Worky Powert © Maehthes

Hold a book out in front of youmyour arms are getting tired.ris this work?

What is work?

- WORK: Using a force to move an object a distance (in the same direction).

Calculating Work

 Work $=$ Force \times Distance *The force acts in the direction of the movement.

No Distance.r.No Work

- No work is done when you stand in place holding an object.

Example: Hold a 5 N pan of chocolate brownies, waiting for your friend to open the door. You have not moved the pan.

$$
\begin{aligned}
& W=F \times D \\
& \text { work }=5 \mathrm{~N} \times 0 \mathrm{~m}=0
\end{aligned}
$$

Is work belne done or not?

- Mowing the lawn
- Weight-lifting
- Pushing against a locked door
- Swinging a golf club
- Hanging from a chin-up bar

YES
YES
NO

YES
NO

The Joule - the unit we use for work (and EDVERGY!)

- One Newton of Force moving 1 meter is known as a joule (J).
- Named after British physicist James Prescott Joule.

Galculating Work

- If this kid pushed the other kid across the room 10 meters with 5 N of force, how much work is done?
- W=F x d
- $W=5 \times 10$

Mean little thing!!

- 50 Joules

Another Work Calculation

- This little chicken pulled her eggs 20 meters and did 100 Joules of work. How much force did she use?
- W=F x d
- $100=\mathrm{F} \times 20$
- $F=5 \mathrm{~N}$

-How quickly work is done. - Involves time

Amount of work done per unit time. Work

$$
P=\text { Time }
$$

The Watt - the unit of power

- A unit named after Scottish inventor James Watt.
- Invented the steam engine.
- $P=W / t$
- Joules/second
- 1 watt = $1 \mathrm{~J} / \mathrm{s}$

See if you can figure this out..

Talia and Chris have the same size yards.
Talia can mow her yard in 1 hour with 30N Force, but it takes Chris two hours to mow his yard with 30 N of force.

1. Who did more work?
2. Who used more power?

watits

- Used to measure power of light bulbs and small appliances
- An electric bill is measured in kW/hrs.
- 1 kilowatt = 1000 W

A train pulls a load 20 meters with 3000 N of force. How much work is done?

$\mathrm{W}=\mathrm{Fd}$
$W=3000 \times 20=60,000$ Joules

A woman lifts a baby with 5 N of force. She did 30J of work. How far did she lift the baby up?

$$
\begin{gathered}
W=F d \\
30=5 d \\
30 / 5=d \\
D=6 \text { meters }
\end{gathered}
$$

A kid pushed a wagon in 30 seconds with 20 N of force. He pushed it a total of 10 meters before he gave up.

How much work did he do?
$\mathrm{W}=20 \times 10=200 \mathrm{~J}$
How much power did he use?
$P=W / t \quad P=200 / 30 \quad P=6.67 \mathrm{~W}$

Machines

- A device that makes work easier.
- A machine can change the size, the direction, or the distance over which a force acts.

Forces involvedt

- Input Force - ${ }^{\prime}$
-Force applied to a machine

Output Force
F_{0}
Force
applied by a machine

wo forges, thus two types of work

- Work Input
\checkmark work done on a machine
=Input force x the distance through which that force acts (input distance)

Work Output
Work done by a machine
=Output force x the distance through which the resistance moves (output distance)

Can you get more work out than you put in?

\& Work output can never be greater than work input.

Mechanical Advantage -

- The number of times a machine multiplies the input force. MA = output forcelinput force

Difierent mechanical advantages:

- MA equal to one. (output force = input force)
- Change the direction of the applied force only.

Mechanical advantage less than one
An increase in the distance an object is moved (d_{o})

Efificiency

- Efficiency can never be greater than 100 \%. Why?
- Some work is always needed to overcome friction.
- A percentage comparison of work output to work input.
- work output $\left(W_{0}\right)$ / work input $\left(W_{1}\right)$

1. INED LIDVNR

- A bar that is free to pivot, or move about a fixed point when an input force is applied.
- Fulcrum = the pivot point of a lever.
- There are three classes of levers based on the positioning of the effort force, resistance force, and fulcrum.

First Class Levers

- Fulcrum is located between the effort and resistance.
- Makes work easier by multiplying the effort force AND changing direction.
- Examples:

second Class

- Resistance is found between the fulcrum and effort force.
- Makes work easier by multiplying the effort force, but NOT changing direction.
- Examples:

Third Class Loveers

- Effort force is located between the resistance force an the fulcrum.
- Does NOT multiply the effort force, only multiplies the distance.
- Examples:

Class 2 Lever

Mechanical advantage of levers.

- Ideal = input arm length/output arm length
- input arm = distance from input force to the fulcrum
- output arm = distance from output force to the fulcrum

2. IDED WHODPL AND

AXLIE

- A lever that rotates in a circle.
- A combination of two wheels of different sizes.
- Smaller wheel is termed the axle.
- IMA = radius of wheel/radius of axle.

3. INED INOLINPD PLANE

- A slanted surface used to raise an object.
- Examples: ramps, stairs, ladders
- IMA = length of ramp/height of ramp Can never be less than one.

4. INEDD WDDGD

- An inclined plane tha moves.
- Examples: knife, axe, razor blade
- Mechanical advantage is increased by sharpening it.

5. INEL SCRDW

- An inclined plane wrapped around a cylinder.
- The closer the threads, the greater the mechanical advantage
- Examples: bolts, augers, drill bits

6. IDHID PULLINY

- A chain, belt, or rope wrapped around a wheel.
- Can either change the direction or the amount of effort force
- Ex. Flag pole, blinds, stage curtain

Pulley types

- FIXED

MOVABLE

- Can only change the direction of a force.

Can multiply an effort force, but cannot change direction.

- MA = 1

MA = Count :\% of ropes that apply an upward force (note the block and tackle!)

OnImotimetivs

- A combination of two or more simple machines.
- Cannot get more work out of a compound machine than is put in.

