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1.1 INTRODUCTION

Wireless Sensor Networks (WSNs) have played a major role in the research
field of multi-hop wireless networks as enablers of applications ranging from
environmental and structural monitoring to border security and human health
control. Research within this field has covered a wide spectrum of topics,
leading to advances in node hardware, protocol stack design, localization and
tracking techniques and energy management [2].

Research on WSNs has been driven (and somewhat limited) by a common
focus: Energy efficiency. Nodes of a WSN are typically powered by batteries.
Once their energy is depleted, the node is “dead.” Only in very particu-
lar applications batteries can be replaced or recharged. However, even when
this is possible, the replacement/recharging operation is slow and expensive,
and decreases network performance. Different techniques have therefore been
proposed to slow down the depletion of battery energy, which include power
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control and the use of duty cycle-based operation. The latter technique ex-
ploits the low power modes of wireless transceivers, whose components can
be switched off for energy saving. When the node is in a low power (or
“sleep”) mode its consumption is significantly lower than when the transceiver
is on [30, 32]. However, when asleep the node cannot transmit or receive pack-
ets. The duty cycle expresses the ratio between the time when the node is on
and the sum of the times when the node is on and asleep. Adopting proto-
cols that operate at very low duty cycles is the leading type of solution for
enabling long lasting WSNs [28]. However, this approach suffers from two
main drawbacks. 1) There is an inherent tradeoff between energy efficiency
(i.e., low duty cycling) and data latency, and 2) battery operated WSNs fail to
provide the needed answer to the requirements of many emerging applications
that demand network lifetimes of decades or more. Battery leakage depletes
batteries within a few years even if they are seldom used [16, 100]. For these
reasons recent research on long-lasting WSNs is taking a different approach,
proposing energy harvesters combined with the use of rechargeable batteries
and super capacitors (for energy storage) as the key enabler to “perpetual”
WSN operations.

Energy Harvesting-based WSNs (EHWSNs) are the result of endowing
WSN nodes with the capability of extracting energy from the surrounding
environment. Energy harvesting can exploit different sources of energy, such
as solar power, wind, mechanical vibrations, temperature variations, magnetic
fields, etc. Continuously providing energy, and storing it for future use, energy
harvesting subsystems enable WSN nodes to last potentially for ever.

This chapter explores the opportunities and challenges of EHWSNs, ex-
plaining why the design of protocol stacks for traditional WSNs has to be
radically revisited. We start by describing the architecture of a EHWSN node,
and especially that of its energy subsystem (Section 1.2). We then present
the various forms of energy that are available and ways for harvesting them
(Section 1.3). Models for predicting availability of wind and solar energy are
described in Section 1.4. We then survey task allocation, MAC and routing
protocols proposed so far for EHWSNs in Section 1.5. Conclusions are drawn
in Section 1.6

1.2 NODE PLATFORMS

EHWSNs are composed of individual nodes that in addition to sensing and
wireless communications are capable of extracting energy from multiple sources
and converting it into usable electrical power. In this section we describe in
details the architecture of a wireless sensor node with energy harvesting ca-
pabilities, including models for the harvesting hardware and for batteries.
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Figure 1.1 System architecture of a wireless node with energy harvesters.

1.2.1 Architecture of a sensor node with harvesting capabilities

The system architecture of a wireless sensor node includes the following com-
ponents (Figure 1.1): 1) The energy harvester(s), in charge of converting
external ambient or human-generated energy to electricity; 2) a power man-
agement module, that collects electrical energy from the harvester and either
stores it or delivers it to the other system components for immediate usage;
3) energy storage, for conserving the harvested energy for future usage; 4) a
microcontroller; 5) a radio transceiver, for transmitting and receiving informa-
tion; 6) sensory equipment; 7) an A/D converter to digitize the analog signal
generated by the sensors and makes it available to the microcontroller for
further processing, and 8) memory to store sensed information, application-
related data, and code.

In the next section we focus on the energy harvesting components (the
energy subsystem) of a EHWSN node, describing abstractions that have been
proposed for modeling them.

1.2.2 Harvesting hardware models

The general architecture of the energy subsystem of a wireless sensor node
with energy harvesting capabilities is shown in Figure 1.2.

The energy subsystem includes one or multiple harvesters that convert en-
ergy available from the environment to electrical energy. The energy obtained
by the harvester may be used to directly supply energy to the node or it may
be stored for later use. Although in some application it is possible to directly
power the sensor node using the harvested energy, with no energy storage
(harvest-use architecture [117]), in general this is not a viable solution. A
more reasonable architecture enables the node to directly use the harvested
energy, but also includes a storage component that acts as an energy buffer
for the system, with the main purpose of accumulating and preserving the
harvested energy. When the harvesting rate is greater than the current usage,
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Figure 1.2 General architecture of the energy subsystem of a wireless sensor node
with energy harvesting capabilities.

the buffer component can store excess energy for later use (e.g., when har-
vesting opportunities do not exist), thus supporting variations in the power
level emitted by the environmental source.

The two alternatives commonly used for energy storage are secondary
rechargeable batteries and supercapacitors (also known as ultracapacitors).
Supercapacitors are similar to regular capacitors, but they offer very high
capacitance in a small size. They offer several advantages with respect to
rechargeable batteries [134]. First of all, supercapacitors can be recharged
and discharged virtually an unlimited number of times, while typical life-
times of an electrochemical battery is less than 1000 cycles [16]. Second, they
can be charged quickly using simple charging circuits, thus reducing system
complexity, and do not need full-charge or deep-discharge protection circuits.
They also have higher charging and discharging efficiency than electrochemi-
cal batteries [134]. Another additional benefit is the reduction of environmen-
tal issues related to battery disposal. Thanks to these characteristics, many
platforms with harvesting capabilities use supercapacitors as energy storage,
either by themselves [15, 113] or in combination with batteries [37, 58, 90].
Other systems, instead, focus on platforms using only rechargeable batter-
ies [29, 89, 95].

Both types of storage devices deviate from ideal energy buffers in a number
of ways: They have a finite size BMax and can hold a finite amount of energy;
they have a charging efficiency ηc < 1 and a discharging efficiency ηd < 1,
i.e., some energy is lost while charging and discharging the buffer, and they
suffer from leakage and self-discharge, i.e., some stored energy is lost even if the
buffer is not in use. Leakage and self-discharge are phenomena that affect both
batteries and supercapacitors. All batteries suffer from self-discharge: A cell
that simply sits on the shelf, without any connection between the electrodes,
experiences a reduction in its stored charge due to internal chemical reactions,
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at a rate depending on the cell chemistry and the temperature. A similar
phenomenon affects electrochemical super-capacitors in charged state. They
suffer gradual loss of energy and reduction of the inter-plate voltage. In order
to reduce the energy lost trough buffer inefficiencies, many platforms allow the
node to directly use the energy harvested. In particular, if the current energy
consumption is greater or equal than the energy currently harvested, then the
node can use the harvested energy for its operations. This is the most efficient
way of using the environmental energy, because it is used directly and there is
no energy loss. Otherwise, if the amount of energy harvested is greater than
the current energy consumption, some energy is directly used to sustain the
node operations, while excess energy is stored in the buffer for later use.

1.2.2.1 Supercapacitor leakage models. Considering leakage current is im-
portant while dealing with energy harvesting systems, especially if the appli-
cation scenario requires the harvested energy to be stored for long periods of
time. In general, if the energy source is sporadic or if it is only able to pro-
vide a small amount of energy, the portion of the harvested energy lost due
to leakage may be significant. The leakage is of particular relevance for su-
percapacitors, because their energy density is about one orders of magnitude
lower than that of an electrochemical battery, but they suffer from consider-
ably higher self-discharge. A supercapacitor leakage is strongly variable and
depends on several factors, including the capacitance value of the superca-
pacitor, the amount of energy stored, the operating temperature, the charge
duration, etc. For this reason, the leakage pattern of a particular supercapac-
itor must often be determined experimentally [58, 64, 79, 134]. Additionally,
the leakage current varies with time: It is considerably higher immediately
after the supercapacitor has been charged, then it decreases to a plateau.

Several model for the leakage from a charged supercapacitor have been
proposed in the literature, modeling the leakage as a constant current [60],
or as an exponential function of the current supercapacitor voltage [102], or
by using a polynomial approximation of its empirical leakage pattern [79],
or, finally, by using a piecewise linear approximation of its empirical leakage
pattern [134]. These models have been proposed after experimental obser-
vations of actual supercapacitor leakage, such as those shown in Figure 1.3
showing the self-discharge experienced by a charged 25F supercapacitor over
a two-weeks period.

Another aspect to consider in the supercapacitors vs. battery comparison
is that in many application scenarios it is not possible to use the full energy
stored in the supercapacitor. The voltage of a supercapacitor drops from
full voltage to zero linearly, without the flat curve that is typical of most
electrochemical batteries. The fraction of the charge available to the sensor
node depends on the voltage requirements of the platform. For example, a
Telos B mote requires a minimal voltage ranging from 1.8 V to 2.1 V. When
the supercapacitor voltage drops below this threshold, its residual energy can
no longer be used to power the node. This aspect may be partially mitigated
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Supercapacitor self discharge over time

Figure 1.3 Self discharge of a supercapacitor over time.

by using a DC-DC converter to increase the voltage range, at the cost of
introducing inefficiencies and an additional source of power consumption.

1.2.3 Battery models

Batteries are usually seen as ideal energy storage devices, containing a given
amount of energy units. Executing a node operation, e.g., sending or receiv-
ing a packet, uses a certain amount of energy units, depending on the energy
cost of the operation. Battery capacity is assumed to be decreased of the
amount of energy required by an operation only when the operation is per-
formed. Real batteries, however, operate differently. As mentioned earlier,
all batteries suffer from self-discharge. Even a cell that is not being used
experience a charge reduction caused by internal chemical activity. Batteries
also have charge and discharge efficiency strictly < 1, i.e., some energy is lost
when charging and discharging the battery. Additionally, batteries have some
non-linear properties [16, 26, 97]. These are: Rate-dependent capacity, i.e.,
the delivered capacity of a battery decreases, in a non-linear way, as the dis-
charge rate increases; temperature effect, in that the operating temperature
affects the battery discharge behavior and directly impacts the rate of self-
discharge; recovery effect, for which the lifetime and the delivered capacity of
a battery increases if discharge and idle periods alternate (pulse discharge).
Furthermore, rechargeable batteries experience a reduction of their capacity
at each recharge cycle, and their voltage depends on the charging level of the
battery and varies during discharge. These characteristics should be taken
into account when dimensioning and simulating energy harvesting systems,
because they can easily lead to wrong estimations of the battery lifetime. For
example, if the harvesting subsystem uses a rechargeable battery to store the
energy harvested from the environment, it is important to consider that the
reduction in capacity experienced by the battery at each recharge cycle is
likely to reduce both its delivered capacity and its lifetime.
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Figure 1.4 Different energy types (rectangles) and sources (ovals).

Many types of battery models have been proposed recently in the litera-
ture [97]. These include: Physical models that simulate the physical processes
that take place into an electrochemical battery. These models are usually
very accurate, but have high computational complexity and require high con-
figuration effort [36, 46]. Empirical models that approximate the discharge
behavior of a battery with simple equations. They are generally the least
accurate. However, they require low computational resources and configura-
tion effort [92, 120]. Abstract models that emulate battery behavior by using
simplified equivalent representation, such as stochastic system [27], electrical-
circuit models [12, 47], and discrete-time VHDL specification [10], and mixed
models that use both a high-level representation of a battery (simpler than a
real battery) and analytical expressions based on low-level analysis and phys-
ical laws [96].

1.3 TECHNIQUES OF ENERGY HARVESTING

Figure 1.4 shows the variety of energy types that can be harvested. In this
section we provide their brief description and relevant references.
Mechanical energy harvesting indicates the process of converting mechan-
ical energy into electricity by using vibrations, mechanical stress and pressure,
strain from the surface of the sensor, high-pressure motors, waste rotational
movements, fluid, and force. The principle behind mechanical energy harvest-
ing is to convert the energy of the displacements and oscillations of a spring-
mounted mass component inside the harvester into electrical energy [81, 123].
Mechanical energy harvesting can be: Piezoelectric, electrostatic and electro-
magnetic.

Piezoelectric energy harvesting is based on the piezoelectric effect for which
mechanical energy from pressure, force or vibrations is transformed into elec-
trical power by straining a piezoelectric material. The technology of a piezo-
electric harvester is usually based on a cantilever structure with a seismic
mass attached into a piezoelectric beam that has contacts on both sides of
the piezoelectric material [123]. In particular, strains in the piezoelectric
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material produce charge separation across the harvester, creating an electric
field, and hence voltage, proportional to the stress generated [124, 131]. Volt-
age varies depending on the strain and time, and an irregular AC signal is
produced. Piezoelectric energy conversion has the advantage that it gener-
ates the desired voltage directly, without need for a separate voltage source.
However, piezoelectric materials are breakable and can suffer from charge leak-
age [21, 105, 123]. Examples of piezoelectric energy harvesters can be found
in [22, 24, 103, 119, 133] and references therein.

The principle of electrostatic energy harvesting is based on changing the
capacitance of a vibration dependent variable capacitor [82, 106]. In order
to harvest the mechanical energy a variable capacitor is created by opposing
two plates, one fixed and one moving, and is initially charged. When vi-
brations separate the plates, mechanical energy is transformed into electrical
energy from the capacitance change. This kind of harvesters can be incorpo-
rated into microelectronic-devices due to their integrated circuit-compatible
nature [116]. However, an additional voltage source is required to initially
charge the capacitor [105]. Recent efforts to prototype sensor-size electro-
static energy harvesters can be found in [51, 63].

Electromagnetic energy harvesting is based on Faraday’s law of electromag-
netic induction. An electromagnetic harvester uses an inductive spring mass
system for converting mechanical energy to electrical. It induces voltage by
moving a mass of magnetic material through a magnetic field created by a sta-
tionary magnet. Specifically, vibration of the magnet attached to the spring
inside a coil changes the flux and produces an induced voltage [82, 123, 124].
The advantages of this method include the absence of mechanical contact be-
tween parts and of a separate voltage source, which improves the reliability
and reduce the mechanical damping in this type of harvesters [21, 106]. How-
ever, it is difficult to integrate them in sensor nodes because of the large size
of electromagnetic materials [21]. Some examples of electromagnetic energy
harvesting systems are presented in [91, 136].
Photovoltaic energy harvesting is the process of converting incoming pho-
tons from sources such as solar or artificial light into electricity. Photovoltaic
energy can be harnessed by using photovoltaic (PV) cells. These consist of
two different types of semiconducting materials called n-type and p-type. An
electrical field is formed in the area of contact between these two materials,
called the P-N junction. Upon exposure to light a photovoltaic cell releases
electrons. Photovoltaic energy conversion is a traditional, mature, and com-
mercially established energy-harvesting technology. It provides higher power
output levels compared to other energy harvesting techniques and is suitable
for larger-scale energy harvesting systems. However, its generated power and
the system efficiency strongly depend on the availability of light and on en-
vironmental conditions. Other factors, including the materials used for the
photovoltaic cell, affect the efficiency and level of power produced by pho-
tovoltaic energy harvesters [21, 95]. Some recent prototypes of photovoltaic
harvesters are described in [4, 6, 23, 25]. Known implementations of solar en-
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ergy harvesting sensor nodes include Fleck [114], Enviromote [65], Trio [37],
Everlast [113], and Solar Biscuit [80].
Thermal energy harvesting is implemented by thermoelectric energy har-
vesting and pyroelectric energy harvesting.

Thermoelectric energy harvesting is the process of creating electric energy
from temperature difference (thermal gradients) using thermoelectric power
generators (TEGs). The core element of a TEG is a thermopile formed by
arrays of two dissimilar conductors, i.e., a p-type and n-type semiconductor
(thermocouple), placed between a hot and a cold plate and connected in series.
A thermoelectric harvester scavenges the energy based on the Seebeck effect,
which states that electrical voltage is produced when two dissimilar metals
joined at two junctions are kept at different temperatures [54]. This is because
the metals respond differently to the temperature difference, creating heat
flow through the thermoelectric generator. This produces a voltage difference
that is proportional to the temperature difference between the hot and cold
plates. The thermal energy is converted into electrical power when a thermal
gradient is created. Energy is harvested as long as the temperature difference
is maintained.

Pyroelectric energy harvesting is the process of generating voltage by heat-
ing or cooling pyroelectric materials. These materials do not need a temper-
ature gradient similar to a thermocouple. Instead, they need time-varying
temperature changes. Changes in temperature modify the locations of the
atoms in the crystal structure of the pyroelectric material, which produces
voltage. To keep generating power, the whole crystal should be continuously
subject to temperature change. Otherwise, the produced pyroelectric voltage
gradually disappears due to leakage current [128].

Pyroelectric energy harvesting achieves greater efficiency compared to ther-
moelectric harvesting. It supports harvesting from high temperature sources,
and is much easier to get to work using limited surface heat exchange. On
the other hand, thermoelectric energy harvesting provides higher harvested
energy levels. The maximum efficiency of thermal energy harvesting is limited
by the Carnot cycle [82]. Because of the various sizes of thermal harvesters,
they can be placed on the human body, on structures and equipment. Some
example of this kind of harvesters for WSN nodes are described in [1, 75].
Wireless energy harvesting techniques can be categorized into two main
categories: RF energy harvesting and resonant energy harvesting.

RF energy harvesting is the process of converting electromagnetic waves
into electricity by a rectifying antenna, or rectenna. Energy can be harvested
from either ambient RF power from sources such as radio and television broad-
casting, cellphones, WiFi communications and microwaves, or from EM sig-
nals generated at a specific wavelength. Although there is a large number of
potential ambient RF power, the energy of existing EM waves are extremely
low because energy rapidly decreases as the signal spreads farther from the
source. Therefore, in order to scavenge RF energy efficiently from existing
ambient waves, the harvester must remain close to the RF source. Another
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possible solution is to use a dedicated RF transmitter to generate more pow-
erful EM signals merely for the purpose of powering sensor nodes. Such RF
energy harvesting is able to efficiently delivers powers from micro-watts to
few milliwatts, depending on the distance between the RF transmitter and
the harvester.

Resonant energy harvesting, also called resonant inductive coupling, is the
process of transferring and harvesting electrical energy between two coils,
which are highly resonant at the same frequency. Specifically, an external in-
ductive transformer device, coupled to a primary coil, can send power through
the air to a device equipped with a secondary coil. The primary coil produces
a time-varying magnetic flux that crosses the secondary coil, inducing a volt-
age. In general, there are two possible implementations of resonant inductive
coupling: Weak inductive coupling and strong inductive coupling. In the first
case, the distance between the coils must be very small (few centimeters).
However, if the receiving coil is properly tuned to match the external powered
coil, a “strong coupling” between electromagnetic resonant devices can be es-
tablished and powering is possible over longer distances. Note that since the
primary and secondary coil are not physically connected, resonant inductive
coupling is considered a wireless energy harvesting technique. Some recent
implementations of wireless energy harvesting techniques for WSNs can be
found in [52, 76, 101].
Wind energy harvesting is the process of converting air flow (e.g., wind)
energy into electrical energy. A properly sized wind turbine is used to exploit
linear motion coming from wind for generating electrical energy. Miniature
wind turbines exists that are capable of producing enough energy to power
WSN nodes [43]. However, efficient design of small-scale wind energy harvest-
ing is still an ongoing research, challenged by very low flow rates, fluctuations
in wind strength, the unpredictability of flow sources, etc. Furthermore, even
though the performance of large-scale wind turbines is highly efficient, small-
scale wind turbines show inferior efficiency due to the relatively high viscous
drag on the blades at low Reynolds numbers [78, 81]. Recent examples of wind
energy harvesting systems designed for WSNs include [43, 110, 121, 122].
Biochemical energy harvesting is the process of converting oxygen and
endogenous substances into electricity via electrochemical reactions [118, 130].
In particular, biofuel cells acting as active enzymes and catalysts can be used
to harvest the biochemical energy in biofluid into electrical energy. Human
body fluids include many kinds of substances that have harvesting poten-
tial [33]. Among these, glucose is the most common used fuel source. It
theoretically releases 24 free electrons per molecule when oxidized into car-
bon dioxide and water. Even though biochemical energy harvesting can be
superior to other energy harvesting techniques in terms of continuous power
output and biocompatibility [118], its performance depends on the type and
availability of fuel cells. Advantages and disadvantages of using enzymatic
fuel cells for energy production are described in [129]. Research efforts such
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as [49, 118, 130] are examples of recent proposed prototypes that use biochem-
ical energy harvesting to power microelectronic devices.
Acoustic energy harvesting is the process of converting high and contin-
uous acoustic waves from the environment into electrical energy by using an
acoustic transducer or resonator. The harvestable acoustic emissions can be in
the form of longitudinal, transverse, bending, and hydrostatic waves ranging
from very low to high frequencies [112]. Typically, acoustic energy harvesting
is used where local long term power is not available, as in the case of remote or
isolated locations, or where cabling and electrical commutations are difficult to
use such as inside sealed or rotating systems [70, 112]. However, the efficiency
of harvested acoustic power is low and such energy can only be harvested in
very noisy environments. Harvestable energy from acoustic waves theoreti-
cally yields 0.96µW/cm3 [68], which is much lower than what is achievable
by other energy harvesting techniques. As such, limited research has been
performed to investigate this type of harvesters. Examples of acoustic energy
harvesting systems can be found in [34, 135].

All previously described harvesting techniques can be combined and con-
currently used on a single platform (hybrid energy harvesting).

A bird’s eye view of the amount of energy harvestable from different sources
is given in Table 1.1. For each energy harvesting technique we show its power
density and conversion efficiency. The power density expresses the harvested
energy per unit volume, area, or mass. Common unit measures of power
density include watts per square centimeter and watts per cubic centimeter.
Conversion efficiency is defined as the ratio of the harvested electrical power
to the harvestable input power. The energy conversion efficiency is a dimen-
sionless number between 0 and 100%.

1.4 PREDICTION MODELS

Practical use of energy harvesting technologies needs to deal with the variable
behavior of the energy sources, which impose the amount and the rate of the
harvested energy over time. In case of predictable, non controllable power
sources, such as the solar one, energy prediction methods can be used to fore-
cast the source availability and estimate the expected energy intake [60]. Such
a predictor can alleviate the problem of the harvested power being neither con-
stant nor continuous, allowing the system to take critical decisions about the
utilization of the available energy. In this section, we give an overview of the
different energy predictors proposed in the literature for two popular forms of
energy harvesters, namely, solar and wind harvesters.
EWMA. Kansal et al. [60] propose a solar energy prediction model based on
an Exponentially Weighted Moving-Average (EWMA) filter [31]. This method
is based on the assumption that the energy available at a given time of the
day is similar to that available at the same time of previous days. Time
is discretized into N time slots of fixed length (usually 30 minutes each).
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Table 1.1 Power density and efficiency of energy harvesting techniques.

Energy harvesting technique Power density Efficiency

Photovoltaic Outdoors (direct sun): 15 mW/cm2 Highest: 32 ± 1.5%
Outdoors (cloudy day): 0.15 mW/cm2 Typical: 25 ± 1.5% [48]
Indoors: <10 µW/cm2 [9, 21, 105, 126]

Thermoelectric Human: 30 µW/cm2 ±0.1%
Industrial: 1 to 10 mW/cm2 [53, 126] ±3% [126]

Pyroelectric 8.64 µW/cm2 at the temperature rate of 8.5◦ C/s [77] 3.5% [125]

Piezoelectric 250 µW/cm3 a

330 µW/cm3 (shoe inserts) [21, 105]

Electromagnetic Human motion: 1 to 4 µW/cm3 [88, 121] a

Industrial: 306 µW/cm3 [8], 800 µW/cm3 [121]

Electrostatic 50 to 100 µW/cm3 [124] a

RF GSM 900/1800 MHz: 0.1 µW/cm2 50%b [94]
WiFi 2.4 GHz: 0.01 µW/cm2 [9]

Wind 380 µW/cm3 at the speed of 5 m/s [103, 104] 5% [103]

Acoustic noise 0.96 µW/cm3 at 100 dB c

0.003 µW/cm3 at 75 dB [14, 95]

a Maximum power and efficiency are source dependent.
b Excluding transmission efficiency.
c Noise power densities are theoretical values.

The amount of energy available in previous days is maintained as a weighted
average where the contribution of older data is exponentially decreasing. More
formally, the EWMA model predicts that in time slot n the amount of energy

µ
(d)
n = α ·xn + (1−α) ·µ(d−1)

n will be available for harvesting, where xn is the

amount of energy harvested by the end of the nth slot; µ
(d−1)
n is the average

over the previous d−1 days of the energy harvested in their nth slot, and α is
a weighting factor, 0 ≤ α ≤ 1. EWMA exploits the diurnal solar energy cycle
and adapts to seasonal variations. The prediction results very accurate in
presence of scarce weather variability. However, when weather conditions are
frequently changing (e.g., a mix of sunny and cloudy days in a row) EWMA
does not adapt well to the variations in the solar energy profile.
WCMA. The prediction method Weather-Conditioned Moving Average, or
WCMA for short, has been proposed by Piorno et at. [93] for addressing the
shortcomings of EWMA. Similarly to EWMA, WCMA takes into account
energy harvested in the previous days. However, it also consider the weather
conditions of the current and of the previous days. Specifically, WCMA stores
a matrix E of size D×N , where D is the number of days considered and N is
the number of time slots per day. The entry Ed,n stores the energy harvested
in day d at time slot n. Energy in the current day is kept in a vector C of
size N . In addition, WCMA keeps a vector M of size N whose nth entry Mn

stores the average energy observed during time slot n in the last D days:
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Mn =
1

D
·
D∑
i=1

Ed−i,n.

At the end of each day M is updated with the energy just observed, over-
writing the date of the previous day. The amount of energy Pn+1 predicted
by WCMA for the next time slot n + 1 of the current day is computed as
α · Cn + (1 − α) ·Mn+1 ·GAPKn , where Cn is the amount of energy observed
during time slot n of the current day; Mn+1 is the average of the energy har-
vested during time slot n+1 over the last D days; GAPKn is a weighting factor
providing an indication of the changing weather conditions during time slot n
of the current day with respect to the previous D days, and α is a weighting
factor, 0 ≤ α ≤ 1. In case of frequently changing weather conditions, WCMA
is shown to obtain average prediction errors almost 20% smaller than EWMA.

An enhanced version of WCMA has been presented by Bergonzini et al. [11].
The authors noticed that the prediction error of WCMA shows characteristics
peaks at sunrise and at sunset, especially for values of α > 0.5. This is
due to the fact that WCMA considers the value observed in the previous
slot for energy predictions. Since at sunrise and sunset the solar conditions
changes significantly, this leads to higher prediction errors. In order to address
the issue, the authors propose to use a feedback mechanism, called phase
displacement regulator, providing a sensible decrease of the WCMA prediction
error.
ETH predictor. Moser et al. [84] of ETH Zurich propose a prediction method
based on a weighted sum of historical data The ETH prediction algorithm
assumes solar power to be periodic on a daily basis. As in previous approaches
time is partitioned into time slots of fixed length T (in practice lasting from
a few minutes to an hour). During time slot t the energy generated by the
power source is denoted as ES(t). The ETH estimator unit receives in input
the amount of energy harvested ES(t) for all times t ≥ 1 and outputs N
future energy predictions. The prediction intervals are all of equal length L,
multiple of T . The overall prediction horizon is H = NL. At each time
slot t predictions about future energy availability PS(t, k) are computed for
the next N prediction intervals as PS(t, k) = PS(t + kL), 0 ≤ k ≤ N . The
prediction algorithm combines information about the energy harvested during
the current time interval with the energy availability obtained in the past.
Similar to EWMA the contribution of older data is exponentially decreasing.

The solution proposed by Noh and Kang [86] is similar to previous ap-
proaches. They use the EWMA equation to keep track of the solar energy pro-
file observed in the past. In order to account for short-term varying weather
conditions, they introduce a scaling factor ϕn to adjust future energy expec-
tations. This factor is computed as: ϕn = xn−1

µn−1
, where xn−1 is the amount

of energy harvested by the end of slot n − 1, and µn−1 is the prediction of
the amount of energy harvestable during slot n− 1 according to the EWMA.
Thus, ϕn expresses the ratio between the actual harvested energy at time slot
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Figure 1.5 Pro-Energy predictions.

n and the energy predicted for the same time slot. This scaling factor is then
used to adjust future predictions.
Pro-Energy (PROfile energy prediction model, Spenza and Petrioli [18]) is an
energy prediction model based on using past energy observations for both solar
and wind-based EHWSNs. The main idea of Pro-Energy is to use harvested
profiles representing the energy available during different types of “typical”
days. For example, days may be classified into sunny, cloudy or rainy and a
characteristic profile may be associated to each of these types. Each day is
discretized into a certain number N of time slots. Predictions are performed
once per slot. The energy harvested in the current day is stored in a vector C
of length N . A pool of energy profiles observed in the past is also maintained
in a D × N matrix E. These profiles represent the energy obtained during
a given number D of typical days. Once per time slot Pro-Energy estimates
the expected energy availability during the next time slot by looking at the
stored profile that is the most similar to the current day. The similarity of
two different profiles is computed as the Euclidean distance between their two
vectors, taking into account the first t elements of the vectors, where t is the
current time slot. The value predicted for the next time slot is then computed
based on the value for that slot from the stored profile, possibly scaled by a
factor that depends on the current weather conditions.

Pro-Energy maintains a pool of D typical profiles, each ideally representa-
tive of a different weather condition. In order to adapt predictions to changing
seasonal patterns, this pool has to be periodically updated. To this aim, at
the end of each day Pro-Energy checks if the current profile, i.e., the one just
observed, significantly differs from other profiles. In so, an old profile is dis-
carded and the current profile is stored in E. Statistics about profile usage
are maintained, so that the profile discarded from the pool is one that has
been stored for a long time or that has been used infrequently. Figure 1.5
shows an example of application of the Pro-Energy algorithm over 4 days of
solar predictions. During the initial time slots of October 23rd (day 1), the
first stored profile is selected among the typical ones, as it is the most similar
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to the portion of the current day observed so far. As the day goes on, the
shape of the profile changes according to the new observations. Two further
different profiles are used for predictions during days 2 and 3. Then, on the
fourth day, the first profile is selected again as the most similar to the cur-
rent observations. Pro-Energy performance compares favorably with respect
to previous solutions. For instance, because of the use of energy profiles of
typical days, Pro-Energy is able to sensibly decrease prediction errors even
in cases with a variable mix of sunny and cloudy days, a case where EWMA
instead exhibits poor performance.

We conclude this section by mentioning an approach for energy predic-
tions at medium-length timescales. Sharma et al. [111] explore a system for
solar and wind powered sensor nodes that derives energy harvesting predic-
tions based on weather forecast. The method is based on the claim that at
medium-length timescales (3 hour to 3 days) using weather forecasting data
provides greater accuracy than energy predictions based on past observation.
The reason they give for the scarce performance of “traditional” predictors is
the fact that weather patterns are not consistent in many regions of the United
States. They thus formulate a model for solar panels and wind turbines that
is able to convert weather forecast data into energy harvesting predictions.
The effectiveness of the proposed method is measured by comparing the per-
formance of their solution to that of simple energy predictors based on past
observations.

1.5 PROTOCOLS FOR EHWSNs

In this section we describe protocols for EHWSNs focusing specifically on
those from research areas that have received greater attention, namely, allo-
cation of tasks to the sensors, and MAC and routing solutions.

1.5.1 Task allocation

Many applications for energy harvesting sensor networks, such as structural
health monitoring, disaster recovery and health monitoring, require real-time
reliable network protocols and efficient task scheduling. In such networks, it
is important to dynamically schedule node and network tasks based on re-
maining energy and current energy intake, as well as predictions about future
energy availability.

In this section, we first provide a classifications of tasks based on their
type and characteristics, and then we present an overview of task scheduling
algorithms.

Tasks can be categorized as follows:

1. Periodic vs. Aperiodic. Depending on their arrival patterns over time,
tasks are divided into periodic and aperiodic. Periodic tasks arrive reg-
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ularly and their inter-arrival time is fixed. Aperiodic tasks, also called
on-demand, have arbitrary arrival patterns.

2. Preemptive vs. Non-preemptive. A preemptive active task may be be
preempted at any time, while a non-preemptive task cannot be paused
or stopped at any time during its execution.

3. Dependent vs. Independent. A task is defined to be independent if its
execution does not depend on the running or on the completion of other
tasks. A dependent task cannot run until some other tasks have com-
pleted their executions.

4. Multi-version tasks. Multi-version tasks have multiple versions, each
with different characteristics in terms of time, energy requirements and
priority.

5. Node vs. Network tasks. Each EHWSN node can schedule two kind
of tasks: Node and network tasks. Tasks such as sensing, computing,
and communication can be considered node tasks. Examples of network
tasks are routing, leader election, cooperative communication, etc. Due
to different characteristics of node and network tasks, they need different
scheduling and energy budgeting algorithms.

Each task is characterized by:

• Execution time. The amount of time during which a task is running on
the CPU.

• Deadline: The time by which the task should be completed. If the task
deadline passes before completing the task, a deadline violation occurs.

• Power requirement : The amount of energy required by a task to be suc-
cessfully completed. This may include the energy necessary to perform
sensing, computation, and communication activities.

• Reward. Each task T may be associated with a value or reward r in-
dicating its importance. Rewards can be a function of a task prior-
ity [71, 73, 98, 99], invocation frequency [109], utility [115], or any other
metric. An instance of task i, Ti, contributes ri units to the total sys-
tem reward only if it completes by its deadline. The reward (priority)
of each tasks may change over time.

• Running speed : The speed of the task currently executing. Running
speed can be adjusted by employing Dynamic Voltage and Frequency
Selection (DVFS) techniques, which lower the operating frequency of
the processor (CPU speed) and reduce its energy consumption [71]. As
the processor changes its operational frequency and voltage, the task
execution speed varies accordingly. Adjusting task speed is desirable
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because it allows a node to adapt the execution speed of a task based
on the energy source availability.

Task scheduling protocols for EHWSNs can be categorized depending on
the type of tasks they schedule. At the highest level, task scheduling solutions
can be divided into protocols that schedule node tasks and protocols that
schedule network tasks.
Scheduling protocols for node tasks. The Lazy Scheduling algorithm (LSA) [83]
is one of the earliest work in EHWSN task scheduling. Tasks are dynamically
scheduled depending on future energy availability, the capacity of the energy
storage, the residual energy, and the maximum power consumption of the
sensor node. In particular, LSA aims at keeping the energy storage level as
high as possible and starts executing a task T at time t only if the following
conditions are met: T is ready for execution; T has the earliest deadline among
those of tasks that are ready; the sensor node will not run out of energy if
it executes T to completion (at its maximum power), and T will not miss
its deadline if the node starts executing it at time t. LSA introduces the
concept of energy variability characterization curve (EVCC), which captures
the dynamics of the energy source. This concept is used to determine the
schedulability of a set of tasks. More specifically, the LSA uses an offline
schedulability test that, given the EVCC of the energy source, the capacity of
the energy storage, and the maximum power requirement of a running task,
determines whether all the deadlines of a given set of tasks can be met or not.
LSA suffers several drawbacks. For instance, in realistic application a task
actual energy consumption does not depend on the worst case energy demand,
but rather on factors including the sensor operational state and the circuitry
used to perform the task. Furthermore, LSA does not consider dependency
among tasks. Finally, the performance of LSA is highly dependent on the
accuracy of predicted available energy, which is challenging and, as mentioned,
prone to errors.

The STAM-STFU protocol by Audet et al. [3] combines the operation of
two scheduling algorithms, namely, Smooth to Average Method (STAM) and
Smooth to Full Utilization (STFU), for scheduling a set of tasks offline, with
the aim of reducing the total task deadline violations. STAM-STFU handles
energy uncertainty and deadline constraints without relying on any energy
prediction model. STAM-STFU introduces the concept of virtual tasks to
smooth out the energy consumption in the long run. Each real (physical)
task has a corresponding virtual task that has the same arrival time, but
equal or longer duration, and equal or smaller energy demand. Virtual tasks
are distributed over a longer execution time than their real counterparts, but
each consumes the same amount of energy as its corresponding real task. A
scheduling for virtual tasks that meets the deadline constraints will not violate
the deadline of any real task. STAM-STFU smooths out real task consumption
to approximately the average power required by all tasks and then schedules
them by using the Earliest Deadline First algorithm. Simulation results show



18 WIRELESS SENSOR NETWORKS WITH ENERGY HARVESTING

that STAM-STFU performs better than non-energy-aware static scheduling
algorithms. It is also shown that its performance is similar to LSA that, with
the additional benefit of not requiring a prediction model. It is important to
note that STAM-STFU is only suitable for offline scheduling, which requires
that tasks and their deadlines are known in advance.

The goal of the multi-version scheduling algorithm [109] is to execute the
most important and valuable periodic tasks while meeting all the timing and
energy constraints. Each task is assumed to have multiple versions, each
with different characteristics and reward. “Easier” versions of a task execute
faster, require less energy, and produce less accurate and valuable results. This
static (offline) scheduling solution determines the best task versions and their
execution speeds that maximize rewards. Selection is based on worst case
scenario assumptions, i.e., the worst-case task execution times, worst-case
number of speed changes, minimum harvesting rate, and worst-case battery
discharging rates, are assumed and known in advance. However, a system does
not always consume or harvest energy as in the worst-case, and often time
the selection of tasks is not optimal. To obviate to this problem, the authors
propose dynamic algorithms according to which the node periodically check
the current energy storage and accordingly reschedule the tasks.

In [38] EL Ghor et al. describe an on-line scheduling algorithm, called EDeg
(Earliest Deadline with energy guarantee), a variant of the Earliest Deadline
First algorithm. EDeg maintains energy neutrality by making sure that be-
fore a task is started sufficient energy is in storage for all future occurring
tasks. This protocol assumes that future task arrival times are known. Task
execution is delayed until recharging has produced enough energy to meet the
task deadline. When the stored energy drops below a threshold EDeg stops
the current tasks and starts recharging the battery up to a level that support
task completion. Thus, tasks never run in absence of enough energy. The
requirement to know in advance the arrival times, the deadlines, and the en-
ergy demands of the tasks, seriously limits the applicability of this algorithm
in real-life application scenarios.

Steck et al. [115] present a task utility scheduling protocol with two main
goals: First, given a certain level of utility, determine the expected execution
time and energy consumption of a set of tasks. Second, given a time con-
straint, find the maximum achievable utility for the set of tasks. This algo-
rithm schedules the tasks by balancing task utility and execution time subject
to an energy constraint aimed to ensure the energy neutrality of the system.
The relationship among the tasks is assumed to be known and modeled by a
Directed Acyclic Graph (DAG). In addition, the task execution times, past
energy harvesting information, tasks qualities, and utility relationships are
given in advance. For most applications, the utility is modeled as accuracy
and as a function of the task priority. A task with higher priority is executed
with the higher utility.

In [72], an energy-aware DVFS (EA-DVFS) scheduling algorithm is pro-
posed that dynamically matches its schedules to the stored energy and har-
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vestable energy in the future. Specifically, tasks are executed at full speed
if the stored energy is sufficient. Execution speed is slowed down when the
stored energy is not sufficient. This work has been extended further in [73] by
the adaptive scheduling and DVFS algorithm (AS-DVFS). AS-DVFS adap-
tively tunes the operation voltage and frequency of a node processor when-
ever possible while maintaining the time and energy constraints. The goal
of AS-DVFS is to reach a system-wide energy efficiency by scheduling and
running the tasks at the lowest possible speed and allocating the workload to
the processor as evenly as possible. Moreover, it decouples the timing and
energy constraints, addressing them separately. A harvesting-aware DVFS
(HA-DVFS) algorithm is proposed in [71] to further improve the system per-
formance and energy efficiency of EA-DVFS and AS-DVFS. In particular, the
main goals of HA-DVFS are to keep the running speed of the tasks always
at the lowest possible value and avoid wasting harvested energy. Based on
the prediction of the energy harvesting rate in the near future, HA-DVFS
schedules the tasks and tunes the speed and workload of the system to avoid
energy overflow. Three different time series prediction techniques, namely
regression analysis, moving average, and exponential smoothing, are used for
predicting the harvested energy. Similar to AS-DVFS, HA-DVFS decouples
the energy constraints and timing constraints to reduce the complexity of
scheduling algorithm.

Another DVFS-based task scheduling algorithm is presented in [98]. The
basic DVFS ideas are combined with a linear regression model. The model
is used to associate the number of tasks and their complexity to the execu-
tion time, energy consumption, and data accuracy. The main objectives of
this protocol are maximizing system performance given the current energy
availability, increasing the efficiency of energy utilization, and improving task
accuracy. The protocol is deemed specifically suitable for structural health
monitoring applications, since the events generated by this kind of applica-
tions concern mostly periodic tasks instead of sporadic externally triggered
events.
Scheduling protocols for network tasks. Task allocation at the network level
concerns matching the sensing resources of a WSN to appropriate tasks (mis-
sions), which may come to the network dynamically. This is a non trivial
task, because a given node may offer support to different missions with dif-
ferent levels of accuracy and fit (utility). Missions may vary in importance
(profit) and amount of resources they require (demand). They may also ap-
pear in the network at any time and may have different duration. The goal
of a sensor-missions assignment algorithm is to assign available nodes to ap-
propriate missions, maximizing the profit received by the network for mission
execution. Although solutions for WSNs with battery-operated nodes have
been proposed for this problem [5, 59, 107, 108], until recently [66] no attention
has been given to networks whose nodes have energy harvesting capabilities.
For these networks, new paradigms for mission assignments are needed, which
take into account that nodes currently having little or no energy left might
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have enough in the future to carry out new missions. These solutions should
also consider that energy availability is time-dependent and that energy stor-
age is limited in size and time (due to leakage) so that energy usage should
be carefully planned to minimize waste of energy.

EN-MASSE [66] is a decentralized heuristic for sensor-mission assignment
in energy-harvesting wireless sensor networks, which effectively takes into ac-
count the characteristics of an energy harvesting system to decide which node
should be assigned to a particular mission at a given time. It is able to handle
hybrid storage systems consisting of multiple energy storage devices (super-
capacitor and battery) and to adapt its behavior according to the current
and expected energy availability of the node, while maximizing the efficient
usage of the energy harvested. EN-MASSE has been designed for sensing
task assignment. Each mission arrives in the network at a specific geographic
location li. In EN-MASSE the sensor node closest to li is selected as the
mission leader and coordinates the process of assigning nodes to the mission.
The communication protocol described in [59, 107] is selected for exchanging
information between the mission leader and the nearby nodes. Each time a
new mission arrives in the network, the leader advertises mission information,
including mission location, profit and demand, to its two-hop neighbors, start-
ing the bidding phase for the mission. During this bidding phase, each node
receiving the mission advertisement message sent by the leader, autonomously
decides whether to bid for participating to the mission or not. Such a decision
is taken accordingly to the bidding scheme used by the node. EN-MASSE uses
an energy prediction model to estimate the energy a node will receive from
the ambient source and to classify missions. Different predictors, such as the
ones described in Section 1.4, may be used in combination with EN-MASSE.

1.5.2 Harvesting-aware communication protocols: MAC and Routing

Harvesting capabilities have changed the design objectives of communication
protocols for EHWSNs from energy conservation to opportunistic optimiza-
tion of the use of the harvested energy. This fundamental change calls for novel
communication protocols. The aim of this section is to explore the solutions
proposed so far for EHWSN medium access control (MAC) and routing.
MAC protocols. We describe exemplary MAC protocols for EHWSNs,
which include ODMAC [42], EA-MAC [61, 62], MTTP [45], and PP-MAC [41].

ODMAC [42] is an on demand MAC protocol for EHWSNs. It is based
on three basic ideas: Minimizing wasting energy by moving the idle listening
time from the receiver to the transmitter; adapt the duty cycle of the node to
operate in the energy neutral operation (ENO) state, and reducing the end-
to-end delay by employing an opportunistic forwarding scheme. In ODMAC,
transmission scheduling is accomplished by having available receivers broad-
casting a beacon packet periodically. Nodes wishing to transmit listen to
the channel, waiting for a beacon. Upon receiving a beacon, the transmit-
ter attempts packet transmission to the source of the beacon. Setting the
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Figure 1.6 ODMAC: data packet transmission.

beacon period imposes a trade-off between energy consumption and end-to-
end latency: When the beacon period is short, more energy is consumed for
transmitting beacons. Longer beacon periods result in higher energy conser-
vation. Figure 1.6 shows the operation mechanism of the ODMAC protocol.
ODMAC supports a dynamic duty cycle mode, in which the sensing period
and the beacon periods of each node is periodically adjusted according to
the current power harvesting rate. To this end, a battery level threshold is
selected and periodically compared the current battery level to determine if
the duty cycle should be increased or decreased. ODMAC also includes the
concept of opportunistic forwarding, in which, instead of waiting for a specific
beacon, each frame is forwarded to the sender of the first beacon received as
long as it is included in a list of potential forwarders. In ODMAC it is assumed
that charging (harvesting) is independent of sensor node operations and thus
a sensor can harvest available energy during all operational states, i.e., ir-
respective of whether it is sleeping, listening, transmitting, etc. ODMAC is
not suitable to be used in lossy environment, as it does not acknowledge and
retransmits packets.

EA-MAC [61, 62] is a MAC protocol proposed for EHWSNs with RF en-
ergy transfer. EA-MAC uses the node energy harvesting status as a control
variable to tune the node duty cycles and back-off times. To this end, two
adaptive methods, energy adaptive duty cycle and energy adaptive contention
algorithm, are proposed to manage the node duty cycle and back-off time de-
pending on the harvested power rate. EA-MAC is similar to the unslotted
CSMA/CA algorithm in IEEE 802.15.4 [56], but its sleep duration, back-off
times, and state transitions are controlled by the average amount of har-
vestable energy. When a node harvested energy level is equal to the energy
required to transmit a packet, the node transitions from sleep state to active
state. Then it follows a CSMA/CA scheme to transmit the packet. If the
channel is idle during the clear channel assessment (CCA) period, the node
transmits a data packet. If the channel is busy, the node decides to either per-
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form the random backoff procedure or terminate the CSMA/CA algorithm.
The number of backoff slots depends on the current energy harvesting rate.
Analytical models for the throughput and fairness of EA-MAC are provided
and validated by simulations [62]. Similar to ODMAC, EA-MAC assumes the
sensor node can harvest energy in any operational states. EA-MAC does not
consider some important application requirements, such as end-to-end delay,
and provides no mechanism to optimize network performance and lifetime. In
addition, EA-MAC suffers form the hidden terminal problem, which results
in increased collisions. Finally, its performance is not compared to any other
protocol, such as slotted or unslotted CSMA/CA.

The Probabilistic polling (PP-MAC) protocol [41] is a polling-based MAC
mechanism that leverages the energy characteristics of EHWSNs to enhance
the performance of traditional polling schemes in terms of throughput, fair-
ness and scalability. PP-MAC is similar to the polling protocol described
in [39]: The sink broadcasts a polling packet and the polled sensor responds
with a packet transmission (single-hop topology). Instead of carrying the ID
of a specific sensor, the polling packet contains a contention probability that
the receiving sensor nodes use to decide whether to transmit their packet or
not. The contention probability is computed based on current energy har-
vesting rate, number of nodes, and packet collisions. The probabilistic polling
protocol increases the contention probability gradually when no sensor re-
sponds to the polling packet. It decreases it whenever there is a collision
between two or more sensor nodes. As a result, and based on an additive-
increase multiplicative-decrease (AIMD) mechanism, the contention probabil-
ity is decreased when more nodes are added to the EHWSN, and increased
when nodes fail or are removed from the network. Moreover, in case of in-
crease/decrease of the average energy harvesting rates, the contention proba-
bility is decreased/increased accordingly. PP-MAC uses the charge-and-spend
harvesting strategy in which it first accumulates enough energy and then goes
to the receive state to listen and receive the polling packet. Nodes return back
to charging state either when their energy falls below the energy required to
transmit a data packet or after transmitting their packet. Energy is assumed
to be harvested only while in charging state. Analytical formulas and analy-
sis of the throughput performance of PP-MAC is presented and validated by
simulations. PP-MAC does not support multi-hop EHWSNs.

The multi-tier probabilistic polling (MTPP) protocol [45] extends proba-
bilistic polling à la PP-MAC to multi-hop data delivery in EHWSNs with no
energy storage, i.e., whose operations are powered solely by energy currently
harvested (charge-and-spend harvesting policy). The polling packets gener-
ated by the sink are sent to the immediate neighbors of the sink, and these
nodes forward them to nodes in following tiers, in a “wave-expanding” fash-
ion (Figure 1.7). Polling packets and data packets are broadcast and relayed,
respectively, from tier to tier until they reach their destination. As the num-
ber of tiers increases, the overhead of polling packets and packet collisions
also increase, imposing higher latencies. Analytical models for energy con-
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Figure 1.7 Overview of MTTP multi-tier EHWSN architecture.

sumption, energy harvesting, energy storage, and interference as well as the
delivery probability are presented in [55] and validated by numerical analysis.

A comparative summary of the characteristics of these presented MAC
protocol is presented in Table 1.2.

Table 1.2 Comparison of MAC protocols for EHWSNs.

ODMAC EA-MAC PP-MAC MTTP

Topology Multi-hop Single-hop Single-hop Multi-hop

Harvesting policy Store Store Charge-and-spend Charge-and-spend

Harvesting technology Generic RF energy transfer Solar Solar

Latency Increases with traffic Fair Low High

Channel access type CSMA/CA CSMA/CA Polling Polling

Scalability Good Weak Good Good

Communication patterns All Convergecast Convergecast Convergecast & Broadcast

Performance evaluation OPNET simulations OPNET simulations Real-measurements & QualNet Real-testbed

Use of control packets Yes No Yes Yes

Adaptivity to changes Fair Good Good Good

Routing protocols. Energy-efficient routing has been widely explored for
battery operated WSNs [7, 17, 19, 44, 127, 137]. EHWSNs exhibit unique
characteristics and among their man objective there is not only extending the
network lifetime, but also the maximization of the workload that the network
can sustain, given the source-dependent energy availability of the nodes [67].
This is the rationale behind protocols for routing in EHWSNs that we present
in this section.

HESS. In [87], Pais et al. propose a routing protocol termed HESS for hy-
brid energy storage systems combining a supercapacitor with a rechargeable
battery. Their approach is to favor routes that use more energy from superca-
pacitors and that go through nodes with higher harvesting rates. Their work
stems from the fact that a rechargeable battery can only sustain a limited
amount of recharge cycles before its capacity falls below 80% of its origi-
nal capacity. The authors propose a cost-benefit function that reflects the
cost and revenue of choosing a specific node as a relay for a packet. Such a



24 WIRELESS SENSOR NETWORKS WITH ENERGY HARVESTING

function considers several factors, including the relay hop count, its residual
battery and supercapacitor energy, the energy it harvested previously, the
remaining cycles of its battery and its queue occupancy. Nodes with higher
residual energy, harvesting rate and remaining battery cycles are preferred
as relays, while choosing nodes with higher hop count or lower transmission
queue availability is less desirable. These cost/benefit factors are combined
together, opportunely weighted, in order to account for both desirable and
undesirable parameters. The overall goal of HESS is to minimize the cost
of each end-to-end transmission. A simulation-based performance evaluation
shows that HESS provides an average 10% increase of network residual en-
ergy with respect to the Energy Aware Routing (EAR) protocol [74], without
compromising the data packet delivery ratio.

DEHAR (Distributed Energy Harvesting Aware Routing Algorithm, Jakob-
sen et al. [57]) is an adaptive and distributed routing for EHWSNs that cal-
culates the shortest paths to the sink based on hop count and the energy
availability of the nodes. To add energy-harvesting awareness to the algo-
rithm, a local penalty is assigned to each node. This penalty, dynamically
updated, is inversely proportional to the fraction of energy available to the
node. When the energy buffer of the node is fully charged, this penalty should
ideally be zero, while it should tend to infinity when the node has depleted its
energy. When a change in the local penalty of a node occurs, it advertises it
to its immediate neighbors. For each node, the local penalty is combined with
distance from the sink to define the node energy distance, which is used by
other nodes when choosing a potential relay. The energy distance of a node
may become a local minimum if the penalty of a node neighbor is changed
due to variations in its energy availability. To solve this problem, distributed
penalties are introduced. Each time a node receives an energy update from
a neighbor, it checks if it has become a local minimum. If this is the case, it
increases its distributed distance penalty and advertises it to its immediate
neighbors. Distributed and local penalty of a node are finally merged in a
total penalty that is distributed to neighbor nodes.

EHOR: Energy Harvesting Opportunistic Routing (Eu et al. [40]) is an op-
portunistic routing protocol for EHWSNs powered solely by energy harvesters
(no batteries). Nodes of EHWSNs powered only by harvested energy are nor-
mally awake for a short period of time, then they shut down to recharge. To
determine the best active relays in its neighborhood, a node partitions poten-
tial relays in groups, or regions, based on their distance from the sink and on
the residual energy of the nodes in the region. After receiving a data packet,
the potential relay that is the closest to the sink rebroadcasts it. Each node
in the network follows a charging cycle consisting of a charging phase, during
which the power consumption is minimal and the node waits to be recharged
by the harvested energy, a receive phase, to which the node switch when it is
fully charged, and an optional transmit phase. Simulation results show that
EHOR achieves good performance and outperforms traditional opportunistic
routing protocols. EHOR, however, assumes that the network topology is
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linear, i.e., that nodes are uniformly deployed over a given interval and does
not work in 2D topologies.

Noh and Yoon introduce D-APOLLO (Duty cycle-based Adaptive toPO-
Logical KR aLgOrithm [85]) a harvesting-aware geographic routing protocol.
Their approach aims at maximizing the utilization of the harvested energy
and reduce latency by dynamically and periodically adapt the duty-cycle and
the knowledge range (KR) of each node. The knowledge range of each node
is the topological extent of the information that it collects. Dimensioning
the KR involves a trade-off between the optimality of the path produced by
the routing algorithm and the energy needed to collect and maintain a larger
quantity of information about a node neighbors. The duty cycle of the nodes
and their knowledge range are usually fixed in battery-operated WSNs. D-
APOLLO, instead, periodically tries to find the duty cycle and the knowledge
range that maximize utilization of the harvested energy based on the expected
harvesting power rate, the residual energy of the node and the predicted en-
ergy consumption.

The Energy-opportunistic Weighted Minimum Energy (E-WME, Lin et
al. [69]) calculates the shortest path to the sink based on a cost function
metric that considers the residual energy of the node, its battery capacity, it
harvesting power rate and the energy required for receiving and transmitting
packets. The cost of each node is an exponential function of the nodal residual
energy, a linear function of the transmit and receive energies, and an inversely
linear function of the harvesting power rate. The authors show that as an on-
line protocol E-WME has an asymptotically optimal competitive ratio and
that it can lead in practice to significant improvements in the performance of
EHWSNs with respect to other harvesting-unaware routing protocols.

Bogliolo et al. present a modified version of the Ford-Fulkerson algorithm to
determine the maximum energetically-sustainable workload of an EHWSN [13].
Their Randomized Max-Flow (R-MF) protocol, and its enhancement Ran-
domized Minimum Path Recovery Time (R-MPRT) [67], select the edge over
which to route the packet with probability proportional to the maximum flow
through that edge. More specifically, in R-MF and R-MPRT the cost Cu,v of
routing a packet through a link (u, v) is expressed as

Cu,v =
pu

eu,vrouting
, (1.1)

where pu is the harvesting power rate of node u, and eu,vrouting is the energy
needed to process or generate a packet at node u and to transmit it to node
v through the link (u, v).

Hasenfratz et al. analyze and compare three state-of-the-art routing pro-
tocols for EHWSNs: R-MF, E-WME and R-MPRT [50]. In their work, they
show the influence of various real-life settings on their performance, namely,
1) the usage of a low-power MAC protocol instead of an ideal one; 2) the
effect of considering a realistic wireless channel, and 3) the influence of the
protocol overhead. They also propose a modified version of the R-MPRT al-
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gorithm, which is able to outperform R-MPRT in scenarios where little energy
is harvested from the environment. More precisely, they suggest to modify
Equation (1.1) as follows:

Cu,v =
Eu

eu,vrouting
, (1.2)

where Eu is the amount of energy available at node u, and eu,vrouting is the
energy needed to process or generate a packet at node u and transmit it to
node v through the link (u, v).

In [132], Zeng et al. propose two geographic routing algorithms, called
GREES-L and GREES-M, which take into account energy harvesting condi-
tions and link quality. Each node is required to maintain its one-hop neighbor
information including the neighbors location, residual energy, energy harvest-
ing rate, energy consuming rate, and wireless link quality. While forwarding
a packet towards its destination, the nodes in the network try to balance
the energy consumption across their neighbors, by minimizing a cost function
combining the information they maintain. Such cost function is defined based
on two factors, namely, the geographical advance per packet transmission and
the energy availability of the receiving node. The difference between GREES-
L and GREES-M is in the way they combine the two factors: GREES-L uses
a linear combination of them, while GREES-M multiplies them. GREES-L
and GREES-M only consider as potential relay neighbor nodes that provide
positive advancement towards the sink, which is typical of greedy geographic
forwarding. GREES-L and GREES-M have been shown to be more energy
efficient than the corresponding residual-energy-based protocols via simula-
tions.

In [35], Doost et al. propose a new routing metric based on the charging
ability of the sensor nodes. The metric can be used along existing routing
protocols for wireless ad hoc and sensor networks. In the paper, it is demon-
strated over the well-know ad hoc routing protocol AODV [20] on EHWSNs
powered by wireless energy transfer. Routes are formed with nodes that have
the best energy charging characteristics. In particular, each node selects the
path with the lowest value of the maximum charging times. Simulation re-
sults show that this choice is effective in producing high network lifetime and
throughput.

1.6 CONCLUSIONS

This chapter covers the fundamental aspects of EHWSNs, ranging from the
architecture of a EHWSN node and of its energy subsystem to protocols for
task allocation, MAC and routing, passing through models for predicting en-
ergy availability. With the advancement on energy harvesting techniques, and
the development of small factor harvester for many different energy sources,
EHWSNs are poised to become the technology of choice for the host of applica-
tions that require network functionalities for years or even decades. Through
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the definition of new hardware and communication protocols specifically tai-
lored to the fundamentally different models of energy availability, new appli-
cations can also be conceived that rely on “perennial” functionalities from
networks that are truly self-sustaining and with low environmental impact.
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