vs	20.07.2015	
	Downtime high due to vacuum pump tripping & low steam pressure	Water jet vacuum system installed to avoid vacuum pump tripping and low steam pressure problems.		Regular cleaning & inspection for strainner	ккт	Oct'15	
Ļ	Caustic flow low during winter	steam jacket provided on suction line	Trap malfunctioing	to clean jacket trap on regular freq.	Vipin	Nov'15	
	Downtime due to caustic pump	Stand by Caustic pump.		no plan for higher capacity standby pump	Vipin	15.07.2015	
	Caustic header Leakage	Caustic header replaced with new	Leads to leakage if maint is not proper	Made Part of PM checksheet	vs	20.08.2015	
	Barometric Water temp high	both cooling tower serviced		standby cooling tower and pump avaialble.	Ext party	Aug'15	
	Low Steam Pressure	Plant Operator need to communicate to utility person to correct low steam pressure situation.	No risk		ss	01.07.2015	
	Pipeline chocking	Electrical heat tracing provided on the fat lines.	electrical heat tracing can get damaged	electrical tracing made part of PM checksheet	AS	21.10.2015	
	Strainer chocking	cleaning frequency defined in log book and water pressure indication for control. operator trained.	No risk		Shift Operator	18.07.2015	
	Lauric Pump not given requisite flow	Lauric pump repaired.	Pump failure	Is part of PM checksheet	Omprakash	16.07.2015	
	Low flow rate of blend feed pump	Blend feed pump-3 replaced & T4 pump repaired with changed in part.	failure of pump	Standby pump available.	VS	15.08.2015	
C		Heat exchangers caustic cleaning done	No risk	Cleaning freq increased	JSS	05.07.2015	
1		11KW chilled water pump replaced with 5.5KW	No risk		AS	15.09.2015	
2	Idle running	Interlocking of hot well fan & pump with temp controller	No risk		AS	28.09.2015	
3	line chocking	Providing Electrical Heat Tracing to pipe lines.	electrical heat tracing can get damaged	electrical tracing made part of PM checksheet	AS	21.11.2015	
+	line leakage/Cu Tracing damaged	Copper tracing repaired			Vipin	Oct'15	
5	Open steam pipeline chocking by FAT.	NRV Provided in flushing steam lines to avoid line choking by fat	NRV malfunctioning	replaced with spare NRV	VS	10.08.2015	
	higher stock of DFA in storage tanks	Sync planning along with FAGP department to ensure lower stock of DFA in storage tank	No risk		KKT/GV	Nov'15	
	steam traps malfunction	Lauric melting tank steam trap replaced with a new float type trap	No risk	© 2017 W	Mipin wipro.com	09.09:2015tial 5	



3.2.3.1 : How were the final solution(s)/improvement(s) validated?


Pilot run was done for 9 days and data collected to validate it.

Production data taken for validation using 2 t test which clearly shows increase in productivity.

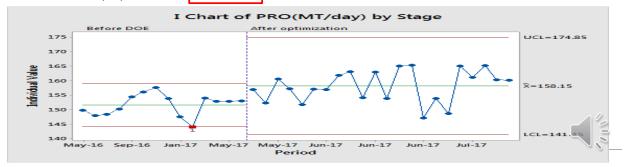
© 2017 Wipro wipro.com confidential 61

3.2.0 Final Solutions or Improvements

3.2.3.2 : What evidence showed that validation was performed prior to implementation?

X2 : Result of Process Optimization

Two-Sample T-Test and CI: PRO(MT/day), Stage

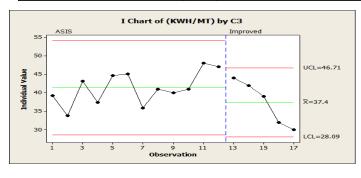

Two-sample T for PRO(MT/day)

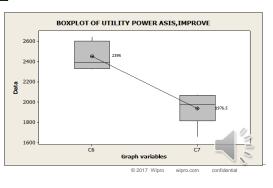
 Stage
 N
 Mean
 StDev
 SE
 Mean

 Before DOE
 14
 151.56
 3.75
 1.0

 optimization
 22
 158.15
 5.48
 1.2

Difference = μ (Before DOE) - μ (optimization) Estimate for difference: -6.59 95% CI for difference: (-9.72, -3.46) T-Test of difference = 0 (vs \neq): T-Value = -4.28 P-Value = 0.000 **C** F = 33




3.2.0 Final Solutions or Improvements

3.2.3.2 : What evidence showed that validation was performed prior to implementation?

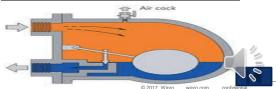
X11: 11 KW Chilled water Pump replaced with 5.5 KW Pump

DISCRIPTION	KW	KWh/DAY
COLD WELL PUMP MOTOR OLD	11	260
COLD WELL PUMP NEW	5.5	140
DIFERENCE		120

3.2.3.2 : What evidence showed that validation was performed prior to implementation? X17 : Thermo Dynamic (TD) type steam Trap

- TD type steam traps are use to operate more frequently for discharging the condensate.
- The frequency of TD steam traps depends on condensate load, in this the condensate load is high.

Hence to minimize the steam trap operation & reducing steam losses , float type steam trap is installed, this had reduced the steam losses.


BEFORE-THERMO DYNAMIC TRAP

AFTER-FLOAT TYPE TRAP

© 2017 Wipro wipro.com

confidential

66

3.2.0 Final Solutions or Improvements 3.2.4.1 : What additional potential benefits were anticipated from the final solution(s)/Improvements(s)? 3.2.4.2 : Were the additional potential benefits anticipated prior to implementation? **Financial saving** Timely Delivery Increase in Productivity Improvement in quality **Reduction in Power** Not Internal customer satisfaction Consumption Anticipated Healthy Workplace **Reduction in Steam** Safe work place Consumption

3.2.5.1 : What data was generated and how was the data analyzed to justify why the chosen final solution(s)/improvement(s) should be implemented?

Reduction in downtime

	X's	June'15	Jan'16	July'16
X10	Noodle conveying problem	977	350	100
X2	Vacuum Pump problem	968	53	31
ХЗ	Chiller Problem	735	439	108
X4	Caustic Deviation	654	187	83
X5	Barometric water temp high	371	102	154
X6	Steam Pressure low	222	47	30

Period PRO(MT/c Stage 5/25/2017 156.84 After optin 5/28/2017 152.215 After optin 5/31/2017 160.51 After optin 6/1/2017 157.115 After optin 6/1/2017 157.115 After optin 6/6/2017 156.995 After optin 6/7/2017 166.858 After optin 6/8/2017 161.75 After optin 6/9/2017 161.75 After optin 6/13/2017 162.9 After optin 6/14/2017 153.03 After optin 6/13/2017 165.294 After optin 6/21/2017 165.294 After optin 6/22/2017 165.3874 After optin 6/26/2017 147 After optin 6/26/2017 147 After optin 6/26/2017 147 After optin 7/7/2017 148.6 After optin 7/7/2017 165.115 After optin 7/9/2017 165.115 After optin <th>nprovement after</th> <th>optimized Para</th> <th>ameter (DOE)</th>	nprovement after	optimized Para	ameter (DOE)
5/28/2017 152.215 After optil 5/31/2017 160.51 After optil 6/1/2017 157.115 After optil 6/6/2017 151.685 After optil 6/7/2017 156.995 After optil 6/9/2017 161.75 After optil 6/9/2017 163.03 After optil 6/13/2017 163.03 After optil 6/14/2017 153.125 After optil 6/15/2017 162.9 After optil 6/15/2017 163.03 After optil 6/22/2017 163.03 After optil 6/22/2017 163.94 After optil 6/23/2017 165.094 After optil 6/26/2017 147 After optil 6/26/2017 143.874 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 165.18 After optil 7/9/2017 165.18 After optil 7/10/2017 160.21 <t< td=""><td>Period</td><td>PRO(MT/c</td><td>Stage</td></t<>	Period	PRO(MT/c	Stage
5/31/2017 160.51 After optil 6/1/2017 157.115 After optil 6/6/2017 151.685 After optil 6/6/2017 151.685 After optil 6/7/2017 156.995 After optil 6/8/2017 156.858 After optil 6/9/2017 161.75 After optil 6/13/2017 163.03 After optil 6/14/2017 153.8 After optil 6/15/2017 162.9 After optil 6/21/2017 153.8 After optil 6/22/2017 165.094 After optil 6/23/2017 165.294 After optil 6/26/2017 147 After optil 6/26/2017 148.6 After optil 7/8/2017 165.115 After optil 7/8/2017 165.18 After optil 7/9/2017 165.18 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	5/25/2017	156.84	After opti
6/1/2017 157.115 After optil 6/6/2017 151.685 After optil 6/7/2017 156.995 After optil 6/8/2017 156.858 After optil 6/9/2017 166.858 After optil 6/13/2017 161.75 After optil 6/13/2017 163.03 After optil 6/14/2017 153.8 After optil 6/21/2017 165.94 After optil 6/23/2017 165.294 After optil 6/23/2017 165.294 After optil 6/23/2017 153.874 After optil 6/27/2017 153.874 After optil 7/7/2017 165.115 After optil 7/8/2017 165.115 After optil 7/9/2017 165.118 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	5/28/2017	152.215	After opti
6/6/2017 151.685 After optil 6/7/2017 156.995 After optil 6/8/2017 156.995 After optil 6/8/2017 156.858 After optil 6/13/2017 161.75 After optil 6/13/2017 163.03 After optil 6/14/2017 154.125 After optil 6/15/2017 162.9 After optil 6/22/2017 165.094 After optil 6/23/2017 165.294 After optil 6/23/2017 165.294 After optil 6/26/2017 147 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 165.18 After optil 7/10/2017 160.21 After optil	5/31/2017	160.51	After opti
6/7/2017 156.995 After optil 6/8/2017 156.858 After optil 6/9/2017 161.75 After optil 6/9/2017 163.03 After optil 6/13/2017 163.03 After optil 6/14/2017 154.125 After optil 6/15/2017 162.9 After optil 6/22/2017 165.094 After optil 6/22/2017 165.294 After optil 6/23/2017 165.294 After optil 6/26/2017 147 After optil 6/26/2017 148.6 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 165.18 After optil 7/11/2017 160.21 After optil	6/1/2017	157.115	After opti
6/8/2017 156.858 After optin 6/9/2017 161.75 After optin 6/13/2017 163.03 After optin 6/14/2017 154.125 After optin 6/15/2017 162.9 After optin 6/21/2017 153.8 After optin 6/22/2017 165.094 After optin 6/23/2017 165.294 After optin 6/26/2017 147 After optin 6/27/2017 153.874 After optin 7/8/2017 165.115 After optin 7/8/2017 165.115 After optin 7/9/2017 165.115 After optin 7/10/2017 165.18 After optin 7/10/2017 165.18 After optin 7/11/2017 165.21 After optin	6/6/2017	151.685	After opti
6/9/2017 161.75 After optil 6/13/2017 163.03 After optil 6/14/2017 154.125 After optil 6/15/2017 162.9 After optil 6/21/2017 153.8 After optil 6/22/2017 165.094 After optil 6/23/2017 165.294 After optil 6/23/2017 147 After optil 6/27/2017 153.874 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 165.118 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/7/2017	156.995	After opti
6/13/2017 163.03 After optil 6/14/2017 154.125 After optil 6/15/2017 154.29 After optil 6/21/2017 153.8 After optil 6/22/2017 165.094 After optil 6/23/2017 165.294 After optil 6/26/2017 147 After optil 6/26/2017 147 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 165.115 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/8/2017	156.858	After opti
6/14/2017 154.125 After optil 6/15/2017 162.9 After optil 6/21/2017 153.8 After optil 6/22/2017 165.094 After optil 6/23/2017 165.294 After optil 6/26/2017 145.294 After optil 6/27/2017 143.8 After optil 6/27/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 165.115 After optil 7/10/2017 165.18 After optil 7/11/2017 165.21 After optil	6/9/2017	161.75	After opti
6/15/2017 162.9 After optil 6/21/2017 153.8 After optil 6/22/2017 165.094 After optil 6/23/2017 165.294 After optil 6/23/2017 165.294 After optil 6/26/2017 147 After optil 6/27/2017 153.874 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 161.055 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/13/2017	163.03	After opti
6/21/2017 153.8 After optil 6/22/2017 165.094 After optil 6/23/2017 165.294 After optil 6/23/2017 165.294 After optil 6/26/2017 147 After optil 7/7/2017 153.874 After optil 7/7/2017 165.115 After optil 7/9/2017 161.055 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/14/2017	154.125	After opti
6/22/2017 165.094 After optil 6/23/2017 165.294 After optil 6/23/2017 165.294 After optil 6/26/2017 147 After optil 7/7/2017 153.874 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 161.055 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/15/2017	162.9	After opti
6/23/2017 165.294 After optil 6/26/2017 147 After optil 6/26/2017 147 After optil 6/27/2017 153.874 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 161.055 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/21/2017	153.8	After opti
6/26/2017 147 After optil 6/27/2017 153.874 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 161.055 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/22/2017	165.094	After opti
6/27/2017 153.874 After optil 7/7/2017 148.6 After optil 7/8/2017 165.115 After optil 7/9/2017 161.055 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/23/2017	165.294	After opti
7/7/2017 148.6 After optit 7/8/2017 165.115 After optit 7/9/2017 161.055 After optit 7/10/2017 165.18 After optit 7/11/2017 160.21 After optit	6/26/2017	147	After opti
7/8/2017 165.115 After optil 7/9/2017 161.055 After optil 7/10/2017 165.18 After optil 7/11/2017 160.21 After optil	6/27/2017	153.874	After opti
7/9/2017 161.055 After optin 7/10/2017 165.18 After optin 7/11/2017 160.21 After optin	7/7/2017	148.6	After opti
7/10/2017 165.18 After optive 7/11/2017 160.21 After optive	7/8/2017	165.115	After opti
7/11/2017 160.21 After op 1	7/9/2017	161.055	After opti
	7/10/2017	165.18	After opti
7/12/2017 160.1 After optim	7/11/2017	160.21	After optil
	7/12/2017	160.1	After optil

© 2017 Wipro wipro.com confidential 67

110

3.2.0 Final Solutions or Improvements 3.2.5.2 : What evidence showed that justification was performed prior to implementation? From: Anand Kumar Goel (WG01 - Wipro Consumer Care & Lighting) Sent: Saturday, May 28, 2016 3:18 PM To: Kalyanpur Raghunath (WG01 - Wipro Consumer Care & Lighting) Cc: Vikram Sharma (WGOI - Wipro Consumer Care & Lighting) Cc: Vikram Sharma (WGOI - Wipro Consumer Care & Lighting) Subject: FW: JBR - Unit-I (16-17)-004 For Modification of noodle conveyors at CSP Dear Sir. PIs find attached herewith JBR proposal of Rs 1.53 Lac towards modification of CSP noodles Conveyors. We proposed to use belt conveyor to transfer noodles to Silo 6 & 7 and remove use of blower system, this help us saving approx. 380 Kwh power per day. We were having two idle conveyors and we need to modify them for use. Payback of same is comes to 62 working days. We had obtained quotations for thee vendors and M/s Sheetal Energis selected on the basis of competitive quote and earlier satisfactory work. Payment terms is 100% after supply and for service is after completion of work. This will be part of Unit-I JBR budget and cumulative approval is Rs 5.87 Lac against annual plan of Rs 50.00 Lac. Existing Proposed Noodle Saving of Load S.No. Electrical Load in KW Pneumatic saving(KWH) Conveyor conveying 1 Root Blower 22.00 22.00 Rotary Air Lock Valve 2 2.20 2.20 3 Conveyor Motors (02 nos.) 4.40 (4.40)Total Power 24.20 380.00 4.40 19.80 App. Saving/Day in Rs 2 470 00 Pls approve and forward for further approval. Best Regards. Anand Goel 68 © 2017 Wipro wipro.com confidential

3.3.0 Project Management update

3.3.3.1 : How was the correctness of the initial or updated project scope, deliverables, and timing confirmed(or, what changes were made)?

Problem Statement: With the change in fiscal benefits The cost of production of the Soap noodles (SFG) for the Santoor Soap manufactured at Baddi unit has gone up by Rs 1500/MT. We need to deliver the good quality noodle at low cost to the TSF lines. Defects and Metrics: Business Metric: Cost & Quality Primary Metrics & Objective: Y1: Increase the productivity from 121 TPD to 144 TPD Y2 : Reduce the power cons. from 38.5 kwh/ton to 27.15 kwh/ton Y3: Reduce the Steam cons from 196 kg/ton to 175 kg/ton Financial Impact:	Sponsor: Mr. Kalyanpur Raghunath BB: Mr. Sanjeev Kumar MBB: Mr. Suresh Kaushal Process Owner(GB):Mr. Venkatesaiah Gurram Team Members:M/s Omprakash, Vikram sharma, Ashwani Sharma, jaswinder Sehgal, Suresh Pal, Dinesh Singh. Project Timeline : Start Date : 01-04-2015 Target Completion Date : 30-09-2015					
89 Lacs(FY15-16); 222 lacs(FY16-17); 31 lacs (YTD17-18)	STEP Estimated Date Actual Signoff Define 22/04/2015 25/04/2015					
Project Scope Process starts With : Tank yard Process ends With : Packed soap noodles In scope : CSP Plant Out scope : trial run	Define 22/04/2015 25/04/2015 Measure 22/05/2015 30/05/2015 Analyze 30/06/2015 15/07/2015 Improve 15/07/2015 15/07/2015 Control 30/05/2015 30/06/2015					

3.3.0 Project Management update

3.3.3.2 : How were stakeholders involved and/or communicated with during the solution /improvement phase of the project?

- N <i>c</i>	Weekly	
Team Meeting	(11:00 AM- 12:00 PM)	Frequency - daily
		Frequency – Weekly
Review -Factory Head/BB	Biweekly	
		Involved through mail/phone on regular frequency . Updated on result.
Review -MQ head	Quaterly	
		Involved through mail/phone on regular frequency. Involved in JBR/Capax approval. Updated on result.
Status Review - COO	Quaterly	
		Involved through mail/phone on regular frequency . Involved in JBR/Capax approval. Updated on result.
Status Review - President	Quarterly	
	-	© 2017 Wipro wipro.com confidential 7

3.3.0 Project Management update

3.3.3.3 : What stakeholder resistance was identified and/or addressed in this phase of the project?

Stakeholder	Resistance	How it was addressed
Process team	None	Нарру
Maintenance team	None	Нарру
Noodle bag filling team	With high productivity, work increased	HR was involved & additional manpower added
Supplier team	Issue in supply	Meeting with Factory head to explain the benefit for the plant
Factory head	None	
MQ Head	None	
BU team	None	

© 2017 Wipro

wipro.com

71

confidential

3.3.0 Project Management update 3.3.3.4 : How was the appropriateness of the initial team membership and management routines confirmed(or, what changes were made)? Sponsor: Mr. Kalyanpur Raghunath BB: Mr. Sanjeev Kumar FAGP & MBB: Mr. Suresh Kaushal **HR** Member Store team Process Owner(GB):Mr. Venkatesaiah Gurram Team Members: M/s Omprakash, Vikram added sharma, Ashwani Sharma, jaswinder Sehgal, Suresh Pal, Dinesh Singh. **Daily Meeting** Team Meeting Weekly (11:00 AM- 12:00 PM) Review -Factory Head/BB Biweekly along with Review -MQ head Quaterly noodle Status Review - COO Quaterly Status Review - President Quarterly handling & FAGP team © 2017 Wipro wipro.com 72 confidential

4.1.0 Stakeholder Considerations In Implementation

4.1.1.1 : How were stakeholders involved in planning the solution/Improvement implementation? 4.1.1.2 : How were stakeholders involved in implementing the solution/improvement?

Stakeholder	Role in planning	Role In implementation
Process team	Support the trail planning	Support the trail. Training on new process.
Maintenance team	Role in planning the trail	Implement the solution along with OEM. Training
Noodle handling team	Planning for handling higher production	Ensuring noodle line is not stopping due to high productivity.
Supplier team	Planning to sync the supply as per new requirement	Ensuring DFA/MADD production is in sync with CSP Production.
Factory head	Planning for quick approval	Support in implementation with timely approval.
MQ Head	None	Ensuring six sigma process is followed.
BU team	Planning the approval	Ensuring timely approval
		© 2017 Wipro wipro.com confidential 7.

4.1.0 Stakeholder Considerations In Implementation

4.1.2.1 : What was done to anticipate resistance before it occurred?

4.1.2.2 : What types of resistance were actually encountered during the course of solution/improvement implementation?

4.1.2.3 : How was the actual resistance identified

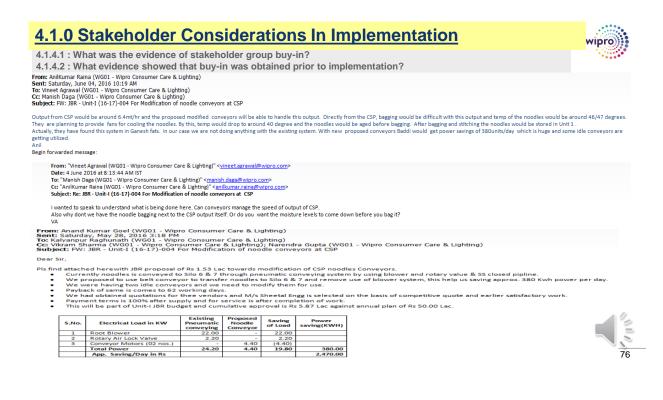
Stakeholder	Resistance Anticipated	Actual Resistance	How it was identified?
Process team	Work load will increase	Process team has to struggle at beginning.	Apprehension about change
Maintenance team	Work load will increase	Engineering team has to put extra hour	Apprehension about change
Noodle handling team	None	Working load increased. Leads to noodle line stoppage many time at beginning.	Noodle Line stoppage due to silo getting filled. Noodle filling per person increased.
Supplier team (Store & FAGP)	None	Need to make change in working/process to ensure smooth supply.	Shortage in supplier few time at initial stage
Factory head	Going slow	Happy with implementation	None
MQ Head	None	Happy with implementation	None
BU team	None	Happy with implementation	None

© 2017 Wipro wipro.com confidential 74

.

wipr

4.1.0 Stakeholder Considerations In Implementation



4.1.3.1 : How was the actual resistance addressed?

4.1.3.2 : How did the team know it was successful in addressing the resistance?

Stakeholder	Actual Resistance	How it was address ?	How team know?
Process team	Work load will increase	Skill updating by training/counselling	Happy with change /communication in meeting
Maintenance team	Work load will increase	Skill updating by training/counselling	Happy with change /communication in meeting
Noodle handling team	Working load increased. Leads to noodle line stoppage many time at beginning.	Study of the noodle bag filling process. HR involvement for rationalizing per person load	No line stoppage
Supplier team (Store & FAGP)	Need to make change in working/process to ensure smooth supply.	Change in the process/training.	No line stoppage
Factory head	Happy with implementation	None	By getting all approval
MQ Head	Happy with implementation	None	Ok in review.
BU team	Happy with implementation	None	By getting all approval

© 2017 Wipro wipro.com confidential 75

4.2.0 Solution/Improvement Implementation

4.2.1.1 : What Process(es)or system(s) were changed or created to implement the solution/improvement?

x	Cause	New process/System Implemented
X1	Noodle conveyer issue	Pneumatic conveying system consisting of Air blower with Rotary Air Lock Valve is replaced with belt Conveying System to convey noodles up to Silo
X2	Downtime high due to vacuum pump tripping & low steam pressure	Water jet vacuum system installed to avoid vacuum pump tripping and low steam pressure problems.
X4	Caustic flow low during winter	steam jacket provided on suction line
X4	Downtime due to caustic pump	Stand by Caustic pump.
〈 4	Caustic header Leakage	Caustic header replaced with new
K5	Barometric Water temp high	both cooling tower serviced
(6	Low Steam Pressure	Plant Operator need to communicate to utility person to correct low steam pressure situation.
7	Pipeline chocking	Electrical heat tracing provided on the fat lines.
(8	Strainer chocking	cleaning frequency defined in log book and water pressure indication for control. operator trained.
(9	Low flow rate of blend feed pump	Blend feed pump-3 replaced & T4 pump repaired with changed in part.
10	High reactor Pressure	Heat exchangers caustic cleaning done
11	Over capacity pump	11KW chilled water pump replaced with 5.5KW
(12	Idle running	Interlocking of hot well fan & pump with temp controller
(13	line chocking	Providing Electrical Heat Tracing to pipe lines.
(15	Open steam pipeline chocking by FAT.	NRV Provided in flushing steam lines to avoid line choking by fat
(16	higher stock of DFA in storage tanks	Sync planning along with FAGP department to ensure lower stock of DFA in storage tank
X17	steam traps malfunction	Lauric melting tank steam trap replaced with a new float type trap

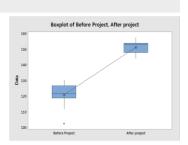
4.2.0 Solution/Improvement Implementation

4.2.1.2 : What systems were changed or created to measure and manage the performance of the implementation?

4.3.0 Project Result

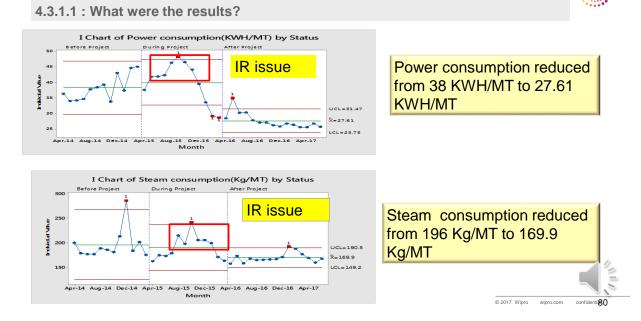
4.3.1.1 : What were the results?

Two-Sample T-Test and CI: Before Project, After project


Two-sample T for Before Project vs After project

 N
 Mean
 StDev
 SE
 Mean

 Before Project
 12
 121.03
 7.78
 2.2


 After project
 15
 151.19
 3.89
 1.0

Difference = μ (Before Project) - μ (After project) Estimate for difference: -30.16 95% CI for difference: (-35.40, -24.91) T-Test of difference = 0 (vs \neq): T-Value = -12.26 P-Value = 0.000 DF = 15

4.3.0 Project Result

40

4.3.0 Project Result

4.3.1.2 : How did the results compare to the specific project goals/measures from item 2.1.1?

Primary Metrics & Objective:

Y1: Increase the productivity from 121 TPD to 150 TPD

- (Achieved-151 MT/day)
- Y2 : Reduce the power cons. from 38.5 kwh/ton to 27.15 kwh/ton (Achieved - 27.61 Kwh/ton)
- Y3: Reduce the Steam cons from 196 kg/ton to 175 kg/ton

(Achieved-169 kg/Ton)

4.3.0 Project Result

4.3.2.1 : What additional benefits were realized from the project?

1. What business Metric improved


- I. Increase in production volume 32 %.
- 2. Reducing power consumption by 28.8 %.
- 3. Reducing steam consumption by 13.8%.
- 4. Increasing the site PBIT.

2. What customer metric improved

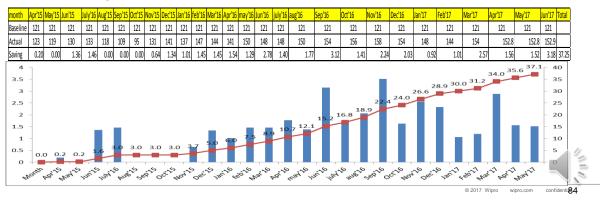
- 1. Improvement in quality due to less handling.
- 2. Timely availability of noodles.
- 3. No loss due to unavailability of noodles.
- Less inventory at location.

3. What are the Financial Savings

1. Total Savings of 37.25 Mn in two year.

4.3.0 Project Result

4.3.2.2 : How did the team measure any of the additional benefits that were "soft"?


- I.Commitment of team to achieve the goal
- 2. Team moral has lifted up to challenge our own benchmark
- 3. Working condition improve due to elimination of dust & noise.
- 4.5S improved.

4.3.0 Project Result

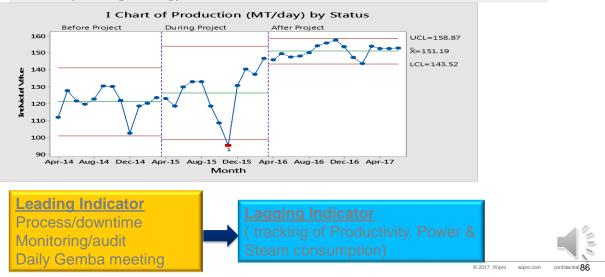
4.3.2.3 : How do the actual additional benefits that were realized compare to the expected additional benefits identified in Item 3.3.4?

- Meets noodle requirement of all customers
- · Lesser consumption of utilities , so lesser cost of product.
- Total saving of 37.29 mil till Jun'17.

5.1.0 Sustaining Results Over Time

confidential85

© 2017 Wipro


wipro.com

5.1.1.1 : What was done to make sure the process of system changes made during the implementation(Item 4.2.1) continued to be followed?

Control point	Control method	Frequency	Responcibilty	Where Recorded
Belt Conveying System Installed	Planned Maintainance	As per defined fre	Maint Eng	Maint Log book
Water jet vacuum system installed	Planned Maintainance	As per defined fre	Maint Eng	Maint Log book
steam jacket provided on caustic suction line	Planned Maintainance	As per defined fre	Maint Eng	Maint Log book
Stand by Caustic pump.	Planned Maintainance	As per defined fre	Maint Eng	Maint Log book
both cooling tower serviced	water temp Measurement	As per defined fre	Shift incharge	Shift log book
Electrical heat tracing provided on the fat lines.	Visual Inspection	Weekly	Maint Eng	Maint Log book
Stainer chocking-cleaning frequency defined in log book and water pressure indication for control. operator trained.	Water Pressure	Hourly	Shift incharge	Shift log book
Heat exchangers caustic cleaning done	Reactor Pressure increase	Online monitroing	Opeartor	DCS
Sync planning along with FAGP department to ensure lower stock of DFA in storage tank	maint. Low DFA stock	daily	Production manager	Tank book record
Lauric melting tank steam trap replaced with a new float type trap	Planned Maintainance	As per defined fre	Maint Eng	Maint Log book

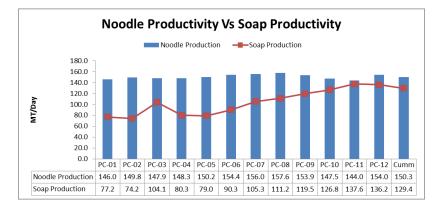
5.1.0 Sustaining Results Over Time

5.1.1.2 : What evidence showed that this become part of the organization's culture/operating strategy?

5.1.0 Sustaining Results Over Time

5.1.2.1 : What was done to make Sure the benefits obtained from implementation (Item 4.2.1) will be maintained?

X C	Cause								New process/System Implemented											
	Noodle co	nuouo	icer										ying system consisting of Air blower with Rotary Air Lock Valve is replaced	Changes from						
X1	vooule co	uveye	1350	le						with belt Conveying System to convey noodles up to Silo					Chian	.90				
	Downtime & low stea				uun	1 pun	ıp tri	pping		ater jet oblems		uum	system installed to avoid vacuum pump tripping and low steam pressure		implementation become					
	Caustic flo	w low	dur	ing w	inter	r			ste	am jaci	ket 1	provi	ded on suction line		nart o	h f	Nook	ly pr	ocess	
x4 I	Downtime	due t	o cau	stic r	oumt	2			Sta	nd by	Cat	1stic	pump.							
X4 (Caustic he	ader I	eaka	ge 1	- 1				Ca	ustic h	ead	er rer	placed with new		oudit	de	no h	1 0110	sliter	
	Barometrie				zh								r serviced		audit	ac	me by	y qua	anty.	
	Low Stean			1	,						-		ed to communicate to utility person to correct low steam pressure situation.							
	Pipeline ch	ockin	σ										ing provided on the fat lines.							
			u										y defined in log book and water pressure indication for control. operator							
. P	Strainer ch	ockinį	3						Lea	inad	ucq	actic								
DESCRIP	TION	UNIT								an an La			Data for FY : 1617, PC : 12, Location : Baddi-CC1, Ind							
T1Temp				9:00 75.0	74.6		12:00 74.6		14:00 74.3	15:00 1 74.5	6: SI	No			a for PC Ta	rget ۱	Weightage	Formula	Weighted Score	
T2 Temp								46.2			46		Customer Impac	ct						
ТЗТепо				74.5	74.6	11.7	74.7	14.7	74.8	74.9	74	1	Pending of 'A' category CSOs more than 45 days YTD		1	0	16	D1	13.33	
T3 Temp Scap O/L Heat Ex	ch. Temp	FO(e	S	10.5	561	36	18.9	108.7	108.8 1	106		Total Class A CSOs logged in the year (YTD)		9					
CT wtr plant IIL Ter		DEGC	23.3	23.4	23.8	24.2	24.6	25.0	25.4	25.7	26		Incoming qualit	ty	000					
Booster Crud. wtr T				21.2			25.3		27.2	27.8	28	2	DPMO of incoming material top five contributor Baseline - last year	-	222 1250	750	10	A	10	
Vac. Pmp chilled w				21.0					27.8	28.7	29		Process Improvem	nent	1250					
Ejector ond. vtr Te					22.9		26.4		27.4		28		Sigma level of weekly process audit done by QCD PC Noodle plant.	Terit	5.07					
Reactor Pressure				2.6	2.4		2.3		2.5	2.5	Z	3	Baseline - last vear	-	4.8	5	15	A	15	
Reactor OIL valve				100.0			100.0		100.0 57.8	100.0 1	00		Kev result Area	a	4.0			1		
DPFAD Flow			3370			3501	3801	3819	3819	3815 1	36		CSP productivity (MT/day)		145					
Palm stearine Flow		G	1	1	1	1	1	1	1	1	<u> </u>	4	Baseline - last year	-	126	150	15	A	11.88	
LFA Flow		G	0	0	0	0	0	2	0	0	0		Savings							
RDFA Flow			556	618	627	580	627	630	630	629	58		Actual savings realised for WCCLG- YTD	-	23					
DPKFAD Flow		G	299	332	338	312	338	339	339	339	3	5	Total Annual Target Saving in Rs	-	51	51	20	N1	9.02	
Caustic Flov			1894		2143			2148			2145 19 Out Going Product									
Water Flow				1015	1048		1055		1060						183	750				
Brine Dosing		STRK/M	111	114	114	108	114	116	116	Daseline - last year					1250	750	16	1 ^	— ¹⁵	
EHDP Dosing		STRK/M	21	23	23	23	23	32	32	32	3		Project closure inc	dex						
MP STEAM FLOW				782		770	770	864 4792	693		78	7	No of projetcs running on time("Green") YTD		7		10		8.75	
FAT Blend con: Noodles Produ			4227					4792 6143		4783 4 6133 5	14	1	Total No of Projects active		8	8	10	C	<u> </u>	
Caustic cons/T										0.165 0	- W		d Score Target : 100	Total	Weighted Score				82.98	
Constructions (1	onnodales		0.00	0.103	0.100	0.100	0.105	0.103	0,105	0.105 0		0.100	0.100 0.100 0.100 0.100 0.100 0.100 0.101 0.101 0.101 0.101 0.101 0.101							


5.1.0 Sustaining Results Over Time

wipro

wipro

5.1.2.2 : What evidence showed that this become part of the organization's culture/operating strategy?

	Fin Saving included into enterprise Six sigma saving													
SS Projec	SS Projects - CC Baddi 15-16													
No.	o. Project Description Baseline Target PC7 PC8 PC9 PC10 PC11									PC12	YTD			
				Production ACHIEVED/day	155.99	157.57	153.85	147.52	143.95	153.97				
1	Increasing CSP plant productivity	121	155	no of Production day	7.05	10.76	10.82	6.07	7.70	13.69				
				FIN SAVING	1,406,073	2,242,911	2,026,225	917,614	1,007,276	2,572,748	21.07			

5.2.0 Communication of the Results

5.2.1.1 : How did the team communicate the results to the various stakeholder groups?

From: Kalyanpur Raghunath (WG01 - Wipro Consumer Care & Lighting) Sent: Friday, June 23, 2017 10:50 AM ♦Next \$Last

To: Vineet Agrawal (WG01 - Wipro Consumer Care & Lighting) <<u>wheet.agrawal@wipro.com</u>>; Anilkumar.raina@wipro.com} < <u>Anilkumar.raina@wipro.com</u>} < <u>Aliphing</u> < <u>Aninkumar.raina@wipro.com</u>} < <u>Anilkumar.raina@wipro.com</u>} < <u>Anilkumar.raina@wipro.co</u>

NOODLE PRODUCTION: 165.094 MT (CSP+CVSP) (165.094 MT + Nil) D/T CSP: (Mesh cleaning- 20 min) CVSP: (No Plan- 1440 min)

Note: Highest ever production of CSP noodles achieved, previous highest was 162.4 MT on 16.10.2016

Team has communicated the result through mail/phone to all the stakeholder. Also, during the quarterly review the detailed presentation shown to top management.

45

5.2.0 Communication of the Results

5.2.1.1 : How did the team communicate the results to the various stakeholder groups?

Project won the Silver award during the Wipro Quality council-2017.

© 2017 Wipro wipro.com confidentia

Thank You – Journey will continue

