
Workbook: 2018 FDOT-FRP Industry ^{2nd}Winter Workshop

Table of Contents

- 1. Endurance Limits
- 2. Endurance Characteristic Curves and Testing
- 3. Establishing Consistency
- 4. Increasing Material Property Qualification Thresholds and Design Limits
- 5. Cost Estimating
 - a. OC initiative for ACMA FRP-RMC
 - b. FDOT SDG Chapter 9 update
- 6. Bar Bends
 - a. Complex Shapes
 - b. FDOT Index D21310
- 7. Minimum Bar Sizes for Design Elements
- 8. Life-Cycle Cost Guidance
- 9. Minimum Concrete Class

FDOT's Fiber-Reinforced Polymer Deployment Train has left the Station

Version 18.2

FDOT FRP-RC Strategic Workplan Summary

Priori ty #	Goal #'s ⁽¹⁾	Торіс	Responsible Team	Timeline	Justification
1	1, 2, 3	Endurance Characteristic Curves Testing a. Need time/cycles to rupture curves; b. What is the test method or surrogate measure for supplier product acceptance?	FRP Industry (Dave Hartman-OC) in consultation with SMO (Chase Knight)	ASAP	 a. Reliably extending service-life beyond 50-75 years; b. Simple, timely, low cost verification tests.
2	1, 5	Endurance Limits - on FRP for design (is 20% the best we can do?)			Directly proportional to area of rebar required. Perhaps we should consider a strain-limit approach (Benmokrane)
3	1, 4, 5	Increasing Material Property Qualification Thresholds and Design Limits - desirably 20% above ASTM D7957.	FDOT with industry concurrence	Decision by 8/1/2018 for SM publication	>20% reduction in rebar area possible for SLS controlled designs
4	3, 4	Establishing Consistency (in what? - manufacturer approval, design, bidding, construction)			
5	1, 3	Cost Estimating - Need for published cost estimates for GFRP rebar inplace.	ACMA	Decision by 8/1/2018 for SM publication	
5a	-	 Follow up from OC discussion with FDOT at CAMX 2017 - Where is OC and ACMA- FRP RMC on this? 	OC/ACMA	Need generic data for Chapter 9 of SDG for BDR cost estimating by 8/1/2018	Consistency in Bridge Development Reports evaluation and Bid Estimate preparation

5b	_	- FDOT needs to add this to	FDOT-SDO	Structures	
		SDG Chapter 9 for designer's		Manual	
		guidance during BDR		(SM)	
		evaluation - can be added in		publication:	
		Nov. 2018 update if a		Nov 1 <i>,</i> 2018	
		consensus proposal ready by August 30th.		2018	
6	4	Bar Bends – Improve quality, and	FDOT/Industry	Standard	Improve efficiency
		Guidance for complex shapes and		Plans FY	for:
		shear stirrups. Index D21310 or		2019-2020:	1. Plans Production:
		SDM? Can be implement in Nov.		Nov 1,	Standard callouts and
		2018.		2018	Rebar program
				publication	automation. 2. Design efficiency:
					reducing overlapping
					bar lengths.
7	1	Minimum Bar Sizes for Design			Smaller bars are more
		Elements - allow use of #3 bars in			efficient for
		slabs and walls. Historical prohibition			Ultimate/Strength
		due to fear of yielding from workers			Limit State. GFRP #3
		walking/climbing.			is twice yield strength of Gr60 & 10% > #4
					01 0100 & 10% > #4
8	1, 3	Life-Cycle Cost (LCC) Guidance - 100	FDOT-UM	Add FDM	
		or 75 years? Should substructure be	(SEACON)	guidance	
		more (100+) than superstructure (75		for Nov.	
		current)?		2018	
				release.	
9	1, 4, 5	Minimum Concrete Class/Strength -	Need		Concrete is relatively
		for non-corrosive reinforcing (FRP	parametric		cheap so is it
		not SS): - Class II: 3,400 psi (min. W/C=<0.53,	study.		beneficial <i>(when</i>
		- class II: 3,400 psi (min. w/c=<0.53, =<470#/CY)			sustainability is not currently a required
		- vs. Class IV: 5,500 psi (min.			consideration) Lower
		W/C=<0.41, =<658#/CY).			strength reduces
		(0, 0, -1) = (0, 0, 0, -1)			efficiency (<i>d</i>), lower
					stiffness for
					deflection, and higher
					service stresses?

- (1) Goals for FRP Deployment:
 - 1. Stewardship
 - 2. Confidence
 - 3. Competency
 - 4. Consistency
 - 5. Codification

1. Endurance Characteristic Curves and Testing

a. Draft White Paper - Developing New Endurance Characterization Curves for GFRP Reinforcing Bars

b. AASHTO SCOBS Needs Statement: **Developing Endurance Characterization Curves for GFRP Reinforcing Bars**

2. Endurance Limits

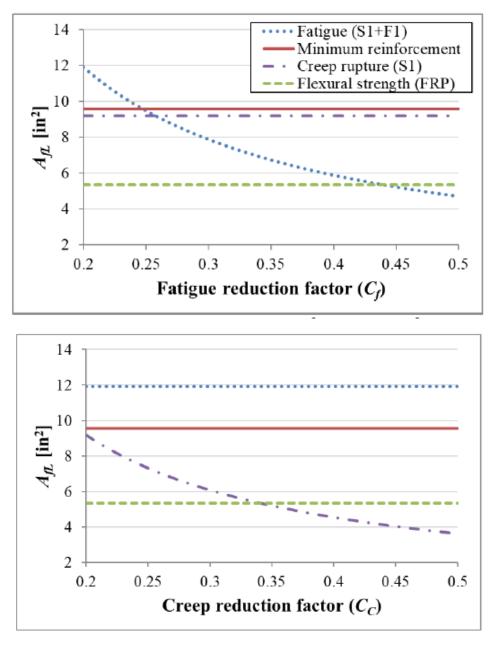

Is 20% the best we can do for Creep-Rupture and Cyclic Fatigue.

 Table 1 - Creep rupture stress limits, ACI 440.1R-15 (Table 7.4.1)

Fiber type	GFRP	AFRP	CFRP
Creep rupture stress limit $f_{fs,sus}$	$0.20 f_{fu}$	$0.30 f_{fu}$	$0.55 f_{fu}$

$$f_{fc} = C_c f_{fu} = C_c C_E f_{fu}^* = 0.14 f_{fu}^*$$

Adapted from ACI 440.1R-15

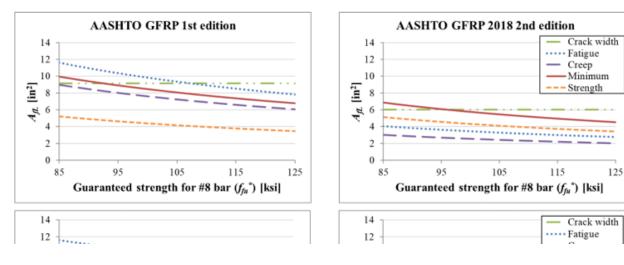
3. Increasing Material Property Qualification Thresholds and Design Limits

20% increase proposed above ASTM D7957/FDOT 932-2 values

Parameters		Range		Flexural Strength	Minimum Reinf.	Creep Rupture	Cyclic Fatigue	Crack Width Limit	A _{fL} Potential Savings (%)
Φ	-	0.55	0.75	x					27%
C _E	-	0.70	0.95	х	х	x	х		27%
f_{fu}^{*}	Ksi	85	125	x	x	x	x		32%
C _c	-	0.2	0.5			x			61%
C _f	-	0.2	0.5				x		61%
Cb	-	0.7	1.1					x	30%
w	in.	0.02	0.05					х	49%
c _c	in.	3.0	1.0	(x)	(x)	(x)	(x)	х	35%

Table 2 – Varied parameters and their effect in terms of reinforcement savings.

b. Need to add Elastic Modulus to the parametric study by UM/CICI (Nanni, Rossini)


References:

a.

Rossini, Bruschi, Matta, Poggi, Nanni (2017). *Case-Specific Parametric Analysis as Research-Directing Tool for Analysis and Design of GFRP-RC Structures*, SP-45.

Rossini, Bruschi, Matta, Nolan, Nanni (2018). *Extended abstract: Overview of Proposed AAHTO Design Specifications for GFRP-RC Bridges 2nd Edition using Case-Specific Parametric Analysis.*

4. Establishing Consistency

- a. Manufacturer/Product Approval
 - i. NIST FRP Roadmapping Workshop Report is available free of charge at: https://doi.org/10.6028/NIST.SP.1218
- b. Design
- c. Bidding
- d. Construction
- e. Inspection
- f. Maintenance

5. Cost Estimating

- a. OC initiative for ACMA FRP-RMC follow up from OC discussion with FDOT at CAMX Dec, 2017 What is the status?
- b. <u>FDOT SDG</u> Chapter 9 update for designer's guidance during BDR evaluation can be added in Nov. 2018 update if a consensus proposal ready by August 30th.

Structures Design Guidelines	Topic No. 625-020-018
9 - BDR Cost Estimating	January 2018

D. Cofferdam Footing (cofferdam and seal concrete*)

Prorate the cost provided herein based on area and depth of water. A cofferdam footing having the following attributes will cost \$600,000.

Area: 63 ft x 37.25 ft. Depth of seal; 5 ft. Depth of water over the footing; 16 ft.

* Cost of seal concrete included in pay item 400-3-20 or 400-4-200.

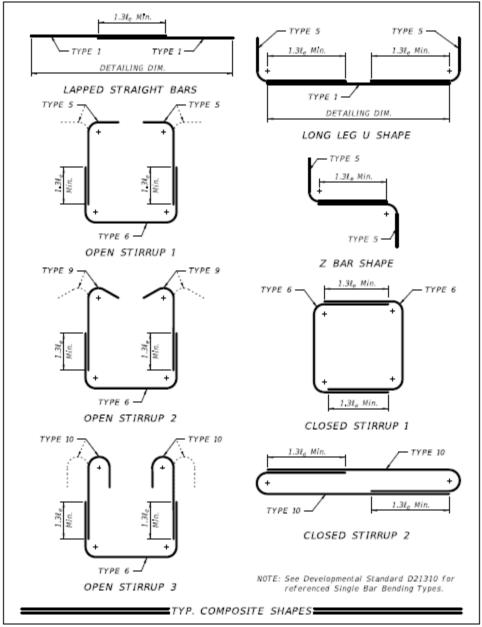
E. Substructure Concrete: cost per cubic yard.

Concrete:	\$850	Bulkhead Concrete:	\$900
Mass concrete:	\$625	Shell fill:	\$30
Seal concrete:	\$375		l

For calcium nitrite, add \$40 per cubic yard. (@ 4.5 gal per cubic yard) For silica fume, metakaolin or ultrafine fly ash, add \$40 per cubic yard. (@ 60 lbs. per cubic yard)

- F. Reinforcing and Post-tensioning Steel
 - Carbon Reinforcing Steel; cost per pound: \$0.90.
 Low-Carbon Chromium Reinforcing Steel; cost per pound: \$1.25 Stainless Reinforcing Steel; cost per pound: \$4.00
 - 2. Post-tensioning Steel; cost per pound.

Strand	\$4.00
Bars	\$6.00


6. Bar Bends

a. FDOT Index D21310 update suggestions http://www.fdot.gov/roadway/DS/Dev/D21310.pdf

21310.pdf

 b. Complex Shapes, see IDDS-21310 http://www.fdot.gov/roadway/DS/Dev/IDDS/IDDS-D21310.pdf

Design Aids

7. Minimum Bar Sizes for Design Elements

- a. Consider allowing use of #3 bars in slabs and walls.
- b. Historical prohibition due to fear of yielding from workers walking/climbing
- c. Smaller bars are more efficient for Ultimate/Strength Limit State. GFRP #3 is twice yield strength of Grade 60 & 10% greater than #4 Grade 60. (See *FDOT Spec 932-3.2*)

932-3.2 Bar Sizes and Loads: The sizes and loads of FRP reinforcing bars shall meet the requirements in Table 3-1. The measured cross-sectional area, including any bond enhancing surface treatments, shall be determined according to Table 3-2.

Ţ

Table 3-1							
	Sizes and Tensile Loads of FRP Reinforcing Bars						
Bar Size Designation	Bar		Measured Cross-Sectional Area	Minimum Guaranteed Tensile Load (kips)			

		(in ²)	Minimum	Maximum	GFRP Bars	CFRP Bars
2	0.250	0.049	0.046	0.085	6.1	10.3
3	0.375	0.11	0.104	0.161	13.2	20.9
4	0.500	0.20	0.185	0.263	21.6	33.3
5	0.625	0.31	0.288	0.388	29.1	49.1
6	0.750	0.44	0.415	0.539	40.9	70.7
7	0.875	0.60	0.565	0.713	54.1	-
8	1.000	0.79	0.738	0.913	66.8	-
9	1.128	1.00	0.934	1.137	82.0	-
10	1.270	1.27	1.154	1.385	98.2	-

8. Life-Cycle Cost

- a. What is the goal 100 years or 75?
- b. Should substructure be more (100+ years) for future rehab/widening, compared to superstructure (75 years current)?
- c. Consider that concrete is relatively cheap so is it beneficial (when sustainability is not a consideration) to use lower strength considering reduce efficiency "d", lower stiffness for deflection, and higher service stresses (creep, fatigue, and crack width)?

9. Minimum Concrete Class

- a. Consider for non-corrosive reinforcing (FRP not SS: still needs pozzolans and/or high pH):
 - i. Class II: 3,400 psi (min. W/C=<0.53, =<470#/CY)
 - ii. vs. Class IV: 5,500 psi (min. W/C=<0.41, =<658#/CY).
- b. Beneficial sustainability credits (currently not a FDOT/FHWA requirement)

