By-Rahmlow, Hardd F; And Oithers
OCCIPATIONAL MATIEMATICS; SCIENTIFIC NOTATION. REPORT NO 16 -S. BOCKIET II. FINAL REPORT.
Washington State Coordinating Council for Occupational Education, Olympia.; Wastungton State Univ, Pullman. Dept. of Education.
Spons Agency-Office of Education (DHEW), Washington, D.C.
Burtau No-BR-7-0031
Pub Date Jun 68
Grani-OEG-4-7-070031-1626
Note-99p.
EDRS Price MF-\$0.50 HC-\$4.04
Descriptors-*ARITHMETIC, *NUMEER CONCEPTS, *PROGRAMED TEXTS, *SYMBOLS (MATHEMATICS), *VOCATICNAL EDUCATION

This programed mathematics textbook is for student use in vocational education courses. It was developed as part of a programed series covering 21 mathematical competencies which were identified by university researchers through task analysıs of several occupational clusters. The development of a sequential content structure was also based on these mathematics competencies. After completion of this program the student should know that a number X having an exponent n means that X is multiplied by itself n times and be able to perform addition, subtraction, multiplication. and division with numbers containing exponents, convert any number into standard scientific notation, convert a number from standard notation into standars decimal notation, and perform addition, subtraction, multiplication, and division using scientific notation. The material is to be used by individual students under teacher supervision. Twenty-six other programed texts and an introduciory volume are avalable as VT 006 882-VT 006 909, and VT 006 975. (EM)
tifls document has beew reproouced exactly as received from the PERSON OR ORGAMIIZAIION ORIGIMATIMG II. POLHIS OF VIEW OR OPMHOHS STATED DO MOT MEEESSARILY REPRESENT OFFICIAL OFFICE OF EDUCAIION
POSIIION OR POLICY.

BOOKLET II
OF
Report No. 16-S

Occupational Mathematics
SCIENTIFIC NOTATION

Page 119

Now that you have the necessary background, let's see how to use it.

You probably know that the sun is $193,000,000$ miles from the earth. Sometimes it is more convenient to write this number using scientific notation. This is simply another way to express a number without uriting all the zeroes. He can say that $193,000,000=$ 1.93×10^{8}. Similarly, $.0000193=1.93 \times 10^{-5}$.

All we have done is nove the decimal point one place to the right of the first non-zero integer. He than musi multipiy by a power of 10 which depends on how far the decimal point was moved. 1.93×10^{8} merely means to move the decimal point 8 places to the right (which is the sume as multiplying 1.93 by $100,000,000$). So $\mathrm{i} .93 \times 10^{8}=193,000,000$.

In our other ewample, 1.93×10^{-5} means to move the decimal point 5 places to the left. (Which is the same as multiplying by . 00001). So $1.93 \times 10^{-5}=$.0000193.

Continued on next page

Page 119

 continued
Here are a few more examples:

Number 923	Number in Scientific Notation 1741
$38,23 \times 10^{2}$	
$38,412,910$	1.741×10^{3}
.0071	3.84×10^{7} (approximate)
.0000500	7.1×10^{-3}
	5.0×10^{-5}

Now turn to page 120 for a problem. Be sure you understand before going on.

See if you can express 385 using scientific notation.
(a) 38.5×10
Turn to page 129
(b) $3.85 \times 10^{2} \quad$ Turn to page 125
(c) $.385 \times 10^{3} \quad$ Turn to page 124

Page 121

I think you missed some of the main ideas about scientific notation.

Go back and study page 119 very carefully. Then continue from there.

Turn to page 119.

Yes, 210,000 was correct!

Now, see if you can do this one.

The number 9.71×10^{3} is equal to:
(a) 971 Turn to page 133
(b) 9710

Turn to page 134

Your answer of 4700 is equal to 4.7×10^{3}.

Now see if you can do the problem on page 125 correctly.

Turn to page 125.

Page 124

It is true thas your answer is equal to 385. But it is conventionai to put the decimai point one place to the right of the first non-zero digit. This means that $385=3.85 \times 10^{2}$ was the correct answer.

In any number expressed in scientific notation, there will always be exactly one whole number to the left of the decimal point.

Very good!

Here's one a littile different.

Another way to write 4.7×10^{4} is:
(a) $47,000 \quad$ Turn to page 134
(b) 4,700

Turn to page 123
(c) .47

Turn to page 126

Page 126

Your answer of .47 is equal to 4.7×10^{-1} in scientific notation. The correct answer was that $4.7 \times 10^{4}=$ 47,000.

Now see if you can do better on this one.

What number is equal to 2.1×10^{5} ?
(a) . 000021
Turn to page 131
(b) 210
Turn to page 133
(c) 210,000
Turn to page 122

Page 127

Your answer was correct!

Try this one.

32,561 can be written as:
(a) $3.2561 \times 10^{4} \quad$ Turn to page 125
(b) $325.61 \times 10^{4} \quad$ Turn to page 133

Page 128

Now see if you can apply what you just read.

Express 218.60 in scientific notation.
(a) $2.186 \times 10^{2} \quad$ Turn to page 127
(b) 21,360 Turn to page 132
(c) $21,860 \times 10^{2} \quad$ Turn to page 130

Page 129

It is true that your answer is equal to 385. But it is conventional to put the decimal point one place to the right of the first non-zero digit. This means that $385=3.85 \times 10^{2}$ was the correct answer.

In any number expressed in scientific notation, there will always be exactly one whole number to the left of the decimal point.

Page 130

The correct answer was that $218.60=2.186 \times 10^{2}$. Your answer of $21,860 \times 10^{2}$ would be the same as $2,186,000$. Do you see where you made your mistake?

Try this one.

The number 8, 124 in scientific notation is:
(a) 8.124
Turn to page 121
(b) $8.124 \times 10^{3} \quad$ Turn to page 127
(c) $81.24 \times 10^{3} \quad$ Turn to page 133

Page 131

Watch it! What you wrote was 2.1×10^{-5}.

Go back to page 126 and read more carefully.

Turn to page 126.

Page 132

Wait a minute! You did two things wrong. First of all, 21,860 is not scientific notation. Also, do you really mean that $218.60=21,860$?

You'd better go back to page 128 and think a little more about the problem.

Turn to page 128.

Page 133

I think you missed some of the main ideas about scientific notation.

Go back and study page 119 very carefull.j. Tren continue from there.

Turn to page 119.

Page 134

Good! You're doing fine on large numbers. Let's see how you can do on some small numbers.

Remember, small numbers are very similar to large numbers in scientific notation. The difference is that numbers less than 1 must be shown by using negative exponents, i.e.:

$$
.002=2 \times 10^{-3}
$$

Turn to page 142 for a problem now.

Page 135

Right!

Here's one more.

The value of . 007 is the same as:
(a) $700 \quad$ Turn to page 139
(t) $7.0 \times 10^{3} \quad$ Turn to page 140
(c) $7.0 \times 10^{-3} \quad$ Turn to page 150

Page 136

Very good! liaybe you have it this time.

Try this problem.

An equivalent way to write . 00035 is:
(a) . 35 Turn to page 146
(b) $3.5 \times 10^{-4} \quad$ Turn to page 138
(c) 35.0

Turn to page 140

Page 137

You said that $.000713=713$. The correct answer was that $.000713=7.13 \times 10^{-4}$.

Whenever you move a decimal point, you must allow for it by showing a power of ten in the new representation. In this problemi you should have moved the decimal point 4 places. Since the original number was less than 1.0, the exponent will be a negative 4 , hence 7.13×10^{-4}.

Now let's see if you can do the next one.

Turn to page 145:

Page 138

Fine!

Let's see if you can do one a little different.

What is another way to express 9.675×10^{-2} ?
(a) . 09675 Turn to page 150
(b) . 0009675 Turn to page 144
(c) $967.5 \quad$ Tursi to page 143

Page 139

I don't think you understand some of the main ideas.

It would help you to go back and restudy the material on page 119. Then continue from there.

You made a bad mistake. You tried to move the decimal point without using a power of 10 to show hous far you moved it. You wouldn't say $2=200$ would you? of course not! But $2 \times 10^{2}=200$.

It is important to remember this:

If you move a decimal point, you must have
a power of 10 to show how far you moved it.

Now try this problem.
. 013 in scientific notation is:
(a) $1.3 \times 10^{-2} \quad$ Turn to page 136
(b) $.013 \times 10^{-2} \quad$ Turn to page 148
(c) .13 Turn to page 139

Page 141

You said that $.000713=7.13 \times 10^{4}$. Let's see why this is incorrect.
$7.13 \times 10^{4}=7.13 \times 10,000=71,300$. Do you see now? The correct answer was that $.000713=7.13 x$ 10^{-4}. The number of digits you moved the decimal tells you the size of the exponent. Since the original number was less than 1.0 , the exponent will be negative. Hence, -4 in our problem.

Now let's see if you can do the next one.

Express the number . 000713 in scientific notation.
(a) 713 Turn to page 137
(b) $7.13 \times 10^{4} \quad$ Turn to page 141
(c) 7.13×10^{-4} Turn to page 138

Did you read the last problem correctly? Your answer represented 9.675×10^{2}. The problem was 9.675×10^{-2}.

Go back to page 138 and see if you can do better this time.

Turn to page 138.

Page 144

Your answer of .0009675 would equal 9.675×10^{-4}. That is merely because you move the decimai point 4 places. But our problem was 9.675×10^{-2}, so you should have . 09675 after moving the decimal point 2 places.

How can you write 8.3×10^{-4} ?
(a) $83,000 \quad$ Turn to page 149
(b) $.83 \quad$ Turn to page 148
(c) . 00083 Turn to page 135

Page 145

Here is one a little easier than the last.

Express . 058 using scientific notation.
(a) $5.8 \quad$ Turn to page 140
(b) $.58 \times 10^{-1} \quad$ Turn to page 147
(c) $5.8 \times 10^{-2} \quad$ Turn to page 136

Page 140

You made a bad mistake. You tried to move the decimal point without using a power of 10 to show how far you moved it. You wouldn't say $2=200$, would you? Of course not! But $2 \times 10^{2}=200$.

It is important to remember this:

If you move a decimal point, you must have a power of 10 to show how far you moved it.

Now try this problem.
.013 in scientific notation is:
(a) $1.3 \times 10^{-2} \quad$ Turn to page 136
(b) $.013 \times 10^{-2} \quad$ Turn to page 148
(c) . 13 Turn to page 139

Page 147

Yes, $.58 \times 10^{-1}$ is the same as .058 .

Bui remember the conventional. We normally move the decimal point to the right of the first nonzero digit.

Go back to page 145 and keep this in mind.

Turn to page 145.

Page 148

I don't thirik you understand some of the main ideas.

It would help you to go back and restudy the material on page 119. Then continue from there.

Page 149

You said $83,000=8.3 \times 10^{-4}$.

Is this the ariswer you meant to choose?
(a) Yes Turn to page 148
(b) No

Turn to page 144 and look at the problem only

Good! iNow you are ready to see how scientific notation can be used.

Let us first look at addition and subtraction using scientific notation. You will need to recall what you learned about exponents.

Remember that in addition and subtraction the exponents had to be the same before you could add or subtract. This also holds using scientific notation. The powers of 10 must be the same before you can add or subtract. Then you simply add or subtract the nuribers, keeping the nower of 10 the same. Here is an example:
$3.71 \times 10^{4}+5.13 \times 10^{4}=8.84 \times 10^{4}$

He merely add 3.71 and 5.13 and do not change the power of ten. Here's a tougher example:

Add: $\begin{array}{ll} & 412 \times 10^{2} \\ + & 3.13 \times 10^{4}\end{array}$
We first write 412×10^{2} as 4.12×10^{4}. Now we simply add to get 7.25×10^{4}.

Continued on next page

Page 150 continued

Here's one more:

Notice that you can move the decimal points however you wish, as long as you do not change the overall value of the number.

Page 151

All right! Let's see if you understand the ideas just discussed.

Add 3.6×10^{5} and 2.08×10^{5}.
(a) $5.68 \times 10^{5} \quad$ Turn to page 157
(b) 5.68×10^{10} Turn to page $16 i$
(c) $5.14 \times 10^{5} \quad$ Turn to page 156

Page 152

Correct!

See if you can do another.

Add these: $\begin{aligned} & 2.71 \times 10^{4} \\ & +1.6 \times 10^{4}\end{aligned}$
(a) 4.31

Turn to page 153
(b) $4.31 \times 10^{4} \quad$ Turn to page 157
(c) $4.31 \times 10^{8} \quad$ Turn to page 154

Page 153

You seem to have forgotten the basic rules for adding numbers containing exponents. Before proceeding, you need to review this important area.

Turn to page 23 of Booklet I and work through a few of the problems for a review. Then return to page 150 of Booklet II.

Turn to page 23, Booklet I.

Page 154

You seem to have forgotten the basic rules for adding numbers containing exponents. Before proceeding, you need to review this important area.

Turn to page 23 of Booklet I and work through a few of the problems for a review. Then return to page 150 of Booklei II.

Page 155

Wow! What did you do?

You should have written both numbers using scientific notation and then added them. You do not add exponents.

Now try this one.

Add 31.2×10^{2} and 1.6×10^{3} and express your answer using scientific notation.
(a) $32.8 \times 10^{5} \quad$ Turn to page 153
(b) $48.2 \times 10^{2} \quad$ Turn to page 154
(c) $4.72 \times 10^{3} \quad$ Turn to page 160

Page 156

I tinink you were a litt te careless in your addition.

Go back to page 151 and add the numbers again.

Turn to page 151.

Page 157

Exceilent: Keep up the gooul work.

Here's a little harder one.

Add (467×10^{2}) and (31.2×10^{3}) and express your answer using scientific notation.
(a) $779 \times 10^{2} \quad$ Turn to page 159
(b) $7.79 \times 10^{4} \quad$ Turn to page 152
(c) $498.2 \times 10^{5} \quad$ Turn to page 155

Page 158

Here is your next problem.

What is $2 \times 10^{2}+3 \times 10^{2}$?
(a) $5 \times 10^{2} \quad$ Turn to page 152
(b) 5×10^{4}

Turn to page 153

Page 159

Yes, your answer of 789×10^{2} would give the correct value. But remember that in scientific notation there is always a decimal point after the first nonzero integer.

See if one of the answers on page 157 is written in proper form.

Page 160

Correct!

Try this one.

What is: $\begin{array}{r}17.98 \times 10^{3} \\ +133 \times 10^{2} \\ \hline\end{array}$
(a) $3.128 \times 10^{4} \quad$ Turn to page 162
(b) $19.21 \times 10^{4} \quad$ Turn to page 153
(c) 150.98×10^{3} Turn to page 154

Page 161

Watch it! You made the mistake of adding the exponents. Remember, in addition and subtraction you keep the same exponent.

Sf. $3.6 \times 10^{5}+2.08 \times 10^{5}=5.68 \times 10^{5}$. This is very important idea to keep in mind as you continue.

Turn to page 158.

You're doing fine!

The next couple problems : α with subtraction. Like addition, the exponents must be the same before you subtract.

Express your answer in convent: onal scientific notation.
(a) $.22 \times 10^{-2} \quad$ Turn to page 170
(b) 2.2×10^{-4}

Turn to page 169
(c) 8.05×10^{-1}

Turn to page 167

Page 163

Excellent! liaybe you have it this time.

Let's try one more to see if you can get back on the right track.

Subtract 1.47×10^{7} from 224.8×10^{5} and write your answer using scientific notation.
(a) $77.8 \times 10^{5} \quad$ Turn to page 164
(b) $7.78 \times 10^{6} \quad$ Turn to page 169
(c) $223.33 \times 10^{5} \quad$ Turn to page 176

Page 164

Yes, 77.8×10^{5} would give the correct answer. But this answer is not in standard form for scientific netation.

Go back to page 163 and choose the answer in proper form.

Page 165

Very good!

Let's continue.

What is 7.4×10^{6}
(a) 7.3007×10^{6}

Tur. 7 to page 176
(b) 7.1×10^{5}

Turn to page 187
(c) You can't subtract them

Page 166

You didn't read the problem very carefully. It said to subtract.

Better go back to page 169 and try again.

Turn to page 169.

Incorrect. In this type problem the first thing you must do is change both quantities to numbers having the same exponent.

For example: 83.2×10^{-5}
becomes $\quad 8.32 \times 10^{-4}$
-4.8×10^{-4}
Subtracting, we get 3.52×10^{-4}. Notice that -4 stays as the exponent in the final answer.

Page 168

No. You still don't have it.

Haybe you are trying to go too fast. Slow down a little and see if you can follow the example on page 167. Then continue from there.

Exacîly right! Keep up the good work.

Let's see if you can do this one now.

What is $\left(9.61 \times 10^{3}\right)-\left(.70 \times 10^{2}\right)$?
(a) $9.54 \times 10^{3} \quad$ Turn to page 187
(b) $9.68 \times 10^{3} \quad$ Turn to page 166
(c) $8.91 \times 10^{1} \quad$ Turn to page 171

Page 170

You're close. Your answer of $.22 \times 10^{-3}$ dees give the right number. But it isn't in standard form for scientific notation. Remember, the decimal point should be to the right of the first positive integer.

Now.so back to page 162 and select the correct answer.

Turn tc page 162.

incorrect.

Recall that before you subtract, you must first be sure that ine exponents are both the same. The correct solution is:
9.61×10^{3}
$=\begin{array}{r}9.61 \times 10^{3} \\ -\frac{.07 \times 103}{9.54 \times 10^{3}}\end{array}$
$\ldots-$ Answer

Try this one.

What is $\left(1.47 \times 10^{6}\right)-\left(8.3 \times 10^{5}\right)$?
(a) $6.4 \times 10^{5} \quad$ Turn to page 16 ?
(b) $-6.83 \times 10^{6} \quad$ Turn to page 176
(c) You can't subtract them

Turn to page 174

Page 172

No. You sti?l don't have it.

Maybe you are trying to go too fast. Siow down \exists
little and see if you can follow the example on page
167. Then continue from there.

Page
 173

Come on, new. I don't think you paid close attention to what you just read two pages ago.

You'd better go back to page 167 and read carefully this time.

Turn to page 167.

Page 174

Yes, the numbers can be subtracted.

Here's a hint. For purposes of the subtraction, change 1.47×10^{5} to 14.7×10^{5}. Now go back to page 171 and see if you can do it.

Page 175

Yes, the number: can be subtracted.

Try changing $.003 \times 10^{8}$ into an equivalent number with 6 as the exponert. Go back to page 165 and try again.

Turn to page 165.

Incorrect. You should recall from page 162 that both exponents must be the same defore you subtract.

Here is an example:

$$
\begin{array}{r}
14.72 \times 10^{4} \\
-60.5 \times 10^{3} \\
\hline
\end{array} \begin{array}{r}
14.72 \times 10^{4} \\
\hline 6.05 \times 10^{4} \\
\hline 8.67 \times 10^{4}
\end{array}
$$

Notice that the exponents are both 4 before you subtract.

Keeping this in mind, try this one.

What is $14.68 \times 10_{4}^{3}$? -1.27×10^{4}
(a) $1.98 \times 10^{4} \quad$ Turn to page 168
(b) $1.341 \times 10^{2} \quad$ Turn to page 172
(c) $1.98 \times 10^{3} \quad$ Turn to page 163

Pag^ 177

Let's sea if you can do one now.

What is $\left(3.7 \times 10^{-2}\right)-\left(11 \times 10^{-3}\right)$?
(a) $.026 \quad$ Turin to page 173
(b) $3.59 \times 10^{-3} \quad$ Turn to page 176
(c) $2.6 \times 30^{-2} \quad$ Turn to page 163

Page 178

The rumber you chose was correct. But it is not written using scientific notation. The number $5,699,200,000,000$ is 5.6992×10^{12} using scientific notation.

On the next problem be sure to use scientific notation.

Page 179

Incorrect. The correct answer was 1.683×10^{6}.

Try this cne.

Express (32).(65) in scientific notation.
(a) 2,080
iurn to page 191
(b) 2.08
Turn to page 188
(c) 2.08×10^{3}
Turn to page 184

Excel7ent!

Here's another to multiply.

What is the product of $\left(18.7 \times 10^{8}\right) \cdot\left(0.9 \times 10^{-3}\right)$?
(a) 16.83×10^{-24} Turn to page 182
(b) $1.683 \times 10^{6} \quad$ Turn to page 192
(c) $16.83 \times 10^{2} \quad$ Turn to page 179

Page 181

Express the product of $(18,000)$. (230) with scientific notation.
(a) 4.14×10^{6}
Turn to nage 186
(b) 4.14×10^{8}
Turn to page 188
(c) $4,140,090$
Turn to page 183

Page 182

Incorrect. You multiplied the exponents togeťher.

You'd better reviev the method needed for multiplication as explained on page 137.

Page 183

You're not following instructions very well.

Go back to page 181 and do what the problem asks.

Turn to pac: 181.

Page 184

Good! You got that one right. Keep up the good work.

Express $\left(1.9 \times 10^{-3}\right) \cdot\left(3.6 \times 10^{-2}\right)$ in scientific notation.
(a) $6.84 \times 10^{6} \quad$ Turn to page 188
(b) $6.84 \times 10^{-5} \quad$ Turn to page 192

Page 185

Here's your problem.

Express the product of $(137,000,000) \cdot(41,000)$ in scientific notation.
(a) $5.6992 \times 10^{12} \quad$ Turn to page 180
(b) $5,699,200,000,000$ Turn tc page 178
(c) I'm not su.e how Turn to page 189

Page 186

Correct! That's better.

Let's see if you can get this one.

Express (.0071) • (.018) in scieitific notation.
(a) . $0001278 \quad$ Turn to page 190
(b) 1.278×10^{-4} Turn to page 180
(c) I'm not sure what to do

Turn to page 188

Page 187

Very good! Now let's take a iook at some multiplication problems.

Example 1:

$$
\left(2.3 \times 10^{4}\right) \cdot\left(6.1 \times 10^{3}\right)=14.03 \times 10^{7}=1.403 \times 10^{8}
$$

Example 2:

$\left(15 \times 10^{-2}\right) \cdot\left(2.1 \times 70^{-4}:=31.5 \times 10^{-6}=3.15 \times 10^{-5}\right.$

There are three thirijs you noad to rememper to do multiplicacion:
(1) Muitiply the leuding aumbers
(2) Aidd the expoients
(3) Change the fina? number to standard scientific notation (wheie the decimal is to the right of the first positive integer).

If the numbers being muitipiied are not in scientific notation, simply convert them betore you start.

Example 3:

$$
(50,000) \cdot(170,000)
$$

First converi to scientific notation. The problem is now $\left(5.0 \times 10^{4}\right) \cdot\left(1.7 \times 10^{5}\right)=8.5 \times 10^{9}$.

Example 4:

$$
\begin{aligned}
& (.00012) \cdot(.0025)=\left(1.2 \times 10^{-4}\right) \cdot\left(3.5 \times 10^{-3}\right)= \\
& 4.20 \times 10^{-7}
\end{aligned}
$$

Study ithese examples carefully. When you are ready to try one yourself, turn to page 185.

Turn to page 185.

Page 188

You don't seem to have the idea completely.

Go back and study the material on page 187 very carefuily.

Turn to page 187.

Page 189

Here are some clues to help you get started.

$$
\begin{aligned}
& (137,000,000)=1.37 \times 10^{8} \\
& (41,600)=4.16 \times 10^{4}
\end{aligned}
$$

Now simply multiply the numbers at the front of each and add the exponents. Go back to page 185 now and try again.

Turn to page 185.

Page 190

No. You weren't very careful in reading the last probiem.

Go back to page 186 and take a little more time to be accurate.

Turn to page 186.

Page 191

Come on, now. 2,080 is not in scientific notation.

Go back and choose the answer on page 179 that is in correct form.

Turn to page 179.

Excellent! Now you should be ready to do some division probiems.

Example 1: $\left(8.64 \times 10^{8}\right):\left(2.4 \times 10^{5}\right)=\frac{8.64}{2.4} \times 10^{(8-5)}=$ 3.6×10^{3}
Example 2: $\left(50.22 \times 10^{6}\right) /\left(9.3 \times 10^{2}\right)=\frac{50.22}{9.3} \times 10^{6-2}=$ 5.4×10^{4}

The steps to follow in division are:
(1) Divide the leading numbers
(2) Subtract the exponents
(3) Change the final answer to standard scientific notation if it isn't already expressed that way. If the numbers ieing divided are not in scientific notation, simply convert them before you start.

Example 3:
 $\frac{2.976}{4.8} \times 10^{6-3}=.62 \times 10^{3}=6.2 \times 10^{2} \mathrm{in}$ standard form.
Example 4: $(.000001092) \div(.00012)=\left(1.092 \times 10^{-6}\right) \div$ $\left(1.2 \times 10^{-4}\right)=\frac{1.092}{1.2} \times 10^{-2}=.91 \times 10^{-2}=$
9.1×10^{-3} in standard form.
Study the examples on this page carefuily. When you are ready to try one yourself, turn to page 193.

Page 193

What is $\frac{5.6092 \times 10^{8}}{3.79 \times 10^{3}}$? Express your answer using scientific notation.
(a) $1.48 \times 10^{2.7}$
Turin to page 197
(b) $1.48 \times 10^{5} \quad$ Turn to page 196
(c) $1.48 \times 10^{7} \quad$ Turn to page 209

Page 194

rine! 3.2×10^{-2} was the correct answer.

Now, what is $(.00092) \div\left(4.0 \times 10^{-3}\right)$?
(a) $2.3 \times 10^{-1} \quad$ Turn to page 198
(b) $.0023 \quad$ Turn to page 205
(c) 230

Turn to page 195

Page 195

Your choice of answer means that you do not understand how to divide using scientific notation.

Study page 192 very carefuily. Then see if you can proceed correctly from there.

Turn to page 192.

Page 196

Correct! You're doing fine.

Here's one a little tougher.

Express the following quotient in scientific notation: .0000000092
.000038
(a) 4.13×10^{-4} Turn to page 207
(b) $2.42 \times 10^{-4} \quad$ Turn to page 198
(c) $24,200 \quad$ Turn to page 199

Your answer was incorrect. Let's look at the correct solution.
$\frac{5.6092 \times 10^{8}}{3.79 \times 10^{8}}=\frac{5.6092}{3.79} \times 10^{5}=1.48 \times 10^{5}$

It's really very easy. In this one all you had to do was divide the leading numbers and subtract the exponents.

See if you can do these things on the next problem.

Very fine work! You have successfully come to the end of the Unit.

Because there were so many ideas in this Unit, most of them were discussed only briefly. You will probably need some additional practice on your own in order to remember everything that was discussed.

You may wish to review some of the material covered in this Unit. It has been broken into sections for your convenience.

Page 199

Let's look at the correct solution to the last problem. $\frac{.0000000092}{.000038}=\frac{9.2 \times 10^{-9}}{3.8 \times 10^{-5}}=\frac{9.2}{3.8} \times 10^{-4}=2.42 \times 10^{-4}$.

See if you can get this one.
$\frac{.0000832}{.0026}=?$
(a) $3.2 \times 10^{-2} \quad$ Turn to page 194
(b) $.32 \times 10^{3} \quad$ Turn to page 202
(c) 320

Turn to page 208

Page 200

All right!

See if you can get this one.

In scientific notation, the value of $\left(9.6 \times 10^{5}\right):$ $\left(3.2 \times 10^{2}\right)$ is:
(a) $30 \quad$ Turn to page 210
(b) $3.0 \times 10^{3} \quad$ Turn to page 204
(c) $.33 \times 10^{4} \quad$ Turn to page 203

Page 201

For help on

1. Preaning of an exponent

Refer to These Pages

$1=22$
2. Addition and subtraction using exponents

23-45
3. Multiplication with exponents

46-60 :start at 47)
4. Division with exponents
5. Use of 0 as exponent
6. Negative exponents 61-14
7. Concept for scientific notation

179-149
8. Addition using scientific notation

150-161
9. Subtraction using scientific notation

162-177
10. Multiplication using scientific notation

178-191
11. Division using scientific notation

192-? 10

When you have completed any review you wish to do, see your teacher for the test on Unit 18.

Page 203

The correct answer was that $\left(9.6 \times 10^{5}\right) \div\left(3.2 \times 10^{2}\right)=$ 3.0×10^{3}.

Here's one that should he!p you get back on the right track.

What is $\left(8 \times 10^{7}\right) /\left(2 \times 10^{2}\right)$?
$\begin{array}{ll}\text { (a) } 4 \times 10^{5} & \text { Turn to page } 204 \\ \text { (b) } 400 & \text { Turn to page } 205 \\ \text { (c) I'm not sure } & \text { Turn to page } 195\end{array}$

Page 204

Firie! Your answer was correct.

Try this one.

Express $\frac{2.52 \times 10^{4}}{7.2}$ in scientiric notation.
(a) $.35 \times 10^{4} \quad$ Turn to page 206
(b) $3.5 \times 10^{3} \quad$ Turn to page 196
(c) 350

Turn to page 205

Page 205

Your choice of answer means that you do not understand how to divide using scientific notation.

Study page 192 very carefully. Then see if you can proceed correctly from there.

Pretty close. But your answer of $.35 \times 10^{4}$ is not in standard form.

Go back to page 204 and see if the answer in standard form is there.

Turn to page 204.

Oh, oh! You were careless on that one. You divided the numbers backward. You always divide the numerator by the denominator.

Go back to page 196 and see if you can do it correctly this time.

Turn to page 196.

Page 208

The correct answer was 3.2×10^{-2}.

See if you can get back on the track with this one.
$\left(4.75 \times 10^{-6}\right) /(.0019)=?$
(a) 22.900 Turn te page 195
(b) $2.25 \times 10^{-3} \quad$ Turn to page 194
(c) $.225 \times 10^{4} \quad$ Turn to page 205

Page 209

Your answer was incorrect. Let's look at the correct solution.
$\frac{5.6092 \times 10^{8}}{3.79 \times 10}=\frac{5.6092}{3.79} \times 10^{5}=1.48 \times 10^{5}$

It's really very easy. In this one all you had to do was divide the leading numbers and subtract the exponents. See if you can do these things on the next problem.

Page 210

The correct answer was that $\left(9.6 \times 10^{5}\right) \div\left(3.2 \times 10^{2}\right)=$
3.0×10^{3}.

Here's one that should help you get back on the right track.

What is $\left(8 \times 10^{7}\right) /\left(2 \times 10^{2}\right)$?
(a) $4 \times 10^{5} \quad$ Turn to page 204
(b) $400 \quad$ Turn to page 205
(c) I'm not sure Turn to page 195

NORTHWEST REGIONAL EDUCATIONAL LABORATORY 400 Lindsay Building - 710 S.W. Sedond Avenue Portland, Oregon 97204

CAI MATHEMAT: SS

TEST UUESTIONS

UNIT 18 - SCIENTIFIC NOTATION

1. $\mathrm{X} \cdot \mathrm{X} \cdot \mathrm{X} \cdot \mathrm{X}=$
(a) 4 X
(b) X
(c) X^{4}
2. $\left(2^{3}\right)\left(2^{4}\right)=$
(a) 2^{7}
(b) 4^{7}
(c) 2^{12}
3. $2^{-3}=$
(a) -6
(b) $1 / 8$
(c) $1 / 6$
4. 6.002×10^{-2}
(a) .06002
(b) 600.2
(c) 60.02
5. $\left(3 \times 10^{5}\right)\left(6 \times 10^{-2}\right)=$
(a) 18×10^{-10}
(b) 9×10^{3}
(c) 18×10^{3}
6. Subtract 2.28×10^{5} from 361.76×10^{3}
(a) 359.48×10^{2}
(b) 1.3376×10^{2}
(c) 359.48×10 ?
(i) $1.3376 \times$;
7. $2^{6}=$
(a) $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
(b) $6 \cdot 6$
(c) $6 \cdot 2$
8. 20.032 written in scientific notation is:
(a) 2.0032×10^{4}
(b) 2.0032×10^{-1}
(c) $2.00 \div \cdot 10^{1}$
9. $\left(x^{4}\right)\left(x^{2}\right)=$
(a) $2 x^{6}$
(b) x^{6}
(c) $2 x^{8}$
(d) x^{8}
10. $10^{-4}=$
(a) $\frac{1}{1000}$
(b) -40
(c) .0001
11. $3.6 \times 10^{4}+2.85 \times 10^{4}=$
(a) 6.45×10^{8}
(b) 3.21×10^{4}
(c) 6.45×10^{4}
12. 8015 written in scientific notation is:
(a) $.301: \times 10^{3}$
(b) $\quad .015 \times 10^{3}$
((1) 8.115×10^{-3}
13. $\left(3 \mathrm{~A}^{3}\right)(2 \mathrm{~A})=$
(a) $\sim A^{4}$
(b) $5 n^{3}$
(c) Ne:ther answer
14. If $A=3$, then $A^{4}=$
(a) 12
(b) 81
(c) 04
15. $3.02 \times 10^{3}=$
(a) .00302
(b) 3020
(c) 32000
16. $6 A^{3}-A^{3}=$
(a) 6
(b) $6 A^{3}$
(c) $5 \mathrm{~A}^{3}$
17. . 003 in scientific notation is:
(a) 3×10^{-3}
(b) .003
(b) $3 \times .001$
18. If $x=2$, then $5^{x}=$
(a) 25
(b) 10
(c) 32
19. Express the product of (1500)(21) with scientific notation.
(a) 3.15×10^{4}
(b) 315×10^{5}
(c) 31500
20. $12 \mathrm{~K}^{4}+3 \mathrm{~K}=$
(a) $9 K^{3}$
(b) $4 \mathrm{~K}^{3}$
(c) $4 K^{4}$
21. $.72 \times 10^{3}$ is the sam? as 7200 .
(a) Yes
(b) No
22. $(.00016)+\left(2.0 \times 10^{-3}\right)=$
(a) 8×10^{-3}
(b) $.8 \times 10^{-1}$
(c) 8
23. $k^{3}=$
(a) 3^{K}
(b) 3 K
(c) $K \cdot K \cdot K$
24. $\left(3.21 \times 10^{-2}\right)+\left(1.25 \times 10^{3}\right)=$
(a) 1250.0321
(b) 1.571×10^{3}
(c) 4.46×10^{1}
25. $A^{2}+A=$
(a) A^{3}
(b) $2 A^{2}$
(c) Neither answer

Scientific Notation

1. c 1
2. a 2
3. b 1
4. a 4
5. c 5
6. d 5
7. a 1
8. c 3
9. b 2
10. c 3
11. c12. b13. a14. b15. b16. c2
12. a 3
13. a 1
14. a 5
15. b 2
16. b 3
17. a 5
18. c]24. a
19. ©

ERIC

