
 Wireshark Lab:
Getting Started v6.0

Supplement to Computer Networking: A Top-Down

Approach, 6
th

ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved

One’s understanding of network protocols can often be greatly deepened by “seeing protocols in
action” and by “playing around with protocols” – observing the sequence of messages exchanged
between two protocol entities, delving down into the details of protocol operation, and causing
protocols to perform certain actions and then observing these actions and their consequences. This can
be done in simulated scenarios or in a “real” network environment such as the Internet. In the
Wireshark labs you’ll be doing in this course, you’ll be running various network applications in
different scenarios using your own computer (or you can borrow a friends; let me know if you don’t
have access to a computer where you can install/run Wireshark). You’ll observe the network protocols
in your computer “in action,” interacting and exchanging messages with protocol entities executing
elsewhere in the Internet. Thus, you and your computer will be an integral part of these “live” labs.
You’ll observe, and you’ll learn, by doing.

In this first Wireshark lab, you’ll get acquainted with Wireshark, and make some simple packet
captures and observations.

The basic tool for observing the messages exchanged between executing protocol entities is called a
packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”) messages being
sent/received from/by your computer; it will also typically store and/or display the contents of the
various protocol fields in these captured messages. A packet sniffer itself is passive. It observes
messages being sent and received by applications and protocols running on your computer, but never
sends packets itself. Similarly, received packets are never explicitly addressed to the packet sniffer.
Instead, a packet sniffer receives a copy of packets that are sent/received from/by application and
protocols executing on your machine.

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols (in this
case, Internet protocols) and applications (such as a web browser or ftp client) that normally run
on your computer. The packet sniffer, shown within the dashed rectangle in Figure 1 is an
addition to the usual software in your computer, and consists

of two parts. The packet capture library receives a copy of every link-layer frame that is sent from

or received by your computer. Recall from the discussion from section 1.5 in the text (Figure 1.24
1

)
that messages exchanged by higher layer protocols such as HTTP, FTP, TCP, UDP, DNS, or IP all are
eventually encapsulated in link-layer frames that are transmitted over physical media such as an
Ethernet cable. In Figure 1, the assumed physical media is an Ethernet, and so all upper-layer
protocols are eventually encapsulated within an Ethernet frame. Capturing all link-layer frames thus
gives you all messages sent/received from/by all protocols and applications executing in your
computer.

 packet
sniffer

application (e.g., www
application

browser, ftp client)

operating
system

copy of all Ethernet
frames sent/received

to/from network to/from network

Figure 1: Packet sniffer structure

The second component of a packet sniffer is the packet analyzer, which displays the contents of all
fields within a protocol message. In order to do so, the packet analyzer must “understand” the
structure of all messages exchanged by protocols. For example, suppose we are interested in
displaying the various fields in messages exchanged by the HTTP protocol in Figure 1. The packet
analyzer understands the format of Ethernet frames, and so can identify the IP datagram within an
Ethernet frame. It also understands the IP datagram format, so that it can extract the TCP segment
within the IP datagram. Finally, it understands the TCP segment structure, so it can extract the HTTP
message contained in the TCP segment. Finally, it understands the HTTP protocol and so, for
example, knows that the first bytes of an HTTP message will contain the string “GET,” “POST,” or
“HEAD,” as shown in Figure 2.8 in the text.

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs, allowing us
to display the contents of messages being sent/received from/by protocols at different levels of the
protocol stack. (Technically speaking, Wireshark is a packet analyzer that uses a packet capture library
in your computer). Wireshark is a free network protocol analyzer that runs on Windows, Linux/Unix,
and Mac computers. It’s an ideal packet analyzer for our labs – it is stable, has a large user base and
well-documented support that includes a user-guide
(http://www.wireshark.org/docs/wsug_html_chunked/),

1

References to figures and sections are for the 6
th

edition of our text, Computer Networks, A Top-down
Approach, 6

th

ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

Transport (TCP/UDP)
Network (IP)

Link (Ethernet)
Physical

man pages (http://www.wireshark.org/docs/man-pages/), and a detailed FAQ
(http://www.wireshark.org/faq.html), rich functionality that includes the capability to analyze
hundreds of protocols, and a well-designed user interface. It operates in computers using Ethernet,
serial (PPP and SLIP), 802.11 wireless LANs, and many other link-layer technologies (if the OS on
which it's running allows Wireshark to do so).

Getting Wireshark

In order to run Wireshark, you will need to have access to a computer that supports both Wireshark
and the libpcap or WinPCap packet capture library. The libpcap software will be installed for you, if
it is not installed within your operating system, when you install Wireshark. See
http://www.wireshark.org/download.html for a list of supported operating systems and download sites

Download and install the Wireshark software:

 Go to http://www.wireshark.org/download.html and download and install the Wireshark binary
for your computer.

The Wireshark FAQ has a number of helpful hints and interesting tidbits of information, particularly
if you have trouble installing or running Wireshark.

Running Wireshark

When you run the Wireshark program, you’ll get a startup screen, as shown below:

Figure 2: Initial Wireshark Screen

Take a look at the upper left hand side of the screen – you’ll see an “Interface list”. This is the list of
network interfaces on your computer. Once you choose an interface, Wireshark will capture all
packets on that interface. In the example above, there is an Ethernet interface (Gigabit network
Connection) and a wireless interface (“Microsoft”).

If you click on one of these interfaces to start packet capture (i.e., for Wireshark to begin capturing all
packets being sent to/from that interface), a screen like the one below will be displayed, showing
information about the packets being captured. Once you start packet capture, you can stop it by using
the Capture pull down menu and selecting Stop.

Figure 3: Wireshark Graphical User Interface, during packet capture and analysis

The Wireshark interface has five major components:

 The command menus are standard pulldown menus located at the top of the window.
Of interest to us now are the File and Capture menus. The File menu allows you to save
captured packet data or open a file containing previously captured packet data, and exit
the Wireshark application. The Capture menu allows you to begin packet capture.

 The packet-listing window displays a one-line summary for each packet captured,
including the packet number (assigned by Wireshark; this is not a packet number contained
in any protocol’s header), the time at which the packet was captured, the packet’s source
and destination addresses, the protocol type, and protocol-specific information contained in
the packet. The packet listing can be sorted according to any of these categories by clicking
on a column name. The protocol type field lists the highest-level protocol that sent or
received this packet, i.e., the protocol that is the source or ultimate sink for this packet.

 The packet-header details window provides details about the packet selected
(highlighted) in the packet-listing window. (To select a packet in the packet-listing
window, place the cursor over the packet’s one-line summary in the packet-listing window
and click with the left mouse button.). These details include information about the
Ethernet frame (assuming the packet was sent/received over an Ethernet interface) and IP
datagram that contains this packet. The amount of Ethernet and IP-layer detail displayed
can be expanded or minimized by clicking on the plus minus boxes to the left of the
Ethernet frame or IP datagram line in the packet details window. If the packet has been
carried over TCP or UDP, TCP or UDP details will also be displayed, which can similarly
be expanded or minimized. Finally, details about the highest-level protocol that sent or
received this packet are also provided.

 The packet-contents window displays the entire contents of the captured frame, in both
ASCII and hexadecimal format.

 Towards the top of the Wireshark graphical user interface, is the packet display filter
field, into which a protocol name or other information can be entered in order to filter
the information displayed in the packet-listing window (and hence the packet-header
and packet-contents windows). In the example below, we’ll use the packet-display filter
field to have Wireshark hide (not display) packets except those that correspond to HTTP
messages.

Taking Wireshark for a Test Run

The best way to learn about any new piece of software is to try it out! We’ll assume that your
computer is connected to the Internet via a wired Ethernet interface. Indeed, I recommend that you do
this first lab on a computer that has a wired Ethernet connection, rather than just a wireless
connection. Do the following

1. Start up your favorite web browser, which will display your selected homepage.

 2. Start up the Wireshark software. You will initially see a window similar to that shown
in Figure 2. Wireshark has not yet begun capturing packets.

3. To begin packet capture, select the Capture pull down menu and select Interfaces. This
will cause the “Wireshark: Capture Interfaces” window to be displayed, as shown in
Figure 4.

Figure 4: Wireshark Capture Interface Window

4. You’ll see a list of the interfaces on your computer as well as a count of the packets
that have been observed on that interface so far. Click on Start for the interface on
which you want to begin packet capture (in the case, the Gigabit network
Connection). Packet capture will now begin -Wireshark is now capturing all packets
being sent/received from/by your computer!

5. Once you begin packet capture, a window similar to that shown in Figure 3 will appear.

This window shows the packets being captured. By selecting Capture pulldown menu
and selecting Stop, you can stop packet capture. But don’t stop packet capture yet.
Let’s capture some interesting packets first. To do so, we’ll need to generate some
network traffic. Let’s do so using a web browser, which will use the HTTP protocol
that we will study in detail in class to download content from a website.

6. While Wireshark is running, enter the URL:

7. After your browser has displayed the INTRO-wireshark-file1.html page (it is a
simple one line of congratulations), stop Wireshark packet capture by selecting stop
in the Wireshark capture window. The main Wireshark window should now look
similar to Figure 3. You now have live packet data that contains all protocol
messages exchanged between your computer and other network entities! The HTTP
message exchanges with the gaia.cs.umass.edu web server should appear somewhere
in the listing of packets captured. But there will be many other types of packets
displayed as well (see, e.g., the many different protocol types shown in the Protocol
column in Figure 3). Even though the only action you took was to download a web
page, there were evidently many other protocols running on your computer that are
unseen by the user. We’ll learn much more about these protocols as we progress
through the text! For now, you should just be aware that there is often much more
going on than “meet’s the eye”!

and have that page displayed in your browser. In order to display this page, your
browser will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP
messages with the server in order to download this page, as discussed in section 2.2 of
the text. The Ethernet frames containing these HTTP messages (as well as all other
frames passing through your Ethernet adapter) will be captured by Wireshark.

http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html

8. Type in “http” (without the quotes, and in lower case – all protocol names are in lower
case in Wireshark) into the display filter specification window at the top of the main
Wireshark window. Then select Apply (to the right of where you entered “http”). This
will cause only HTTP message to be displayed in the packet-listing window.

9. Find the HTTP GET message that was sent from your computer to the gaia.cs.umass.edu
HTTP server. (Look for an HTTP GET message in the “listing of captured packets”
portion of the Wireshark window (see Figure 3) that shows “GET” followed by the
gaia.cs.umass.edu URL that you entered. When you select the HTTP GET message, the
Ethernet frame, IP datagram, TCP segment, and HTTP message header information will

be displayed in the packet-header window
2

. By clicking on ‘+’ and ‘-‘ right-pointing and
down-pointing arrowheads to the left side of the packet details window, minimize the
amount of Frame, Ethernet, Internet Protocol, and Transmission Control Protocol
information displayed. Maximize the amount information displayed about the HTTP
protocol. Your Wireshark display should now look roughly as shown in Figure 5. (Note,
in particular, the minimized amount of protocol information for all protocols except
HTTP, and the maximized amount of protocol information for HTTP in the packet-header
window).

10. Exit Wireshark

Congratulations! You’ve now completed the first lab.

2

Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained
within a TCP segment, which is contained (encapsulated) in an IP datagram, which is encapsulated in
an Ethernet frame. If this process of encapsulation isn’t quite clear yet, review section 1.5 in the text

Figure 5: Wireshark window after step 9

What to hand in

The goal of this first lab was primarily to introduce you to Wireshark. The following questions will
demonstrate that you’ve been able to get Wireshark up and running, and have explored some of its
capabilities. Answer the following questions, based on your Wireshark experimentation:

1. List 3 different protocols that appear in the protocol column in the unfiltered packet-listing
window in step 7 above.

2. How long did it take from when the HTTP GET message was sent until the HTTP OK reply
was received? (By default, the value of the Time column in the packet-listing window is the
amount of time, in seconds, since Wireshark tracing began. To display the Time field in
time-of-day format, select the Wireshark View pull down menu, then select Time Display
Format, then select Time-of-day.)

3. What is the Internet address of the gaia.cs.umass.edu (also known as wwwnet.cs.umass.edu)?
What is the Internet address of your computer?

4. Print the two HTTP messages (GET and OK) referred to in question 2 above. To do so, select
Print from the Wireshark File command menu, and select the “Selected Packet Only” and
“Print as displayed” radial buttons, and then click OK.

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved

 Wireshark Lab: HTTP v6.1

Supplement to Computer Networking: A Top-Down

Approach, 6
th

ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb

Having gotten our feet wet with the Wireshark packet sniffer in the introductory lab, we’re now ready
to use Wireshark to investigate protocols in operation. In this lab, we’ll explore several aspects of the
HTTP protocol: the basic GET/response interaction, HTTP message formats, retrieving large HTML
files, retrieving HTML files with embedded objects, and HTTP authentication and security. Before

beginning these labs, you might want to review Section 2.2 of the text.
1

1. The Basic HTTP GET/response interaction

Let’s begin our exploration of HTTP by downloading a very simple HTML file -one that is very short,
and contains no embedded objects. Do the following:

1. Start up your web browser.
2. Start up the Wireshark packet sniffer, as described in the Introductory lab (but don’t

yet begin packet capture). Enter “http” (just the letters, not the quotation marks) in
the display-filter-specification window, so that only captured HTTP messages will be
displayed later in the packet-listing window. (We’re only interested in the HTTP
protocol here, and don’t want to see the clutter of all captured packets).

3. Wait a bit more than one minute (we’ll see why shortly), and then begin Wireshark
packet capture.

4. Enter the following to your browser
http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file1.html
Your browser should display the very simple, one-line HTML file.

5. Stop Wireshark packet capture.

1

References to figures and sections are for the 6
th

edition of our text, Computer Networks, A Top-down
Approach, 6

th

ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

Your Wireshark window should look similar to the window shown in Figure 1. If you are unable
to run Wireshark on a live network connection, you can download a packet trace that was created

when the steps above were followed.
2

Figure 1: Wireshark Display after http://gaia.cs.umass.edu/wireshark-labs/ HTTPwireshark-
file1.html has been retrieved by your browser

The example in Figure 1 shows in the packet-listing window that two HTTP messages were captured:
the GET message (from your browser to the gaia.cs.umass.edu web server) and the response message
from the server to your browser. The packet-contents window shows details of the selected message
(in this case the HTTP OK message, which is highlighted in the packet-listing window). Recall that
since the HTTP message was carried inside a TCP segment, which was carried inside an IP datagram,
which was carried within an Ethernet frame, Wireshark displays the Frame, Ethernet, IP, and TCP
packet information as well. We want to minimize the amount of non-HTTP data displayed (we’re
interested in HTTP here, and will be investigating these other protocols is later labs), so make sure
the boxes at the far left of the Frame, Ethernet, IP and TCP information have a plus sign or a right-
pointing triangle (which means there is hidden, undisplayed information), and the HTTP line has a
minus sign or a down-pointing triangle (which means that all information about the HTTP message is
displayed).

2

Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file http-
ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s computers, while
performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it into
Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the http-ethereal-trace-
1 trace file. The resulting display should look similar to Figure 1. (The Wireshark user interface displays just a bit
differently on different operating systems, and in different versions of Wireshark).

(Note: You should ignore any HTTP GET and response for favicon.ico. If you see a reference to this file, it
is your browser automatically asking the server if it (the server) has a small icon file that should be
displayed next to the displayed URL in your browser. We’ll ignore references to this pesky file in this lab.).

By looking at the information in the HTTP GET and response messages, answer the following
questions. When answering the following questions, you should print out the GET and response
messages (see the introductory Wireshark lab for an explanation of how to do this) and indicate where
in the message you’ve found the information that answers the following questions. When you hand in
your assignment, annotate the output so that it’s clear where in the output you’re getting the
information for your answer (e.g., for our classes, we ask that students markup paper copies with a
pen, or annotate electronic copies with text in a colored font).

1. Is your browser running HTTP version 1.0 or 1.1? What version of HTTP is the server
running?

2. What languages (if any) does your browser indicate that it can accept to the server?
3. What is the IP address of your computer? Of the gaia.cs.umass.edu server?
4. What is the status code returned from the server to your browser?
5. When was the HTML file that you are retrieving last modified at the server?
6. How many bytes of content are being returned to your browser?
7. By inspecting the raw data in the packet content window, do you see any headers within

the data that are not displayed in the packet-listing window? If so, name one.

In your answer to question 5 above, you might have been surprised to find that the document you just
retrieved was last modified within a minute before you downloaded the document. That’s because (for
this particular file), the gaia.cs.umass.edu server is setting the file’s last-modified time to be the
current time, and is doing so once per minute. Thus, if you wait a minute between accesses, the file
will appear to have been recently modified, and hence your browser will download a “new” copy of
the document.

2. The HTTP CONDITIONAL GET/response interaction

Recall from Section 2.2.6 of the text, that most web browsers perform object caching and thus perform
a conditional GET when retrieving an HTTP object. Before performing the steps below, make sure
your browser’s cache is empty. (To do this under Firefox, select Tools->Clear Recent History and
check the Cache box, or for Internet Explorer, select Tools->Internet Options->Delete File; these
actions will remove cached files from your browser’s cache.) Now do the following:

 Start up your web browser, and make sure your browser’s cache is cleared, as discussed
above.

 Start up the Wireshark packet sniffer
 Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file2.html
Your browser should display a very simple five-line HTML file.

 Quickly enter the same URL into your browser again (or simply select the refresh button on
your browser)

 Stop Wireshark packet capture, and enter “http” in the display-filter-specification window, so
that only captured HTTP messages will be displayed later in the packet-listing window.

 (Note: If you are unable to run Wireshark on a live network connection, you can use the http-
ethereal-trace-2 packet trace to answer the questions below; see footnote 1. This trace file was
gathered while performing the steps above on one of the author’s computers.)

Answer the following questions:
8. Inspect the contents of the first HTTP GET request from your browser to the server. Do

you see an “IF-MODIFIED-SINCE” line in the HTTP GET?
9. Inspect the contents of the server response. Did the server explicitly return the contents

of the file? How can you tell?
10. Now inspect the contents of the second HTTP GET request from your browser to the

server. Do you see an “IF-MODIFIED-SINCE:” line in the HTTP GET? If so, what
information follows the “IF-MODIFIED-SINCE:” header?

11. What is the HTTP status code and phrase returned from the server in response to this
second HTTP GET? Did the server explicitly return the contents of the file? Explain.

3. Retrieving Long Documents

In our examples thus far, the documents retrieved have been simple and short HTML files. Let’s
next see what happens when we download a long HTML file. Do the following:

 Start up your web browser, and make sure your browser’s cache is cleared, as discussed
above.

 Start up the Wireshark packet sniffer
 Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file3.html

Your browser should display the rather lengthy US Bill of Rights.

 Stop Wireshark packet capture, and enter “http” in the display-filter-specification window, so
that only captured HTTP messages will be displayed.

 (Note: If you are unable to run Wireshark on a live network connection, you can use the http-
ethereal-trace-3 packet trace to answer the questions below; see footnote 1. This trace file
was gathered while performing the steps above on one of the author’s computers.)

In the packet-listing window, you should see your HTTP GET message, followed by a multiple-
packet TCP response to your HTTP GET request. This multiple-packet response deserves a bit
of explanation. Recall from Section 2.2 (see Figure 2.9 in the text) that the HTTP response
message consists of a status line, followed by header lines, followed by a blank line, followed by
the entity body. In the case of our HTTP GET, the

entity body in the response is the entire requested HTML file. In our case here, the HTML file is
rather long, and at 4500 bytes is too large to fit in one TCP packet. The single HTTP response
message is thus broken into several pieces by TCP, with each piece being contained within a separate
TCP segment (see Figure 1.24 in the text). In recent versions of Wireshark, Wireshark indicates each
TCP segment as a separate packet, and the fact that the single HTTP response was fragmented across
multiple TCP packets is indicated by the “TCP segment of a reassembled PDU” in the Info column
of the Wireshark display. Earlier versions of Wireshark used the “Continuation” phrase to indicated
that the entire content of an HTTP message was broken across multiple TCP segments.. We stress
here that there is no “Continuation” message in HTTP!

Answer the following questions:
12. How many HTTP GET request messages did your browser send? Which packet number

in the trace contains the GET message for the Bill or Rights?
13. Which packet number in the trace contains the status code and phrase associated with

the response to the HTTP GET request?
14. What is the status code and phrase in the response?
15. How many data-containing TCP segments were needed to carry the single HTTP

response and the text of the Bill of Rights?

4. HTML Documents with Embedded Objects

Now that we’ve seen how Wireshark displays the captured packet traffic for large HTML files, we can
look at what happens when your browser downloads a file with embedded objects, i.e., a file that
includes other objects (in the example below, image files) that are stored on another server(s).

Do the following:

 Start up your web browser, and make sure your browser’s cache is cleared, as discussed
above.

 Start up the Wireshark packet sniffer
 Enter the following URL into your browser http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file4.html

Your browser should display a short HTML file with two images. These two images are
referenced in the base HTML file. That is, the images themselves are not contained in the
HTML; instead the URLs for the images are contained in the downloaded HTML file. As
discussed in the textbook, your browser will have to retrieve these logos from the indicated
web sites. Our publisher’s logo is retrieved from the www.aw-bc.com web site. The image

of the cover for our 5
th

edition (one of our favorite covers) is stored at the manic.cs.umass.edu
server.

 Stop Wireshark packet capture, and enter “http” in the display-filter-specification window, so
that only captured HTTP messages will be displayed.

 (Note: If you are unable to run Wireshark on a live network connection, you can use the http-
ethereal-trace-4 packet trace to answer the questions below; see

footnote 1. This trace file was gathered while performing the steps above on one
of the author’s computers.)

Answer the following questions:

5 HTTP Authentication

Finally, let’s try visiting a web site that is password-protected and examine the sequence of HTTP
message exchanged for such a site. The URL http://gaia.cs.umass.edu/wireshark-
labs/protected_pages/HTTP-wireshark-file5.html is password protected. The username is
“wireshark-students” (without the quotes), and the password is “network” (again, without the quotes).
So let’s access this “secure” password-protected site. Do the following:

16. How many HTTP GET request messages did your browser send? To which Internet
addresses were these GET requests sent?

17. Can you tell whether your browser downloaded the two images serially, or whether they
were downloaded from the two web sites in parallel? Explain.

Now let’s examine the Wireshark output. You might want to first read up on HTTP authentication
by reviewing the easy-to-read material on “HTTP Access Authentication Framework” at
http://frontier.userland.com/stories/storyReader$2159

Answer the following questions:
18. What is the server’s response (status code and phrase) in response to the initial HTTP

GET message from your browser?
19. When your browser’s sends the HTTP GET message for the second time, what new

field is included in the HTTP GET message?

http://gaia.cs.umass.edu/wireshark-labs/protected_pages/HTTP-wireshark-
file5.html
Type the requested user name and password into the pop up box.

 Stop Wireshark packet capture, and enter “http” in the display-filter-specification window, so
that only captured HTTP messages will be displayed later in the packet-listing window.

 (Note: If you are unable to run Wireshark on a live network connection, you can use the http-
ethereal-trace-5 packet trace to answer the questions below; see footnote 2. This trace file
was gathered while performing the steps above on one of the author’s computers.)

 Make sure your browser’s cache is cleared, as discussed above, and close down your
browser. Then, start up your browser

 Start up the Wireshark packet sniffer
 Enter the following URL into your browser

The username (wireshark-students) and password (network) that you entered are encoded in the
string of characters (d2lyZXNoYXJrLXN0dWRlbnRzOm5ldHdvcms=) following the
“Authorization: Basic” header in the client’s HTTP GET message. While it may
appear that your username and password are encrypted, they are simply encoded in a

format known as Base64 format. The username and password are not encrypted! To see this, go to
http://www.motobit.com/util/base64-decoder-encoder.asp and enter the base64-encoded string
d2lyZXNoYXJrLXN0dWRlbnRz and decode. Voila! You have translated from Base64 encoding to
ASCII encoding, and thus should see your username! To view the password, enter the remainder of the
string Om5ldHdvcms= and press decode. Since anyone can download a tool like Wireshark and sniff
packets (not just their own) passing by their network adaptor, and anyone can translate from Base64 to
ASCII (you just did it!), it should be clear to you that simple passwords on WWW sites are not secure
unless additional measures are taken.

Fear not! As we will see in Chapter 8, there are ways to make WWW access more secure. However,
we’ll clearly need something that goes beyond the basic HTTP authentication framework!

	Wireshark_Intro_v6.0
	Wireshark_HTTP_v6.1

