WJEC

Energy Flow

Mark Scheme

Bil Inoz

Question		Answer / Explanatory Notes	Mark Available
7	а	A The sun is the source of energy for (all) (ecosystems)	1
		B Energy is passed from one trophic level to another or named example eg primary consumer	1
TOP OF THE STREET		C Green plants fix light energy, converting it to chemical energy by photosynthesis/equation	1
		D Plants are called (primary) producers / autotrophs	1.
70 70 80 80		E All other organisms in the ecosystem obtain energy by <u>feeding</u> either directly or indirectly on the primary producers	1
		F They are consumers / heterotrophs	1
		G Consumers are classified as primary, secondary or tertiary according to position in food chain or description.	1
2009/06/20		H The organisms at each trophic levels release some of the chemical energy in the food they take in by respiration.	1
		I this energy is then not available to consumers on the next trophic level/ sources of energy unavailable eg faeces.	1
		J Transfer of energy from plants to primary consumers is also inefficient because much plant biomass is indigestible cellulose./is inaccessible e.g. roots	
9	,	underground.	1 .
		K Dead producers and consumers have energy locked up in the chemicals of which they are made.	1
		L Decomposers utilise this and release (heat) energy (from their respiration)	1
		M The relationship between the energy / biomass / number at each trophic level is therefore a pyramid/ eg	1
¥	(9)	N (Energy conversion during) respiration releases heat energy to the atmosphere.	1.
		O Statement that overall there is a flow of energy from the sun, through the ecosystem, to the atmosphere.	10 from 15

7	3.	(a)	A Li	ght/solar energy/(sun)light (not: sun, allow: photosynthesis)	(1)
J			В (Е	inergy loss) Respiration	(1)
				Energy loss) Excretion/Egestion/production of faeces/urine/aste (not: faeces/urine/wastage)	(1)
		(b)	Third		(1)
		(c)	(i)	Spider	(1)
			(ii)	Higher/maintaining body temp / Higher metabolic rate (not: ref. to size)	(1)
			(iii)	Less cellulose/fibre in diet/undigestible matter.	(1)
		(d)	(i)	(Could be) greater productivity in oceans / higher energy conversi	ion
				less support required in oceans, less cellulose etc./less egestion/	
				oceans mainly ectothermic animals, respiratory loss greater/	
				less muscular activity, support etc. in oceans, respiratory rate lower.	
				Any one	(1)
			(ii)	Any one of above but different.	(1)
			(iii)	Less cellulose/lignin/undigestible material in grasses; (or converse	€)
				Productivity could be lower in forest?	(1)
			(iv)	Energy lost at each transfer, not enough energy in last trophic level to support another layer. (allow: energy runs out)	(1)
				Total 11 m	ıarks
	4.	(a)	(i)	95% saturation	(1)
			(ii)	44/45% saturation in muscle	(1)
			(iii)	$571/560 \times 10^6$	(1)
		(b)	(i)	To left of normal	(1)
			(ii)	Does not become saturated at the pp of oxygen in environment/ At low pp oxygen does not release as much oxygen (allow: does not have a strong enough affinity)	(1)
			(iii)	In tissues with high pp. O ₂ no release of O ₂ ;	
				Small drop in pp O ₂ at lower pp O ₂ too much released/all or nothing;	(1)

		Ques	tion		Answer/Explanatory Notes	Marks Available
		5	(a)	(i) (ii) (iii) (iv) (v)	potometer 1600 decreased increased water is absorbed faster than transpired (not: stomata closed)	1 1 1 1 1
			(b)	light (i	ntensity)	1
			(c)	guard o	cells (Not: stomata)	1
			(d)	(i)	(actively) pumped into cells (to lower cell water potential)/draw water in by osmosis (not: move in/diffuse)	1.
)				(ii)	Lowered water potential draws water in (from adjacent cells)	1
				(iii)	(extra water increases volume of cell), uneven wall thickness/inner wall thicker/cause cells to bend/curve (Not: open)	1
			(e)	(i) (ii)	xylem cohesion/adhesion or capillary action/root pressure/hydrogen bonding/ dipolar bonds	1
					Any two for 1 mark	1
				36*		[12]
	4	6	(a)	(i) (ii)	15576 (1) written on dotted line alongside R2 (1) C2 = C3+R3+E3/C3 = C2-(R3+E3)	2 1
)			(b)	(i) (ii)	total energy expelled per $m^2 = 972+3732+110+20=4834$ (1) total energy expelled = 4834×25000 (1) = $120,850,000/1.2085x10^{-8}$ passes to decomposers/detritivores; respired/used/released	2
					by decomposers; lost as heat (Any 2) (not: eaten)	2
						[7]

	Question			Answer/Explanatory Notes	Marks Available
5	6.	(a)	(i)	Death/defaecation.	2
			(ii)	W W contains 900 - 10 - 290 = 600KJ:	1
				X must contain <10kJ (not: description)	1
		(b)	(i)	Reflected/passes through leaves/wrong wavelength/raises temperature.	1
			(ii)	Inedible material (bark/tannin)/out of reach (roots/heartwood)/heat loss	1
		(c)	(i)	Y = carnivorous animals/predators/secondary consumer.	1
			(ii)	Z = Respiration.	1
			(iii)	Z.	1
		(d)	((10/90	$(00) \times 100 = 100/90) = 1.1\%$	1
		(e)	Heat		1 [11]

ı	Question			Answers/Explanatory Notes		
6	3.	(a)	(i)	21060 x 100; 1,700,000 1.24(%);	2	
			(ii)	reflected;		
				passes straight through the leaf/transmission through leaf (not: transmission unqualified)		
				misses photosynthetic parts/leaves;		
				wrong wavelength;	3 max	
				absorbed by water;		
				not present because of season;		
		(b)	(i)	4;	1	
			(ii)	energy at last/4 th trophic level only <u>21 units</u> ; insufficient to pass on/support another level;	2	
		(c)		death/decay; excretion/urine; faeces/egestion;	2 max	
		(4)			Z IIIdX	
		(d)		bacteria; fungi/saprophytes;	2	
		(e)		producer floats out/removed from, ecosystem/fishing/migration qualified;	1	
					[13]	

Question		Answer/Explanatory Notes	Marks Available	
7 1.	(a)	 (i) Weeds/Periphyton (ii) Pond snail/Mayfly larvae/Gammarus (iii) Trout/Minnows/Sticklebacks/Notonecta/water boatman 	1 mark 1 mark 1 mark	
	(b)	starting with weeds/periphyton and food chains from diagram Pyramid shape correct way up	1 mark 1 mark	
2.	(a)	A = Trachea B = Bronchiole C = Pleural membrane D = Diaphragm	4 marks	
	(b)	(i) 15 Acc 14 - 16 (ii) 450 cm ³ Acc. 440-460 (iii) 1075 cm ³ Acc 1050 - 1150	1 mark 1 mark 1 mark	
	(c)	high/increased levels of carbon dioxide in inhaled air; Lower concentration gradient between blood and alveolar air;		
		Slower diffusion;	2 Max	
	(d)	 (i) Residual (volume) (ii) Prevent surfaces sticking together/reduce surface tension (not: keep alveoli open) 	1 mark 1 mark	
3.	(a)	 (i) Drawing, cell with extension. (ii) Large SA; (Welsh medium – surface qualified) 		
		Large number of mitochondria (energy for active transport) Thin cell wall, (does not interfere with flow); Low water potential/vacuole extends into hair/ protein pumps in the membrane (not: large vacuole)	3 Max	
	(b)	Cell walls; (not: cellulose) Plasmodesmata/cytoplasm	2 marks	
	(c)	Casparian strip/suberin; prevents apoplastic movement; forces water into cytoplasm/cell; Actively transport mineral ions into xylem vessels.	2 marks	
	(d)	Water moves upwards in Xylem.	1 mark	

	Question			Answers/Explanatory Notes		
8	5.	(a)	(i)	Be reflected off leaves / pass between leaves / evaporate water / strike dust particles / water molecules in air (Any 2) (not: wrong wavelength unqualified / ref. to heat)	2	
			(ii)	Gross production = $1,970,000 - 1,946,820 = 23,180$ Net production = $23180 - 3668 = 19512$	1 1	
		(b)	(i)	1603 - (192 + 88) = 1323	1	
			(ii)	Faeces / urine / dead bodies (Any 1 from 3) (not: waste / dead plants)	1	
		(c)	(i)	rabbits (allow: the same)	1	
			(ii)	Take only 30 days to produce the same weight of meat as compared with 120 days for cow / convert same amount from one tonne of hay.	1	
			(iii)	rabbits have a larger surface area / they move about more than the cow / higher metabolic rate (not: more energetic / more respiration)	1	
			(iv)	Keep them in heated sheds / keep them in small cages so they cannot move Speed up meat production	1 1 [11]	

	Question			Answers/Explanatory Notes		
9	4.	(a)	(i)	Symmetrical and correct way up	1	
				Labels correct using names in table	1	
				Correct proportions	1	
			(ii)	not all of organism eaten;		
				dead organisms not eaten;		
				loss of undigested material;		
				loss of CO ₂ /respiration/loss of heat;		
				Loss as urine/urea/excretion	Max. 2	
		(b)	Dead	organisms may not be collected/only living organisms cted;		
			Roots	s/part of organisms not collected;		
			Not r	epresentative areas samples;		
			Time	of collection/seasonal variation;		
			Varia	able water content unless dried/dry biomass;		
			Anin	nals may be at more than one trophic level.	Max. 2	
		(c)	Refle	ected;		
			Light	passes through leaf/does not get absorbed by a chloroplast;		
			Conv	rerted to heat energy;		
				e <u>wavelengths</u> not absorbed by plant pigments/eq. ref. to short wavelengths; not all hits the plant)	Max. 2	
					Total 9	

Question **Answers/Explanatory Notes** Marks **Available 6.** (a) respiration; movement; heat loss; death; excretion/waste products; egestion/defaecation; non consumed/inedible material; [3 max] 28.6/28.57 (kg day⁻¹⁾ (not: 29); (b) (i) $0.8 \text{ (kg day}^{-1}\text{)}$ 8.8/8.79 [3] (ii) cow has greater efficiency of conversion/ results in greatest total mass / sheep give wool as well / rabbits because of greater daily mass increase; [1] (not: rabbits consume food more quickly) Total 7

	Question		Answ	ers/Explanatory Notes	Marks Available
	3.	(a)	(i)	Actively transported into the guard cell (allow: pumped in)	[1]
				to increase turgor or decrease water potential	[1]
			(ii)	Outer walls thinner than inner walls (not: difference in thickness)	[1]
				turgor pushes outer wall outwards to open stomata (not: guard cells change shape) (mention of turgor required in either i or ii)	[1]
		(b)	Light /	water deficiency (humidity) / temperature /	
				n dioxide. ref. to windspeed/daytime/night time)	[2]
			(1101.	Ton to Windopood, day amo, might amo,	[Total mark 6]
11	4.	(a)	Large	energy loss between one trophic level and the next means the	nat
				ttle would normally remain at level 5. r: comparison between 2000 and 0.6)	[1]
		(b)	(allow	rs → caterpillars → birds → hawks. r: Plants/ worms/ insects, not : mice)) rs indicating direction of energy flow must be given)	[1]
		(c)	(i)	80-50 = 30	[1]
				(4.5 / 30) × 100	[1]
				= 15%	[1]
			(ii)	Lost as excreta/urine/faeces/dead bodies	[1]
				and passes to decomposers (not: respiration)	[1]
		(d)	Prima	ry producers	[1]
			They	take up quantities of carbon dioxide (in photosynthesis).	[1]
			Decor	mposers.	[1]
			•	generate carbon dioxide (from all the other trophic levels). d marks; allow : ref. to trophic levels)	[1]
		(e)	Loss	of habitat / nesting sites / shelter	[1]
			Loss	of biodiversity / extinction/endangered	[1]
		[Total mark 13]			