Wireless and Mobile Networks

Guest lecture by: Roger Piqueras Jover (AT&T Security R&D)

October 16th, 2014

Wireless and Mobile Networks

Source: ITU World Telecommunication /ICT Indicators database

Note: * Estimate

NUMBER OF MOBILE PHONES TO EXCEED WORLD POPULATION BY 2014

By Joshua Pramis — February 28, 2013

Lecture overview

- Overview and introduction to:
 - Wireless communications and wireless channel
 - Multiple access methods
 - TDMA, FDMA, CDMA, OFDMA
 - Contention-based methods
 - Cellular communications
 - Mobile networks
 - GSM, 3G (UMTS), "4G" (HSPA) and LTE
- I will be suggesting some readings and leaving some unanswered questions

Lecture overview

- We will be focusing mostly on wireless access
 - Cellular, 802.11 and WiFi
 - PHY and MAC layers

From: Computer Networking – A top down approach. James Kurose, Keith Ross. Pearson.

Wireless signal propagation

- Coverage area defined by
 - Propagation loss
 - Large scale fading (shadowing)
- Link/channel quality (error probability) defined by:
 - Small scale (fast) fading, multipath, etc

Figure 4.1 Small-scale and large-scale fading.

From: Wireless Communications: Principles and Practice (2nd Edition). Theodore Rappaport. Prentice Hall.

Figure 2.1: Path Loss, Shadowing and Multipath versus Distance.

From: Wireless Communications. Andrea Goldsmith. Cambridge University Press.

Propagation loss

- The power of a wireless signal decays proportionally to $1/d^{\alpha}$ (path loss)
 - $-\alpha$ is the path-loss exponent
 - Different values of α for different environments
- Basic mathematical path loss models
 - Free-space

$$P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi d}\right)^2$$

- 2-ray ground bounce model

- Empirical models (based on measurements)
 - Okomura-Hata, COST-231, etc
 - 5G mmWave path-loss models [1]

 Table 4.2
 Path Loss Exponents for Different Environments

Environment	Path Loss Exponent, n
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed urban cellular radio	3 to 5
In building line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

From: Wireless Communications: Principles and Practice (2nd Edition). Theodore Rappaport. Prentice Hall.

Large scale fading (shadow fading)

- As users move, their reception/transmission is obstructed by obstacles
 - Buildings, trees, vehicles, etc
- The duration of the fade is in the order of seconds
 - Time it takes to clear the obstacle
 - T=d/V=10 seconds, with d=100m and V=10m/s
- Shadowing modeled by a log-normal distribution

$$f(P) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(p-p_R)^2}{2\sigma^2}}$$

P: received power

P_R: average received power (path-loss) σ: shadowing coefficient

(The equation in in dBs)

8

Fast fading

The received signal is a combination of multiple rays (multipath + scattering)

If Δ_i changes by fractions of λ the amplitude of r(t) can change substantially

There is an infinite number of reflections (scattering)

$$H(\omega_{O},t) = \operatorname{Re}\{H(\bullet)\} + j\operatorname{Im}\{H(\bullet)\} = x(t) + jy(t)$$

$$r(t) = |r(t)|\cos(\omega_{o}t + \phi(t))$$
• $\varphi(t)$ has a uniform disribution

- |r(t)| has Rayleigh (or Ricean) distribution

$$f_r(r) = \frac{r}{\sigma^2} e^{-r^2/2\sigma^2}$$

- - Phase and frequency variation

Multipath

- Multipath results in a frequency selective channel
 - Different fading attenuations at different frequencies
 - The frequency response of the channel is not flat

- Frequency selective channel results in signal distortion
 - Inter-symbol interference (ICI)

Multiple access methods

Multiple access methods

Next-Gen multiple access methods – Spatial Division

- Multi-antenna (MIMO) arrays and beamforming
 - Transmit and receive to/from specific directions
 - Separate users spatially
- Theoretically feasible in 5G
 - mmWave
 - Massive MIMO arrays

• Suggested reading [4]

Contention-based methods

- All the users share the same medium (channel)
 - Collisions are possible
 - Different methods to detect, avoid and minimize collisions
- Examples
 - ALOHA and S-ALOHA
 - CSMA
 - Ethernet
 - 802.11

ALOHA and Slotted ALOHA

- Transmission from two or more nodes may collide
- No ACK received → Collision
 - Backoff for a random time
 - Try again
- S-ALOHA forces transmissions in pre-defined time "slots"

• Throughput:

802.11

- IEEE 802.11 is the most pervasive technology for wireless LAN
- 2 different modes
 - Infrastructure (with AP)
 - Independent
- Based om CSMA-CA (Collision Sensing Multiple Access w Collision Avoidance)
- 802.11n
 - 2.4/5.0 GHz bands
 - OFDM modulation
 - MIMO
 - Up to hundreds of Mbps

802.11 – The hidden terminal and exposed terminal problems

- Limited communication range of 802.11 nodes results in
 - Hidden terminal
 - Exposed terminal

(a) Hidden station problem. (b) Exposed station problem.

802.11 – The hidden terminal and exposed terminal problems

- Solution → RTS/CTS messages
 - RTS (Ready to Send) Message sent to alert terminals within your coverage area that you are about to transmit
 - CTS (Clear to Send) The receiving terminal ACKs you and alerts all terminals in its coverage area that it is about to start receiving

802.11 – Medium Access Control (MAC)

- The basic parameters are
 - Slot time Basic unit of time for transmission and backoff delay
 - Short Inter-Frame Space (SIFS) Time required to sense end of another transmission and transmit control frame
 - DCF Inter-Frame Space (DIFS) Time to wait before starting to contend (SIFS + 2 slot times)
- Medium free for t=DIFS?
 - Yes Start transmission
 - No Start backoff
 - Wait for medium to be busy t=DIFS
 - Select random number k ~unif[1,CW] (CW: contention window size)
 - Wait for k slots (must be idle) and then transmit
 - If collision or busy medium again, increase CW and restart.

802.11 – MAC cheating

- The drivers and controllers for 802.11 cards are open source
 - Food for thought: What would happen if a user configured CW always to be 1?
- Suggested reading: Selfish MAC layer misbehavior in wireless networks [6].

802.11 - MAC + RTS/CTS

Food for thought: Why do we use SIFS instead of DIFS before ACKs and CTSs?

Figure 6.12 + Collision avoidance using the RTS and CTS frames

Basics on cellular communications

Cellular networks

- There are not enough wireless resources, so we reuse them
 - Area divided in cells
 - All available resources used in one cluster of K cells
- Network planning
 - If two phones using the same "resource" are very close to each other there is interference
 - The more cells in a cluster the less we reuse the resources (but the less interference we have)

Interference-limited system

Signal to

• Assuming hexagonal cells, the interference comes from 6 directions

$$CIR = \frac{P_u}{P_I} \approx \frac{1}{6} \left(\frac{D}{R} - 1\right)^{\alpha}$$

• Generalized for a cluster of size K

$$\mathbf{d} = \mathbf{R}\cos 30 = \mathbf{R}\frac{\sqrt{3}}{2}$$

$$CIR = \frac{1}{6} \left(\frac{D}{R} - 1 \right)^{\alpha} = \frac{1}{6} \left(\sqrt{3K} - 1 \right)^{\alpha}$$

Handover

- When you move from one cell to another the phone does not disconnect
- This makes mobility in cellular networks possible
- Types of handover
 - Hard (GSM, LTE) The phone disconnects from a tower and connects to a new one
 - Soft (3G UMTS) The phone is always "connected" to N towers and just updates that list
 - Rake receiver

Mobile networks

2G and 3G mobile network architecture

Radio Access Network (GSM - TDMA, 3G – WCDMA)

3G Radio Access Network - WCDMA

Resiliency of CDMA against adversarial interference

- CDMA was initially designed for military applications
 - The signal is transmitted hidden under the noise floor
 - Resiliency against adversarial interference

Mobile Core Network

- Routes and forwards each connection
 - MSC: Phone calls → PSTN (Public Switched Telephone Network)
 - MSC+SMSC: SMS → SS7 network
 - GGSN/SGSN (3G) or S-GW (LTE): Data → Internet
- Upon incoming call/SMS/connection, locates the recipient phone
 - HLR (Home Location Register)
 - Paging
- Controls and manages the Radio Access Network (RAN)

Paging

- When there is an incoming call/SMS, the network has to find the recipient
- A paging message is broadcasted
 - Broadcasting over every single cell in America sounds like an inefficient way to do it
 - The network (HLR) knows roughly the area where you were last seen (Tracking Area)
 - If a user moves → Tracking Area Update
 - Paging only broadcasted in your Location Area
 - If you move, the phone updates with the HLR your location (Location Area Update)
- When your phone receives the paging message replies to it
 - "Hey, I am here!"
 - Now the network knows in what specific cell you are

Food for thought: Why not keeping track of the cell where each user is instead of the Location Area?

Random Access Channel

- There is not enough "spectrum" for ever mobile device to be always connected ("channel" assigned)
 - Mobile devices are usually "disconnected"
 - When they need to "connect", they request resources on a shared channel \rightarrow RACH

Random Access Channel

- The RACH is an important signaling channel in mobile networks
 - Used to initiate all transmissions
- Shared by all the users in a cell
 - Contention-based access
 - Method similar to S-ALOHA with random backoff delays, retransmissions
- Also used to acquire UL synchronization

UL synchronization over the RACH

Connection establishment (2G/3G example)

Mobile initiated

Connection establishment (2G/3G example)

Mobile terminated

Long Term Evolution (LTE)

LTE mobile network architecture

The Long Term Evolution (LTE)

- Latest evolution of 3GPP standards
 - Enhanced RAN → eUTRAN
 - OFDMA
 - MIMO
 - Robust performance in multipath environments
 - Enhanced Packet Core → EPC
 - Flat(er) "all-IP" architecture
 - Support and mobility between multiple heterogeneous access networks

LTE mobile network architecture

LTE RAN – Radio frame architecture

- Decode Master Information Block (MIB) from PBCH
- Decode System Information Blocks (SIBs) from PDSCH

LTE Random Access Channel

- Very similar procedure to 3G
 - Random access preamble select a signature out of 64
 - Random Access Response Time Advance command plus assignment of C-RNTI id

Radio Access Bearer setup

Radio Access Bearer setup - Real world example

- Name	Start time	DI/UI	Cell	Cell ID	Frame	Subf	RCE			Errs	Retrans	Decr	Valid	Sf RSSI	SINR	RACH handshake
RACH	01:32:03.954999	U	0	16	440	1	-16.64	-57.98	0						16.64	between UE and eNB
MAC Random Access Response	01:32:03.958999	D	0	16	440	5	-16.41	-45.73	7	OK				-39.20	16.41	5 Detween of and end
RRCConnectionRequest	01:32:03.964999	U	0	16	441	1	-23.85	-51.14	6	OK					23.85	RRC handshake between
RRCConnectionSetup	01:32:03.979999	D	0	16	442	6	-15.11	-42.21	26	OK				-38.72	15.11	UE and eNB
RRCConnectionSetupComplete	01:32:04.013999	U	0	16	446	0			56	OK						OE allu enb
Attach Request	01:32:04.013999	U	0	16	446	0	-25.25	-49.36	53	OK					25.25	
PDN Connectivity Request	01:32:04.013999	U	0	16	446	0	-25.25	-49.36	36	OK					25.25	
DLInformationTransfer	01:32:04.088999	D	0	16	453	5			39	OK						
Authentication Request	01:32:04.088999	D	0	16	453	5	-15.00	-41.33	36	OK				-38.44	15.00	
ULInformationTransfer	01:32:04.225999	U	0	16	467	2			22	OK						
Authentication Response	01:32:04.225999	U	0	16	467	2	-20.80	-53.66	19	OK					20.80	
DLInformationTransfer	01:32:04.267999	D	0	16	471	4			17	OK						RAB setup
Security Protected NAS Message	01:32:04.267999	D	0	16	471	4	-15.52	-44.04	14	OK		Not	No	-39.22	15.52	
Security Mode Command	01:32:04.267999	D	0	16	471	4	-15.52	-44.04	8	OK				-39.22	15.52	(authentication, set-up of
ULInformationTransfer	01:32:04.285999	U	0	16	473	2			22	OK						encryption, tunnel set-up
Security Protected NAS Message	01:32:04.285999	U	0	16	473	2	-22.49	-52.16	19	OK		No	No		22.49	etc)
Unknown NAS	01:32:04.285999	U	0	16	473	2	-22.49	-52.16	13	OK					22.49	· ·
DLInformationTransfer	01:32:04.327999	D	0	16	477	4			12	OK						
Security Protected NAS Message	01:32:04.327999	D	0	16	477	4	-14.73	-45.68	9	OK		No	No	-39.27	14.73	
Unknown NAS	01:32:04.327999	D	0	16	477	4	-14.73	-45.68	3	OK				-39.27	14.73	
ULInformationTransfer	01:32:04.345999	U	0	16	479	2			24	OK						
Security Protected NAS Message	01:32:04.345999	U	0	16	479	2	-21.36	-53.39	21	OK		No	No		21.36	
Unknown NAS	01:32:04.345999	U	0	16	479	2	-21.36	-53.39	15	OK					21.36	J
SecurityModeCommand	01:32:04.472999	D	0	16	491	9			3	OK						٦
Ciphered RRC	01:32:04.495999	U	0	16	494	2			2	OK		No	No			
Ciphered RRC	01:32:04.501999	D	0	16	494	8			3	OK		No	No			
Ciphered RRC	01:32:04.515999	U	0	16	496	2			18	OK		No	No			
Ciphered RRC	01:32:04.536999	D	0	16	498	3			165	OK		No	No			
Ciphered RRC	01:32:04.575999	U	0	16	502	2			2	OK		No	No			 Encrypted traffic
Ciphered RRC	01:32:04.575999	U	0	16	502	2			16	OK		No	No			
Ciphered RRC	01:32:04.604999	D	0	16	505	1			30	OK		No	No			
Ciphered data	01:32:14.426997	U	0	16	463	3			96	OK		No				
Ciphered data	01:32:14.475997	U	0	16	468	2			40	OK		No				
Ciphered data	01:32:14.513997	U	0	16	472	0			96	OK		No				J

Radio Resource Control (RRC) and power management in LTE

Motivation

- RRC Not enough radio resources for all users, they need to be reused when a user is idle
- Power management The radio of a mobile device burns a lot of battery, it is necessary to shut it down when the user is idle

RRC state machine

- Idle low power usage, no active connection (no bearer with P-GW)
- Connected high battery usage, active bearer with P-GW

Radio Resource Control (RRC) and power management in LTE

RRC state transitions

Idle to connected

Connected to idle

Radio Resource Control (RRC) and power management in LTE

- State demotions result in tail time
 - [RRC Connected → RRC Idle] transition occurs after the device has been idle for t seconds
 - The phone's radio is always on for t seconds after the device goes idle
- State promotions require a promotion delay
- State transitions result in signaling load at the core network

battery power than it does to send a single bigger burst.

• Recommended reading: AT&T Research - A Call for More Energy-Efficient Apps [3]

The Internet of Things and M2M communications

IoT and M2M

- Already more "things" connected to the Internet than humans
 - Industry and standardization bodies talk about billions of connected devices by 2020
- Mobile networks are designed and optimized to handle {cell/smart}-phone traffic
 - Traffic characteristics of M2M devices very different than smart-phones
 - Different M2M devices have very different traffic characteristics than other M2M devices
- Current open research questions
 - Impact of IoT and M2M on cellular networks as we move to the connected world
 - Suggested reading [7]

Bluetooth

- Short-range, high-data-rate wireless link for personal devices
 - Originally designed to replace cables with a wireless link
 - Operates in the 2.4GHz ISM band
 - Note it's the same band as WiFi...
 - Range up to ~100m (usually less)
- Based on frequency hopping spread spectrum
 - 80 channels (1MHz per channel)
 - The transmitter and receiver "agree" on a pseudo-random frequency hop pattern
 - Time division duplexing
 - About 700kbps
- Master-slave communications
 - Piconet → Up to 7 slaves controlled by a master (3 bit addressing)

ZigBee

- Standard for low-power monitoring and control
 - Long battery life
 - Shorter range than Bluetooth (10m-75m)
 - ~200kbps
- IEEE 802.15.4
 - Defines PHY and MAC layers
 - ZigBee is the networking layer on top of 802.15.5
- PHY layer
 - 16 channels in the 2.4 GHz band (5 MHz per channel)
 - 10 channels in the 915 MHz band (2 MHz per channel)
 - 1 channel in the 868 MHz band
 - 2.4 GHz band uses Direct Sequence Spreading

Things to play with...

- The IoT is one of the hottest areas in communications right now
 - Lots of media attention, investment and technology developments
- Many easily available open-source and low cost tools to test cool stuff
 - Arduino: http://www.arduino.cc/
 - Arduino ZigBee: http://arduino.cc/en/Main/ArduinoXbeeShield
 - Arduino Bluetooth: http://arduino.cc/en/Main/ArduinoBoardBT?from=Main.ArduinoBoardBluetooth
 - Arduino + Android: http://www.mouser.com/new/arduino/arduinoandroid/
 - Raspberry Pi: http://www.raspberrypi.org/
 - Romo: http://www.romotive.com/

Suggested reading

- [1] 5G wireless channel measurements: http://ieeexplore.ieee.org/iel7/6287639/6336544/06515173.pdf?arnumber=6515173
- [2] Wireless Communications: Principles and Practice (2nd Edition). Theodore Rappaport. Prentice Hall.
- [3] AT&T Research A Call for More Energy-Efficient Apps:
- http://www.research.att.com/articles/featured_stories/2011_03/201102_Energy_efficient?fbid=Vss1vjwl65X
- [4] A. L. Swindlehurst, E. Ayanoglu, P. Heydari, and F Capolino, "Millimeter-Wave Massive MIMO: The Next Wireless Revolution?" IEEE Comm. Magazine, Vol. 52, No. 9, pp. 56-62, Sept. 2014.
- [5] SESIA, S., BAKER, M., AND TOUFIK, I. LTE, The UMTS Long Term Evolution: From Theory to Practice. Wiley, 2009.
- [6] P Kyasanur, NF Vaidya. Selfish MAC layer misbehavior in wireless networks. IEEE Transactions of Mobile Computing:

http://perso.prism.uvsq.fr/users/mogue/Biblio/Sensor/AUTRES/01492362.pdf

[7] F. Ghavimi, Hsiao-Hwa Chen. M2M Communications in 3GPP LTE/LTE-A Networks: Architectures, Service Requirements, Challenges and Applications. IEEE Comunication Surveys and Tutorials. 2014.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6916986&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6916986

Technology directions for 5G:

[8] F. Boccardi, et. al. Five Disruptive Technology Directions for 5G. IEEE Communications Magazine. 2014. http://arxiv.org/pdf/1312.0229

Mobile network security:

[9] R. Piqueras Jover. Security Attacks Against the Availability of LTE Mobility Networks: Overview and Research Directions. IEEE Global Wireless Summit 2013. http://web2.research.att.com/techdocs/TD_101153.pdf